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A Contrastive Federated Semi-Supervised Learning Intrusion Detection
Framework for Internet of Robotic Things

Yifan Zeng1

Abstract— In intelligent industry, autonomous driving and
other environments, the Internet of Things (IoT) highly inte-
grated with robotic to form the Internet of Robotic Things
(IoRT). However, network intrusion to IoRT can lead to
data leakage, service interruption in IoRT and even physical
damage by controlling robots or vehicles. This paper proposes
a Contrastive Federated Semi-Supervised Learning Network
Intrusion Detection framework (CFedSSL-NID) for IoRT in-
trusion detection and defense, to address the practical scenario
of IoRT where robots don’t possess labeled data locally and
the requirement for data privacy preserving. CFedSSL-NID
integrates randomly weak and strong augmentation, latent
contrastive learning, and EMA update to integrate supervised
signals, thereby enhancing performance and robustness on
robots’ local unlabeled data. Extensive experiments demon-
strate that CFedSSL-NID outperforms existing federated semi-
supervised and fully supervised methods on benchmark dataset
and has lower resource requirements.

Index Terms— Internet of Robotic Things,Networked Robots,
Federated Semi-Supervised Learning, Intrusion Detection

I. INTRODUCTION

Background. Today, automation technology and robotic
systems are widely deployed in industrial and commercial
sectors. And robotics technology can deeply integrate with
the IoT, forming IoRT, where robots are interconnected
through network [1]. This creates a new intelligent net-
work infrastructure made up of robots and other automation
devices as edge nodes. For instance, in the intelligence
industry, IoRT enables various industries to employ multiple
networked robots and other automation devices working
collaboratively to handle tasks, achieving industrial automa-
tion and boosting efficiency [2]. As IoRT devices, robots
and other automation devices employ sensors, actuators,
and wireless communication modules to understand envi-
ronments, respond accordingly, and connect to network [3].
IoRT provides remote access, enabling managers to remotely
monitor and control robots and other automation devices.

However, network intrusion in IoRT poses risks, including
data leakage, service disruption, and even illegal control
of robots and other automation devices leading to serious
physical harm. Sensitive information like industrial secrets
can be leaked, causing financial losses, and reputation dam-
age. Disrupted services impact critical infrastructure and
industrial processes, leading to accidents, downtime, and
environmental hazards. Remote control of vehicles, robots
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and other automation devices by intruders threatens public
safety and result in catastrophic outcomes.

Motivation. Currently, Deep Learning-based Network In-
trusion Detection System (DLNIDS) serves as an effective
and automated defense measure [4]. When IoRT network
intrusion detection system (NIDS) equipped in robot’s net-
work module detects IoRT traffic in attack category, it can
trigger an alarm to remind administrators or automatically
take measures against abnormal traffic connections based on
programs. By precisely classifying attack traffic into more
detailed and specific attack categories, the IoRT NIDS can
take more targeted measures to defend against intrusions.

However, IoRT devices are predominantly robots or other
automation devices, which have limited computing and
storage resources [2]. IoRT NIDS equipped in robotic
and automation devices should be lightweight and real-
time. Furthermore, obtaining labeled intrusion traffic data
is highly time-consuming and expensive, making it chal-
lenging to label data at robot clients. Consequently, training
DLNIDS locally on robots is difficult. Additionally, IoRT
operates in such as industry, commerce, or military, where
communication-generated traffic data may contain sensitive
information. Uploading such data to a cloud server for
training DLNIDS could potentially lead to data breaches.
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Fig. 1: In pratical IoRT system, server can get labeled data
by hiring experts to manually label, while robot clients do
not have sufficient capability to label data.

Our solutions and contributions. To address the afore-
mentioned challenges in practical IoRT scenarios, we pro-
pose CFedSSL-NID tailored for IoRT. By leveraging feder-
ated learning (FL), cloud server collaboratively train IoRT
DLNIDS using data and compute from decentralized robots
while ensuring data remains in robot clients (privacy pre-
serving). Semi-supervised learning (SSL) enables training
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even without label at robot clients, with only cloud server
possessing labeled data. Robot clients employ contrastive
learning (CL), a self-supervised approach that contrasts pos-
itive (similar) and negative (dissimilar) sample pairs in a
latent space. Our contributions are summarized:

• We implement a general approach integrating FL, SSL,
and CL, capable of training with distributed unlabeled
data to achieve enhancing robustness, generalization,
and performance while privacy preserving.

• We propose CFedSSL-NID, an accurate and efficient
FedSSL framework for IoRT intrusion detection with
privacy preservation. It integrates random weak and
strong data augmentation to boost model generalization
and robustness, latent contrastive learning for perfor-
mance improvement from unlabeled data, and EMA
update for fine-tuning with supervised signals.

• We implement and validate CFedSSL-NID alongside
several existing federated semi-supervised and fully su-
pervised methods on benchmark intrusion traffic dataset.
Experimental results demonstrate the effectiveness and
efficiency of CFedSSL-NID.

Challenge Solution

IoRT network intrusion Deep Learning Network Intrusion Detection System

Robot’s limited local performance and data Train DLNIDS in server using all robot clients’ data

Robot client’s data privacy preserving Federated Learning keep data from leaving robot clients

Robot client’s local data without label Semi-Supervised Learning based Contrastive Learning

Robot’s limited storge and computing resource Light-weight CNN model as DLNIDS

Fig. 2: Brief summary of challenges in practical IoRT
scenarios and solutions in our work.

II. RELATED WORKS

About IoRT. [1] revisits the classification of IoRT, in-
cluding its smart connectivity, architecture, and trustworthy
frameworks, while investigating technologies that enhance
IoRT’s efficiency in executing tasks across various domains.
[5] integrates IoRT’s insights into big data management,
deep learning object detection, and sensor fusion. [6] utilizes
LSTM to construct a framework of computer vision and deep
learning, enhancing the performance and efficiency of real-
time IoRT applications.

IoT intrusion detection. [7] illustrates different types
of DDoS and other attacks in IoT, and also explores deep
learning-based intrusion detection system models. [8] shows
various IoT attacks and compares multiple machine learn-
ing models including LR, SVM, DT, RF, and ANN in
IoT intrusion detection. [9] proposed a federated learning
intrusion detection scheme for IoT, which protects privacy
through local training, while achieving high accuracy and
low computational complexity.

Federated semi-supervised learning. FL addresses the
challenge of training on isolated data islands, with most
research focusing on fully supervised settings where every
client has fully labeled data; the foundational FedAvg aver-
ages clients’ model updates on server [10]. Obtaining labeled

data is very expensive. SSL enhances model performance
by leveraging low-cost unlabeled data, with widely adopted
consistency regularization, such as UDA [11] and Mix-
match [12]. Fixmatch [13] combines pseudo-labeling with
consistency regularization. Incorporating SSL methods with
FL algorithms results in approaches such as FedUDA and
FedFixMatch [14]. Methods like FedMatch [15], FedRGD
[16], and FedCon [17] have also adopted consistency loss
on FL clients. But clients only have unlabeled data causes
losses to the aforementioned FedSSL method [17].

Contrastive learning. Contrastive learning compares sim-
ilar and dissimilar instances to learn discriminative repre-
sentations. SimCLR leverages contrastive learning through
data augmentation to learn robust visual representations from
unlabeled images [18]. BYOL learns data representations
from unlabeled data through the interaction of two networks,
without requiring negative samples for contrast [19].

III. PROPOSED METHOD
As stated in the introduction, we are more focused on

a practical and realistic key feature within the Internet of
Robotic Things: no labeled data in robot clients. To address
this, we propose CFedSSL-NID, which utilizes contrastive
learning for self-supervised learning on unlabeled data to
improve model performance. The server holds labeled data
Dl = {(x1,y1),(x2,y2), ...,(xn,yn)}, while robot client k pos-
sesses unlabeled data Dk

u = {(xk
1),(x

k
2), ...,(x

k
nk
)}. Similar

to common federated learning, the server coordinates the
training by aggregating model parameter updates from K
decentralized robot clients over Rs rounds, each training
local models on their respective data for Pc epochs, to
collaboratively improve a global model. Federated learning
ensures that sensitive information stays localized and secure
within the robot client devices. Overview of the proposed
CFedSSL-NID is illustrated in Fig. 3.

A. Client-Side

For each unlabeled data sample from the robot client, both
weak augmentation and strong augmentation are applied. The
strong/weak augmented sample pair derived from the same
original sample, i.e. xi +ηweak = ai, xi +ηstrong = bi. (ai,bi)
are positive pair since their semantic information remains
unchanged. The augmentations of other samples, differing
in semantic information from the strong/weak augmentations
of this sample, are regarded as negatives. Representations
zai and zbi of positive pair (ai,bi), obtained by extracting
features through the CNN Encoder Ek

θ
and projecting them

into the latent space via the Projection Head Pk
θ

, should be
similar. By minimizing the difference in representations of
positive pairs through the ContrastiveLoss and increasing the
difference between representations of positive and negative
samples, the CNN Encoder Ek

θ
can learn both the differ-

ence among different samples and the commonalities among
similar samples. This enables it to learn more generalized
and robust features about IoRT traffic data, ultimately saving
time and computational costs and significantly improving
performance for downstream IoRT traffic classification and
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Fig. 3: Overview of the proposed CFedSSL-NID framework. Each robot client k updates Ek
θ

by local unlabeled data using
ContrastiveLoss and uploads Ek

θ
to server. At server-side, global model EGlo

θ
will be updated by EMA with clients’ model

aggregation. Then EGlo
θ

will be updated by labeled data using CrossEntropyLoss to add supervised signal.

detection tasks. This achieves performance improvement
utilizing unlabeled data from distributed robot clients while
preserving privacy.

Randomly weak/strong augmentation and Dropout.
Weak augmentation applies minor transformations to the
original IoRT traffic data (such as adding small-scale noise),
typically without altering its basic features. It may preserve
the original semantic information, help the model learn basic
data features and further increase the detection accuracy
for downstream IoRT intrusion detection tasks [17]. Strong
augmentation increases the diversity of training data by
applying larger transformations to original IoRT traffic data,
without changing its semantic information. Firstly, by in-
troducing greater noise, strong augmentation may help the
model eliminate noise interference, resulting in more sta-
ble, generalizable, and robust feature representations, which
contribute to achieving better performance in downstream
IoRT intrusion detection tasks. Secondly, it may improve the
model’s generalization ability [20]. Combining weak/strong
augmentations, randomly varying the augmentation scale
for each batch size in every epoch, and using Dropout,
can enhance data diversity and improve the generalization,
stability, and robustness of feature representations [21].

Fig. 4: Example diagram comparing the numerical features
of the original IoRT traffic data with its strongly and weakly
augmented versions.

Latent contrastive learning. For the traffic data generated
by IoRT (Internet of Robotic Things), we adopt a lightweight
one-dimensional CNN as the encoder to extract features.
Specifically, we utilize a small fully connected neural net-
work with non-linear layers as the Projection Head Pk

θ
, which

non-linearly maps the feature representations obtained from
the CNN Encoder Ek

θ
into a latent space, where contrastive

loss functions are applied. Compared to directly utilizing
the representations from the CNN Encoder for contrast,
experimental evidence demonstrates that this approach is
more effective [18]. Given a positive pair of samples (ai,bi)
resulting from Weak/Strong augmentations of the same in-
stance sample i, we obtain their representations zai and zbi

in the latent space. Meanwhile, the 2(B − 1) augmented
samples from the remaining B−1 samples within the same
batch are considered as negative samples. The normalized
dot product (cosine similarity) sim(a,b) = a·b

∥a∥∥b∥ between
representations is employed as the measure of similarity. The
ContrastiveLoss Lcon can be formulated as:

L (ai,bi) =− log

(
esim(zai ,zbi )/τ

∑
B
k=1(e

sim(zai ,zak )/τ + esim(zai ,zbk
)/τ)

)
(1)

Lcon =
B

∑
i=1

(L (ai,bi)+L (bi,ai)) (2)

B. Server-Side
Each robot client runs multiple epochs locally using

the aforementioned contrastive method, obtaining its local
parameters {E1

θ
,E2

θ
,E3

θ
, ...,EK

θ
}. These parameters are then

uploaded to server, where they are aggregated using the
classical FedAvg [10] and get EAgg

θ
= ∑

K
k=1

nk
n Ek

θ
. This not

only ensures that data remains on the robot clients (pre-
serving privacy), but also fully integrates and utilizes the
limited computational resources of multiple robot clients for
efficient training. Additionally, it enables the global model to
learn different data features and distributions from each robot
client, incorporating personalized knowledge from each one.



Labeled data is available in server. we employ the widely-
used CrossEntropyLoss LCE for supervised learning to train
the EGlo

θ
and CGlo

θ
. The IoRT traffic data is processed through

CNN Encoder EGlo
θ

to obtain representations, which are
then fed into Classification Head CGlo

θ
to output prediction

probabilities pi =CGlo
θ

(EGlo
θ

(xi)). The probability of class c
pi,c are compared with one-hot label yi,c to calculate loss. N
and C are the number of samples and classes.

LCE =− 1
N

N

∑
i=1

C

∑
c=1

yi,c log(pi,c) (3)

Exponential moving average (EMA). Exponential mov-
ing average updates global model EGlo

θt+1
through weighted

moving averages (weight ξ ), integrating parameters from
both supervised signals (server-side EGlo

θt
) and self-

supervised learning (robot client-side EAgg
θt

). As mentioned
earlier, robot clients obtain stable, robust, and generalized
features through contrastive learning. Before these features
are applied to downstream supervised classification and
detection, they need to be fine-tuned with supervised signals.
This allows the generalized features to be used for class
judgment. This process is achieved by obtaining new global
model parameters through EMA weighting averages:

EGlo
θt+1

= ξ ·EGlo
θt

+(1−ξ ) ·EAgg
θt

(4)

IV. EXPERIMENTS

We conduct extensive experiments to evaluate the pro-
posed CFedSSL-NID including ablation and comparative
studies. Experimental results show that CFedSSL-NID
achieves best performance compared with baselines in-
cluding federated semi-supervised and fully supervised ap-
proaches. The multi-classification performance indicators are
all averaged by running more than 5 times to reduce the
impact of performance fluctuations caused by randomness.

A. Experimental Configuration and Metrics

Configuration. Experiments were conducted on a environ-
ment with Intel (R) Xeon (R) Gold 6240 CPU @ 2.60GHz,
Tesla V100S-PCIE-32GB GPU and Ubuntu 18.04.3 LTS.
Code was implemented in Python 3.7.6 and PyTorch
1.13.1+cu117. Robot clients locally update 5 epochs and
possess 69070 NSL-KDD unlabeled IoT traffic data. Server
aggregation 10 times and possesses 50000 NSL-KDD labeled
IoT traffic data. Batch size BS = 128 on server-side, learning
rate 0.01 and Adam were utilized during training.

Metrics. We utilized multiple classification performance
indicators to provide a comprehensive evaluation, including
Accuracy (Acc), Precision (Pre), Recall, and F1-score. Given
the imbalance of the data, relying solely on Acc as a metric
is insufficient. Therefore, Pre, Recall, and F1-score were also
used for a more thorough assessment. F1-score is particularly
valuable as it considers both precision and recall, rendering
it a reliable and robust metric [4].

Accuracy =
TP+TN

TP+TN+FP+FN
(5)

In multi-class scenarios, it is crucial to consider the global
performance across all classes. To achieve this, calculate
various classes’ Prei and Recalli separately, and use ratio
of each class quantity as the weighted average:

Weighted F1 =
C

∑
i=1

(
quantityi

∑
C
j=1 quantity j

·2 · Prei ·Recalli
Prei +Recalli

)
(6)

Metrics for measuring complexity are Params and FLOPs.

B. Dataset

Experiments utilize the NSL-KDD [22], a widely used
benchmark dataset in the field of IoT network intrusion
detection. Many IoT intrusion detection works use NSL-
KDD for evaluation [23], [24], [25], [26], [27]. This dataset
provides comprehensive and authentic IoT network intrusion
traffic data, exhibiting a natural imbalance in data distribution
as well as high-dimensional features. These make NSL-KDD
an excellent candidate for evaluating the effectiveness and
robustness of IoRT intrusion detection models. All of the
following evaluations were conducted on KDDTest+.

TABLE I: NSL-KDD Description

Class Description Quantity
Normal Normal traffic without attack 77054

DoS Denial-of-Service: overloading to disrupt service 53385
Probe Information gathering by eavesdropping 14077
R2L Remote-to-Local: unauthorized remote access 3749
U2R User-to-Root: attempt to gain superuser privileges 252

C. Hyperparameter Tuning and Ablation Studies

Hyperparameter tuning. To tune the batch size B of the
robot clients, the temperature τ in ContrastiveLoss, and the
number of Batch Normalization (BN) in Projection Head.

TABLE II: Hyperparameter tuning results I(%)

Metrics B=1024, τ=1 B=1024, BN=0
BN=0 BN=1 BN=2 τ=0.07 τ=0.5 τ=1

Acc 79.34 79.09 78.19 78.33 80.82 79.34
Pre 81.47 81.65 79.15 78.09 82.63 81.47

Recall 79.34 79.09 78.19 78.33 80.82 79.34
F1 76.93 76.06 75.29 75.35 79.20 76.93

TABLE III: Hyperparameter tuning results II(%)

Metrics BN=0, τ=0.5
B=128 B=256 B=512 B=1024 B=2048 B=4096

Acc 77.09 76.95 77.94 80.82 76.84 76.02
Pre 77.30 77.65 78.65 82.63 75.84 77.11

Recall 77.09 76.95 77.94 80.82 76.84 76.02
F1 74.51 74.40 75.59 79.20 73.49 72.95

Applying batch normalization (BN) may degrade the sta-
bility and consistency of representations, thereby affecting
the effectiveness of contrastive learning. And the setting of
temperature τ of ContrastiveLoss is crucial as it enables a
precise balance between enhancing the model’s focus on
hard negative samples and maintaining the uniformity of
the feature space [18]. Moreover, a moderate batch size
B = 1024 may enhance the abundance of negative samples
[28], while optimizing computational efficiency and memory
usage especially for robot clients with limited hardware.



Ablation studies. We conduct ablation studies on
the strategies of randomly weak/strong augmentation and
Dropout, robot client-side latent contrastive learning, as well
as server-side EMA update, to validate their effectiveness in
federated learning for IoRT intrusion detection.

TABLE IV: Ablation studies results for CFedSSL-NID(%)

Methods Acc Pre Recall F1
w/o W/S Augs and Dropout 77.35 79.31 77.35 74.81

w/o Latent Contrastive 76.67 77.28 76.67 73.12
w/o EMA Update 78.37 80.47 78.37 75.23

CFedSSL-NID 80.82 82.63 80.82 79.20

Contrastive learning on robot client-side significantly
boost performance from unlabeled data, achieving an im-
provement of 4.15% in Acc, 6.08% in F1, and 5.35%
in Pre. Weak/strong augmentations and Dropout enhances
performance by introducing randomness and diversity in data
augmentation. Furthermore, the EMA update maintains the
stability and effectively integrates the capabilities learned
from both supervised and unsupervised learning, leading to
notable performance improvements.

Visualizations. We visualized several above strategies
through additional experiments and attempted to intuitively
demonstrate their effects. The strong/weak augmentations
noises and augmented data were compared with the origi-
nal data (one NSL-KDD IoT traffic) for visualization. By
utilizing t-SNE [29] dimensionality reduction visualization,
we compared the projection representations learned with and
without Dropout. The representations learned with Dropout
could be roughly observed to be divided into five clusters,
demonstrating the remarkable ability to learn approximate
class differences from the data itself without the use of class
supervision labels, thus providing separable and generalized
feature representations for downstream classification tasks.

(a) (b)

Fig. 5: Visualizations of strong/weak augmentations noises
and augmented data and original data.

(a) Without Dropout (b) With Dropout
Fig. 6: T-SNE visualizations to compared the projection
representations learned with and without Dropout.

D. Comparative Experiments

The baselines for the detection performance comparison
experiments uniformly employ lightweight CNNs as both

global and local models. Federated semi-supervised learn-
ing: integrate semi-supervised methods Fixmatch [13], UDA
[11], and CR (Consistency Regularization, where clients
apply mean square error loss and cosine similarity loss
for consistency regularization on model representations of
augmented data pairs) [30] with federated algorithms FedAvg
[10] and FedProx [31]. Federated supervised methods: SFe-
dAvg AD [10] (Supervised FedAvg with All 125973 training
traffic Data from NSL-KDD evenly distributed across 10
clients) and SFedProx AD [31] (Supervised FedProx using
All Data). Fully supervised centralized learning: CSL SD
(Centralized Supervised Learning by the Server’s 50000
Data) and CSL AD (Centralized Supervised Learning uti-
lizing the All 125973 NSL-KDD Data). It must be noted
that the original setting of federated semi-supervised learning
baselines assumes that clients have some labeled data, which
is clearly inconsistent with the actual scenarios of robot
clients in IoRT. In our experiments, only these baselines’
self-supervised methods on unlabeled data were adopted.
This underscores the CFedSSL-NID’s tailored design for the
practical scenarios of robot clients in IoRT, which differs
from previous methods.

Binary classification comparison. For IoRT intrusion
traffic, we can simply divide into two categories: attack
and normal. In this case, when the IoRT network intrusion
detection system equipped in robot identifies IoRT traffic
in the attack category, it can send an alert to remind the
administrator or automatically take measures against abnor-
mal traffic connections according to program. We provide
comparison of binary classification confusion matrix (Fig.
7) and the performance indicators calculated from it.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: Binary confusion matrices: (a) CFedSSL-NID (b)
SFedAvg AD (c) SFedProx AD (d) CSL SD (e) CSL AD
(f) FedAvg+CR (g) FedProx+CR (h) FedUDA (i) Fe-
dAvg+Fixmatch (j) FedProx+Fixmatch

TABLE V: Binary classification comparative results(%)

Frameworks Acc Pre Recall F1
SFedAvg AD [10] 81.89 95.23 71.78 81.86
SFedProx AD [31] 81.17 92.66 72.69 81.47

CSL SD 79.22 92.98 68.67 79.00
CSL AD 81.96 95.19 71.94 81.95

FedAvg+CR [10], [30] 82.43 95.22 72.79 82.51
FedProx+CR [31], [30] 82.24 94.69 72.90 82.38

FedUDA [10], [11] 82.68 96.22 72.41 82.64
FedAvg+Fixmatch [10], [13] 83.10 95.26 74.00 82.39
FedProx+Fixmatch [31], [13] 83.25 93.31 76.02 83.79

CFedSSL-NID 85.33 95.83 77.60 85.76



The binary classification comparative experiments demon-
strate that the proposed CFedSSL-NID outperforms even the
best baseline, specifically, an 2.08% increase in Acc and
1.97% in F1 Score. These indicators are derived from the
average results of over 5 repeated runs, which minimizes the
impact of randomness.

Multi-classification comparison. By accurately classify-
ing the attack traffic into more detailed and specific cat-
egories (DoS, Probe, R2L, U2R in NSL-KDD), the IoRT
DLNIDS can take more targeted measures to defend against
intrusions. By presenting the comparison of detection per-
formance in a multi-class classification scenario in TABLE
VI, it can observe that the proposed CFedSSL-NID outper-
forms these federated semi-supervised, fully supervised and
centralized supervised methods.

TABLE VI: Multi-classification comparative results(%)

Frameworks Acc Pre Recall F1
SFedAvg AD [10] 78.25 79.33 78.25 74.97
SFedProx AD [31] 77.24 78.29 77.24 73.90

CSL SD 76.67 77.28 76.67 73.12
CSL AD 78.84 81.11 78.84 74.93

FedAvg+CR [10], [30] 78.21 79.20 78.21 75.57
FedProx+CR [31], [30] 79.41 81.02 79.41 77.14

FedUDA [10], [11] 78.73 80.41 78.73 75.59
FedAvg+Fixmatch [10], [13] 79.56 80.51 79.56 77.32
FedProx+Fixmatch [31], [13] 79.03 81.04 79.03 77.19

CFedSSL-NID 80.82 82.63 80.82 79.20

The IoRT intrusion traffic in real world exhibits notable
imbalance, meaning that the volume of traffic from certain
categories is abundant, while others are few. Consequently,
models often struggle to achieve well performance on minor-
ity classes and develop a bias towards majority classes. In
NSL-KDD, Probe, R2L, and U2R are minority classes. As
evident from the multi-class confusion matrix (Fig. 8) and
performance metrics for each class (TABLE VII), CFedSSL-
NID is still capable of achieving well detection performance
on minority classes, thereby have well overall performance
on imbalanced IoRT traffic data.

TABLE VII: CFedSSL-NID performances on each class(%)

Classes Imbalanced Ratio Pre Recall F1
Normal 1.00 76.35 95.54 84.87

DoS 1.44 93.70 80.80 86.77
Probe 5.47 69.70 83.31 75.90
R2L 20.55 90.05 30.20 45.23
U2R 305.77 46.94 11.50 18.47

Fig. 8: CFedSSL-NID multi-classification confusion matrix.

Complexity comparison. IoRT NIDS equipped in robotic
devices should be lightweight and real-time. CFedSSL-NID
employs a lightweight CNN (lw-CNN) as both global and
local model for server and robot clients.

TABLE VIII: Comparison on complexity of DLNIDS models

Model Params FLOPs Cite
Ding’s CNN 126826 - [32]
DNN 2layers 841221 1680670 [33]
DNN 3layers 1235717 2469150 [33]
DNN 4layers 1366789 2731038 [33]

1D-CNN 90373 6886280 [33]
2D CNN 1966086 - [34]

IBYOL-IDS 1578145 - [35]
CMAE 130577 - [35]

SS-Deep-ID 663434 - [35]
E-GraphSAGE 94722 - [35]
LSTM-FCNN 1137157 133300224 [35]

RNN 129157 - [35]
Transformer-CNN-LSTM 68166 - [36]

PyConv 55877 - [37]
lw-CNN 49469 729000 Ours

In terms of model size, lw-CNN is 193.24KB, while the
Li’s CNN is 1.33MB, RNN is 504.52KB [35], Transformer-
CNN-LSTM is 266.27KB, CatBoost is 1068KB [36] and
Aljuaid’s CNN is 374.26 KB [38]. We tested lw-CNN detect
time on our machine, average on over 20 tests (batch size 16),
resulting in 0.636 ms per sample in NSL-KDD. The lw-CNN
has low storage and computation resource requirements.
These make lw-CNN suitable for deployment in robots or
other automation devices.

V. CONCLUSION

In this paper, we proposed CFedSSL-NID, a federated
semi-supervised learning framework for network intrusion
detection in Internet of Robotic Things. It utilizes a dis-
tributed training paradigm between clients and servers, lever-
aging data and computational capabilities across distributed
robot clients to collaboratively train a robust, accurate and
intelligent IoRT DLNIDS. It ensures data privacy preserving
for robot clients through federated learning. Semi-supervised
based contrastive learning is employed to utilize unlabeled
data on robot clients and labeled data on server. The adop-
tion of lw-CNN as both the local and global DLNIDS
model facilitates deployment on resource-limited robotic
and automation devices. Aforementioned techniques address
challenges encountered in practical IoRT.

Futhermore, CFedSSL-NID enhances performance, gen-
eralization, and robustness through various strategies. Ran-
domly weak/strong data augmentation and Dropout can
boost model generalization and robustness; Latent contrastive
learning can improve performance from unlabeled data, and
EMA update can fine-tune the self-supervised parameters
with supervised signals.

Deployment of CFedSSL-NID in practical IoRT requires
further optimization in complexity (compressing lw-CNN,
leveraging accelerators), network comunication (low-latency
protocols, bandwidth management), data privacy (encryption,
differential privacy) and evaluation in real robots.
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