
An In-kernel Forensics Engine for Investigating Evasive Attacks

Javad Zandi
Florida International University

Lalchandra Rampersaud
Florida International University

Amin Kharraz
Florida International University

Abstract
Over the years, adversarial attempts against critical services have become more effective and sophisticated in
launching low-profile attacks. This trend has always been concerning. However, an even more alarming trend
is the increasing difficulty of collecting relevant evidence about these attacks and the involved threat actors in
the early stages before significant damage is done. This issue puts defenders at a significant disadvantage, as it
becomes exceedingly difficult to understand the attack details and formulate an appropriate response.
Developing robust forensics tools to collect evidence about modern threats has never been easy. One main chal-
lenge is to provide a robust trade-off between achieving sufficient visibility while leaving minimal detectable
artifacts. This paper will introduce Lase, an open-source Low-Artifact Forensics Engine to perform threat anal-
ysis and forensics in Windows operating system. Lase augments current analysis tools by providing detailed,
system-wide monitoring capabilities while minimizing detectable artifacts. We designed multiple deployment
scenarios, showing Lase’s potential in evidence gathering and threat reasoning in a real-world setting. By
making Lase and its execution trace data available to the broader research community, this work encourages
further exploration in the field by reducing the engineering costs for threat analysis and building a longitudinal
behavioral analysis catalog for diverse security domains.

1 Introduction

Modern attacks against critical infrastructure are continuously
getting cheaper, faster, and more consequential. For instance,
in December 2021, just a few days after the Log4j vulnerabil-
ity was disclosed [21], adversaries started to adapt their code to
locate exposed log4j services on the Internet and actively ex-
ploited this vulnerability. Very recently, the Clop ransomware
group claimed responsibility for attacking the MOVEit transfer
service on several known financial, education, U.S. federal, and
state governments over the Memorial Day holiday. The attack
was so consequential that the U.S. State Department announced
a $10 million bounty for information on the actors and involved
threat campaign [67]. These incidents, on the one hand, suggest
that adversaries are opportunistic and have asymmetric power
in repurposing their tools to target new vulnerabilities in ex-
posed services. However, a more concerning issue is that col-
lecting necessary forensic evidence about these incidents at the
early stages of the attacks before they cause consequential dam-
age to the target systems is often challenging.

Over the years, the security community has invested signifi-
cant effort to close this gap by developing solutions to extract
insights from large volumes of raw network [7, 33, 41] or de-
fault logging traces [36, 41, 46, 49, 62, 73, 129] that primarily
reflect temporal usage of systems resources (e.g., CPU, RAM,
Network, Disk). While these efforts have been instrumental
in detecting specific forms of attacks with predictable patterns
(e.g., Ransomware [59], crypto mining [120]), they often fail to
manifest fine-grained information on attack techniques that im-
plement not evident or less known evasive techniques to deliver
their payloads. Consider an attack where the offending process
injects a payload into another process and uses that as a proxy
to establish a backdoor to a remote server. This incident, as
a sequence of system-wide temporal data, is not collected ef-
fectively by engines that rely on default logging mechanisms.
This insufficient visibility over the dynamic behavior of mali-
cious operations can put defenders in a highly disadvantaged

position to understand the attack tactics and lateral movements,
perform root cause analysis, and formulate a proper response.

The core insight in this paper is today’s threat intelligence
against modern evasive attacks has to provide fine-grained
system-wide visibility, leave minimal detectable artifacts, and
be portable. These design goals have been historically difficult
to attain at the same time. For instance, having fine-grained
temporal visibility requires looking into very low-level com-
ponents of the systems, which could make the solution less
portable. On the other hand, approaches such as API hook-
ing offer great portability, but there are several ways to bypass
them. This paper aims to move towards addressing this need
by introducing Lase– an open-source Low-Artifact ForenSics
Engine, that aims to define a balance between offering fine-
grained visibility while minimizing detectable artifacts. These
two design requirements are critical to staying effective over
time in a landscape where adversaries actively try to identify
defense solutions. To this end, Lase is deployed as a system-
wide in-kernel engine that operates in high-privileged mode,
making it almost impossible for user-mode applications to fin-
gerprint, tamper, or kill the engine. At the same time, it offers
system-wide visibility, temporal data on processes and threads,
I/O requests, synchronous and asynchronous I/Os, fast I/Os,
which are essentials to record the behavior of various forms
of evasive attacks.

We highlight the portable design of Lase through two distinct
security-motivated case studies: (1) an in-kernel baremetal-
assisted threat analysis environment: we deployed the en-
gine on several live-running physical machines to perform
large-scale malware analysis on baremetal Windows, ma-
chines(Section 4.1), (2) a distributed deception-based infras-
tructure: We deployed the Lase-enabled images as in-cloud
deception-based threat infrastructure for 46 days and collected
attack artifacts about real-world attacks on intentionally vul-
nerable systems in the wild (Section 4.2). In the following, we
summarize the key findings of the paper.

ar
X

iv
:2

50
5.

06
49

8v
2

 [
cs

.C
R

]
 1

8
M

ay
 2

02
5

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 2

The experiment shows that Lase-enabled baremetal analysis
environment can complement current malicious code analysis
tools on large-scale threat analysis and measurement. We cre-
ated Windows 10 OS images enabled by Lase and deployed
them across eight physical machines, forming one of the first
scalable baremetal-assisted analysis environments. We ana-
lyzed 79,544 malicious binaries over 30 months, from June
2022 to December 2024. Our analysis of recorded activi-
ties shows that a low-artifact engine can increase visibility
over the behavior of malicious code. For instance, we col-
lected 5,284,059 files after executing 34,438 malware sam-
ples that have file write activities in baremetal and virtualized
environments. We observed that 3,981,555 (75.35%) of the
files were delivered only in the baremetal environment, and
884,301(16.74%) were only dropped in the virtualized environ-
ment. This leaves 418,203 files that were delivered in both –
showing that the samples fetched different payloads. We have
shared 2% of the dataset (117GB) for this submission, which
contains filesystem artifacts for bare-metal and virtualized anal-
ysis environments.

The analysis shows the emerging trend of using hardware-
based fingerprinting makes malicious code analysis increas-
ingly more challenging. In particular, among all forms of fin-
gerprinting techniques we observed in the dataset, 1,187 of the
samples were calling Windows Management Instrumentation
(WMI) to detect advanced virtualized analysis systems (e.g.,
Hypervisor-based sandbox), 9,254 samples from Sabsik, Wa-
catac, AgentTesla families checked for direct CPU clock ac-
cess, and 7,147 samples checking the BIOS hardware, firmware
version, manufacturer, and configurations loaded during the
system boot process as shown in table 5. While advanced sand-
boxes may attempt to mask these artifacts and report differ-
ent driver versions or hardware information, such modifications
significantly reduce the robustness of the target system. That is,
these changes may result in a complete system crash or disrup-
tion of legitimate drivers because critical services often need
exact information of hardware information for critical opera-
tions (e.g., integrity checking, patch and update, driver man-
agement).

Finally, Lase was deployed as a portable forensics engine in
a deception-based threat intelligence environment for 46 days
by intentionally exposing vulnerable Windows services on the
Lase-enabled cloud hosts. During the course of the experiment,
we identified 734 successful intrusions. Our analysis shows
that it takes approximately 6 hours for adversaries to discover
the exposed vulnerable service and 13 hours to compromise the
service. The analysis of the process and filesystem traces shows
the execution of 1,221 executables, a collection of 401 shell
scripts, 235 installers, 14,706 source code files, 438 digital cer-
tificates, and 4,586 custom dynamic libraries.

The proposed forensics engine and discussed use cases aimed
to highlight a critical gap in security defense for portable yet
robust forensics tools for attack analysis, bringing more behav-
ioral visibility wihout introducing trivial detectable artifacts.
Our hope is that this work serves to raise awareness about the
importance of forensics analysis frameworks for global visibil-
ity and intelligence gathering in today’s attack landscape. We
also hope that our approach will prove helpful to the security
community in identifying emerging threats that go beyond what

is routinely observed today and open the door to future research
on threat intelligence and malicious code analysis.

Contributions. The paper makes the following contributions:

• We propose an in-kernel open-source forensics engine
that can be deployed in all modern versions of Win-
dows operating systems. The forensics engine collects
almost all forensically relevant information at the pro-
cess and thread level as well as I/O activities for ana-
lyzing run-time behavior of malicious.
• We deployed the engine in two case studies, showing

the benefits of a low overhead security forensics en-
gine in providing insights into the threat landscape.
We collected artifacts about 734 successful attacks on
our deception environment. We also analyzed over
79K samples from hundreds of malware families and
collected over 2.6 TBs of compressed threat artifacts
over 30 months of experiments.
• The source-code1 as well as the artifacts used in the

analysis of the paper (2% of the data catalog)2 are
made available. The distribution of malware families
for the artifacts submitted can be found in Table 6.

2 Background /Motivation

In this section, we begin by describing the threat model to de-
scribe attackers’ capabilities in designing and developing mali-
cious code and evasion mechanisms employed to bypass possi-
ble defense solutions. We then motivate the work by describing
what is lacking in the current solutions to bring more visibility
into the attack landscape.

2.1 Threat Model

In this paper, we assume that adversaries have significant free-
dom to develop evasive malicious code, as documented in prior
work and community reports. In particular, our assumptions
about attackers’ capabilities are as follows:

Environment Sensitive: There is no lack of evidence that
modern evasive attacks are armed with various forms of anti-
analysis techniques [4, 14, 16, 17, 28, 62, 63, 70, 92, 103, 112].
A long list of those artifacts (e.g., specific processes, registry
keys, services, and network adapters) is publicly reported [26].
These techniques are often used by malicious code developers
to successfully intrude on a system where they plan to launch
code.

Debugging Resistant: Adversaries have historically incorpo-
rated anti-debugging techniques to complicate forensic analy-
sis. In particular, one common debugging approach relies on
code injection techniques [5, 13, 66, 124] in the context of the
target payload. That is, analysis agents (i.e., DLL) are injected
into the context of a malicious process for behavioral monitor-
ing. There have been several techniques to automatically detect
such analysis techniques by simply listing active processes on
target systems to identify debuggers or creating snapshots of
their own memory structures, such as their heap and modules

1https://tinyurl.com/LASECode
2https://tinyurl.com/LASEArt

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 3

(DLLs loaded in the process’s virtual address space), to iden-
tify if they are being analyzed. Adversaries can incorporate
anti-debugging techniques at different layers, including CPU
registers, in-memory data structure checks, or calling specific
APIs or native functions [13, 34, 74, 79, 102, 124].

Launching Proxy Operations: Malicious processes often in-
ject the actual malicious code into the context of legitimate pro-
cesses to bypass reputation-based services [94, 95]. This is an
important assumption as it makes most debugging techniques
that target particular processes ineffective. Hence, our threat
model in this project will consider these and other similar risks,
and the solutions that will be developed should be robust and
tested against these malicious activities [48, 53, 94, 95].

In this study, we also assume that user-initiated processes solely
operate in user mode. Consequently, interactions with lower-
level system resources are channeled through operating system
API calls, which can be intercepted by a low-level forensic en-
gine operating in the kernel space. In addition, we also assume
that the trusted computing base includes the OS kernel and un-
derlying software and hardware stack, and that normal user-
based access control prevents attackers from running malicious
code with superuser privileges.

2.2 The Need for a Low-Artifact Forensics Engine

To respond effectively to highly evasive methods described in
the threat model, the security community has innovated at var-
ious layers to define their analysis frameworks [8, 41, 46, 57,
61, 62], depending either on whether they found it the most ef-
fective way or where it was easier to incorporate the proposed
method. In this section, we describe the limitations of those
methods and make the case for how the forensics engine should
be implemented to analyze the majority of threats.

User-mode Hooking Techniques. Classic hooking tech-
niques [13, 48, 74, 79, 111] often rely on inline overwriting of
APIs which requires injecting custom-formulated payloads into
the context of the target process address space to identify the in-
voked functions, which inherently leaves several artifacts (e.g.,
checking the integrity of the API function, monitoring the list
of loaded processes). Furthermore, this is not a scalable ap-
proach due to the engineering efforts required to overwrite the
target APIs. These modifications often are not without prob-
lems and could cause serious issues (e.g., system crashes) be-
cause of unexpected exceptions and unhandled cases. Lastly,
function hooking or debugging mechanisms are inherently de-
signed to be single process-centric and often lose their effective-
ness rapidly when a more system-wide behavioral analysis is
required. Furthermore, subverting these mechanisms is a com-
mon practice among adversaries by copying the desired mali-
cious code into the address space of another process or using
other common hooking evasion techniques such as customized
code, stole code [19, 55, 56, 64, 115], and sliding calls [56].

Built-in Logging and Diagnosis Platforms. Modern operat-
ing systems are often equipped with integrated logging plat-
forms designed for event monitoring and application perfor-
mance tracking (e.g., syslog) [75]. In Windows, Event Tracing
for Windows (ETW) [125] serves as a logging tool for system-
wide monitoring and performance data collection. While ETW
trace recording has been useful for collecting security events

(e.g., authentication logs), it was not primarily designed to stay
undetected. Adversaries can enumerate active ETW providers
that use it for analysis/inferencing purposes to list defense tools
on target machines. This technique is often used to detect anti-
malware tools on the target system. Furthermore, a user in an
active session can disrupt the logging process by temporarily
modifying ETW environment variables to redirect logs, disable
logging in a specific context, or modify behaviors in an ETW-
reliant application. That said, ETW offers significant visibil-
ity over the overall dynamic behavior of systems. However,
the approach is vulnerable to fingerprinting techniques and dis-
ruption [22]. In Table 2, we also discuss a set of open-source
forensics engine projects that are built on top of ETW service
and compare with Lase.

Hypervisor-based Approaches. Hypervisor-based meth-
ods [12, 32, 37] have been proposed to address the above short-
comings by putting the analysis module out of the operating
system to achieve increased visibility and analysis capabili-
ties (e.g., memory extraction, low-cost analysis, and debug-
ging). While these techniques offer significant flexibility for
code analysis, there are still low-cost techniques to fingerprint
hypervisor-based solutions by, for instance, abusing critical
Windows core APIs (e.g., Windows Management Instrumenta-
tion [116,121]) to extract hardware information or direct access
to the CPU for detecting instruction execution delay. Disabling
or overwriting these APIs is possible. However, these changes
can be consequential because the normal operation of the many
critical software components depends on accurately extracting
hardware system information. Consequently, modifying these
APIs can result in frequent system crashes and legitimate ser-
vice disruptions.

2.3 Design Requirements

Given the benefits and shortcomings of current methods, we
believe that an in-kernel behavioral recording method is an ap-
propriate place to collect forensic data for a wide range of ap-
plications in threat analysis. In the following, we describe the
security requirements we are seeking to achieve acceptable vis-
ibility without leaving detectable artifacts.

Low Artifact Operations. Low-artifact behavioral monitoring
is a critical property in analyzing modern threats (e.g., analyz-
ing malicious code, recording techniques, tactics, and proce-
dures) because, in almost all of these incidents, adversaries’
goal is to identify signs of an analysis environment. As men-
tioned earlier, approaches such as user-mode hooking tech-
niques or hypervisor techniques introduce specific forms of ar-
tifacts that can be weaponized by adversaries to analyze the
environment. New threat intelligence frameworks should make
the target systems more robust against these fingerprinting ef-
forts.

System-wide Behavioral Monitoring. System-wide behav-
ioral monitoring refers to the property that enables run-time be-
havioral monitoring in a multi-process environment. This is a
critical property in modern forensic analysis towards achieving
complete mediation since malicious code can launch the actual
malicious payload via proxy operations (as mentioned in the
threat modeling). A system-wide view can provide sufficient
visibility about the interaction of a process not only with the

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 4

operating system resources but also with other processes [25].
From a threat intelligence standpoint, system-wide monitoring
helps to establish a clear and comprehensive audit trail of all
actions taken on a system by users or processes.

OS Support. It is critical that monitoring mechanisms oper-
ate in a high-privileged mode while introducing low integration
costs. To this end, in-kernel forensics layer techniques are vi-
able design choices to achieve these goals due to the significant
OS support. An in-kernel forensics engine inherently runs as a
privileged operation in the kernel-level [44]. Therefore, termi-
nation or manipulation of core functionalities will not be pos-
sible by the malicious process that operates at the user level.
In particular, Windows officially supports the concept of pro-
tected services, called Early Launch Anti-Malware (ELAM), to
allow critical services to run as protected services [65]. After
the service is launched, Windows incorporates a code integrity
mechanism to only allow trusted code to load into a protected
service. Windows also protects these services from code injec-
tion [86, 91]. This approach will guarantee that the forensics
engine is protected from common forms of availability, mem-
ory corruption, tampering, and code injection attacks.

Considering all design options and the proposed threat model,
an in-kernel behavioral recording method appears to be a suit-
able layer for enabling a portable and low-artifact forensics
layer to study common threats in the wild. That is, the in-kernel
module does not modify any Windows APIs or inject any code
into running processes. Furthermore, the flexibility to deploy
the engine in baremetal systems makes the entire analysis sys-
tem robust against advanced fingerprinting techniques that tar-
get hardware specifications. That said, this design should not be
considered as an alternative solution to the current hypervisor-
based solution that can offer significant reverse engineering
flexibility. Rather, it can serve as the first line of defense in
threat analysis by satisfying fingerprinting checks that are im-
possible or costly in other defense systems.

3 Monitoring Run-Time Behavior

In this section, we discuss the engineering decision and details
of Low-Artifact ForenSics Engine (Lase). We elaborate on how
we implemented the forensics engine. We provide examples of
the collected artifacts and the deployment details of Lase to
better analyze modern threats.

3.1 Forensics Agents and Major Components

This section describes the main modules of Lase that enables
run-time trace recording.

I. Process and Thread Monitoring. Modern malicious
code often employs code injection techniques such as DLL
injection or process hollowing to inject code into legitimate
processes [10,11,18,56,64,93,106]. This allows the malicious
code to execute in the context of a legitimate process and
and run proxy attacks. Detecting such evasive operations has
never been trivial since adversaries have significant freedom
on what process to choose for injection, and making any
assumption about the target process can impact the visibility
factor. To this end, Lase records system-wide monitoring
for processes and threads by recording process-related events

BENIGN
PROCESS

MALICIOUS
PROCESS

TARGET
PROCESS

THREAD

User Space

Kernel Space

IO Manager

DLL
Injection

BENIGN
PROCESS

Windows Native APIs (e.g.,NTDLL.dll)

SSDT - Windows Native API kernel side

I/O Module

Process and Thread Module

Event Recording

Process Info Thread Info
sensor 2

Sync/Async

sensor 3
Fast I/O

sensor 4
IRP

sensor 5

Process Manager

sensor 1

Event Syncing & loggingCache Management

LASE

Async I/O event
IRP WriteEvent
IRP Read Event
Thread Creation

t1tn

t1...tn: recorded temporal details for
 triggered events

Figure 1: The high-level view of Lase’s architecture. Lase pro-
vides a system-wide multi-process forensics engine by defining
three in-kernel modules: (1) Process and thread module, (2)
Filesystem and I/O module, (3) Event recording module. In this
figure, Lase records run-time behavior of the malicious process
that uses DLL injection to launch a proxy attack.

such as initiation and termination, thread-level events such as
creation and deletion, and process image loading events such
as load and unload. This driver takes advantage of the Win-
dows kernel APIs located in the NtosKrnl.lib [45, 52, 85]
library and invokes embedded Windows Kernel func-
tions: PsSetCreateProcessNotifyRoutineEx() [82],
PsSetCreateThreadNotifyRoutineEx() [83] and
PsSetLoadImage
NotifyRoutineEx() [84] for process, thread and image
activities respectively. Each of these functions allows the Lase
driver to register a callback routine, which is registered in
the kernel data structure within the process management sub-
system and called by the Process Manager [128] whenever
its corresponding event occurs. These functions are part of
the process and thread management in Windows and provide
mechanisms for kernel-mode components to monitor process
lifecycle events.

II. I/O Request Packets. The execution of input and output op-
erations in the Windows operating system, specifically related
to driver operations, is facilitated by the utilization of pack-
ets. These packets, known as I/O packets or IRPs (I/O Request
Packets), include encoded information that directs and controls
the driver’s actions [104, 107]. The self-contained structure of
the Input/Output Request Packet (IRP) encompasses all the nec-
essary information for a driver to manage an I/O request. To en-
hance operational efficiency and contextual relevance, IRPs are
classified into major and minor operations. The major function
code instructs the driver on what action to take to fulfill the I/O
request. Minor codes refer to a specific category of major oper-
ations and supply further detailed information to the driver. A
major function code specifies the specific type of I/O operation
in conjunction with an optional minor function code [87, 104].
Recording the forms of IRPs shown in table 8 in the Appendix
is critical to understanding different classes of system interac-
tions. That is, all filesystem activities, such as fetching files into
the memory or interacting with cached files, are translated into
a set of IRP requests that can be captured in the kernel. Lase

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 5

monitors all 103 IRPs, including 45 major and 48 minor I/O re-
quest packets (IRPs) based operations encompassing persistent
and cached files.

III. Synchronous and Asynchronous I/O. In Windows,
most of the I/O operations generated by processes are syn-
chronous [89]. That is, a process waits until the OS returns
a status code when the I/O is complete. For instance, Read-
File and WriteFile functions are executed synchronously. How-
ever, programs can modify the default behavior and issue asyn-
chronous I/O requests by generating multiple I/O requests and
continue executing while the OS performs the I/O operations.
Our analysis shows that asynchronous behavior is largely ig-
nored by almost all the current solutions [57, 61, 62, 114]. This
is an important property because it allows processes to launch
concurrent malicious operations, evading defense solutions that
wait for the immediate return of the status code.

IV. Fast I/O. Programs can be designed to use Fast I/O re-
quests for reading and writing to cached files, enabling rapid
access synchronously [88]. In Fast I/O operations, the data is
transferred directly between user buffers and the cache. This
operation can bypass all current mechanisms that generate an
IRP. For instance, if a process generates a Fast I/O operation
requesting access to the content of an opened file in the mem-
ory, the requests will be processed immediately without gener-
ating any IRP events. This is an important observation since
adversaries or malicious code can generate Fast I/O requests to
access open files in the system buffer without generating any
IRP artifacts [113].

V. Event Recording. The event recording module operates as
a producer-consumer architecture [15] where producers gener-
ate filesystem and process events, and consumers use the events
for processing, which include storing on disk and sending high-
priority events to the network. We developed a trace record-
ing library that offers a set of Application Programming Inter-
faces (APIs) to store the events and manage I/O event monitor-
ing. The library provides a mechanism to create data contain-
ers to maintain I/O traces in the memory for further process-
ing. Generating the data containers requires close interaction
with the OS cache manager to allocate the necessary memory
space. One approach to implement the in-memory data cache
is a write-back cache [39] where the data is updated only in the
cache, and permanent storage is updated later. The write-back
cache is a straightforward caching mechanism and is an excel-
lent fit for general read and write I/O events. However, continu-
ous I/O monitoring can significantly increase the required cache
size on machines with limited memory and storage capacity. As
an alternative approach, we implement a circular buffer mech-
anism using a queue, where I/O events are broken into smaller
and more manageable data chunks for processing and consump-
tion. The caching policy is implemented as a multi-threading
model to deliver data from multiple producers to multiple con-
sumers concurrently.

3.2 I/O Benchmarks

Lase operates as an in-kernel module to record several foren-
sics events. Consequently, it is important to evaluate the im-
posed overhead in a quantifiable fashion. To this end, we con-
ducted an experiment to evaluate the overhead on filesystem

operations as they are the more common and intense operations
due to the customized instrumentation layer and log collection
process. We generated workloads by creating 500 small (10Kb)
and large (10Mb) files to test the throughput of block write,
rewrite, and read operations. We used these operations as the
major events that require significant filesystem interaction. The
disk I/O performance was assessed using the popular Windows
file system benchmarking tool, IOZone [2] by measuring the
time to process the creation and access of generated files. Each
experiment was repeated ten times for 4.42 minutes, and the
average score was calculated to yield the final results presented
in table 1. The experiments show that Lase performs well with
both small and large files and imposes an overhead between
1.74% and 5.31%. We consider the 2.01% overhead for read-
ing an existing small file for the first time. One reason for the
relatively lower overhead for these critical operations is the de-
sign decision to monitor forensics events with minimal changes
to the standard subsystems. Note that Lase leverages an event-
driven approach and does not require injecting code into the
context of target processes. This approach has two main bene-
fits: (1) it is a passive approach and avoids intrusive operations
that may require any modification to the filesystem or standard
OS functions, introducing lower I/O overhead compared to in-
line API modifications, (2) it minimizes possible interference
with the normal operation of processes and reduces the risk of
crashes and memory corruption.

Table 1: Disk I/O performance in a standard and host running
Lase

Operation Standard Lase Overhead

Writer
Small 788,641 KB/s 808,474 KB/s 2.51%
Large 893,921 KB/s 909,448 KB/s 1.74%

Re-writer
Small 1,036,665 KB/s 1,05,9468 KB/s 2.20%
Large 1,054,297 KB/s 1,092,756 KB/s 3.65%

Reader
Small 3,564,507 KB/s 3,492,892 KB/s 2.01%
Large 2,841,287 KB/s 2,928,931 KB/s 3.08%

Re-Reader
Small 4,228,550 KB/s 4,452,886 KB/s 5.31%
Large 3,643,169 KB/s 3,791,870 KB/s 4.08%

3.3 Resistance Against Common Dynamic Evasion
Mechanisms

In the following, we briefly describe common fingerprinting
checks used by adversaries in the wild and discuss the robust-
ness of Lase against each method.

VM Checks. Modern attacks are sensitive to virtualized en-
vironments and may not run correctly in those systems [8].
Checking registry keys (e.g., reg key, reg key value) [1],
firmware details (e.g., firmware ACPI, RSMB), CPU in-
formation (e.g., cpuid) [1] and hardware information (e.g.,
model computer system wmi) are just a few examples of such
fingerprinting techniques [92]. Lase is portable and can be
deployed on baremetal machines (see case study 1). Conse-
quently, none of the VM checks would apply to the threat in-
frastructure enabled by Lase. We should also highlight that

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 6

Table 2: Comparing Lase with current forensics engines

Recorded Activities LASE BestEDR [126] Fibratus [96] Osquery [101] Wazuh [123] BlueSpawn [51] Whids [105]
Technology kernel driver API Hooking ETW App log collection App log collection Win32 API ETW, Sysinternal
Run-time Behavior
Process-level Information system-wide single proc. system-wide single proc. single proc. single proc. system-wide
Thread-level Information system-wide no thread system-wide no thread no thread single proc. system-wide
DLL Injection system-wide single proc. not supported not supported not supported not supported not supported
Inter-process Communication system-wide not supported not supported not supported not supported not supported not supported
I/O Activities
Filesystem I/O system-wide not supported system-wide not supported not supported single proc. system-wide
Synchronous I/O system-wide not supported system-wide not supported not supported single proc. system-wide
Asynchronous I/O system-wide not supported not supported not supported not supported not supported not supported
Fast I/O system-wide not supported not supported not supported not supported not supported not supported
Forensics Agents
Logging Service kernelmode usermode usermode usermode usermode usermode usermode
Scheduler Agent kernelmode usermode usermode usermode usermode usermode usermode

Lase-enabled infrastructure is robust against advanced finger-
printing techniques (e.g., device information retrieval through
Windows Management Instrumentation) [90] used to finger-
print hypervisor-based environments given that the reference
platform does not use any virtualization technologies vulnera-
ble to such fingerprinting attempts.

Anti-Debugging Checks. Anti-debugging techniques are
strategies to thwart efforts to understand and dissect malicious
software. Anti-debugging aims to make debugging more dif-
ficult, time-consuming, or outright impossible. For instance,
it is quite common in malicious payloads to check for debug-
gers in various levels (e.g., SharedUserData KernelDebugger)
by checking ports or debugging objects (e.g., processDebug-
Port, processDebugObject), interrupts, and hardware break-
points(e.g., Interrupt 0×2d, SystemKernelDebuggerInforma-
tion) [35, 43, 71]. Lase is an event-driven engine that relies
on filter driver design to achieve its design goals. It does not
require injecting the debugging agent into the context of tar-
get processes to record activities, leaving almost no traces for
anti-debugging checks initiated by the malicious process.

Resource Profiling Checks. Resource profiling checks
complement anti-debugging and VM checks [71]. For
instance, checking the Windows data structure for pro-
cesses (e.g., process enum) [1, 92], or information on Disk
(disk size getdiskfreespace,
disk size wmi) [90] allows adversaries to identify sandboxes
or virtual environments [1, 35]. Since Lase is deployed in a
baremetal environment, these checks will not likely assist ad-
versaries.

3.4 Comparison with Other Open-Source Forensics Tools.

As the last comparison, we analyzed publicly available foren-
sics tools by comparing their architectural details, recorded ar-
tifacts, and fingerprintable details that could impact the effec-
tiveness of these engines.

Selection Metrics. We evaluated forensics engines using three
key criteria for a head-to-head comparison: the engine (1) must
be open-source, (2) must be compatible with Windows operat-
ing systems, and (3) must be installed and operate without com-
pilation or fundamental deployment errors. Our initial analysis
included 10 engines, from which we selected six for this evalu-
ation following these metrics.

Analysis. Table 2 illustrates the summary of the analysis.
We observed that user-mode API hooking is still a com-
mon practice. For instance, BestEDR [126], OSquery [101],
Wazuh [123], BlueSpawn [51] are all developed on top of API
hooking or standard application logging mechanisms. Imple-
menting this design strategy results in easier evasion and tam-
pering since the forensic engine leaves detectable traces. Fur-
thermore, tampering or terminating the engine is quite straight-
forward when the artifact recording engine operates at the same
privilege level as other processes. Whids [105] approximates
Lase in terms of gaining visibility by augmenting Microsoft
ETW. However, the log processing and the scheduling module
reside in the user space, making the tool vulnerable to evasion
and fingerprinting. As previously noted, ETW was initially de-
veloped for performance monitoring, and minimizing artifacts
was not a primary design consideration. Furthermore, it is not
designed to capture specific run-time security events, such as
remote code injection, that can have significant security conse-
quences. That said, Lase offers system-wide visibility over pro-
cesses, threads, and I/O activities while maintaining all func-
tionalities (e.g., logging, monitoring tasks) within the kernel.
This can potentially make Lase a more generalizable solution
for the same problem space.

3.5 Collecting Run-time Artifacts

In this section, we discuss the format and details of the recorded
artifacts. To this end, we provide an example of a macro-based
malware sample where the malicious code loads and compiles
visual basic code. Table 3 depicts the low-level temporal ar-
tifacts collected by Lase in this attack. The sequence of com-
mands provided illustrates a multi-faceted approach used by the
macro-based malware to infiltrate a system, execute malicious
payloads, and maintain persistence. In particular, the malicious
code uses Dynamic Data Exchange (DDE) to pass commands
to Excel, a method known to execute code within an Excel doc-
ument. The subsequent command (line 2) indicates the use of
embedded mode, likely to run a macro embedded within the
Excel document.

The repeated use of ‘eqnedt32.exe -Embedding’ in the trace
suggests the exploitation of vulnerabilities in the Equation Ed-
itor. Older versions of EQNEDT32.EXE have known security
flaws that can be exploited to execute arbitrary code [31, 42].
Lines 14 to 25 show that the malware incorporates Windows
command prompt and script hosts such as wscript.exe and

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 7

cscript.exe to execute scripts. The filesystem activity shows
that these scripts were used to download additional payloads
(i.e., xx.vbs, Podaliri4.exe), modify system settings, and es-
tablish persistence. Using commands such as ‘WmiPrvSE.exe
-secured -Embedding’ invokes Windows Management Instru-
mentation (WMI) to perform system management tasks, in-
cluding creating persistence and gathering system information.
The artifact also shows that the malware uses Alternate Data
Streams (ADS), a technique to hide malicious scripts within
legitimate files, making them harder to detect. This multi-
stage attack resulted in the launch of the final process, i.e., Po-
daliri4.exe, which delivered ransomware to the system. Figure
2 depicts the attack tree generated from the data collected.

Figure 2: The collected artifacts for a micro-based malware at-
tack. The malicious process invokes 15 processes in the back-
ground to launch a successful attack.

4 Case Studies

Lase is designed to be portable, low artifact, and robust against
common evasion mechanisms. In this section, we provide two
case studies to illustrate how the engine can achieve these goals
under different settings and deployment scenarios. In case
study 1, we deployed Lase in a baremetal malware analysis
environment, aiming to address common fingerprinting tech-
niques in the wild. The analysis is based on 79,544 malware
samples. In the second case study, we deploy Lase as an in-
cloud deception-based threat intelligence service with the in-
tent to collect real-world artifacts on how adversaries exploit
vulnerable machines and how they use those hijacked.

4.1 Case Study 1: A Baremetal-assisted Analysis
Infrastructure

Virtualized environments have been used significantly in prior
research [24, 57, 60, 119] to analyze malicious code due to the
ease of deployment, scalability, isolation, and hardware utiliza-
tion. However, this approach often comes with important vis-
ibility costs. In particular, environmentally sensitive samples
launch several forms of fingerprinting checks to analyze the
target host. They rarely load their actual malicious payloads in
these environments, making analysis and reverse engineering a
challenging task.

In this case study, we study the feasibility of Lase as a low-
artifact engine and build a scalable baremetal analysis environ-
ment to collect artifacts about modern malware payloads. The
core motivation behind this case study was to answer the ques-
tion of how to build threat monitoring platforms that can satisfy
common fingerprinting techniques often used in modern mal-
ware samples. We started by asking how much visibility could
be gained by running the evasive samples in the baremetal anal-
ysis environment.

This experiment was performed by executing 79,544 malware
samples from across 941 malware families and analyzing the
results. Table 4 shows the distribution of malware samples
across different families for the 40,050 labels obtained. Each
sample was executed on both the virtual and baremetal ma-
chines for five (5) minutes [66], during which run-time behav-
ior artifacts were collected. The infrastructure used is equipped
with high-bandwidth network switches to enable transferring
Windows 10 images to the device in each run. That is, in each
run, a new Lase-enabled OS image was distributed and loaded
into each machine. The baremetal machines had similar pro-
cessing, memory, and storage specifications.

Figure 3 shows the summary of our analysis. While Lase
records 45 various low-level OS operations, we have provided
six major operations to show the run-time behavior of a given
sample. As shown, while there are samples with a similar num-
ber of key operations in both environments, there are still a
large number of samples that show significantly more activi-
ties in baremetal compared to virtualized environments. For
instance, the number of write operations (Figure 3b) is almost
64% more than the ones in a virtualized environment for 40,050
samples. The difference in the type of dropped payloads in the
two environments suggests that the malware might have taken
different execution paths in the two environments. We noticed

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 8

Table 3: Lase artifacts for a multi-stage macro-malware attack (md5:7ccf88c0bbe3b29bf19d877c4596a8d4). The malware in-
corporates several techniques for fetching malicious payload, information grabbing, persistence, and camouflage.

Operation Time Global # PPID PID TID Image path Command-line args File path
1 Pr Create 20:51:45:628 183668 5480 10092 0 %MSOffice%\EXCEL.EXE /dde
2 Pr Create 20:51:48:141 205076 10092 1612 0 %MSOffice%\EXCEL.EXE /Embedding
3 Pr Create 20:52:16:301 346364 916 7028 0 %MSOfficeCommon%\eqnedt32.exe -Embedding
4 Pr Create 20:52:16:579 348340 7028 6344 0 %SysWOW64%\cmd.exe /c REN mp\q v& WSCrIpT mp\v?..wsf C
5 Pr Create 20:52:16:668 350587 6344 12148 0 %SysWOW64%\wscript.exe %TEMP%\v?..wsf C
6 Pr Create 20:52:17:084 358524 12148 4324 0 %SysWOW64%\cmd.exe /c cscript %TEMP%\xx.vbs
7 Pr Create 20:52:17:149 359955 4324 3800 0 %SysWOW64%\cscript.exe %Temp%\xx.vbs
8 Pr Exit 20:52:17:520 376991 916 7028 0 %MSOfficeCommon%\eqnedt32.exe
9 Pr Exit 20:52:18:638 380165 10092 1612 0 %MSOffice%\EXCEL.EXE
10 Pr Create 20:52:19:456 381227 916 11916 0 %SysWOW64%\wbem\WmiPrvSE.exe -secured -Embedding
11 Pr Create 20:53:05:751 407732 10092 5228 0 %SysWOW64%\cscript.exe C:\programdata\asc.txt:script1.vbs
12 Pr Exit 20:57:10:385 589717 5480 10092 0 %MSOffice%\EXCEL.EXE
13 Pr Create 20:57:42:131 666687 916 7660 0 %MSOfficeCommon%\eqnedt32.exe -Embedding
14 Pr Create 20:57:42:305 668655 7660 2128 0 %SysWOW64%\cmd.exe /c REN mp\q v& WSCrIpTmp\v?..wsf C
15 Pr Create 20:57:42:358 671600 2128 5368 0 %SysWOW64%\wscript.exe %Temp%\v?..wsf C
16 Pr Create 20:57:42:399 675850 7660 10328 0 %SysWOW64%\WerFault.exe -u -p 7660 -s 1172
17 Pr Create 20:57:42:474 678590 5368 12032 0 %SysWOW64%\cmd.exe /c cscript %Temp%\xx.vbs
18 Pr Create 20:57:42:516 679047 12032 10464 0 %SysWOW64%\cscript.exe %Temp%\xx.vbs
19 Ld Image 20:57:42:527 679237 12032 10464 0 %SysWOW64%\cscript.exe %SysWOW64%\bcryptprimitives.dll
20 Ld Image 20:57:43:645 705589 12032 10464 0 %SysWOW64%\cscript.exe %SysWOW64%\winhttp.dll
21 Ld Image 20:57:43:652 705594 12032 10464 0 %SysWOW64%\cscript.exe %SysWOW64%\mswsock.dll
22 Tr Create 20:57:44:210 707985 12032 10464 2844 %SysWOW64%\cscript.exe
23 Ld Image 20:57:44:226 708195 12032 10464 0 %SysWOW64%\cscript.exe %SysWOW64%\urlmon.dll
24 Ld Image 20:57:44:232 708207 12032 10464 0 %SysWOW64%\cscript.exe %SysWOW64%\virtdisk.dll
25 Tr Exit 20:57:44:249 708455 12032 10464 2844 %SysWOW64%\cscript.exe

(a) Lase artifacts on process activities.

Operation Time Duration Global # PID TID Image path File Path
1 IRP Create 20:51:45:636 69 183856 10092 1504 %MSOffice%\EXCEL.EXE C:\Users\grace\Downloads\ORDER SHEET & SPEC.xlsm
2 IRP Write 20:51:48:590 1757 211615 10092 3620 %MSOffice%\EXCEL.EXE C:\Users\grace\AppData\Local...\Temp\DED9E0FE.xlsm
3 IRP Write 20:51:48:755 448 213650 1612 12240 %MSOffice%\EXCEL.EXE C:\Users\grace\AppData\Local\Packages\...\AC\Temp\560D285B.emf
4 IRP Write 20:52:13:024 501 296839 10092 1504 %MSOffice%\EXCEL.EXE C:\Users\grace\AppData\Local\Microsoft\...\1983A0E7.png
5 IRP Write 20:52:16:156 468 345357 10092 1504 %MSOffice%\EXCEL.EXE C:\Users\grace\AppData\Local\Microsoft\Windows\...\1959A28D.emf
6 IRP Write 20:52:16:230 886 345950 10092 1504 %MSOffice%\EXCEL.EXE C:\Users\grace\AppData\Local\Temp\q
7 IRP Write 20:52:16:270 551 346113 10092 1504 %MSOffice%\EXCEL.EXE C:\Users\grace\AppData\Local\Temp\xx
8 IRP Set Information 20:52:16:932 748 355451 12148 8056 %SysWOW64%\wscript.exe C:\Users\grace\AppData\Local\Temp\xx
9 IRP Close 20:52:16:933 17 355455 12148 8056 %SysWOW64%\wscript.exe C:\Users\grace\AppData\Local\Temp\xx.vbs
10 IRP Write 20:53:05:692 385 407107 10092 1504 %MSOffice%\EXCEL.EXE C:\ProgramData\asc.txt:script1.vbs
11 IRP Read 20:57:42:541 73 679583 10464 2584 %SysWOW64%\cscript.exe C:\Users\grace\AppData\Local\Temp\xx.vbs
12 IRP Write 20:57:44:237 3432 708409 10464 2844 %SysWOW64%\cscript.exe C:\ProgramData\Podaliri4.exe
13 IRP Close 20:57:44:248 20 708591 10464 2844 %SysWOW64%\cscript.exe C:\ProgramData\Podaliri4.exe

(b) Lase artifacts on filesystem activities.

(a) Read Activity (b) Write Activity (c) Cached-File Open Activity

(d) File Create Activity (e) System Query Information Activity (f) Directory Control Activity

Figure 3: File system activities in Lase-enabled machines in baremetal and virtual environments. The results show that malware
samples manifest more activities in the baremetal environment, resulting in more dropped files and execution payloads.

the download of exe files, as a result of launching the malware,
had a significant decrease (93.9%) in the virtualized environ-
ment. JavaScript files (JS) are the second most common type

of malware payload downloaded, accounting for over 12.68%
of all payloads. This is most likely due to the growing popular-
ity of web-based attacks, as JS is the most often used scripting

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 9

Table 4: A subset of malware samples with the corresponding
labels analyzed by Lase-enabled threat analysis platform. The
dataset contains four major malware types, 941 malware fami-
lies, and 3,596 malware variants.

Malware Families-Occurrences Variants

Ransomware 64 - 472 (1.18%)
StopCrypt 253 (0.63%) 48
Gandcrab 23 (0.06%) 13
Lockbit 20 (0.05%) 10
Hive 19 (0.05%) 6
MedusaLocker 15 (0.04%) 1
Filecoder 14 (0.03%) 8
Others 58 - 128 (0.32%) 71

RAT 602 - 31,158 (77.79%)
Sabsik 3,474 (8.67%) 8
Berbew 3,116 (7.78%) 5
AgentTesla 2,362 (5.90%) 457
Wacatac 2,009 (5.01%) 3
Vindor 1,175 (2.93%) 3
RpcDcom based 1,069 (2.67%) 1
Others 596 - 17,953 (44.83%) 2,495

PUP 163 - 1,322 (3.30%)
Zbot 92 (0.23%) 8
Infostealer 83 (0.21%) 1
KuaiZip 80 (0.20%) 1
AutoKMS 75 (0.19%) 3
Ymacco 72 (0.18%) 16
DarkStealer 67 (0.17%) 2
Others 157 - 853 (2.12%) 186

Self Replicating Malware 112 - 7,098 (17.72%)
Sfone 982 (2.45%) 2
Ganelp 759 (1.89%) 7
Viking 752 (1.87%) 16
Xolxo 707 (1.76%) 1
Autorun 595 (1.48%) 13
Vobfus 492 (1.23%) 50
Others 106 - 2,811 (7.02%) 161

Total 941 - 40,050 3,596

language on websites [27]. PDF documents are the most com-
mon type of non-executable payload downloaded, accounting
for over 30% of all non-executable document payloads. The
prevalence of PDFs as a document-sharing format is a probable
cause, as they can serve as a vehicle for embedding and exe-
cuting malicious code upon opening [50, 78]. Table 7 in the
appendix shows a more comprehensive version of the dropped
files in the experiments.

We performed an analysis of the fingerprinting checks used by
samples in the dataset that cause the differences in the execu-
tion traces of Lase-enabled machines in baremetal and virtual
environments. Our analysis shows that 1,187 samples from at
least five malware families call Windows Management instru-
mentation API to get the actual hardware-level driver informa-
tion before loading their actual payloads. Direct access to CPU
clocks, bios, and timing checks have also been seen across var-
ious malware families in the test, as shown in table 5.

An immediate conclusion from this study is that a low-artifact
analysis environment that can satisfy the hardware-based fin-
gerprinting is critical to achieving more visibility in today’s at-
tack landscape. That said, a baremetal-assisted solution should
not be considered as an alternative solution to the current

Table 5: A subset of environment fingerprinting checks satis-
fied by Lase, compared to other core technologies.Ë=Satisfied,
é=Failed

FP Check Samples Baremetal-Based VM-Based Top Families

calls-wmi 1,187 Ë é AgentTesla, Sabsik, Redline, Leone, Znyon
direct-cpu-clock-access 9,254 Ë é AgentTesla, Sabsik, Wacatac, Woreflint, FormBook
checks-bios 6,859 Ë é AgentTesla, Leone, Znyon, Formbook, Wacatac
GetTickCount 1,288 Ë é AgentTesla, Sabsik, Woreflint, Wacatac, FormBook

hypervisor-based solution that can offer significant reverse en-
gineering flexibility. Instead, Lase-enabled malware analysis
can serve as the first line of defense in malicious code analysis
by satisfying fingerprinting checks that are impossible or very
costly in other defense systems. Furthermore, the results also
show the need for a more effective analysis environment for the
research community that forces a trade-off between achieving
more fine-grained visibility while leaving minimally detectable
artifacts on the analysis machines.

4.2 Case Study 2: Lase for Distributed Threat Intelligence

Adversaries are continuously becoming more effective in
launching low-profile attacks on critical systems. The question
that arises is how to collect relevant evidence about these at-
tacks and their strategies at the early stages of their operations.
Lack of proper evidence on attack strategies can potentially put
defenders in a highly disadvantaged position because under-
standing attack tactics and lateral movements becomes com-
plex. While tools and services such as Event Tracing Windows
(ETW) offer critical insights on systems, performing root cause
analysis and formulating a proper response often requires more
fine-grained data. In this case study, we developed a distributed
deception-based threat intelligence infrastructure, using Lase
to gather evidence on real-world attacks on an intentionally ex-
posed service.

To run this experiment, we deployed Lase-enabled cloud in-
stances on Windows 11 x64 with 2vCPUs. Run-time traces
were collected via a high-privilege triage engine to manage col-
lection, packing, and subsequent posting to our remote servers.
By design, we made our vulnerable systems detectable by au-
tomated scanners that actively scan network-based services for
weak Remote Desktop Protocol (RDP) credentials. Intrusions
were detected by monitoring a subset of high-valued files; once
touched, we received an immediate notification of a successful
intrusion. In an effort to lessen the likelihood of encountering
the same attack campaigns repeatedly, we reset the servers and
assign a random IP address after each successful compromise.

We executed the experiments for a duration of 46 days, from
December 19, 2023, to February 3, 2024. During this time,
there were interactions with the environment from 398 unique
IP addresses originating within 175 geographical locations.
Figure 4 shows the distribution of successful attack origins dur-
ing the experiment timeline. Our data shows that the exposed,
vulnerable services were discovered on average 6 hours after
publishing the instances, and successful exploitation occurred
on average 13 hours after publishing the decoy server. We no-
ticed that the high-valued files were opened in 32 of the exper-
iments. Privilege escalation was inferred in three cases where
we observed that files were written in the system32 folder (an
operation requiring elevated permissions) using the logs gen-
erated by the forensic engine. In 51 experiments, at least one

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 10

file was retrieved from remote servers and dropped on the ma-
chines. In particular, Lase collected 196,774 dropped files,
including 1,221 executable files, 4,586 DLL files, 401 shell
scripts, 14,706 program source code files, 235 installers, and
438 digital certificates.

Figure 4: Distribution of the origin of successful attacks. While
US-based attacks are the largest by volume, we observed that
most of them are being abused as proxy nodes.

We identified attack strategies that allowed adversaries to mon-
etize the compromised machine or run code, which facilitated
further exploitation or persistence. In the following, we de-
scribe some of the attack strategies we observed.

Using the compromised machine as a proxy. Traffic jack-
ing is the process of converting a compromised machine into a
proxy server and renting the server’s bandwidth for adversarial
purposes [80]. To initiate traffic jacking, we observed that the
adversary dropped an executable that loaded 183 DLLs into the
memory, including several cryptographic and socket commu-
nication libraries. Once loaded, the process established a con-
nection with a remote server to schedule tasks. Forensics trace
data from Lase shows that the parent process initiated hundreds
of threads on the infected machine. The machine established
a large number of TCP connections with hundreds of remote
IP addresses to relay traffic. The adversary ran the malicious
process in user-mode, and the forensic data captured by Lase
did not indicate any traces of establishing virtual interfaces for
relaying packets. Our analysis suggests that the compromised
machine was indeed converted to an exit node in this experi-
ment.

Account Creation and Modification. In 15 of the exploita-
tions, we observed indications of account creation and privilege
escalation attempts using net user and net localgroup to
gain persistent access. Another popular operation was group
enumeration (e.g., WMIC Group where ”SID = ’X’ Get Name
/Value — Find ”=”) to identify group memberships, specifically
for admins and remote desktop users to potentially manipulate
user privileges.

Backup Erasure We observed a pattern across 12 incidents
where Powershell scripts attempted to delete the Volume
Shadow Copies and backup catalog. We observed that adver-
saries were using commands such as ’vssadmin delete shadows
/all /quiet’, ’wbadmin delete catalog -quiet’, or ’wmic shadow-
copy delete’ to prevent the recovery of data, making it more

difficult to restore from backup after an attack. This practice is
common among adversaries to either force the victim to pay a
ransom fee or destroy the system logging evidence to compli-
cate incident analysis.

Persistence Threats. We observed several attempts among ad-
versaries to stay persistent on the exploited machines. We also
observed 5 cases where the adversaries tried to modify the pass-
word policies to set passwords to never expire (e.g., net ac-
counts /maxpwge:unlimited), making it easier for adversaries
to maintain access. In 10 incidents, we observed listing and ma-
nipulation queries where adversaries attempted to add or mod-
ify registry entries to hide user accounts from the login screen,
making the accounts less noticeable to the casual user. In 5
cases, we observed no significant operation during the initial
compromise. However, we observed setting scheduled tasks for
future logins. In particular, we observed the use of schtasks
/create to create tasks that execute at specific times or system
events.

5 Discussion

In this paper, we aimed to show that modern threat analysis
highly depends on defining robust forensics engines that force
a reliable trade-off between providing fine-gained behavioral
insights and minimizing detectable artifacts. We posit that a
solution that can achieve these two goals has several use cases
on the defense side. As a first step in this direction, we defined
two main application scenarios for Lase and showed how it can
add a new lens to the analysis and detection of security inci-
dents. We summarize our main findings along the following
four points:

More Visibility over Malware Behavior: While prior work
shows modern malware samples are getting less sensitive to vir-
tualized environment [66], our data suggests that such environ-
mental checks are still prevalent across different RAT, droppers,
and PUP samples. We observed that 64% (22,021) of the sam-
ples with file write activities had at least 70% more dropped or
modified files in Lase compared to cases in virtualized environ-
ments. We acknowledge that code coverage can have various
definitions in the context of program analysis. However, the
fact that more filesystem activities were observed in head-to-
head experiments and a larger number of payloads were deliv-
ered on average suggests that the malware sample was designed
to take a different path in environments close to real-world set-
tings. In a broader context, this procedure can be augmented
with static analysis approaches to systemically analyze mali-
cious code more deeply. We believe systems similar to Lase
should be more accessible to threat researchers and malware
analysts for further investigations in malicious code analysis
due to the scarcity of real-world run-time behavior datasets on
baremetal systems.

Lase in a Broader Context. In this work, we aimed to an-
swer how to improve behavioral visibility in modern evasive
malicious code attacks while making them more robust to eva-
sion. That is a critical question in malicious code analysis
and the generalizability of the results to other analysis engines
and sandboxes is important. For instance, in case study 1, we
showed that our baremetal solution works more effectively in
comparison to the virtualized environment in satisfying almost

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 11

all debugging and VM-based checks. We expect similar results
if the experiments are conducted in other virtualization tech-
nologies (e.g., hypervisor-based). In particular, we observed
that it is quite common across modern attacks to call Windows
Management Instrumentation API in order to gain information
on system hardware, applications, networks, devices, and other
managed components. While manipulating the return values in
WMI API to report fake responses is possible, it often leads
to serious system crashes if the system has to operate for a
longer period (case study 2) because the healthy operation of
many system drivers depends on the responses received from
the WMI API, and a fake response can easily cause a system
crash. Unfortunately, hypervisor-based methods are still vul-
nerable to this fingerprinting method, although they offer sig-
nificant freedom for other forms of analysis.

Unique Artifact Catalogs. The dataset we created in this ex-
periment is the largest catalog of threat artifacts collected from
a baremetal environment. While there are some available ar-
tifacts [6, 40, 57] that helped other work to have basic bench-
marks, we are not aware of any large-scale run-time baremetal
artifacts from prior work or commercial sandboxes on different
forms of malware samples.

The high cost of building robust solutions and the scarcity of
high-quality data can potentially impact the development of
new data-driven defenses in this dynamic ecosystem where col-
lecting evidence on emerging trends is critical. Lack of access
to malicious data and the inherent complexity of defining a ro-
bust defense mechanism make it extremely difficult to establish
a common ground for comparison. Given the ability to create
a usable, timely, and longitudinal database of threat artifacts,
we propose a set of research applications that would enable
lower-cost threat intelligence. For instance, having longitudi-
nal access to the artifacts of real-world attacks can be useful in
testing new defense tools, studying attack evolution, and evalu-
ating defense models with reference datasets.

Towards More Robust Cyber Deception Technologies. The
ability to deploy Lase in different computing environments,
including baremetal systems, end-points, and cloud environ-
ments, allows the deployment of a low-artifact deception-based
threat intelligence infrastructure on the Internet. That is, de-
ploying Lase-enabled machines will serve as distributed threat
intelligence sensors, offering a unique opportunity to collect
evidence on new attacks. Consider the recent attack on the
MOVEit transfer service as an example [21]. A large-scale hon-
eypot enabled by Lase could offer significant visibility on who
first started the attack, how the attack took place, and a chrono-
logical order of the steps taken to perform the attack. As a next
step, we plan to systematize the development of a vulnerability
insertion module when a zero-day vulnerability is announced to
measure the scope and scale, the evolution of the payloads and
attacks, as well as the adversarial campaigns behind the attacks.

5.1 Limitations

Section 4 demonstrates that Lase achieves practical and useful
detection results on a large, real-world dataset. Unfortunately,
adversaries continuously observe defensive advances and adapt
their attacks accordingly. In the following, we discuss the limi-
tations of Lase and potential evasion strategies.

Delay Injection. In case study 1, injecting a significant delay
before loading the malicious payload is another method to by-
pass detection. The experiments were designed to record the
behavior for five minutes, so if the malicious code stays dor-
mant for a long period of time, Lase cannot record actions as-
sociated with the malicious activity. Note that these limitations
are not specific to Lase, and almost any dynamic analysis sys-
tem may be impacted in some way by these evasion methods.
Prior work has discussed this evasion mechanism. Note that
incorporating these techniques can also potentially make de-
tection easier in static analysis since these approaches require
calling specific functions in the operating system. The presence
of these mechanisms in the initial binary is being used currently
by malware defense solutions to identify suspicious binaries in
the wild.

Trusted Computing Model. Lase operates at the kernel level.
If the target malicious code is a kernel-level attack, it can po-
tentially thwart some of the hooks Lase uses to monitor run-
time behavior. Analyzing high-privilege attacks is out of the
scope of this paper. These attacks can be better analyzed in
a hypervisor-based environment where debugging kernel-level
code is possible. We assume that the trusted computing base
includes the display module, OS kernel, and underlying soft-
ware and hardware stack. Therefore, we can safely assume that
the components of the system are free of malicious code and
that normal user-based access control prevents attackers from
running malicious code with superuser privileges. This is a fair
assumption considering the fact that most malicious operations
(e.g., malware attacks and software vulnerability checking) are
often initiated in the user mode.

6 RelatedWork

Security research has explored various ways to understand the
behavior of evasive code, contextualize the behavior, and pre-
dict possible adversarial action. In this section, we discuss prior
work, mainly focusing on building tools and systems to collect
and analyze threat artifacts.

Foreniscs Services: Many of the prior works utilized the built-
in Windows OS, Event Tracing for Windows (ETW), for their
security analysis. For instance, Lee et al. [76] used the cursory
data provided by ETW to detect APTs, thus lowering the over-
head for log storage. Other approaches by Hassan et al. [49]
look at the problem using static analysis to identify struc-
tures from built-in operating system audits. Rapsheet’s [46]
proposed approach involves the detection of APTs by con-
densing the acquired low-level data into graphical representa-
tions and subsequently comparing the observed steps with the
publicly-accessible MITRE ATT&CK knowledge base [122].
This knowledge base is curated by domain experts who analyze
real-world APT attacks. In fact, ETW is designed to primar-
ily serve as a telemetry collection tool that gathers high-level
event data. Although this is helpful, its use in forensic analysis
is constrained because of the level and granularity of reports.
Additionally, ETW is susceptible to fingerprinting and can be
disabled by malware [20, 99]. Contributions from Bakshi et
al. [9] built upon ETW to augment its ability to collect event
activity logs. However, its ability to collect data at the granular-
ity needed for a detailed low-level analysis still falls short [97].

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 12

Lower-level artifacts such as monitoring file systems, networks,
and processes are more useful in this context [97].

At the kernel level, data can be collected using global operat-
ing system-level abstractions such as processes, files, and net-
work interactions [47]. There have been several works in which
the implementation of lower-level artifact collection is centered
around the file system alone [3, 23, 57, 58, 68, 108, 109]. This
is advantageous for detecting changes to the filesystem, espe-
cially in cases of ransomware in which many files are modi-
fied during a relatively short window [57, 108, 118]. A further
extension incorporating data collection at a process level is in-
cluded in RwGuard [81] whenever it was determined that the
interactions were suspicious. It approaches the problem by de-
ploying a logger in the kernel space and adding a process moni-
toring aspect within the user space. Although the methodology
is adept at collecting process information, it is still tightly cou-
pled with their logger. Still in the kernel at a memory level,
Shah et al. [110] and Kara [54] proposed systems for detect-
ing malware that resides in computer memory. After executing
malware, they extract a memory dump that is further converted
into an image for processing using computer vision and ma-
chine learning.

One gap in this domain is that the core technology used in prior
work to collect threat intelligence data either offered relevant
but high-level insights about incidents or was primarily focused
on one class of attacks (e.g., ransomware). To our knowledge,
Lase is the only open-source solution that collects kernel-level
data points (processes and threads, filesystem, registry) and
generates GBs of data on the collected artifacts.

Sandbox and behavioral Analysis. A drawback for any sys-
tem collecting data in this adversarial space is its susceptibil-
ity to being fingerprinted [29, 35, 100]. Advances in malware
construction have seen the advent of anti-debugging and anti-
sandboxing techniques to evade analysis and detection by secu-
rity researchers trying to analyze malware behavior [30, 35].
These techniques are principally designed to make analysis
time-consuming and tedious for researchers. It has been ob-
served that malware behaves differently when it perceives that
the environment is sandboxed for analysis or executed in a vir-
tualized environment [8, 61, 66, 69, 71, 72, 117]. In some cases,
the malware behaves benignly or does not execute if it detects a
sandboxed environment [43,92]. Proposals for anti-sandboxing
techniques Liu et al. [72] build upon the works of Miramirkhani
et al. [92] and Hu et al. [114] in creating believable system ar-
tifacts to mitigate system fingerprinting.

As a technique for sidestepping the issue of virtualized systems
being detected, several works have proposed the use of phys-
ical machines for the collection of forensic data [61, 62, 114].
BareBox [61] uses a restoration method in which snapshots of
memory and disks are used simultaneously with parallel operat-
ing systems. BareCloud [62] uses a distributed model of disks,
restoring them after each execution. LO-PHI [114], like Bare-
Cloud uses machines that do not contain instrumentation for
fingerprinting. Lase is designed to complement all these meth-
ods by being portable, allowing deployment of the Lase as an
OS service in any computing environment.

Fingerprinting and Evasive Techniques. Resistance to profil-
ing in malware is presented in different forms where malicious

authors develop a multitude of techniques to hide the true be-
havior of their applications whenever an analysis environment
is detected. To this end, several studies [35, 38, 77, 98, 127]
have focused on understanding the techniques used to evade
analysis. Maffia et al. [77] investigate each technique, utiliz-
ing publicly available data to create an evasive program profiler
to detect and circumvent evasive measures and collect statis-
tical data on evasion methods. Similar research was carried
out by Garollo et al. [35] to produce statistically significant re-
sults on the link between malware families, the commonality
of evasion techniques, and modifications to evasion techniques
within families. They investigated evasive techniques in legiti-
mate software and found that they are employed less frequently.
Classification of malware by their evasive behaviors is studied
by Yin and Nunes [98, 127]. Nunes et al. [98] note that ap-
plications are classified as malicious simply based on evasive
methods taken.

7 Conclusions

In this paper, we propose Lase, a low-artifact in-kernel foren-
sics analysis system that aims to achieve improved visibility
over the dynamics of the threat landscape. Lase is designed
to optimize a balance between offering fine-grained visibility
while minimizing detectable artifacts. We show these proper-
ties are critical to collecting all the relevant forensics events and
conducting evidence-based threat characterization. We evalu-
ated Lase by running two case studies. In the first case study,
we integrated Lase in a baremetal analysis environment and an-
alyzed more than 79K malware samples. We collected GBs
of artifacts on modern malware threats. In the second case
study, we deployed the system as a deception-based threat intel-
ligence, aiming to collect real-world threat artifacts. Our analy-
sis showed that Lasewas successful in collecting artifacts about
hundreds of binaries and shell scripts developed and executed
by adversaries on the threat infrastructure.

References

[1] Impeding automated malware analysis with
environment-sensitive malware. In 7th USENIX
Workshop on Hot Topics in Security (HotSec 12),
Bellevue, WA, August 2012. USENIX Association.

[2] Iozone filesystem benchmark. www.iozone.org, 2024.

[3] Muhammad Shabbir Abbasi, Harith Al-Sahaf, Masood
Mansoori, and Ian Welch. Behavior-based ransomware
classification: A particle swarm optimization wrapper-
based approach for feature selection. Applied Soft Com-
puting, 121:108744, 2022.

[4] Amir Afianian, Salman Niksefat, Babak Sadeghiyan,
and David Baptiste. Malware dynamic analysis evasion
techniques: A survey. ACM Comput. Surv., 52(6), nov
2019.

[5] Saleh Alzahrani, Yang Xiao, and Wei Sun. An analysis
of conti ransomware leaked source codes. IEEE Access,
10:100178–100193, 2022.

www.iozone.org

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 13

[6] Andrea Continella. ShieldFS: a self-healing,
ransomware-aware filesystem. http://shieldfs.
necst.it/, Accessed: 05-06-2024.

[7] Giovanni Apruzzese, Pavel Laskov, and Johannes
Schneider. Sok: Pragmatic assessment of machine learn-
ing for network intrusion detection. In 2023 IEEE
8th European Symposium on Security and Privacy (Eu-
roS&P), pages 592–614. IEEE, 2023.

[8] Erin Avllazagaj, Ziyun Zhu, Leyla Bilge, Davide
Balzarotti, and Tudor Dumitras. When malware changed
its mind: An empirical study of variable program behav-
iors in the real world. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 3487–3504. USENIX
Association, August 2021.

[9] Akshay Bakshi, Tanish Sawant, Prasad Thakare, Azeez
Dandawala, Manjesh K. Hanawal, and Atul Kabra. Im-
proving threat detection capabilities in windows end-
points with osquery. In 2023 15th International Confer-
ence on COMmunication Systems & NETworkS (COM-
SNETS), pages 432–435, 2023.

[10] Thomas Barabosch, Niklas Bergmann, Adrian
Dombeck, and Elmar Padilla. Quincy: Detecting
host-based code injection attacks in memory dumps. In
Detection of Intrusions and Malware, and Vulnerability
Assessment: 14th International Conference, DIMVA
2017, Bonn, Germany, July 6-7, 2017, Proceedings 14,
pages 209–229. Springer, 2017.

[11] Thomas Barabosch and Elmar Gerhards-Padilla. Host-
based code injection attacks: A popular technique used
by malware. In 2014 9th International Conference
on Malicious and Unwanted Software: The Americas
(MALWARE), pages 8–17. IEEE, 2014.

[12] RR Branco, GN Barbosa, and PD Neto. Scientific but not
academical overview of malware anti-debugging. Anti-
Disassembly and Anti-VM Technologies, Black Hat USA,
2012, 2012.

[13] Doug Brubacher. Detours: Binary interception of win32
functions. In Windows NT 3rd symposium (windows NT
3rd symposium), 1999.

[14] Alexei Bulazel and Bülent Yener. A survey on automated
dynamic malware analysis evasion and counter-evasion:
Pc, mobile, and web. In Proceedings of the 1st Revers-
ing and Offensive-Oriented Trends Symposium, ROOTS,
New York, NY, USA, 2017. Association for Computing
Machinery.

[15] Gregory T Byrd and Michael J Flynn. Producer-
consumer communication in distributed shared memory
multiprocessors. Proceedings of the IEEE, 87(3):456–
466, 1999.

[16] Ping Chen, Christophe Huygens, Lieven Desmet, and
Wouter Joosen. Advanced or not? a comparative study
of the use of anti-debugging and anti-vm techniques in
generic and targeted malware. In ICT Systems Security
and Privacy Protection: 31st IFIP TC 11 International
Conference, SEC 2016, Ghent, Belgium, May 30-June 1,
2016, Proceedings 31, pages 323–336. Springer, 2016.

[17] Xu Chen, Jon Andersen, Z Morley Mao, Michael Bai-
ley, and Jose Nazario. Towards an understanding of

anti-virtualization and anti-debugging behavior in mod-
ern malware. In 2008 IEEE international conference on
dependable systems and networks with FTCS and DCC
(DSN), pages 177–186. IEEE, 2008.

[18] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng,
Ting Chen, Xiaosong Zhang, and Jean-Yves Marion.
Towards paving the way for large-scale windows mal-
ware analysis: Generic binary unpacking with orders-
of-magnitude performance boost. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 395–411, 2018.

[19] Binlin Cheng, Jiang Ming, Erika A Leal, Haotian Zhang,
Jianming Fu, Guojun Peng, and Jean-Yves Marion.
{Obfuscation-Resilient} executable payload extraction
from packed malware. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 3451–3468, 2021.

[20] Adam Chester. Hiding your .net - etw. https://blog.
xpnsec.com/hiding-your-dotnet-etw/, 2020.

[21] Cisco Talos. Active exploitation of the MOVEit
Transfer vulnerability by Clop ransomware group.
https://blog.talosintelligence.com/active-exploitation-
of-moveit/, Accessed: 06-30-2023.

[22] Claudiu Teodorescu, Igor Korkin,Andrey Golchikov.
Veni, No Vidi, No Vici: Attacks on ETW Blind EDR
Sensors. https://i.blackhat.com/EU-21/Wednesday/EU-
21-Teodorescu-Veni-No-Vidi-No-Vici-Attacks-On-
ETW-Blind-EDRs.pdf, Accessed:01-08-2025.

[23] Andrea Continella, Alessandro Guagnelli, Giovanni Zin-
garo, Giulio De Pasquale, Alessandro Barenghi, Stefano
Zanero, and Federico Maggi. Shieldfs: a self-healing,
ransomware-aware filesystem. In Proceedings of the
32nd annual conference on computer security applica-
tions, pages 336–347, 2016.

[24] Léo Cosseron, Louis Rilling, Matthieu Simonin, and
Martin Quinson. Simulating the network environment of
sandboxes to hide virtual machine introspection pauses.
In Proceedings of the 17th European Workshop on Sys-
tems Security, EuroSec ’24, page 1–7, New York, NY,
USA, 2024. Association for Computing Machinery.

[25] Crispin Cowan. Turing around the security problem.
In 15th USENIX Security Symposium (USENIX Security
06). USENIX Association, 2006.

[26] Cybrary. Windows Commands Most Used by
Attackers. https://www.cybrary.it/blog/
windows-commands-used-attackers, Accessed:
05-06-2024.

[27] Kyle Daigle. Octoverse: The state of open source
and rise of ai in 2023. https://github.blog/
2023-11-08-the-state-of-open-source-and-ai/,
2023.

[28] Daniele Cono D’Elia, Emilio Coppa, Federico Palmaro,
and Lorenzo Cavallaro. On the dissection of evasive mal-
ware. IEEE Transactions on Information Forensics and
Security, 15:2750–2765, 2020.

[29] Daniele Cono D’Elia, Emilio Coppa, Federico Palmaro,
and Lorenzo Cavallaro. On the dissection of evasive mal-
ware. IEEE Transactions on Information Forensics and
Security, 15:2750–2765, 2020.

http://shieldfs.necst.it/
http://shieldfs.necst.it/
https://blog.xpnsec.com/hiding-your-dotnet-etw/
https://blog.xpnsec.com/hiding-your-dotnet-etw/
https://www.cybrary.it/blog/windows-commands-used-attackers
https://www.cybrary.it/blog/windows-commands-used-attackers
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 14

[30] Daniele Cono D’Elia, Lorenzo Invidia, Federico Pal-
maro, and Leonardo Querzoni. Evaluating dynamic bi-
nary instrumentation systems for conspicuous features
and artifacts. Digital Threats, 3(2), feb 2022.

[31] Waeland Elder. Automatic extraction of vulnerability in-
formation for security operators using gpt models. 2024.

[32] Jason Franklin, Mark Luk, Jonathan M McCune, Arvind
Seshadri, Adrian Perrig, and Leendert Van Doorn. Re-
mote detection of virtual machine monitors with fuzzy
benchmarking. ACM SIGOPS Operating Systems Re-
view, 42(3):83–92, 2008.

[33] Zhuoqun Fu, Mingxuan Liu, Yue Qin, Jia Zhang, Yuan
Zou, Qilei Yin, Qi Li, and Haixin Duan. Encrypted
malware traffic detection via graph-based network analy-
sis. In Proceedings of the 25th International Symposium
on Research in Attacks, Intrusions and Defenses, pages
495–509, 2022.

[34] Hisham Shehata Galal, Yousef Bassyouni Mahdy, and
Mohammed Ali Atiea. Behavior-based features model
for malware detection. Journal of Computer Virology
and Hacking Techniques, 12:59–67, 2016.

[35] Nicola Galloro, Mario Polino, Michele Carminati, An-
drea Continella, and Stefano Zanero. A systematical and
longitudinal study of evasive behaviors in windows mal-
ware. Computers & Security, 113:102550, 2022.

[36] Varun Gandhi, Sarbartha Banerjee, Aniket Agrawal,
Adil Ahmad, Sangho Lee, and Marcus Peinado. Re-
thinking system audit architectures for high event cov-
erage and synchronous log availability. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 391–
408, 2023.

[37] Tal Garfinkel, Keith Adams, Andrew Warfield, Jason
Franklin, et al. Compatibility is not transparency: Vmm
detection myths and realities. In HotOS, 2007.

[38] Jiaxuan Geng, Junfeng Wang, Zhiyang Fang, Yingjie
Zhou, Di Wu, and Wenhan Ge. A survey of strategy-
driven evasion methods for pe malware: Transforma-
tion, concealment, and attack. Computers & Security,
137:103595, 2024.

[39] Shahram Ghandeharizadeh and Hieu Nguyen. Design,
implementation, and evaluation of write-back policy
with cache augmented data stores. Proceedings of the
VLDB Endowment, 12(8):836–849, 2019.

[40] Giorgio Severi. MALREC: Compact Full-Trace
Malware Recording for Retrospective Deep Anal-
ysis. https://giantpanda.gtisc.gatech.edu/
malrec/dataset/, Accessed: 05-06-2024.

[41] Akul Goyal, Xueyuan Han, Gang Wang, and Adam
Bates. Sometimes, you aren’t what you do: Mimicry at-
tacks against provenance graph host intrusion detection
systems. In 30th ISOC Network and Distributed System
Security Symposium (NDSS’23), San Diego, CA, USA,
2023.

[42] Yeming Gu, Hui Shu, Pan Yang, and Rongkuan Ma.
Minsib: Minimized static instrumentation for fuzzing bi-
naries. Computers & Security, 122:102894, 2022.

[43] Francis Guibernau and Ayelen Torello. ‘catch me if
you can!—detecting sandbox evasion techniques. Proc.
USENIX Assoc, 2020.

[44] Rajat Gupta, Lukas Patrick Dresel, Noah Spahn, Gio-
vanni Vigna, Christopher Kruegel, and Taesoo Kim.
Popkorn: Popping windows kernel drivers at scale. In
Proceedings of the 38th Annual Computer Security Ap-
plications Conference, pages 854–868, 2022.

[45] Tran Hoang Hai, Vu Van Thieu, Tran Thai Duong,
Hong Hoa Nguyen, and Eui-Nam Huh. A proposed
new endpoint detection and response with image-based
malware detection system. IEEE Access, 11:122859–
122875, 2023.

[46] Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tac-
tical provenance analysis for endpoint detection and re-
sponse systems. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1172–1189. IEEE, 2020.

[47] Lori Whippler Hollasch, Andrew Kim, Sameer
Saiya, and Matt. File systems driver design
guide. https://learn.microsoft.com/en-us/
windows-hardware/drivers/ifs/, 2022.

[48] Ashkan Hosseini. Ten process injection
techniques: A technical survey of common
and trending process injection techniques,
endgame. https://www.elastic.co/blog/
ten-process-injection-techniques-technical-\
survey-common-and-trending-process, 2018.

[49] Hassaan Irshad, Gabriela Ciocarlie, Ashish Gehani,
Vinod Yegneswaran, Kyu Hyung Lee, Jignesh Patel,
Somesh Jha, Yonghwi Kwon, Dongyan Xu, and Xiangyu
Zhang. Trace: Enterprise-wide provenance tracking for
real-time apt detection. IEEE Transactions on Informa-
tion Forensics and Security, 16:4363–4376, 2021.

[50] Maryam Issakhani, Princy Victor, Ali Tekeoglu, and
Arash Habibi Lashkari. Pdf malware detection based on
stacking learning. In ICISSP, pages 562–570, 2022.

[51] Jacob Smith. BlueSpawn. https://github.com/
ION28/BLUESPAWN, Accessed: 26-05-2024.

[52] Justin Jones and Narasimha Shashidhar. Ransomware
analysis and defense. Journal of Colloid and Interface
Science, 374(1):45–53, 2012.

[53] Rémi Jullian. In-depth formbook malware
analysis – obfuscation and process injec-
tion. https://www.stormshield.com/news/
\in-depth-formbook-malware-analysis-\
obfuscation-and-process-injection/, 2023.

[54] Ilker Kara. Fileless malware threats: Recent advances,
analysis approach through memory forensics and re-
search challenges. Expert Systems with Applications,
214:119133, 2023.

[55] Yuhei Kawakoya, Makoto Iwamura, Eitaro Shioji, and
Takeo Hariu. Api chaser: Anti-analysis resistant mal-
ware analyzer. In Research in Attacks, Intrusions, and
Defenses: 16th International Symposium, RAID 2013,
Rodney Bay, St. Lucia, October 23-25, 2013. Proceed-
ings 16, pages 123–143. Springer, 2013.

https://giantpanda.gtisc.gatech.edu/malrec/dataset/
https://giantpanda.gtisc.gatech.edu/malrec/dataset/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/
https://www.elastic.co/blog/ ten-process-injection-techniques-technical-\ survey-common-and- trending-process
https://www.elastic.co/blog/ ten-process-injection-techniques-technical-\ survey-common-and- trending-process
https://www.elastic.co/blog/ ten-process-injection-techniques-technical-\ survey-common-and- trending-process
https://github.com/ION28/BLUESPAWN
https://github.com/ION28/BLUESPAWN
https://www.stormshield.com/news/ \ in-depth-formbook-malware-analysis- \ obfuscation-and-process-injection/
https://www.stormshield.com/news/ \ in-depth-formbook-malware-analysis- \ obfuscation-and-process-injection/
https://www.stormshield.com/news/ \ in-depth-formbook-malware-analysis- \ obfuscation-and-process-injection/

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 15

[56] Yuhei Kawakoya, Eitaro Shioji, Makoto Iwamura, and
Jun Miyoshi. Api chaser: Taint-assisted sandbox for
evasive malware analysis. Journal of Information Pro-
cessing, 27:297–314, 2019.

[57] Amin Kharaz, Sajjad Arshad, Collin Mulliner, William
Robertson, and Engin Kirda. {UNVEIL}: A {Large-
Scale}, automated approach to detecting ransomware.
In 25th USENIX security symposium (USENIX Security
16), pages 757–772, 2016.

[58] Amin Kharraz and Engin Kirda. Redemption: Real-time
protection against ransomware at end-hosts. In Research
in Attacks, Intrusions, and Defenses: 20th International
Symposium, RAID 2017, Atlanta, GA, USA, Septem-
ber 18–20, 2017, Proceedings, pages 98–119. Springer,
2017.

[59] Amin Kharraz, William Robertson, Davide Balzarotti,
Leyla Bilge, and Engin Kirda. Cutting the gordian knot:
A look under the hood of ransomware attacks. In De-
tection of Intrusions and Malware, and Vulnerability As-
sessment: 12th International Conference, DIMVA 2015,
Milan, Italy, July 9-10, 2015, Proceedings 12, pages 3–
24. Springer, 2015.

[60] Danny Kim, Amir Majlesi-Kupaei, Julien Roy, Kapil
Anand, Khaled ElWazeer, Daniel Buettner, and Rajeev
Barua. Dynodet: Detecting dynamic obfuscation in mal-
ware. In Michalis Polychronakis and Michael Meier, ed-
itors, Detection of Intrusions and Malware, and Vulner-
ability Assessment, pages 97–118, Cham, 2017. Springer
International Publishing.

[61] Dhilung Kirat, Giovanni Vigna, and Christopher
Kruegel. Barebox: efficient malware analysis on bare-
metal. In Proceedings of the 27th Annual Computer Se-
curity Applications Conference, pages 403–412, 2011.

[62] Dhilung Kirat, Giovanni Vigna, and Christopher
Kruegel. Barecloud: Bare-metal analysis-based evasive
malware detection. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 287–301, 2014.

[63] Clemens Kolbitsch, Engin Kirda, and Christopher
Kruegel. The power of procrastination: detection and
mitigation of execution-stalling malicious code. In Pro-
ceedings of the 18th ACM conference on Computer and
communications security, pages 285–296, 2011.

[64] David Korczynski and Heng Yin. Capturing malware
propagations with code injections and code-reuse at-
tacks. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1691–1708, 2017.

[65] Igor Korkin. Protected process light is not protected:
Memoryranger fills the gap again. In 2021 IEEE Security
and Privacy Workshops (SPW), pages 298–308. IEEE,
2021.

[66] Alexander Kuechler, Alessandro Mantovani, Yufei Han,
Leyla Bilge, and Davide Balzarotti. Does Every Second
Count? Time-based Evolution of Malware Behavior in
Sandboxes. In Network and Distributed System Security
(NDSS) Symposium, NDSS 21, February 2021.

[67] Lawrence Abrams. US govt offers $10 mil-
lion bounty for info on Clop ransomware.

https://www.bleepingcomputer.com/news/security/us-
govt-offers-10-million-bounty-for-info-on-clop-
ransomware/, Accessed: 06-30-2023.

[68] Seungkwang Lee, Nam su Jho, Doyoung Chung,
Yousung Kang, and Myungchul Kim. Rcryptect: Real-
time detection of cryptographic function in the user-
space filesystem. Computers & Security, 112:102512,
2022.

[69] Young Bi Lee, Jae Hyuk Suk, and Dong Hoon Lee. By-
passing anti-analysis of commercial protector methods
using dbi tools. IEEE Access, 9:7655–7673, 2021.

[70] Martina Lindorfer, Clemens Kolbitsch, and Paolo Mi-
lani Comparetti. Detecting environment-sensitive mal-
ware. In Recent Advances in Intrusion Detection: 14th
International Symposium, RAID 2011, Menlo Park, CA,
USA, September 20-21, 2011. Proceedings 14, pages
338–357. Springer, 2011.

[71] Songsong Liu, Pengbin Feng, Shu Wang, Kun Sun, and
Jiahao Cao. Enhancing malware analysis sandboxes
with emulated user behavior. Computers & Security,
115:102613, 2022.

[72] Songsong Liu, Pengbin Feng, Shu Wang, Kun Sun, and
Jiahao Cao. Enhancing malware analysis sandboxes
with emulated user behavior. Computers & Security,
115:102613, 2022.

[73] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee,
Zhichun Li, Zhenyu Wu, Junghwan Rhee, and Prateek
Mittal. Towards a timely causality analysis for enterprise
security. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018.

[74] Juan Lopez, Leonardo Babun, Hidayet Aksu, and A Sel-
cuk Uluagac. A survey on function and system call hook-
ing approaches. Journal of Hardware and Systems Secu-
rity, 1:114–136, 2017.

[75] R. Ma. Anomaly detection for linux system log, August
2020.

[76] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Jungh-
wan Rhee, Xiangyu Zhang, and Dongyan Xu. Accurate,
low cost and instrumentation-free security audit logging
for windows. In Proceedings of the 31st Annual Com-
puter Security Applications Conference, ACSAC ’15,
page 401–410, New York, NY, USA, 2015. Association
for Computing Machinery.

[77] Lorenzo Maffia, Dario Nisi, Platon Kotzias, Giovanni
Lagorio, Simone Aonzo, and Davide Balzarotti. Longi-
tudinal study of the prevalence of malware evasive tech-
niques. arXiv preprint arXiv:2112.11289, 2021.

[78] Davide Maiorca, Battista Biggio, and Giorgio Giac-
into. Towards adversarial malware detection: Lessons
learned from pdf-based attacks. ACM Computing Sur-
veys (CSUR), 52(4):1–36, 2019.

[79] Mohd Fadzli Marhusin, Henry Larkin, Chris Lokan, and
David Cornforth. An evaluation of api calls hooking per-
formance. In 2008 International Conference on Compu-
tational Intelligence and Security, volume 1, pages 315–
319. IEEE, 2008.

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 16

[80] Naif Mehanna, Walter Rudametkin, Pierre Laperdrix,
and Antoine Vastel. Free proxies unmasked: A vulner-
ability and longitudinal analysis of free proxy services.
arXiv preprint arXiv:2403.02445, 2024.

[81] Shagufta Mehnaz, Anand Mudgerikar, and Elisa Bertino.
Rwguard: A real-time detection system against cryp-
tographic ransomware. In Michael Bailey, Thorsten
Holz, Manolis Stamatogiannakis, and Sotiris Ioanni-
dis, editors, Research in Attacks, Intrusions, and De-
fenses, pages 114–136, Cham, 2018. Springer Interna-
tional Publishing.

[82] Microsoft. Pssetcreateprocessnotifyroutineex func-
tion (ntddk.h). https://learn.microsoft.com/
en-us/windows-hardware/drivers/ddi/ntddk/
nf-ntddk-pssetcreateprocessnotifyroutineex,
2022.

[83] Microsoft. Pssetcreatethreadnotifyroutineex func-
tion (ntddk.h). https://learn.microsoft.com/
en-us/windows-hardware/drivers/ddi/ntddk/
nf-ntddk-pssetcreatethreadnotifyroutineex,
2022.

[84] Microsoft. Pssetloadimagenotifyroutineex func-
tion (ntddk.h). https://learn.microsoft.com/
en-us/windows-hardware/drivers/ddi/ntddk/
nf-ntddk-pssetloadimagenotifyroutineex,
2022.

[85] Microsoft. ntddk.h header. https://learn.
microsoft.com/en-us/windows-hardware/
drivers/ddi/ntddk/, 2023.

[86] Microsoft. Overview of Early Launch Anti-
Malware. https://learn.microsoft.com/
en-us/windows-hardware/drivers/install/
early-launch-antimalware, Accessed: 10-15-2023.

[87] Microsoft. Plug and Play Minor IRPs.
https://learn.microsoft.com/en-us/
windows-hardware/drivers/kernel/
plug-and-play-minor-irps, Accessed: 10-15-
2023.

[88] Microsoft Learn Challenge. Operations That Can Be
IRP-Based or Fast I/O. https://learn.microsoft.
com/en-us/windows-hardware/drivers/ifs/
operations-that-can-be-irp-based-or-fast-i-o,
Accessed:01-08-2025.

[89] Microsoft Learn Challenge. Synchronous
and Asynchronous I/O. https://learn.
microsoft.com/en-us/windows/win32/
fileio/synchronous-and-asynchronous-i-o,
Accessed:01-08-2025.

[90] Microsoft Learn Challenge. Windows Management In-
strumentation API. https://learn.microsoft.com/
en-us/windows/win32/wmisdk/wmi-start-page,
Accessed:01-08-2025.

[91] Aleksandar Milenkoski. ELAM: The Windows Defender
ELAM Driver. PhD thesis, ERNW Enno Rey Netzwerke
GmbH, 2019.

[92] Najmeh Miramirkhani, Mahathi Priya Appini, Nick
Nikiforakis, and Michalis Polychronakis. Spotless sand-

boxes: Evading malware analysis systems using wear-
and-tear artifacts. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 1009–1024. IEEE, 2017.

[93] Dimitris Mitropoulos and Diomidis Spinellis. Fatal in-
jection: A survey of modern code injection attack coun-
termeasures. PeerJ Computer Science, 3:e136, 2017.

[94] Abhijit Mohanta, Anoop Saldanha, Abhijit Mohanta,
and Anoop Saldanha. Code injection, process hollow-
ing, and api hooking. Malware Analysis and Detection
Engineering: A Comprehensive Approach to Detect and
Analyze Modern Malware, pages 267–329, 2020.

[95] KA Monnappa. Detecting deceptive pro-
cess hollowing techniques usind hollowfind
volatility plugin. https://cysinfo.com/
detecting-deceptive-hollowing-techniques/,
2017.

[96] Nedim Sabic. Fibratus. https://github.com/
rabbitstack/fibratus, Accessed: 26-05-2024.

[97] Matthew Nunes, Pete Burnap, Omer Rana, Philipp Rei-
necke, and Kaelon Lloyd. Getting to the root of the prob-
lem: A detailed comparison of kernel and user level data
for dynamic malware analysis. Journal of Information
Security and Applications, 48:102365, 2019.

[98] Matthew Nunes, Pete Burnap, Philipp Reinecke, and
Kaelon Lloyd. Bane or boon: Measuring the effect of
evasive malware on system call classifiers. Journal of In-
formation Security and Applications, 67:103202, 2022.

[99] Odzhan. Another method of bypassing etw and process
injection via etw registration entries. https://modexp.
wordpress.com/2020/04/08/red-teams-etw/,
2020.

[100] Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior
Rokach. Dynamic malware analysis in the modern
era—a state of the art survey. ACM Computing Surveys
(CSUR), 52(5):1–48, 2019.

[101] osquery. osquery. https://github.com/osquery/
osquery, Accessed: 26-05-2024.

[102] François Plumerault and Baptiste David. Dbi, debug-
gers, vm: gotta catch them all: How to escape or fool
debuggers with internal architecture cpu flaws? Journal
of Computer Virology and Hacking Techniques, 17:105–
117, 2021.

[103] Mario Polino, Andrea Continella, Sebastiano Mari-
ani, Stefano D’Alessio, Lorenzo Fontana, Fabio Gritti,
and Stefano Zanero. Measuring and defeating anti-
instrumentation-equipped malware. In Detection of In-
trusions and Malware, and Vulnerability Assessment:
14th International Conference, DIMVA 2017, Bonn,
Germany, July 6-7, 2017, Proceedings 14, pages 73–96.
Springer, 2017.

[104] David B Probert. Windows kernel internals cache man-
ager. Microsoft Corporation, page 48, 2010.

[105] RawSec. Whids. https://github.com/0xrawsec/
whids, Accessed: 26-05-2024.

[106] Donald Ray and Jay Ligatti. Defining code-injection at-
tacks. Acm Sigplan Notices, 47(1):179–190, 2012.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreatethreadnotifyroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreatethreadnotifyroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreatethreadnotifyroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetloadimagenotifyroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetloadimagenotifyroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetloadimagenotifyroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/early-launch-antimalware
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/early-launch-antimalware
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/early-launch-antimalware
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/plug-and-play-minor-irps
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/plug-and-play-minor-irps
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/plug-and-play-minor-irps
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/operations-that-can-be-irp-based-or-fast-i-o
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/operations-that-can-be-irp-based-or-fast-i-o
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/operations-that-can-be-irp-based-or-fast-i-o
https://learn.microsoft.com/en-us/windows/win32/fileio/synchronous-and-asynchronous-i-o
https://learn.microsoft.com/en-us/windows/win32/fileio/synchronous-and-asynchronous-i-o
https://learn.microsoft.com/en-us/windows/win32/fileio/synchronous-and-asynchronous-i-o
https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page
https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://github.com/rabbitstack/fibratus
https://github.com/rabbitstack/fibratus
https://modexp.wordpress.com/2020/04/08/red-teams-etw/
https://modexp.wordpress.com/2020/04/08/red-teams-etw/
https://github.com/osquery/osquery
https://github.com/osquery/osquery
https://github.com/0xrawsec/whids
https://github.com/0xrawsec/whids

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 17

[107] Mark E Russinovich, David A Solomon, and Alex
Ionescu. Windows internals, part 2. Pearson Education,
2012.

[108] Nolen Scaife, Henry Carter, Patrick Traynor, and
Kevin RB Butler. Cryptolock (and drop it): stopping
ransomware attacks on user data. In 2016 IEEE 36th in-
ternational conference on distributed computing systems
(ICDCS), pages 303–312. IEEE, 2016.

[109] Daniele Sgandurra, Luis Muñoz-González, Rabih
Mohsen, and Emil C Lupu. Automated Dynamic Anal-
ysis of Ransomware: Benefits, Limitations and use for
Detection. arXiv preprint arXiv:1609.03020, 2016.

[110] Syed Shakir Hameed Shah, Abd Rahim Ahmad,
Norziana Jamil, and Atta ur Rehman Khan. Memory
forensics-based malware detection using computer vi-
sion and machine learning. Electronics, 11(16):2579,
2022.

[111] Syed Zainudeen Mohd Shaid and Mohd Aizaini Maarof.
In memory detection of windows api call hooking tech-
nique. In 2015 International conference on computer,
communications, and control technology (I4CT), pages
294–298. IEEE, 2015.

[112] Michael Sikorski and Andrew Honig. Practical mal-
ware analysis: the hands-on guide to dissecting mali-
cious software. no starch press, 2012.

[113] David A Solomon, Mark E Russinovich, and Alex
Ionescu. Windows internals. Microsoft Press, 2009.

[114] Chad Spensky, Hongyi Hu, and Kevin Leach. Lo-phi:
Low-observable physical host instrumentation for mal-
ware analysis. In NDSS, 2016.

[115] Jerre Starink, Marieke Huisman, Andreas Peter, and An-
drea Continella. Understanding and measuring inter-
process code injection in windows malware. In 19th In-
ternational Conference on Security and Privacy in Com-
munication Networks, SecureComm 2023, 2023.

[116] Steven White, Kent Sharkey,David Coulter, Dan Mabee,
Drew Batchelor, Mike Jacobs, Michael Satran. About
WMI. https://learn.microsoft.com/en-us/
windows/win32/wmisdk/about-wmi, Accessed: 10-
15-2023.

[117] Ming-Kung Sun, Mao-Jie Lin, Michael Chang, Chi-
Sung Laih, and Hui-Tang Lin. Malware virtualization-
resistant behavior detection. In 2011 IEEE 17th Interna-
tional Conference on Parallel and Distributed Systems,
pages 912–917, 2011.

[118] Ruimin Sun, Marcus Botacin, Nikolaos Sapountzis, Xi-
aoyong Yuan, Matt Bishop, Donald E. Porter, Xiaolin Li,
Andre Gregio, and Daniela Oliveira. A praise for defen-
sive programming: Leveraging uncertainty for effective
malware mitigation. IEEE Transactions on Dependable
and Secure Computing, 19(1):353–369, 2022.

[119] Yixin Sun, Kangkook Jee, Suphannee Sivakorn, Zhichun
Li, Cristian Lumezanu, Lauri Korts-Parn, Zhenyu Wu,
Junghwan Rhee, Chung Hwan Kim, Mung Chiang, and
Prateek Mittal. Detecting Malware Injection with

Program-DNS Behavior . In 2020 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pages 552–
568, Los Alamitos, CA, USA, September 2020. IEEE
Computer Society.

[120] Rashid Tahir, Muhammad Huzaifa, Anupam Das, Mo-
hammad Ahmad, Carl Gunter, Fareed Zaffar, Matthew
Caesar, and Nikita Borisov. Mining on someone else’s
dime: Mitigating covert mining operations in clouds and
enterprises. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 287–310.
Springer, 2017.

[121] Dmitry Tanana. Behavior-based detection of cryptojack-
ing malware. In 2020 Ural Symposium on Biomedical
Engineering, Radioelectronics and Information Technol-
ogy (USBEREIT), pages 0543–0545. IEEE, 2020.

[122] The MITRE Corporation. MITRE ATTACK. https:
//attack.mitre.org/, Accessed: 09-20-2023.

[123] wazuh. wazuh. https://github.com/wazuh, Ac-
cessed: 26-05-2024.

[124] Carsten Willems, Thorsten Holz, and Felix Freiling.
Toward automated dynamic malware analysis using
cwsandbox. IEEE Security& Privacy, 5(2):32–39, 2007.

[125] Yarden Shafir. ETW internals for se-
curity research and forensics. https:
//blog.trailofbits.com/2023/11/22/
etw-internals-for-security-research-and-forensics/,
Accessed:01-08-2025.

[126] Yazid. BEOTM. https://github.com/Xacone/
BestEdrOfTheMarket, Accessed: 26-05-2024.

[127] Haikuo Yin, Brandon Lou, and Peter Reiher. A method
for summarizing and classifying evasive malware. In
Proceedings of the 26th International Symposium on Re-
search in Attacks, Intrusions and Defenses, pages 455–
470, 2023.

[128] Pavel Yosifovich, David A Solomon, Mark E Russi-
novich, and Alex Ionescu. Windows Internals: System
architecture, processes, threads, memory management,
and more, Part 1. Microsoft Press, 2017.

[129] Michael Zipperle, Florian Gottwalt, Elizabeth Chang,
and Tharam Dillon. Provenance-based intrusion de-
tection systems: A survey. ACM Computing Surveys,
55(7):1–36, 2022.

https://learn.microsoft.com/en-us/windows/win32/wmisdk/about-wmi
https://learn.microsoft.com/en-us/windows/win32/wmisdk/about-wmi
https://attack.mitre.org/
https://attack.mitre.org/
https://github.com/wazuh
https://blog.trailofbits.com/2023/11/22/etw-internals-for-security-research-and-forensics/
https://blog.trailofbits.com/2023/11/22/etw-internals-for-security-research-and-forensics/
https://blog.trailofbits.com/2023/11/22/etw-internals-for-security-research-and-forensics/
https://github.com/Xacone/BestEdrOfTheMarket
https://github.com/Xacone/BestEdrOfTheMarket

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 18

Table 6: Distribution of a subset of 2.6 TBs of dataset submit-
ted as artifacts in this submission. This represents 2% of the
artifacts. Each log contains traces by Lase from baremetal and
the virtual environment.

Malware Occurrences

Ransomware 1 (0.13%)
StopCrypt 1 (0.13%)

RAT 669 (83.83%)
Banload 1 (0.13%)
CoinMiner 35 (4.39%)
CryptInject 401 (50.25%)
Emotet 3 (0.38%)
Farfli 1 (0.13%)
Glupteba 1 (0.13%)
Killav 2 (0.25%)
Musecador 4 (0.50%)
Phonzy 1 (0.13%)
Plyromt 1 (0.13%)
Pykspa 1 (0.13%)
Sabsik 69 (8.65%)
Trickbot 1 (0.13%)
Wabot 18 (2.26%)
Wacatac 2 (0.25%)
Ymacco 128 (16.04%)

PUP 2 (0.25%)
GameBox 2 (0.25%)

Self Replicating Malware 126 (15.79%)
Andriod 5 (0.63%)
Cambot 6 (0.75%)
Canbis 5 (0.63%)
Floxif 1 (0.13%)
Gogo 10 (1.25%)
Morefi 5 (0.63%)
Neshta 5 (0.63%)
Nuqel 1 (0.13%)
Pidgeon 36 (4.51%)
Ramnit 1 (0.13%)
Sality 1 (0.13%)
Sfone 22 (2.76%)
Shodi 11 (1.38%)
Sivis 4 (0.50%)
Small 2 (0.25%)
Viking 1 (0.13%)
Virut 1 (0.13%)
Vobfus 9 (1.13%)

Total 798

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 19

Table 7: Top dropped extensions in the two experiments. A malware sample tends to drop more files in Lase when compared to
a virtualized environment.

Extension Lase Virtualized Environment Difference (# — %) Description

Archive 12,309 9,195
cab 3,504 1,989 1,515 — 76.2% Microsoft cabinet file - compressed archive
pak 8,805 7,206 1,599 — 22.2% Game Archive/Skype Language Pack

Binary 3,132,3425 1,402,507
api 22,594 7,480 15,114 — 202.1% Adobe Acrobat Plug-in/WebObjects API File
appx 2,553 557 1,996 — 358.3% Microsoft Windows 8 app package
bin 4,891 2,053 2,838 — 138.2% Binary archive
cur 6,772 2,070 4,702 — 227.1% Windows custom cursor
dat 5,600 3,156 2,444 — 77.4% General data file
dll 333,946 71,361 262,585 — 368.0% Windows Dynamic Linked Library
exe 2,160,744 1,114,617 1,046,127 — 93.9% Executable file
js 586,494 197,952 388,542 — 196.3% JavaScript file
pmp 2,674 917 1,757 — 191.6% AutoCAD plot model parameter file
pyd 1,278 789 489 — 62.0% Windows binary that contains compiled Python code
sequ 4,879 1,555 3,324 — 213.8% Adobe Acrobat Batch sequence

Document 74,340 34,706
html 32,586 13380 19206 — 143.5% Hypertext Markup Language Document
mpp 2,888 924 1,964 — 212.6% Microsoft Project document
pdf 19,595 13,321 6,274 — 47.1% Portable Document Format Document
rtf 1,355 910 445 — 48.9% Rich Text Format document
x3d 4,662 1,391 3,271 — 235.2% X3D (XML) scene to represent 3D graphics
xml 13,254 4,780 8,474 — 177.3% Extensible Markup Language File

Font 30,719 10,164
eot 2,697 871 1,826 — 209.6% Microsoft Embedded OpenType font
otf 25,360 7,586 17,774 — 234.3% Font file
woff 2,662 1,707 955 — 55.9% Web Open Font Format

Image 735,210 306,284
bmp 1,383 169 1,214 — 718.3% Bitmap image
gif 75,298 24,718 50,580 — 204.6% Bitmap image
ico 28,806 18,479 10,327 — 55.9% Icon file
jpg 16,865 5,462 11,403 — 208.8% JPEG Bitmap image
png 266,327 136,027 130,300 — 95.8% Portable Network Graphics image
svg 346,531 121,429 225,102 — 185.4% Scalable Vector Graphic

Raw 328,714 106,443
aapp 35,181 10,773 24,408 — 226.6% Adobe Acrobat AcroApp script
css 46,271 15,218 31,053 — 204.1% Cascading style sheets
dic 1,873 627 1,246 — 198.7% Microsoft Office custom dictionary
ini 13,668 4,937 8,731 — 176.8% Initialization file
json 21,681 1,430 20,251 — 1416.2% JavaScript Object Notation
lnk 1,160 912 248 — 27.2% Windows shortcut
log 15,285 7,987 7,298 — 91.4% General log
tmp 84,564 34,789 49,775 — 143.1% General temporary file
txt 109,031 29,770 79,261 — 266.2% Plain text document

Audio 2,924 2,843
wav 2,924 81 2,843 — 3509.9% Windows waveform sound

Preprint – An In-kernel Forensics Engine for Investigating Evasive Attacks 20
Ta

bl
e

8:
I/

O
R

eq
ue

st
Pa

ck
et

s
(I

R
Ps

)T
yp

es
su

pp
or

te
d

by
L
a
se

M
aj

or
D

es
cr

ip
tio

n
M

in
or

D
es

cr
ip

tio
n

S
ta

nd
ar

d
IR

P
M

N
R

E
G

IN
FO

D
riv

er
re

gi
st

ry
pa

th
IR

P
M

J
C

R
E

AT
E

O
pe

n
ob

je
ct

ha
nd

le
IR

P
M

N
Q

U
E

R
Y

D
IR

E
C

TO
R

Y
G

et
Fi

le
s

in
di

re
ct

or
y

IR
P

M
J

C
R

E
AT

E
N

A
M

E
D

P
IP

E
C

re
at

e
or

op
en

na
m

ed
pi

pe
IR

P
M

N
N

O
TI

FY
C

H
A

N
G

E
D

IR
E

C
TO

R
Y

N
ot

ify
di

re
ct

or
y

ch
an

ge
s

IR
P

M
J

C
LO

S
E

C
lo

se
op

en
ha

nd
le

IR
P

M
N

U
S

E
R

FS
R

E
Q

U
E

S
T

Fi
le

sy
st

em
re

qu
es

ts
IR

P
M

J
R

E
A

D
D

at
a

re
ad

IR
P

M
N

M
O

U
N

T
V

O
LU

M
E

R
eq

ue
st

vo
lu

m
e

m
ou

nt
IR

P
M

J
W

R
IT

E
D

at
a

w
rit

e
IR

P
M

N
V

E
R

IF
Y

V
O

LU
M

E
M

ou
nt

ed
vo

lu
m

e
in

te
gr

ity
ch

ec
k

IR
P

M
J

Q
U

E
R

Y
IN

FO
R

M
AT

IO
N

Q
ue

ry
ob

je
ct

in
fo

rm
at

io
n

IR
P

M
N

LO
A

D
FI

LE
S

Y
S

TE
M

Lo
ad

dr
iv

er
fro

m
fil

es
ys

te
m

IR
P

M
J

S
E

T
IN

FO
R

M
AT

IO
N

M
od

ify
ob

je
ct

in
fo

rm
at

io
n

IR
P

M
N

TR
A

C
K

LI
N

K
W

at
ch

fo
rd

ev
ic

e
ev

en
ts

IR
P

M
J

Q
U

E
R

Y
E

A
Q

ue
ry

ob
je

ct
ex

te
nd

ed
at

tr
ib

ut
es

IR
P

M
N

LO
C

K
A

cq
ui

re
fil

e
lo

ck
IR

P
M

J
S

E
T

E
A

S
et

ob
je

ct
ex

te
nd

ed
at

tr
ib

ut
es

IR
P

M
N

U
N

LO
C

K
S

IN
G

LE
R

el
ea

se
fil

e
lo

ck
IR

P
M

J
FL

U
S

H
B

U
FF

E
R

S
Fl

us
h

ca
ch

ed
da

ta
to

di
sk

IR
P

M
N

U
N

LO
C

K
A

LL
R

el
ea

se
al

lfi
le

lo
ck

s
IR

P
M

J
Q

U
E

R
Y

V
O

LU
M

E
IN

FO
R

M
AT

IO
N

Q
ue

ry
vo

lu
m

e
in

fo
rm

at
io

n
IR

P
M

N
U

N
LO

C
K

A
LL

B
Y

K
E

Y
R

el
ea

se
lo

ck
s

as
so

ci
at

ed
w

ith
ke

y
IR

P
M

J
S

E
T

V
O

LU
M

E
IN

FO
R

M
AT

IO
N

M
od

ify
vo

lu
m

e
pr

op
er

ty
IR

P
M

N
N

O
R

M
A

L
Pe

rfo
rm

de
vi

ce
m

an
ag

em
en

tt
as

ks
vi

a
m

es
sa

ge
s

IR
P

M
J

D
IR

E
C

TO
R

Y
C

O
N

TR
O

L
D

ire
ct

or
y

m
an

ag
em

en
to

pe
ra

tio
ns

IR
P

M
N

D
P

C
D

ef
er

re
d

pr
oc

ed
ur

e
ca

lls
(D

P
C

)
IR

P
M

J
FI

LE
S

Y
S

TE
M

C
O

N
TR

O
L

A
dv

an
ce

fil
e

sy
st

em
op

er
at

io
ns

IR
P

M
N

M
D

L
M

an
ag

e
m

em
or

y
de

sc
rip

to
rs

lis
ts

(M
D

L)
IR

P
M

J
D

E
V

IC
E

C
O

N
TR

O
L

U
se

de
vi

ce
dr

iv
er

fu
nc

tio
ns

IR
P

M
N

C
O

M
P

LE
TE

M
ar

k
fil

es
ys

te
m

op
er

at
io

n
co

m
pl

et
e

IR
P

M
J

IN
TE

R
N

A
L

D
E

V
IC

E
C

O
N

TR
O

L
M

id
w

ar
e

be
tw

ee
n

de
vi

ce
an

d
ke

rn
el

IR
P

M
N

C
O

M
P

R
E

S
S

E
D

R
ea

d
an

d
tra

ns
fe

rc
om

pr
es

se
d

da
ta

IR
P

M
J

S
H

U
TD

O
W

N
S

ys
te

m
sh

ut
do

w
n

IR
P

M
N

M
D

L
D

P
C

M
er

ge
D

P
C

w
ith

co
m

pl
et

io
n

al
er

t
IR

P
M

J
LO

C
K

C
O

N
TR

O
L

M
an

ag
in

g
by

te
-r

an
ge

lo
ck

s
IR

P
M

N
Q

U
E

R
Y

A
LL

D
AT

A
R

et
rie

ve
co

m
pr

eh
en

si
ve

de
vi

ce
in

fo
rm

at
io

n
IR

P
M

J
C

LE
A

N
U

P
R

el
ea

se
pr

oc
es

s
fil

e
re

so
ur

ce
s

IR
P

M
N

C
O

M
P

LE
TE

M
D

L
D

P
C

M
er

ge
D

P
C

,M
D

L
w

ith
co

m
pl

et
io

n
al

er
t

IR
P

M
J

C
R

E
AT

E
M

A
IL

S
LO

T
M

an
ag

e
m

ai
ls

lo
ts

fo
rc

om
m

un
ic

at
io

n
IR

P
M

N
S

C
S

I
C

LA
S

S
M

an
ag

e
S

C
S

Id
ev

ic
es

IR
P

M
J

Q
U

E
R

Y
S

E
C

U
R

IT
Y

Q
ue

ry
se

cu
rit

y
in

fo
ab

ou
to

bj
ec

ts
IR

P
M

N
S

TA
R

T
D

E
V

IC
E

S
ta

rt
in

g
an

d
in

iti
al

iz
in

g
de

vi
ce

s
IR

P
M

J
S

E
T

S
E

C
U

R
IT

Y
S

et
ob

je
ct

se
cu

rit
y

in
fo

rm
at

io
n

IR
P

M
N

Q
U

E
R

Y
R

E
M

O
V

E
D

E
V

IC
E

Pe
nd

in
g

de
vi

ce
re

m
ov

al
IR

P
M

J
P

O
W

E
R

M
an

ag
e

de
vi

ce
po

w
er

st
at

e
IR

P
M

N
R

E
M

O
V

E
D

E
V

IC
E

Pe
nd

in
g

de
vi

ce
re

m
ov

al
ta

sk
s

IR
P

M
J

S
Y

S
TE

M
C

O
N

TR
O

L
R

eq
ue

st
sy

st
em

-w
id

e
op

er
at

io
ns

fro
m

O
S

IR
P

M
N

C
A

N
C

E
L

R
E

M
O

V
E

D
E

V
IC

E
C

an
ce

ld
ev

ic
e

re
m

ov
al

IR
P

M
J

D
E

V
IC

E
C

H
A

N
G

E
M

an
ag

e
de

vi
ce

ev
en

ts
IR

P
M

N
S

TO
P

D
E

V
IC

E
S

to
p

de
vi

ce
IR

P
M

J
Q

U
E

R
Y

Q
U

O
TA

Vo
lu

m
e

qu
ot

a
in

fo
rm

at
io

n
IR

P
M

N
Q

U
E

R
Y

S
TO

P
D

E
V

IC
E

Q
ue

ry
st

op
de

vi
ce

po
ss

ib
ili

ty
IR

P
M

J
S

E
T

Q
U

O
TA

S
et

vo
lu

m
e

qu
ot

a
IR

P
M

N
C

A
N

C
E

L
S

TO
P

D
E

V
IC

E
C

an
ce

ls
to

p
de

vi
ce

IR
P

M
J

P
N

P
M

an
ag

e
P

lu
g-

an
d-

pl
ay

de
vi

ce
s

IR
P

M
N

Q
U

E
R

Y
D

E
V

IC
E

R
E

LA
TI

O
N

S
D

is
co

ve
rd

ev
ic

e
re

la
tio

ns
hi

ps
IR

P
M

J
TR

A
N

S
A

C
TI

O
N

N
O

TI
FY

M
an

ag
e

op
er

at
io

ns
no

tifi
ca

tio
ns

IR
P

M
N

Q
U

E
R

Y
IN

TE
R

FA
C

E
S

up
po

rt
ed

de
vi

ce
in

te
rfa

ce
s

Fa
st

IO
IR

P
M

N
S

E
T

LO
C

K
M

an
ag

e
ob

je
ct

lo
ck

re
qu

es
ts

IR
P

M
J

FA
S

T
IO

C
H

E
C

K
IF

P
O

S
S

IB
LE

C
he

ck
ob

je
ct

fa
st

I/O
ca

pa
bi

lit
y

IR
P

M
N

Q
U

E
R

Y
C

A
PA

B
IL

IT
IE

S
Q

ue
ry

de
vi

ce
ca

pa
bi

lit
ie

s
IR

P
M

J
D

E
TA

C
H

D
E

V
IC

E
D

et
ac

h
de

vi
ce

an
d

fre
e

re
so

ur
ce

s
IR

P
M

N
Q

U
E

R
Y

R
E

S
O

U
R

C
E

S
Q

ue
ry

de
vi

ce
re

so
ur

ce
re

qu
ire

m
en

ts
IR

P
M

J
N

E
TW

O
R

K
Q

U
E

R
Y

O
P

E
N

Q
ue

ry
ne

tw
or

k
co

nn
ec

tio
n

in
fo

rm
at

io
n

IR
P

M
N

Q
U

E
R

Y
R

E
S

O
U

R
C

E
R

E
Q

U
IR

E
M

E
N

TS
Q

ue
ry

de
vi

ce
re

so
ur

ce
re

qu
ire

m
en

ts
IR

P
M

J
M

D
L

R
E

A
D

R
ea

d
fro

m
fil

e
or

de
vi

ce
vi

a
M

D
L

IR
P

M
N

Q
U

E
R

Y
D

E
V

IC
E

TE
X

T
Q

ue
ry

de
vi

ce
de

sc
rip

tio
n

an
d

lo
ca

tio
n

IR
P

M
J

M
D

L
R

E
A

D
C

O
M

P
LE

TE
N

ot
ify

M
D

L
ob

je
ct

re
ad

co
m

pl
et

io
n

IR
P

M
N

FI
LT

E
R

R
E

S
O

U
R

C
E

R
E

Q
U

IR
E

M
E

N
TS

M
od

ify
de

vi
ce

re
so

ur
ce

re
qu

ire
m

en
t

IR
P

M
J

P
R

E
PA

R
E

M
D

L
W

R
IT

E
P

re
pa

re
fil

e
fo

rM
D

L
w

rit
e

IR
P

M
N

R
E

A
D

C
O

N
FI

G
R

ea
d

co
nn

ec
te

d
de

vi
ce

co
nfi

gu
ra

tio
n

IR
P

M
J

M
D

L
W

R
IT

E
C

O
M

P
LE

TE
C

om
pl

et
e

an
d

no
tif

y
of

M
D

L
w

rit
e

IR
P

M
N

W
R

IT
E

C
O

N
FI

G
W

rit
e

co
nn

ec
te

d
de

vi
ce

co
nfi

gu
ra

tio
n

IR
P

M
J

V
O

LU
M

E
M

O
U

N
T

M
ou

nt
a

vo
lu

m
e

IR
P

M
N

E
JE

C
T

R
em

ov
e

de
vi

ce
fro

m
sy

st
em

IR
P

M
J

V
O

LU
M

E
D

IS
M

O
U

N
T

D
is

m
ou

nt
a

vo
lu

m
e

IR
P

M
N

D
IS

A
B

LE
C

O
LL

E
C

TI
O

N
P

re
ve

nt
au

to
m

at
ic

re
so

ur
ce

co
lle

ct
io

n
fo

rd
ev

ic
e

Fs
Fi

lte
r

IR
P

M
N

E
X

E
C

U
TE

M
E

TH
O

D
In

vo
ke

de
vi

ce
fu

nc
tio

ns
vi

a
its

dr
iv

er
IR

P
M

J
A

C
Q

U
IR

E
FO

R
S

E
C

TI
O

N
S

Y
N

C
H

R
O

N
IZ

AT
IO

N
A

cq
ui

re
m

em
or

y
bl

oc
k

fo
rs

yn
ch

ro
ni

za
tio

n
IR

P
M

N
Q

U
E

R
Y

ID
U

nc
ov

er
th

e
id

en
tit

y
of

a
de

vi
ce

IR
P

M
J

R
E

LE
A

S
E

FO
R

S
E

C
TI

O
N

S
Y

N
C

H
R

O
N

IZ
AT

IO
N

R
el

ea
se

sy
nc

m
em

or
y

bl
oc

k
IR

P
M

N
Q

U
E

R
Y

P
N

P
D

E
V

IC
E

S
TA

TE
Q

ue
ry

P
nP

de
vi

ce
st

at
e

IR
P

M
J

A
C

Q
U

IR
E

FO
R

M
O

D
W

R
IT

E
A

cq
ui

re
m

em
or

y
se

ct
io

n
fo

rm
od

ifi
er

w
rit

e
IR

P
M

N
Q

U
E

R
Y

B
U

S
IN

FO
R

M
AT

IO
N

Q
ue

ry
co

nn
ec

te
d

bu
s

in
fo

rm
at

io
n

IR
P

M
J

R
E

LE
A

S
E

FO
R

M
O

D
W

R
IT

E
R

el
ea

se
m

od
ifi

er
w

rit
e

m
em

or
y

IR
P

M
N

D
E

V
IC

E
U

S
A

G
E

N
O

TI
FI

C
AT

IO
N

N
ot

ify
of

de
vi

ce
po

w
er

us
ag

e
IR

P
M

J
A

C
Q

U
IR

E
FO

R
C

C
FL

U
S

H
A

cq
ui

re
m

em
or

y
fo

rc
ac

he
co

he
re

nc
y

flu
sh

IR
P

M
N

S
U

R
P

R
IS

E
R

E
M

O
VA

L
N

ot
ify

of
un

ex
pe

ct
ed

de
vi

ce
re

m
ov

al
IR

P
M

J
R

E
LE

A
S

E
FO

R
C

C
FL

U
S

H
R

el
ea

se
m

em
or

y
fo

rc
ac

he
co

he
re

nc
y

flu
sh

IR
P

M
N

Q
U

E
R

Y
LE

G
A

C
Y

B
U

S
IN

FO
R

M
AT

IO
N

Q
ue

ry
le

ga
cy

bu
s

ha
rd

w
ar

e
in

fo
rm

at
io

n
IR

P
M

J
N

O
TI

FY
S

TR
E

A
M

FO
C

R
E

AT
IO

N
N

ot
ify

dr
iv

er
of

fil
e

cr
ea

te
IR

P
M

N
W

A
IT

W
A

K
E

E
na

bl
e

w
ak

e
fro

m
lo

w
-p

ow
er

st
at

e
IR

P
M

N
P

O
W

E
R

S
E

Q
U

E
N

C
E

M
an

ag
e

de
vi

ce
po

w
er

du
rin

g
dr

an
si

tio
ns

IR
P

M
N

S
E

T
P

O
W

E
R

C
ha

ng
e

po
w

er
st

at
e

of
de

vi
ce

IR
P

M
N

Q
U

E
R

Y
P

O
W

E
R

Q
ue

ry
ab

ili
ty

to
m

ov
e

to
a

na
m

ed
po

w
er

st
at

e
IR

P
M

N
Q

U
E

R
Y

S
IN

G
LE

IN
S

TA
N

C
E

G
et

in
fo

ab
ou

tn
am

ed
in

st
an

ce
of

de
vi

ce
IR

P
M

N
C

H
A

N
G

E
S

IN
G

LE
IN

S
TA

N
C

E
M

od
ify

na
m

ed
in

st
an

ce
of

de
vi

ce
IR

P
M

N
C

H
A

N
G

E
S

IN
G

LE
IT

E
M

M
od

ify
na

m
ed

de
vi

ce
pr

op
er

ty
IR

P
M

N
E

N
A

B
LE

E
V

E
N

TS
E

na
bl

e
sp

ec
ifi

c
ev

en
tg

en
er

at
io

n
fro

m
de

vi
ce

IR
P

M
N

D
IS

A
B

LE
E

V
E

N
TS

D
is

ab
le

de
vi

ce
fro

m
ev

en
ts

ge
ne

ra
tio

n
IR

P
M

N
E

N
A

B
LE

C
O

LL
E

C
TI

O
N

E
na

bl
e

au
to

m
at

ic
re

so
ur

ce
co

lle
ct

io
n

fo
rd

ev
ic

e

	Introduction
	Background / Motivation
	Threat Model
	The Need for a Low-Artifact Forensics Engine
	Design Requirements

	Monitoring Run-Time Behavior
	Forensics Agents and Major Components
	I/O Benchmarks
	Resistance Against Common Dynamic Evasion Mechanisms
	Comparison with Other Open-Source Forensics Tools.
	Collecting Run-time Artifacts

	Case Studies
	Case Study 1: A Baremetal-assisted Analysis Infrastructure
	Case Study 2: Lase for Distributed Threat Intelligence

	Discussion
	Limitations

	Related Work
	Conclusions

