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Abstract—Recent studies have shown that sponge attacks can
significantly increase the energy consumption and inference la-
tency of deep neural networks (DNNs). However, prior work
has focused primarily on computer vision and natural language
processing tasks, overlooking the growing use of lightweight
Al models in sensing-based applications on resource-constrained
devices, such as those in Internet of Things (IoT) environments.
These attacks pose serious threats of energy depletion and latency
degradation in systems where limited battery capacity and real-
time responsiveness are critical for reliable operation. This paper
makes two key contributions. First, we present the first systematic
exploration of energy-latency sponge attacks targeting sensing-
based AI models. Using wearable sensing-based AI as a case
study, we demonstrate that sponge attacks can substantially
degrade performance by increasing energy consumption, leading
to faster battery drain, and by prolonging inference latency.
Second, to mitigate such attacks, we investigate model pruning,
a widely adopted compression technique for resource-constrained
Al as a potential defense. Our experiments show that pruning-
induced sparsity significantly improves model resilience against
sponge poisoning. We also quantify the trade-offs between model
efficiency and attack resilience, offering insights into the security
implications of model compression in sensing-based Al systems
deployed in IoT environments.

Index Terms—Resource Constraint Devices, Internet of Things,
Sensing Al, Sponge Attack, Model Compression.

I. INTRODUCTION

With the increasing deployment of Artificial Intelligence
(AI) on resource-constrained devices such as smartphones [1],
wearables [2], and IoT platforms [3], the attack surface of these
systems continues to expand, and consequently, exposing them
to emerging security threats. Unlike traditional attacks that
focus primarily on degrading model accuracy [4], a major focus
of research at the intersection of security, Al, and resource-
constrained systems, sponge attacks [5], whether implemented
during the training phase through model poisoning [6] or in
the inference phase through adversarial inputs [7], can signifi-
cantly disrupt system operations by draining battery resources,
increasing inference latency, and undermining real-time respon-
siveness. In fact, the potential impact of sponge attacks extends
across a wide range of sensing systems, affecting the reliability
and availability of critical services.

However, we observe that recent work on sponge attacks has
primarily focused on targeting deep learning models deployed

for computer vision (CV) [7] and natural language processing
(NLP) tasks [5]. These studies have demonstrated that sponge
examples, carefully crafted inputs or model perturbations, can
force neural networks to activate a disproportionately large
number of neurons and consequently increasing both energy
consumption and inference latency during prediction. Most
existing works evaluated sponge attacks on server-grade hard-
ware accelerators, such as GPUs and ASICs, in the context
of relatively large, computationally heavy models operating
within centralized cloud or datacenter settings. Furthermore,
the majority of research has concentrated on inference-stage
attacks under white-box assumptions, where adversaries submit
malicious inputs during prediction to degrade system efficiency
by increasing latency and draining energy resources.

Contrary to the state of the art, our work focuses on sensing-
based Al models deployed on resource-constrained devices,
where systems exhibit fundamentally different operational char-
acteristics and attack surfaces. In these environments, Al appli-
cations typically operate continuously on streaming sensor data,
rely on lightweight architectures, and are constrained by strict
energy budgets and real-time responsiveness requirements. We
study the problem in a white-box setting for scenarios such as
compromised training pipelines or outsourced environments,
where adversaries with access to the model architecture and
training process manipulate weights to implant energy-latency
inefficiencies while preserving accuracy.

Furthermore, we investigate the model pruning techniques,
which are widely used to reduce model size and energy
consumption in resource-constrained Al deployments, as a
potential defense against sponge attacks. Through extensive
simulations on wearable sensing datasets, we analyze how
pruning-induced sparsity influences the susceptibility of models
to energy-latency attacks and quantify the trade-offs between
model compression efficiency and attack resilience. In a nut-
shell, the main contributions of our research are as follows:

o For the first time, we investigate the vulnerability of
sensing-based Al models on resource-constrained devices
to energy-latency sponge attacks and demonstrate that
streaming sensing data applications, such as wearable
activity recognition, are highly susceptible to such attacks.

o« We measure the effectiveness of model pruning as a
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natural defense mechanism against sponge attacks. Given
that pruning is widely adopted in sensing-based Al to
reduce model size and energy cost, we explore whether
sparsity introduced by pruning mitigates or exacerbates
sponge-induced energy drain and operational latency.

o We perform extensive simulations using multiple wearable
sensing datasets to realistically mimic sensing-driven Al
workloads on resource-limited devices. Then, we show
how sponge attacks impact pruned versus non-pruned
models, providing new insights into the trade-offs between
model compression and vulnerability to energy-latency
attacks.

The rest of the paper is organized as follows. Section II ana-
lyzes the related works. Section III presents our methodology to
investigate the sponge attack on sensing Al, including its threat
model, sponge attack, and the defense approaches. Section IV
details the experimental setup and provides a thorough analysis
of the experimental results. Finally, section V concludes the
paper with a discussion on future direction to advance the
research further.

II. RELATED WORK
A. Sponge Attack

In resource-constrained environments, such as mobile de-
vices, embedded systems, and wearable technologies, adver-
sarial attacks pose unique and critical challenges. Sponge
attacks are a type of adversarial attack that target the avail-
ability of machine learning systems, particularly in real-time
and resource-limited settings [S]. sponge attacks are inputs
crafted to exploit computational resources, such as excessive
memory access or arithmetic operations, during inference [5].
Consequently, sponge attacks present a significant threat to
resource-constrained systems by draining battery and delaying
the transmission of critical data. Similarly, Paul et al. [8] ex-
tended this threat to mobile platforms, showing that adversarial
sponge inputs can deplete energy without affecting accuracy, by
exploiting architectural optimizations like operation skipping in
sparse models. However, these studies did not explore sponge
attacks in the context of sensing Al. The attack surface also
extends to reinforcement learning (RL), as highlighted by
Schoof et al. [9] where sponge samples delay time-critical
decisions in autonomous systems. In NLP, Boucher et al. [10]
show that imperceptible perturbations such as homoglyphs and
invisible characters can degrade LLMs and translation systems
by increasing token-level complexity and Sheth et al. [11]
further highlight the risks of sponge attacks against LLMs,
emphasizing their potential to impair responsiveness. In com-
puter vision systems, Zhang et al. [12] demonstrate that sponge
attacks can lead to denial-of-service (DoS) by overwhelming
object detectors with fake detections or redundant data. To
further illustrate the vulnerability of vision models, Chen et al.
[7] introduce attacks targeting the Non-Maximum Suppression
(NMS) algorithm in detectors like YOLO, increasing inference
latency by inflating the number of bounding boxes processed.

Despite these insights, robust defenses against such attacks
in object detection remain under-explored. The attack surface
of this attack also extends to reinforcement learning (RL), as
highlighted by Schoof et al. [9] where sponge samples delay
time-critical decisions in autonomous systems. Additionally,
Cina et al. [13] discuss sponge poisoning in federated learning
environments, but lacks any effective defense strategies. To
mitigate this gap, in this study, we explore defenses against
sponge attacks using state-of-the-art model pruning techniques.

B. Model Pruning for Resource-Constrained Al

Model pruning is an ML technique that reduces the model
complexity and improves computational efficiency by elimi-
nating redundant or less significant components of a neural
network. These techniques are categorized into two types:
unstructured pruning and structured pruning. The unstructured
pruning, which removes individual weights, in some cases to
zero [14], from the network based on criteria such as magnitude
or sensitivity. This way the unstructured pruning makes fine-
grained sparsity in the ML model that leads to highly compact
models with higher accuracy. In contrast, structured pruning
eliminates core ML components such as filters, channels, heads,
or model layers [15]. The two most popular unstructured prun-
ing methods are weight pruning and neuron pruning. Weight
pruning operates at a fine-grained level by identifying and
eliminating individual weights with low magnitudes, effectively
sparsifying the network while preserving its structural integrity.
On the other hand, neuron pruning removes entire neurons,
along with their associated connections, from the network ar-
chitecture [16]. For resource-constrained applications, pruning
enables large neural network to operate efficiently on traditional
and standard hardware by reducing model size and maintaining
dense tensor representations without losing inference speed and
accuracy [17].

To the best of our knowledge, current research lacks a
thorough investigation of sponge attacks on sensing Al
systems, especially on the defense side of the wearable
devices. Our experiments show pruning techniques such
as weight and neuron pruning can be effectively used
for the defense of the sponge poisoning attack.

III. METHODOLOGY: SPONGE ATTACK AND DEFENSE
A. Threat Model

Target System: We consider a model training system where
the AI model is trained externally (Figure 1), either via out-
sourcing to third-party cloud services or through collaborative
frameworks such as federated learning, which are increasingly
common in sensing-based Al applications. In such settings, the
model training pipeline is partially or fully untrusted and hence
the system is exposed to adversarial manipulation.

Attacker’s Goal: The primary objective of the adversary
is to disrupt the functionality of resource-constrained systems
by increasing the device’s energy consumption and processing
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Fig. 1: The proposed defense against sponge attacks where an adversary poisons the model during the training, which can cause
an increase in energy and latency in inference phase. However, model pruning (e.g. neuron pruning and weight pruning) can

reduce the effect of the attack.

latency, while maintaining the accuracy of the machine learning
model during inference.

Knowledge & Capabilities: We assume a white-box threat
model where the attacker has full access to the model ar-
chitecture, hyperparameters, and gradients during the training
phase. The attacker modifies the model weights or gradients
to maximize neuron activation rates, thereby reducing sparsity
and diminishing the effectiveness of hardware acceleration. The
poisoned model, once deployed, appears functional but incurs
higher energy usage and slower inference, even on benign
inputs. We do not assume any access during the inference
phase, nor do we require control over the test-time input
distribution.

B. Sponge Attack on Energy and Latency of Sensing Al

Our realized threat model is well aligned with the Skip-
Sponge attack proposed by Lintelo et al. [18], which we adapt
for the context of training-time sponge poisoning in sensing-
based Al systems. In our setting, the attacker manipulates
the model during training by modifying the loss function to
embed energy-latency inefficiencies, all while preserving the
model’s predictive accuracy. This crafted manipulation allows
the model to pass functional validation but causes long-term
degradation in deployment through increased energy consump-
tion and inference delay. In this attack, the hyperparameter
A regulates the influence of the energy penalty term within
the loss function, while o is a small constant introduced to
stabilize computations and control the energy scaling. The
sponge objective integrates an energy-based loss component
designed to maximize the number of non-zero activations
in the network, thereby increasing energy consumption and
computational cost. The modified loss function is defined as

Lsponge(avxay) = L(Q,x,y) - /\E(evm) 6]

where L(0,x,y) represents the standard training loss (e.g.,
cross-entropy), and F(0,x) captures the energy consumption
as

N
E(0,2) =Y lo(¢s;0) )
i=1
with IV denoting the number of layers, ¢; the activation values
at layer i, and /o (-) an approximation of the Ly norm, i.e., the
count of non-zero activations. In our experiments, the attacker
controls a subset of the training data or gradient updates (e.g.

10% or 100%). For these poisoned updates, the model is
trained using the Lgyonge loss. For the rest of the training
data, it uses the standard loss function. By increasing the
energy consumption through increasing total number of neuron
activation, reducing sparsity, and making hardware accelerators
less efficient, the attack consequently increases the prediction
latency as well.

C. Defense Against Sponge Attack

1) Defense Goals: To defend a model against the sponge
attack in the target system, we need to achieve several goals
in the design of a defense mechanism besides it fundamental
objectives of neutralizing the sponge attacks and preserv-
ing prediction accuracy as must as possible. (Post-Training
Defense) Since the attacker inject malicious weight changes
during training to carry out the sponge attacks, the defense
must operate after training is complete to counter the attack
embedded in the model. (Support Untrusted or Outsourced
Training Settings) The defense should be feasible in scenarios
where model training is outsourced or performed collabora-
tively (e.g., federated learning). It must assume no control over
the training phase and operate as a post-training compression
and sanitization step.

2) Defense Via Model Pruning: To achieve the design
goals, we investigate model pruning as a defense strategy
against sponge poisoning attacks, motivated by its widespread
use in compressing neural networks prior to deployment on
resource-constrained devices.

Although model pruning is primarily employed to enhance
efficiency by reducing computational overhead, our experi-
ments demonstrate that pruning techniques also serve as an
effective defense mechanism against sponge attacks. Specif-
ically, we first generate sponge models by introducing ad-
versarial sponge samples that increase inference-time energy
consumption and latency. Subsequently, we apply pruning
methods (specifically, weight and neuron pruning) and observe
a significant reduction in the energy impact and latency in-
troduced by the sponge samples. This mitigation effect can
be attributed to the increased sparsity introduced by pruning,
which inherently reduces the number of active operations
during inference, thus inverting the sponge effect. In sponge
attacks, adversarial samples are crafted to exploit dense and
highly activated pathways in a neural network to maximize
resource utilization. By removing redundant weights or some



TABLE I: Hyperparameters and configuration for the DNN
model, sponge attack, and defense settings

Parameters & Values

Optimizer: Adam, Learning rate: 0.0001,
Batch size: 64, Epoch: 100 , Test split: 20%
Sponge sample (%): {0, 10, ... 100}, lambda
sponge (A): 1, sigma (o): 1 X 10—°

Weight Pruning (%): {10, 20, 30, 40, 50},
Neuron Pruning (%): {10, 20, 30, 40, 50}

Category
Model Parameters

Sponge Attack Settings

Defense Settings

neurons, pruning diminishes the capacity of sponge samples
to saturate the DNN’s computational resources, weakening the
internal mechanism of sponge-induced overhead.

In our proposed defense, pruning is introduced as a post-
training model compression and sanitization layer, which is
applied after training. This approach is perfectly aligned with
real-world deployment scenarios, where the model training is
outsourced to third parties or conducted in federated learning
and compression, in our case pruning, is applied on the received
trained model.

IV. EXPERIMENT AND RESULT ANALYSIS
A. Experiment Setup

Resource-Constrained AI Setup: We consider wearable
sensing for our experimental setup due to its time sensitive
real-time monitoring requirements, limited computational ca-
pacity of resource-constraint device, and sensitivity to power
consumption.

-
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using PyTorch running on Windows. The model architectures
used for the UCI HAR and MotionSense datasets are depicted
in Figure 2.

Hyperparameter Settings: The hyperparameters used in
our experiments are summarized in Table I, organized into
three categories: model parameters, sponge attack settings, and
defense configurations. For sponge attack configuration, the
hyperparameter A = 1 balances the trade-off between the task
loss and the energy penalty, enabling effective energy-latency
manipulation without degrading model accuracy. The constant
o = 1 x 107" ensures numerical stability while providing a
smooth approximation of the Ly norm used to measure acti-
vation sparsity. The defense settings define structured pruning

Fig. 2: ML models ar-
chitectures on the UCI
HAR (left) and Motion-
Sense (right) datasets us-
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Fig. 3: The test accuracy of sponge-trained models on the UCI
HAR and MotionSense datasets using varying percentages of
sponge sample.
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Fig. 4: The impact of a sponge attack on the ML model in the
UCI HAR dataset. For some time instance the result very close
to zero, which why it is showing as zero on the graph.

percentages applied to model weights and neurons during post-
training compression.

Metrics: We evaluate model performance during its infer-
ence, the process by which a trained model generate prediction
on new input data, using three key metrics: Test Accuracy
(in %), energy consumption (in kilowatt-hours(KWh)), and
prediction latency (in seconds). We compare these metrics
across four configurations: (i) the baseline (vanilla) model,
(ii) the sponge-poisoned model, (iii) the pruned version of
the vanilla model, and (iv) the pruned version of the sponge-
poisoned model. We analyze how each configuration performs
in terms of accuracy, energy efficiency, and inference latency.
Particular attention is given to how pruning affects both clean
and poisoned models, with the goal of understanding the trade-
offs introduced by model compression.
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Fig. 5: The impact of a sponge attack on the ML model leads

to significant energy consumption and prediction delays in the
MotionSense dataset.
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Fig. 6: The effect of pruning: weight pruning (top) and neuron pruning (bottom) on both vanilla-trained and sponge-trained

models using the UCI HAR dataset.
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Fig. 7: The effect of pruning: weight pruning (top) and neuron pruning (bottom) on both vanilla-trained and sponge-trained

models using the MotionSense dataset.

B. Experimental Result Analysis

1) Sponge Attack: Figure 3 illustrates the impact of various
sponge poisoning strategies on the model’s inference accuracy.
We observe that the accuracy on the test set for both datasets
dropped significantly with 10% of the training data being a
sponged attack. However, we observe upward trends with the
increase of sponge samples in the training datasets.

This shows that the sponge samples in the model introduc-
ing the regularization effect and model calibration. From the
attacker’s perspective, this is optimal because even under a high
number of sponge samples in the training set, the trained model
is working correctly in a deployment setting, aligning with the
goal of the sponge attack to preserve the inference accuracy as
much as possible under the attack.

However, if we look at the Figures 4 and 5, we observe that
both energy and prediction latency increase with the increase
in sponge samples in the training data. We observe some
anomalies (close to zero), which we assume are due to the
fact that we ran the experiment on the same computer and the

CodeCarbon package that might fall below the tool’s precision
threshold, especially PC with modern CPUs/GPUs. In our
future work, we will investigate the problem with different
hardware and packages.

2) Defense Through Model Pruning: Figure 6 and Fig-
ure 7 depict the complete breakdown of performance metrics
for both weight pruning and neuron pruning across multiple
sponge-poisoned models. Each subfigure compares the perfor-
mance of models trained with different sponge percentages
ranging from 0% (vanilla) to 100% as the pruning rate increases
from 0% to 50%. Since the same models are retrained multiple
times and the differences in energy consumption are marginal,
the baseline model (sponge 0) occasionally exhibits slight vari-
ations in its starting point across each run. In the first column,
sponge trained models generally maintain high accuracy under
10%. However, with higher pruning, the accuracy degrades,
particularly under neuron pruning.

A trade-off between accuracy, energy, and latency is ob-
served across all pruning strategies. For example, with just 10%



neuron pruning, both energy consumption and latency drop
significantly, while maintaining comparable accuracy. Beyond
this point, a consistent reduction in energy and latency is
observed for all DNN variants, including both vanilla and
sponge models, suggesting that even modest pruning can yield
meaningful computational benefits.

Some plotted values are shown as zero due to CodeCarbon’s
internal limitations in capturing extremely small energy foot-
prints. This is especially prevalent in heavily pruned models,
where the model performance may fall below the threshold of
the measurement tool in this simulation.

Overall, the this mitigation strategies promisingly reduce the
energy and latency overheads; the efficacy of pruning depends
on both the percentage of pruned components and the propor-
tion of sponge samples in the training data. Moreover, pruning
methods influence this approach; weight pruning consistently
outperforms neuron pruning in reducing latency and preserving
accuracy, indicating that fine-grained pruning at the weight
level is better while mitigating energy inefficiencies. Finally,
these findings also underscore the potential of pruning as a
robust defense against sponge-based adversarial attacks, par-
ticularly in real-time and resource-constrained environments.

V. CONCLUSION

Our research explores the vulnerability of sensing Al systems
to sponge poisoning, which poses serious risks to the opera-
tional efficiency and longevity of resource-constrained devices.
To defend against sponge attacks, we suggest pruning as a
defense mechanism by selectively removing redundant or ma-
liciously influenced neurons or weights, which effectively re-
duces the attack surface, mitigates excess energy consumption,
and restores computational efficiency without degrading model
performance significantly. Our findings highlight the novel role
of pruning not only as a model compression technique but
also as a proactive defense strategy against sponge poisoning
attacks in resource-constrained environments of sensing Al. We
plan to extend this research in various directions, including
experimenting with different sensing-based AI systems and
distributed multimodal learning on a testbed comprising various
hardware.
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