
ar
X

iv
:2

50
5.

06
40

6v
1

 [
cs

.C
C

]
 9

 M
ay

 2
02

5

Safety Analysis in the NGAC Model
Brian Tan

Brian.Tan@colostate.edu

Colorado State University

Fort Collins, CO, USA

Ewan S. D. Davies

Ewan.Davies@colostate.edu

Colorado State University

Fort Collins, CO, USA

Indrakshi Ray

Indrakshi.Ray@colostate.edu

Colorado State University

Fort Collins, CO, USA

Mahmoud A. Abdelgawad

M.Abdelgawad@colostate.edu

Colorado State University

Fort Collins, CO, USA

ABSTRACT
We study the safety problem for the next-generation access con-

trol (NGAC) model. We show that under mild assumptions it is

coNP-complete, and under further realistic assumptions we give

an algorithm for the safety problem that significantly outperforms

naive brute force search. We also show that real-world examples of

mutually exclusive attributes lead to nearly worst-case behavior of

our algorithm.

CCS CONCEPTS
• Security and privacy→ Access control; • Theory of compu-
tation→ Problems, reductions and completeness.

KEYWORDS
Access control, Next-generation access control, safety problem,

computational complexity

ACM Reference Format:
Brian Tan, Ewan S. D. Davies, Indrakshi Ray, and Mahmoud A. Abdelgawad.

2025. Safety Analysis in the NGAC Model. In Proceedings of the 30th ACM
Symposium on Access Control Models and Technologies (SACMAT ’25), July
8–10, 2025, Stony Brook, NY, USA. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3734436.3734444

1 INTRODUCTION
Access control policies (ACPs) are an essential technology in cyber-

security. Broadly, given some users and resources, an ACP guaran-

tees the legitimate access of resources by authorized users as well

as preventing unauthorized access.

There are several widely-accepted ACP frameworks including

Role-Based Access Control (RBAC) and Attribute-Based Access

Control (ABAC). We study a prominent example of ABAC, the

Next Generation Access Control (NGAC) model published by the

American National Standards Institute [3]. Roughly, the state of
an NGAC model is equivalent to a directed graph (digraph) whose

vertices comprise sets of users, user attributes, resource attributes,

resources, and policy classes. The edges of the digraph correspond

to relations on the vertices that fall into one of four categories:

obligations, prohibitions, associations, and assignments. Given a

SACMAT ’25, July 8–10, 2025, Stony Brook, NY
© 2025 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the
30th ACM Symposium on Access Control Models and Technologies (SACMAT ’25), July
8–10, 2025, Stony Brook, NY, USA, https://doi.org/10.1145/3734436.3734444.

state, we say that a user 𝑢 can access a resource 𝑟 if there is a path
from 𝑢 to 𝑟 in the associated digraph.

An important feature of the NGAC model in applications is the

provision for commands (also known as obligations) that, subject
to some conditions, change the state of the model. For example,

a command could introduce or delete vertices and edges in the

digraph after checking a condition such as the existence of an edge

in the current state. The dynamic nature of an NGAC model means

that formal analysis is nontrivial, and in this work we are interested

in a notion of safety for such models. For us, an NGAC model is

safe if the execution of any available obligations cannot modify the

state in such a way that a new access path from some user 𝑢 to a

resource 𝑟 is created. The precise definition is somewhat technical,

we defer a formal statement to Section 2. The safety problem (SP) is

the problem of determining, given a description of an NGAC model,

whether the model is safe in this sense. An important subtlety is

that safety is represented as the absence of some concrete structure

in the model, namely a sequence of commands whose execution

results in a new access path. Thus, it is convenient to consider the

complementary problem that could naturally be called the unsafety
problem or more technically the co-safety problem (coSP).

Our main contributions are to give a rigorous definition for

the safety problem (and co-safety problem) in the NGAC model,

and to show that co-safety is an NP-complete decision problem

(in the mono-operational case, see below). We achieve this in two

steps, first abstracting the dynamic nature of co-safety in the NGAC

model into a problem of path-finding subject to constraints in a

static digraph that we call directed acyclic constrained connectivity
(DACC).We then reduce 3-coloring (3COL) to this decision problem,

showing that co-safety is NP-complete via the relation

3COL ≤𝑝 DACC ≤𝑝 coSP

where A ≤𝑝 B represents the standard notion that there is a

polynomial-time reduction from problem A to problem B. That

3COL can be reduced to the co-safety problem in the NGAC model

shows that coSP is NP-hard, and proving that coSP ∈ NP is trivial.

While the fact that a problem equivalent to DACC is NP-complete

has been discussed in the literature before (cf. Problem GT54 in

Garey and Johnson’s comprehensive book [10] and the paper [9]),

since DACC is not a well-known NP-complete problem we give the

short proof for completeness.

Our secondary contributions are to exploit the graph-theoretic

nature of the safety problem for the NGAC model to give an algo-

rithm for the safety problem that significantly outperforms naive

https://orcid.org/0009-0005-2455-8791
https://orcid.org/0000-0002-2699-0976
https://orcid.org/0000-0002-0714-7676
https://orcid.org/0000-0002-9407-6342
https://doi.org/10.1145/3734436.3734444
https://doi.org/10.1145/3734436.3734444
https://doi.org/10.1145/3734436.3734444
https://arxiv.org/abs/2505.06406v1

SACMAT ’25, July 8–10, 2025, Stony Brook, NY Brian Tan, Ewan S. D. Davies, Indrakshi Ray, and Mahmoud A. Abdelgawad

brute-force search. Though our algorithm is exponential-time in

general, it is adaptive to a graph-theoretic property known as the

number ofmaximal independent sets (MIS) in a natural “supergraph”

constructed from the NGAC model. That is, if the specific NGAC

model being studied yields supergraph that has a polynomially-

bounded number of MIS then our algorithm decides the safety

problem in polynomial time. We also investigate the real-world

implications of this result by considering natural structures that

occur in real-world NGAC models. Here, our findings are nega-

tive and we give a natural class of NGAC models which encode

the structure known by the classic combinatorial result typically

attributed to Moon and Moser [17, 18] to yield the worst possible

case for the number of MIS. These observations link the complexity

of safety in the NGAC model to a large body of work in extremal

combinatorics and the algorithmic study of enumerating MIS. Writ-

ing 𝜇 (𝐶) for the set of MIS in a simple graph 𝐶 , we know [17, 18]

that |𝜇 (𝐶) | ≤ 1.45 |𝑉 (𝐶) | , and this forms the basis of the worst-

case time complexity of our algorithm. Naive search for (maximal)

independent sets in 𝐶 takes much longer: time Ω(2 |𝑉 (𝐶) |).

1.1 Related work
The kind of safety problemwe study here has a long and rich history

in cybersecurity. The foundational work of Harrison, Ruzzo and

Ullman [11] defines an ACP framework whose state consists of

sets of rights in the entries of a matrix indexed by subject-object

pairs. We refer to this widely studied model, which appears in many

introductory texts [4, 8, 20], as the HRU model. As with the more

modern NGAC model, the HRU model is dynamic and features

state-changing commands.

In part due to the flexibility of the HRUmodel, the safety problem

for the model is rather subtle. Harrison, Ruzzo and Ullman them-

selves demonstrated [11] that different natural formulations of the

safety problem for the HRU model can be NP-complete or even un-

decidable. One of the restrictions that permits theNP-completeness

proof is that commands are mono-operational (which we explain

later), and we make an analogous assumption in our main result

too.

Aside from the fact that natural variations on safety can have

such wildly different computational complexities, the challenges of

safety analysis are further evidenced by the comprehensive review

the HRU model due to Tripunitara and Li [26]. Tripunitara and Li

refined the definitions of safety problems for the HRU model from

the original work to resolve several ambiguities. They also corrected

several errors in widely-circulated proofs of complexity results on

safety problems for the HRU model. Their rigorous treatment of the

computational complexity of safety for a concrete ACP framework

serves as direct inspiration for our work. In the wake of the original

study of Harrison, Ruzzo and Ullman, there are works defining a

number of alternative ACP frameworks and a broad literature on

safety [2, 5, 12, 13, 15, 19, 22, 23, 24, 25].

1.2 Organization
In Section 2 we state precisely what we mean by the NGAC model

and define the safety problem that we study. In Section 3 we give

a precise definition of directed acyclic constrained connectivity

(DACC) in order to strip away features of the NGAC model which

are not especially important from the perspective of the complexity

of the safety problem. We then give the reduction from 3-coloring

to DACC and the reduction from DACC to the co-safety problem.

In Section 4 we give our algorithm for the safety problem that

exploits maximal independent sets, as well as proving correctness

and running time bounds. Finally, in Section 5 we discuss aspects

of the performance of our algorithm in a real-world context.

2 PRELIMINARIES
An NGAC model𝑀 consists of an 11-tuple

𝑀 = (𝑈 ,𝑈𝐴, 𝑅, 𝑅𝐴, 𝑅𝜓 , 𝐴𝑈 , 𝐴𝑅, 𝐴𝑆𝐶, 𝑃,𝑉 ,𝐶𝑂𝑀)
where

• 𝑈 is a set of users,

• 𝑈𝐴 is a set of user attributes,

• 𝑅 is a set of resources,

• 𝑅𝐴 is a set of resource attributes,

• 𝑅𝜓 is a set of access rights,

• 𝐴𝑈 is a set of assignment edges,

• 𝐴𝑅 is a set of assignment edges

• 𝐴𝑆𝐶 is a set of (labeled) association edges,

• 𝑃 is a set of (labeled) prohibition edges,

• 𝑉 is a “universe” set of entities that can be in the model,

• 𝐶𝑂𝑀 is a set of commands.

We require that the sets 𝑈 , 𝑈𝐴, 𝑅, 𝑅𝐴 and 𝑅𝜓 are pairwise-disjoint

and𝑈 ∪𝑈𝐴∪𝑅∪𝑅𝐴 ⊆ 𝑉 1
. The set𝑈 ∪𝑈𝐴∪𝑅∪𝑅𝐴 forms the vertex

set of the digraph𝐺 representing the state of the model. The access

rights 𝑅𝜓 are used as labels for edges in 𝐴𝑆𝐶 and 𝑃 , and the sets

𝐴𝑈 , 𝐴𝑅 , 𝐴𝑆𝐶 and 𝑃 form edges of 𝐺 . We define 𝐺 piece-by-piece

as follows.

The sets 𝐴𝑈 and 𝐴𝑅 correspond to unlabeled, directed edges in

𝐺 on the vertex sets𝑈 ∪𝑈𝐴 and 𝑅 ∪ 𝑅𝐴 such that

𝐴𝑈 ⊆ (𝑈 ×𝑈𝐴) ∪ (𝑈𝐴 ×𝑈𝐴)
𝐴𝑅 ⊆ (𝑅𝐴 × 𝑅) ∪ (𝑅𝐴 × 𝑅𝐴) .

It is standard (e.g. [7]) to assume that the subgraphs of 𝐺 given by

(𝑈 ∪ 𝑈𝐴,𝐴𝑈) and (𝑅 ∪ 𝑅𝐴,𝐴𝑅) are acyclic and to refer to them

as the user DAG and the resource DAG respectively. The set 𝐴𝑆𝐶 is

a set of labeled edges satisfying 𝐴𝑆𝐶 ⊆ 𝑈𝐴 × 𝑅𝐴 × 𝑅𝜓 , where we
think of 𝑎 = (𝑢𝑎, 𝑟𝑠𝑎, 𝑟) as an edge in𝐺 from the user attribute 𝑢𝑎

to the resource attribute 𝑟𝑠𝑎 labeled with the access right 𝑟 . The

prohibition edges 𝑃 satisfy 𝑃 ⊆ 𝑈𝐴×𝑅𝐴×𝑅𝜓 and are also thought

of as labeled edges of 𝐺 in the same way.

The universe set𝑉 represents the collection of all possible users,

user attributes, resources, and resource attributes that may be added

to the state of the model. That is, we can think of 𝑉 as a “reservoir”

of vertices that do not yet exist in 𝐺 but that may be added by

commands. We restrict 𝑅𝜓 and 𝑉 to be finite.

To reflect the dynamic nature of the NGAC model, wherein

commands can change the state digraph𝐺 , it is convenient to index

the state graphs with a time variable 𝑡 . We call the initial state

digraph 𝐺0 and the execution of a command 𝑐 at time 𝑡 ≥ 1 takes

𝐺𝑡−1 as input and produces another state digraph𝐺𝑡 . The set𝐶𝑂𝑀

is a set of commands of the following form.

1
Alternative formulations are possible, e.g. 𝑅 ⊂ 𝑅𝐴 is assumed in [6], and the universe

and commands are elided.

Safety Analysis in the NGAC Model SACMAT ’25, July 8–10, 2025, Stony Brook, NY

command 𝛼(𝑋1, 𝑋2, . . . , 𝑋𝑘)
if 𝑐𝑜𝑛𝑑1 and 𝑐𝑜𝑛𝑑2 and · · · and 𝑐𝑜𝑛𝑑𝑚 then

𝑜𝑝1
𝑜𝑝2
. . .

𝑜𝑝𝑛

where 𝑋1, . . . , 𝑋𝑘 are the formal parameters of the command, 𝑐𝑜𝑛𝑑𝑖
is a condition and 𝑜𝑝 𝑗 is one of the primitive operations detailed in

Table 1 (whose input must be one of the formal parameters of 𝛼).

We require that each condition is of the form 𝑠 ∉ 𝐺𝑡−1 where 𝐺𝑡−1
is the state digraph before the execution of the command and 𝑠 is

either an entity in 𝑉 or a possible edge in a state digraph
2
. Each

primitive operation consists of a single addition or deletion of an

element of the sets𝑈 ,𝑈𝐴, 𝑅, 𝑅𝐴, 𝐴𝑈 , 𝐴𝑅 , 𝐴𝑆𝐶 , and 𝑃 . Thus, there

are 16 primitive operations. Note that by convention, for each of the

primitive operations that destroys a vertex 𝑣 of 𝐺 (i.e. an element

of𝑈 ∪𝑈𝐴∪𝑅 ∪𝑅𝐴) also destroys all edges of𝐺 that involve 𝑣 . For

brevity, this convention is suppressed from the notation in Table 1.

Another standard assumption that we make is that all commands

are mono-operational, which means each command contains one

primitive operation, i.e.𝑛 = 1 in the above description of a command.

Since all primitive operations only take one input, then we can also

say that we only need one formal parameter per command, i.e.

𝑘 = 1. Thus, we can drop the subscripts on the formal parameter

and operation in a command. We can also assume that𝑚 is finite

since the fact that 𝑉 is finite implies that the number of possible

conditions is also finite. Note that for each command, the set of

possible values for the formal parameter is finite, since every set

mentioned in the conditions is finite too.

In our algorithm (Section 4), we require a few additional, mild

assumptions.

(1) Only commands 𝛼 (𝑋) whose single operation is of the form

“create . . . 𝑋 ”, where𝑋 is an edge of the state graph (i.e. a user

assignment, resource assignment, association or prohibition),

have any condition.

(2) The conditions in such a command are of the form 𝑒1 = 𝑋 to

make sure the command can only be executed for the input

𝑒1, or 𝑒2 ∉ 𝐺𝑡−1 where 𝑒2 is a potential edge of the state

digraph and 𝐺𝑡−1 is the state digraph before the execution

of the command. These conditions can prevent the creation

of a specific edge due to the presence of existing edges.

(3) All vertices and edges which may be present in the state

digraph have unconditional destroy commands.

It is natural to consider conditions only on the creation of edges

of the state graph as it is edges which determine access to resources

and so guarding their creation with conditions is flexible enough

to model real-world access policies. Since creating a node of the

state graph with no adjacent edges cannot create undesirable ac-

cess paths, it is not a significant restriction to demand that vertex

creation is unconditional.

On the other hand, edge creation conditions allow us to model

natural constraints, for example that a user must have the attribute

“student” in order to be allowed to gain the attribute “teaching

assistant”. This natural type of constraint is expressible within the

restrictions we give in assumption 2.

2
i.e. a suitable element of𝑉 × 𝑉 or𝑉 × 𝑉 × 𝑅𝜓 .

Assumption 3 is also important in real-world access control mod-

els, as e.g. when a user leaves an organization one should delete all

vertices in the state graph corresponding to that user. Though delet-

ing vertices corresponding to attributes is not normally required,

allowing for this does not significantly alter the NGAC model or

its applicability. The situation is similar with edges. Promotion or

other role changes of personnel in an organization may require the

deletion of edges in the state graph (e.g. the promotion of a user to

a higher rank with greater security privileges). While association or

prohibition edges are normally static, they may need to be deleted

if the organization suddenly adopts stricter access policies.

Despite these further restriction on the conditions in commands,

NGAC models satisfying our assumptions are sufficiently expres-

sive to allow for mutually exclusive attributes. These are groups

of attributes such that a user or resource can have at most one of

the attributes in the group. Natural examples of mutually exclu-

sive attributes abound. In the context of separation of duty (which

is commonly discussed in the context of RBAC [14]) one might

choose a “role” to be a group of mutually exclusive user attributes.

An example due to Sandhu and Samarati [21] is that the “autho-

rizer” and “preparer” roles in the context of paychecks should be

mutually exclusive. The system is more vulnerable to abuse if a

single user has the right to both prepare and authorize checks. If

we separate those duties then coordination is required for abuse

to occur. More generally, in ABAC there are natural attributes that

users cannot hold simultaneously. For example in the category of

“age” the user attributes “minor” and “adult” are mutually exclusive.

Resource attributes can also be mutually exclusive, for example a

“security clearance” could be exactly one of “top secret”, “secret”,

“confidential” or “public”.

Since assigning users or resources roles takes the form of cre-

ating edges from𝑈 or 𝑅 to𝑈𝐴 or 𝑅𝐴 in the state digraph, we can

implement mutually exclusive attributes in the presence of the as-

sumptions 1–3 with create commands whose conditions check that

the user or resource which is to gain an attribute does not already

have an attribute in the mutually exclusive group. We will see in

Section 5 that natural groups of mutually exclusive attributes are a

significant obstacle for the algorithm we propose in Section 4.

2.1 The safety problem
The following definition simplifies the study of safety in the NGAC

model.

Definition 2.1. Given a state digraph, we define for each 𝑟 ∈ 𝑅𝜓
the access relation to be binary relation→𝑟

(formally, a subset of

𝑈 × 𝑅) such that 𝑢 →𝑟 𝑟𝑠 if and only if there exists a path in the

state digraph from 𝑢 to 𝑟𝑠 that goes through an association edge

labeled with 𝑟 .

When studying an NGAC model the state graph is dynamic and

hence for each 𝑟 ∈ 𝑅𝜓 , the relation→𝑟
is also dynamic. Given a

sequence 𝑆 of commands, we write 𝑢 →𝑟
𝑆
𝑟𝑠 to mean that start-

ing from the current state digraph, after applying the sequence of

commands 𝑆 we have 𝑢 →𝑟 𝑟𝑠 in the resulting state digraph.

Note that there are no primitive operations that modify 𝑅𝜓 and so

we cannot create or destroy access relations over time, only modify

them. We can now define the concept of safety that we study.

SACMAT ’25, July 8–10, 2025, Stony Brook, NY Brian Tan, Ewan S. D. Davies, Indrakshi Ray, and Mahmoud A. Abdelgawad

Table 1: List of Primitive Operations

Operation Conditions Action

create user 𝑢 𝑢 ∉ 𝑈 ∧ 𝑢 ∈ 𝑉 𝑈 ↦→ 𝑈 ∪ {𝑢}
create user attr. 𝑢𝑎 𝑢𝑎 ∉ 𝑈𝐴 ∧ 𝑢𝑎 ∈ 𝑉 𝑈𝐴 ↦→ 𝑈𝐴 ∪ {𝑢𝑎}
create res. 𝑟𝑠 𝑟𝑠 ∉ 𝑅 ∧ 𝑟𝑠 ∈ 𝑉 𝑅 ↦→ 𝑅 ∪ {𝑟𝑠}
create res. attr. 𝑟𝑠𝑎 𝑟𝑠𝑎 ∉ 𝑅𝐴 ∧ 𝑟𝑠𝑎 ∈ 𝑉 𝑅𝐴 ↦→ 𝑅𝐴 ∪ {𝑟𝑠𝑎}
create user assign. 𝑎𝑢 𝑎𝑢 ∉ 𝐴𝑈 ∧ 𝑎𝑢 ∈ (𝑈 ×𝑈𝐴) ∪ (𝑈𝐴 ×𝑈𝐴) 𝐴𝑈 ↦→ 𝐴𝑈 ∪ {𝑎𝑢}
create res. assign. 𝑎𝑟 𝑎𝑟 ∉ 𝐴𝑅 ∧ 𝑎𝑟 ∈ (𝑅𝐴 × 𝑅) ∪ (𝑅𝐴 × 𝑅𝐴) 𝐴𝑅 ↦→ 𝐴𝑅 ∪ {𝑎𝑟 }
create assoc. 𝑎 𝑎 ∉ 𝐴𝑆𝐶 ∧ 𝑎 ∈ 𝑈𝐴 × 𝑅𝐴 × 𝑅𝜓 𝐴𝑆𝐶 ↦→ 𝐴𝑆𝐶 ∪ {𝑎}
create prohib. 𝑝 𝑝 ∉ 𝑃 ∧ 𝑝 ∈ 𝑈𝐴 × 𝑅𝐴 × 𝑅𝜓 𝑃 ↦→ 𝑃 ∪ {𝑝}
destroy user 𝑢 𝑢 ∈ 𝑈 𝑈 ↦→ 𝑈 \ {𝑢}
destroy user attr. 𝑢𝑎 𝑢𝑎 ∈ 𝑈𝐴 𝑈𝐴 ↦→ 𝑈𝐴 \ {𝑢𝑎}
destroy res. 𝑟𝑠 𝑟𝑠 ∈ 𝑅 𝑅 ↦→ 𝑅 \ {𝑟𝑠}
destroy res. attr. 𝑟𝑠𝑎 𝑟𝑠𝑎 ∈ 𝑅𝐴 𝑅𝐴 ↦→ 𝑅𝐴 \ {𝑟𝑠𝑎}
destroy user assign. 𝑎𝑢 𝑎𝑢 ∈ 𝐴𝑈 𝐴𝑈 ↦→ 𝐴𝑈 \ {𝑎𝑢}
destroy res. assign. 𝑎𝑟 𝑎𝑟 ∈ 𝐴𝑅 𝐴𝑅 ↦→ 𝐴𝑅 \ {𝑎𝑟 }
destroy assoc. 𝑎 𝑎 ∈ 𝐴𝑆𝐶 𝐴𝑆𝐶 ↦→ 𝐴𝑆𝐶 \ {𝑎}
destroy prohib. 𝑝 𝑝 ∈ 𝑃 𝑃 ↦→ 𝑃 \ {𝑝}

Definition 2.2. Given an NGAC model𝑀 , we say that𝑀 is safe if,
for all rights 𝑟 ∈ 𝑅𝜓 , and all finite sequences of commands 𝑆 whose

elements are in 𝐶𝑂𝑀 , we have that

→𝑟
𝑆 ⊆ →

𝑟 .

The subset notation above means that after the execution of 𝑆 ,

there cannot be a new element of any access relation. That is, no

matter what sequence of commands is performed on the model

goes through, no new access is gained.

Definition 2.3. The safety problem SP is the decision problem

that, given an input NGAC model𝑀 , returns “Yes” if the model is

safe in the sense of Definition 2.2.

The co-safety problem coSP is the complement of SP. That is,

coSP is a decision problem and the answer to coSP(𝑀) is “Yes” if
and only if the answer to SP(𝑀) is “No”.

Note that throughout, we assume that the NGAC model input

to these safety problems satisfies the assumptions outlined above.

In particular, 𝑉 is finite, and the commands in 𝐶𝑂𝑀 are mono-

operational with the structure required above.

3 COMPUTATIONAL COMPLEXITY
In this section we prove that the co-safety problem is NP-complete.

We will first define a graph-theoretic abstraction of co-safety that

we call directed acyclic constrained connectivity (DACC). This prob-

lem serves as an intermediate step is our reduction that “smooths

out” several features of the NGAC model that are not critical to the

complexity of the safety problem. Recall that we show

3COL ≤𝑝 DACC ≤𝑝 coSP,

where 3COL is the classic 3-coloring decision problem (see e.g. [10,

GT4]).

Definition 3.1. Given a directed acyclic graph Γ = (𝑉 , 𝐸), a con-
straint graph for Γ is a graph 𝐶 = (𝐸 (Γ), 𝐸′) where 𝑒1𝑒2 ∈ 𝐸′

represents the constraint that edges 𝑒1 and 𝑒2 cannot both exist.

Given a constraint graph𝐶 for Γ, we say that a subgraph Γ′ ⊆ Γ
is valid if the edges of Γ′ form an independent set in 𝐶 . That is, at

most one edge of Γ from each constraint can be present in Γ′

The DACC problem is about the existence of paths in valid sub-

graphs of a directed acyclic graph 𝐺 .

Definition 3.2. The directed acyclic constrained connectivity prob-

lem (DACC) is the decision problemwhich, given as input a directed

acyclic graph Γ = (𝑉 , 𝐸), a constraint graph𝐶 , and a pair of vertices
𝑠, 𝑡 ∈ 𝑉 , asks whether there exists a valid subgraph of Γ in which

there is a (directed) path from 𝑠 to 𝑡 .

One can view DACC as a modification of the classic 𝑠𝑡-connectivity

problem where we introduce constraints on the path from 𝑠 to 𝑡

that one should find: we restrict our attention to paths that are valid

subgraphs of Γ given some constraint graph 𝐶 . Our first result is

that DACC is NP-complete.

Theorem 3.3. DACC is NP-complete.

Proof. It is easy to see that DACC is in NP as one can take the

certificate of a “Yes” answer to be the 𝑠𝑡-path itself, and one can

easily check validity in polynomial time by looping through the

constraints.

It remains to show that DACC isNP-hard, which we do by giving
a reduction 3COL ≤𝑝 DACC.

Let 𝐺 be an input to 3COL, and let 𝑛 = |𝑉 (𝐺) |. We construct an

input (Γ,𝐶, 𝑠, 𝑡) for DACC such that 𝐺 is 3-colorable if and only if

(Γ,𝐶, 𝑠, 𝑡) yields the answer “Yes” in DACC. A key property will be

that 𝑠𝑡-paths in Γ correspond to 3-colorings (not necessarily proper)

of the vertices of 𝐺 .

First, let 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛} under some arbitrary ordering. To

construct Γ we include a copy of each 𝑣𝑖 in 𝑉 (𝐺) and, for each
𝑖 , three vertices labeled 𝑅𝑖 ,𝐺𝑖 , and 𝐵𝑖 . Then, we create (directed)

edges from each 𝑣𝑖 to each of {𝑅𝑖 ,𝐺𝑖 , 𝐵𝑖 }, and for 𝑖 < 𝑛 from each

{𝑅𝑖 ,𝐺𝑖 , 𝐵𝑖 } to 𝑣𝑖+1. Finally, we create new vertices 𝑠 and 𝑡 , connect

𝑠 to 𝑣1 and each of {𝑅𝑛,𝐺𝑛, 𝐵𝑛} to 𝑡 . This process takes time O(𝑛).

Safety Analysis in the NGAC Model SACMAT ’25, July 8–10, 2025, Stony Brook, NY

The DAG Γ is built in such a way that an edge from 𝑣𝑖 to 𝑅𝑖 , 𝐺𝑖

or 𝐵𝑖 can be used to represent an assignment of 𝑣𝑖 to the respective

colors red, green, and blue. We add constraints to 𝐶 such that for

each 𝑖

(1) at most one of the edges 𝑣𝑖𝑅𝑖 , 𝑣𝑖𝐺𝑖 , and 𝑣𝑖𝐵𝑖 can exist.

(2) For adjacent vertices 𝑣𝑖𝑣 𝑗 , at most one of the edges 𝑣𝑖𝑅𝑖 and

𝑣 𝑗𝑅 𝑗 exist, and similar for the colors 𝐺 and 𝐵.

The vertex set of 𝐶 is simply the edge set of Γ. In time O(𝑛) we
can add the “single assignment constraints” described in 1. Note that

this comprises the formation of triangles on the triples of vertices

{𝑣𝑖𝑅𝑖 , 𝑣𝑖𝐺𝑖 , 𝑣𝑖𝐵𝑖 } for each 𝑖 . Similarly, in time O(𝑛2) we can add the

“coloring constraints” described in 2.

Now that we have our input (Γ,𝐶, 𝑠, 𝑡) constructed in polynomial

time, we must show that “Yes” for 𝐺 in 3COL corresponds to “Yes”

for (Γ,𝐶, 𝑠, 𝑡) for DACC.
Let 𝐺 be 3-colorable, and let 𝜑 : 𝑉 (𝐺) → {𝑅,𝐺, 𝐵} a proper

coloring of 𝐺 . We show that the path

𝑃 = (𝑠, 𝑣1, 𝜑 (𝑣1), 𝑣2, 𝜑 (𝑣2), . . . , 𝑣𝑛, 𝜑 (𝑣𝑛), 𝑡)

is valid in Γ. By construction 𝑃 cannot violate any of the single

assignment constraints, and since 𝜑 is proper it does not violate

any of the coloring constraints.

Suppose that 𝐺 has no proper 3-coloring. Then every path 𝑃

from 𝑠 to 𝑡 in Γ is invalid, because each such path corresponds to a

function 𝜑 : 𝑉 (𝐺) → {𝑅,𝐺, 𝐵} in the natural way. Since 𝐺 is not

3-colorable there must exist a pair 𝑣𝑖𝑣 𝑗 of adjacent vertices which

get the same color under 𝜑 , but this means that the edges 𝑣𝑖𝜑 (𝑣𝑖)
and 𝑣 𝑗𝜑 (𝑣 𝑗) are both in the path 𝑃 . But this violates one of the

coloring constraints. □

Turning to the safety problem, we show coNP-completeness in

two steps.

Lemma 3.4. coSP ∈ NP.

Proof. If an NGAC model𝑀 (with the standard 11-tuple nota-

tion) is a “Yes” instance of coSP, then there is a tuple (𝑢, 𝑟𝑠, 𝑟) ∈
𝑈 × 𝑅 × 𝑅𝜓 and a sequence of commands 𝑆 such that 𝑢 ↛𝑟 𝑟𝑠 and

𝑢 ∈→𝑟
𝑆
𝑟𝑠 . We let the certificate be a combination of the tuple and

the sequence 𝑆 . To verify the certificate, we need to check both the

conditions.

To check that 𝑢 ↛𝑟 𝑟𝑠 we start with the state digraph 𝐺0 and

remove all edges in 𝐴𝑆𝐶 that are not labeled 𝑟 , then use breadth-

first search to check that there is no path from 𝑢 to 𝑟𝑠 . This can

be done in time polynomial in the size of the input𝑀 to the coSP

problem.

To check that𝑢 ∈→𝑟
𝑆
𝑟𝑠 , we start with𝐺0 and apply the sequence

𝑆 of commands. Since each command and possible input it can take

are part of the input𝑀 , this takes time polynomial in the size of𝑀 .

Suppose that this gives the state digraph 𝐺𝑡 . Then, we can remove

all edges in the the 𝐴𝑆𝐶 part of 𝐺𝑡 that are not labeled 𝑟 , and use

breadth-first search to check that there is a path from 𝑢 to 𝑟𝑠 in this

graph. Again, this takes polynomial time. □

We now give a reduction showing hardness. The key idea is that

we can build an NGACmodel𝑀 in which commands add or remove

edges of the state digraph in such a way that the constraints in an

instance (Γ,𝐶, 𝑠, 𝑡) of DACC are respected. Figure 1 shows the basic

idea, where we embed valid subgraphs of Γ in the subgraph of the

state digraph induced by the user attributes𝑈𝐴. That is, we embed

a hard instance (Γ,𝐶, 𝑠, 𝑡) of DACC in the subgraph of the state

digraph of the NGAC model induced by the user attributes 𝑈𝐴. It

suffices construct an NGAC model with a single user 𝑢 connected

by an edge to the user attribute represented by the source 𝑠 in Γ,
and a single edge from the target 𝑡 of Γ to a single resource attribute

𝑟𝑠𝑎 (labeled by a single right 𝑟). Finally, we have a single resource

𝑟𝑠 to which 𝑟𝑠𝑎 is connected by an edge. The rest of the proof

consists of showing that with a suitably-defined set of commands

𝐶𝑂𝑀 , the states of the model we can explore by running commands

correspond to valid subgraphs of Γ.

Theorem 3.5. coSP is NP-complete.

Proof. Sine we have Lemma 3.4 and Theorem 3.3, it suffices to

show that DACC ≤𝑝 coSP.

Let (Γ,𝐶, 𝑠, 𝑡) be the input of DACC. We construct an NGAC

model 𝑀 with the standard 11-tuple notation as follows. Let 𝑈 =

{𝑢}, 𝑈𝐴 = 𝑉 (Γ), 𝑅 = {𝑟𝑠}, 𝑅𝐴 = {𝑟𝑠𝑎}, 𝐴𝑈 = {(𝑢, 𝑠)}, 𝐴𝑅 =

{(𝑟𝑠𝑎, 𝑟𝑠)}, 𝐴𝑆𝐶 = {(𝑡, 𝑟𝑠𝑎, 𝑟)}, 𝑃 = ∅, 𝑅𝜓 = {𝑟 }, 𝑉 = {𝑢, 𝑟𝑠, 𝑟𝑠𝑎} ∪
𝑉 (Γ), and let 𝐶𝑂𝑀 be the set of commands defined as follows.

First, in 𝐶𝑂𝑀 we include an unconditional destroy command

for every vertex and and edge of Γ. Then, for every constraint

𝑒1𝑒2 ∈ 𝐸 (𝐶), we add to 𝐶 the two commands

command 𝛼1,2(𝑋)
if 𝑒1 == 𝑋 and 𝑒2 ∉ 𝐺𝑡−1 then

create user assign. 𝑋
command 𝛼2,1(𝑋)

if 𝑒2 == 𝑋 and 𝑒1 ∉ 𝐺𝑡−1 then
create user assign. 𝑋

The conditions in the command ensure that when starting from

a state in which at most one of 𝑒1 and 𝑒2 exist at the same time,

then this remains true.

This gives an input𝑀 to coSP, one that can clearly be constructed

in polynomial time in the size of Γ.
Given the command set 𝐶𝑂𝑀 , it is straightforward to see that

the valid subgraphs of Γ are in bijection with possible states of

the user DAG, the subgraph of the state digraph induced by the

user attributes 𝑈𝐴. Moreover, we have 𝑢 ↛𝑟 𝑟𝑠 in the initial state

graph𝐺0 by construction. It remains to show that the answer for

(Γ,𝐶, 𝑠, 𝑡) in DACC is “Yes” if and only if the answer for𝑀 in coSP

is “Yes”.

Let (Γ,𝐶, 𝑠, 𝑡) be a “Yes” instance of DACC. Then there is a valid

subgraph Γ′ of Γ in which there is a path from 𝑠 to 𝑡 . But this means

that there is a sequence of commands 𝑆 that results in the state

digraph 𝐺𝑡 having a path from 𝑢 to 𝑟𝑠 through an edge in 𝐴𝑆𝐶

labeled 𝑅. That is, we have 𝑢 →𝑟
𝑆
𝑟𝑠 and hence𝑀 gives a “Yes” in

coSP.

Let (Γ,𝐶, 𝑠, 𝑡) be a “No” instance of DACC. Then, there is no

valid subgraph of Γ that connects 𝑠 and 𝑡 . But the conditions on

edge creation commands in 𝐶𝑂𝑀 mean that the only valid states

of𝑀 are digraphs in which the subgraph induced by𝑈𝐴 is a valid

subgraph of Γ. Thus, there is never an 𝑠𝑡-path in a state digraph of

𝑀 and hence there is never an access relation of the form 𝑢 →𝑟
𝑆
𝑟𝑠

for any sequence 𝑆 of commands. Then 𝑀 is a “No” instance of

coSP as required. □

SACMAT ’25, July 8–10, 2025, Stony Brook, NY Brian Tan, Ewan S. D. Davies, Indrakshi Ray, and Mahmoud A. Abdelgawad

Γ

𝑠

𝑢

𝑡
𝑟𝑠𝑎

𝑟𝑠

𝑟

Figure 1: Reduction from DACC to coSP.

4 ALGORITHM
In this section, we will introduce an algorithm that solves the safety

problem for the NGAC model significantly faster than naive brute-

force search. We will first give an algorithm to solve DACC, and

then explain how we can transform a safety problem input to an

input for DACC to use the algorithm.

4.1 Solving DACC

Let (𝐺,𝐶, 𝑠, 𝑡) be an input to DACC. Since we are trying to find a

path in a valid subgraph of 𝐺 , it suffices to enumerate maximal
valid subgraphs of 𝐺 . This is because adding edges to a valid sub-

graph cannot destroy the path we are looking for. In terms of the

constraint graph𝐶 , this means it suffices to enumerate the maximal

independent sets 𝜇 (𝐶) of 𝐶 . An output sensitive enumeration algo-

rithm for a set 𝑆 with delay 𝑑 takes time at most 𝑑 |𝑆 | to enumerate

𝑆 . We think of the delay as an upper bound on the computation

time needed per element for the numeration. Our algorithm sim-

ply uses a state-of-the-art output-sensitive enumeration algorithm

for MIS [16]
3
and checks for the existence of an 𝑠𝑡-path in each

of the returned MIS of 𝐶 (which corresponds to a valid subgraph

of 𝐺) with breadth-first search. See Algorithm 1. The algorithm

we use [16] for enumerating MIS has a time delay of 𝑀 (𝑛) when
the input is an 𝑛-vertex graph, where𝑀 (𝑛) is the time needed to

multiply two 𝑛 × 𝑛 matrices. The best available result [1] shows

that𝑀 (𝑛) = O(𝑛2.372) (though exponents approximately 2.37 have

been known for some time).

Algorithm 1 An algorithm for DACC based on enumeration of

MIS.

1: procedure DACC-via-MIS(𝐺 = (𝑉 , 𝐸),𝐶, 𝑠, 𝑡)
2: for 𝐼 ∈ 𝜇 (𝐶) do ⊲ Use the algorithm of [16]
3: 𝐺 ′ ← (𝑉 , 𝐼)
4: if ∃ 𝑠𝑡-path in 𝐺 ′ then ⊲ Use breadth-first search
5: return True

6: return False

A well-known result in extremal combinatorics [17, 18] shows

that the number of MIS in an 𝑛-vertex graph is at most 3
𝑛/3 < 1.45𝑛 .

The result is often attributed to Moon and Moser [18], but was

3
The algorithm AllMaxCliqes in particular, though MIS in𝐺 are maximal cliques

in the complement of𝐺 so we have to take the complement first.

proved independently by Miller and Muller [17] several years be-

fore. Simpler proofs were given more recently by Vatter [27] and

Wood [28]. This result forms the basis of our analysis of the worst-

case time complexity of our algorithm for DACC. The upper bound

is achieved by a disjoint union of triangles, which we refer to later

in our consideration of whether real-world examples are close to

the worst case of this algorithm. Overall, in the worst case this enu-

meration of MIS significantly outperforms a naive search over all

sets (filtering out the non-independent ones), and more importantly

there are classes of graphs with a polynomially-bounded number of

maximal independent sets and thus the algorithm takes polynomial

time on such graphs. We bound the running time of Algorithm 1

below.

Lemma 4.1. Let (𝐺,𝐶, 𝑠, 𝑡) be an input to Algorithm 1 such that
𝑛 = |𝑉 (𝐺) |,𝑚 = |𝐸 (𝐺) | and 𝜇 (𝐶) is the set of MIS in 𝐶 . Then the
running time is

O(𝑛 +𝑚) ·𝑀 (𝑚) · 𝜇 (𝐶) ≤ O(𝑛6.75) · 𝜇 (𝐶) ≤ O(1.45𝑛
2

) .

Proof. We have an input (𝐺,𝐶, 𝑠, 𝑡) for the DACC problem with

𝑛 = |𝑉 (𝐺) | and𝑚 = |𝐸 (𝐺) |. Algorithm 1 is simple and loops over

the MIS of 𝐶 , executing for each MIS a breadth-first search in a

sungraph of 𝐺 . This search takes time O(𝑛 +𝑚) (the worst-case
time complexity of standard breadth-first search). Since |𝑉 (𝐶) | =
|𝐸 (𝐺) | = 𝑚, the algorithm [16] takes time 𝑀 (𝑚) · 𝜇 (𝐶) to do the

required enumeration. This is because𝑀 (𝑚) is the time delay and

𝜇 (𝐶) is the size of the set being enumerated. Note that𝑚 ≤ 𝑛2 and
𝑀 (𝑚) ≤ O(𝑚2.372) to see the first inequality in the running time

bound. For the final inequality note that 𝜇 (𝐶) ≤ 3
𝑚/3 < 3

𝑛2/3 <

1.45𝑛
2

. □

4.2 Solving the safety problem
Let𝑀 = (𝑈 ,𝑈𝐴, 𝑅, 𝑅𝐴, 𝑅𝜓 , 𝐴𝑈 , 𝐴𝑅, 𝐴𝑆𝐶, 𝑃,𝑉 ,𝐶𝑂𝑀) be an input to

the safety problem SP and that𝑀 satisfies our assumptions. Recall

that in addition to having mono-operational commands, we require

the enumerated assumptions 1–3 stated in Section 2.

Let 𝑁 be the length of the input𝑀 in a natural binary encoding.

We will construct an input (Γ,𝐶, 𝑠, 𝑡) for DACC in time polynomial

in 𝑁 , and use algorithm 1 to solve DACC for (Γ,𝐶, 𝑠, 𝑡) in order to

solve the safety problem for𝑀 .

4.2.1 Constructing Γ. We let Γ be the supergraph of 𝑀 , meaning

that Γ is the result of starting with the initial state digraph of 𝑀

and executing, for all valid inputs, all possible commands in 𝐶𝑂𝑀

whose primitive operation is one of the form “create . . . ”, without
checking the condition(s) in the command. Since we assume that

𝐶𝑂𝑀 is finite, and𝑉 and hence the vertex set of Γ is also finite, and

we know that the number of edges of Γ is bounded by polynomial

in |𝑉 | and |𝑅𝜓 |, it takes time polynomial in the size of the input𝑀

(which includes 𝐶𝑂𝑀 , 𝑅𝜓 and 𝑉) to construct Γ. We also have the

property that 𝐺𝑡 ⊆ Γ where 𝐺𝑡 is the state digraph at any given

time 𝑡 .

4.2.2 Constructing 𝐶 . We construct a constraint graph 𝐶 for the

supergraph Γwhich enforces the conditions of the create commands

in the model 𝑀 . The goal is to do this in such a way that valid

subgraphs of Γ correspond to possible state digraphs 𝐺𝑡 of the

model𝑀 .

Safety Analysis in the NGAC Model SACMAT ’25, July 8–10, 2025, Stony Brook, NY

We initialize an empty constraint graph 𝐶 = (𝐸 (Γ), ∅). By as-

sumptions 1 and 2, each edge creation command has one parameter

𝑋 corresponding to an edge of Γ and must have a conditional of

the form

𝑒 == 𝑋 and 𝑐𝑜𝑛𝑑1 and 𝑐𝑜𝑛𝑑2 and · · · and 𝑐𝑜𝑛𝑑𝑚,
where each 𝑐𝑜𝑛𝑑𝑖 is of the form 𝑒𝑖 ∉ 𝐺𝑡−1 for some potential edge

(element of𝑉 ×𝑉 or𝑉 ×𝑉 × 𝑅𝜓). We may assume that 𝑒𝑖 ∈ Γ, else
the command can never execute and we may remove it. Then for

each such command 𝑐 with this structure we add the edges

{𝑒𝑒𝑖 : 𝑖 ∈ 𝑀}
to𝐶 . This will make sure that in a valid subgraph Γ′ ⊆ Γ, if 𝑒 exists
in Γ′ then the edges in the conditions of 𝑐 must not exist.

Lemma 4.2. The valid subgraphs Γ′ of Γ correspond to possible
states of the model𝑀 .

Proof. Let 𝐺0 be the initial state digraph of𝑀 . Writing

𝑀 = (𝑈 ,𝑈𝐴, 𝑅, 𝑅𝐴, 𝑅𝜓 , 𝐴𝑈 , 𝐴𝑅, 𝐴𝑆𝐶, 𝑃,𝑉 ,𝐶𝑂𝑀),
we have

𝐺0 = (𝑈 ∪𝑈𝐴 ∪ 𝑅 ∪ 𝑅𝐴,𝐴𝑈 ∪𝐴𝑅 ∪𝐴𝑆𝐶 ∪ 𝑃).
We first prove that any valid subgraph Γ′ of Γ is a valid state of

the model. Given Γ′, we want to sequence of commands 𝑆 which,

starting from 𝐺0, puts the model in state Γ′.
First, for all vertices and edges that are in 𝐺0 but not in Γ′, we

have to add a command to 𝑆 to destroy these elements of the state

digraph. Note that by assumption 3, all vertices and edges must have

an unconditional destroy command, thus we are able to destroy the

necessary vertices and edges.

Next, we have to create all the vertices and edges that are in

Γ′ but not in 𝐺0. Since Γ was constructed to be the supergraph

of 𝑀 , for every necessary vertex or edge creation there is a com-

mand to create the required structure in the model. If this command

is unconditional then we simply add it to the sequence 𝑆 . By as-

sumption 1, only edge creation commands have conditions, and

by assumption 2 these conditions merely check for the absence of

some edges. But by the construction of 𝐶 and the fact that Γ′ is
valid, the conditions of any create command that we need to add to

𝑆 will be true at the time of execution.

Now we prove that any state of the model is a valid subgraph of

Γ. Let 𝑆 be a sequence of commands and suppose that running 𝑆

from 𝐺0 yields the state digraph 𝐺𝑡 .

By the construction of the command set𝐶𝑂𝑀 , it is easy to prove

(formally, by induction on the length of the sequence of commands

𝑆) that 𝐺𝑡 satisfies the constraints encoded by 𝐶 . The key to the

proof is the construction of the constraints in𝐶 from the commands

themselves. □

4.2.3 Testing for access paths. Now that we have constructed Γ and

𝐶 , we want to loop over all possible access paths and check that,

for each path that does not exist in the 𝐺0, there is no sequence of

commands 𝑆 that results in the access path existing.

First, we fix a tuple (𝑢, 𝑟𝑠, 𝑟) ∈ 𝑈 × 𝑅 × 𝑅𝜓 . Then, if 𝑢 ↛𝑟 𝑟𝑠

we run let Γ𝑟 be the subgraph of Γ obtained from Γ by deleting

all association edges not labeled with 𝑟 and run Algorithm 1 with

input (Γ𝑟 ,𝐶,𝑢, 𝑟𝑠). If the answer is “Yes”, then there must exist a

sequence of commands 𝑆 such that 𝑢 →𝑟
𝑆
𝑟𝑠 , which means we can

return “No” for the safety problem with input𝑀 .

If all queries DACC(Γ𝑟 ,𝐶,𝑢, 𝑟𝑠) in the loop above tuple return

“No”, then𝑀 is safe and we return “Yes” in the safety problem.

4.3 Analysis of running time
Constructing Γ takes time at most

O(|𝐶𝑂𝑀 | · |𝑉 |2 · |𝑅𝜓 |)

as the bulk of the construction occurs in a loop over each possible

labeled edge of state the digraph in the model, where we check for

a create command for that edge and add it to Γ.
Constructing 𝐶 takes time at most

O(|𝐶𝑂𝑀 | ·𝑚max · |𝑂 |2 · |𝑅𝜓 |),

where𝑚max ≤ O(|𝑉 |2 |𝑅𝜓 |) is the maximum number of conditions

in any command in 𝐶𝑂𝑀

Testing for access paths takes time at most

|𝑂 |2 |𝑅𝜓 | · O(|𝑉 |2) ·𝑀 (|𝑉 |2) · 𝜇 (𝐶)

because we execute for each tuple (𝑢, 𝑟𝑠, 𝑟) ∈ 𝑉 ×𝑉 ×𝑅𝜓 Algorithm 1

with the input (Γ𝑟 ,𝐶,𝑢, 𝑟𝑠). This Γ𝑟 has at most |𝑉 | vertices and
|𝑉 |2 edges, and hence 𝜇 (𝐶) ≤ 1.45 |𝑉 |

2

Therefore the total runtime is at most

poly(|𝑀 |) · 1.45 |𝑉 |
2

,

where |𝑀 | is the size of the input𝑀 and |𝑉 | is the size of the set 𝑉
of possible objects.

5 REAL-WORLD EXAMPLES AND MIS
In this section we observe that real-world NGAC models can elicit

nearly worst-case running time of the algorithm to solve the safety

problem described in Section 4. The main contributor to the run-

ning time is the number 𝜇 (𝐶) of maximal independent sets in the

constraint graph 𝐶 that is built from the commands of the model

which enforce separation of duty.

In practice, we often have small groups of mutually exclusive at-

tributes. For example, the attributes teacher, student, and staff might

be (pairwise) mutually exclusive in an NGAC model designed for

access control in an educational setting. To enforce this fact in the

model we would have edge creation commands that will only create

e.g. the edge from a user𝑢 to the user attribute teacher if neither the
edges from𝑢 to student nor from𝑢 to staff are present. This leads to

a triangle in 𝐶 on the vertices corresponding to the three mutually

exclusive attributes. More generally, a set of 𝑘 mutually exclusive

attributes leads to a clique of size 𝑘 in 𝐶 . If there are no other at-

tributes that are incompatible with the set of mutually exclusive

ones then this clique will be separated from the rest of the graph. So,

for each set 𝐾 of mutually exclusive and otherwise non-interacting

attributes, we see a clique in𝐶 disjoint and unconnected to the rest

of the graph.

But a disjoint union of small cliques leads to nearly the worst

case for the number of MIS in a graph. Indeed, the results discussed

in the introduction [17, 18] show that a disjoint union of triangles is
actually the worst case. As seen from the above example, a common

organizational structure leads to the creation of a small clique in

SACMAT ’25, July 8–10, 2025, Stony Brook, NY Brian Tan, Ewan S. D. Davies, Indrakshi Ray, and Mahmoud A. Abdelgawad

𝐶 , so we can expect that typical NGAC models present somewhat

challenging inputs for our algorithm to handle.

Graphs of very high minimum degree have a polynomial number

of MIS, but we do not expect typical organizational structures to

yield this kind of constraint graph. This would require that all

attributes are only compatible with a constant-sized set of other

attributes. In the presence of user and resource attributes this seems

very unlikely.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we analyzed the computational complexity of the

Safety Problem in NGAC models. We show that under mild assump-

tions, the Safety Problem in NGAC models is coNP-Complete. We

also propose an algorithm to solve the Safety Problem that exploits

the combinatorial nature of this problem which outperforms naive

brute-force algorithms. We show that mutually exclusive attributes

drive the computational complexity of the problem and the running

time of our algorithm.

In future work, it would be interesting to test our algorithm with

real-world or synthetic data to see if the safety problem tends to

be intractable on realistic instances. It would also be interesting to

study the fine-grained aspects of complexity subject to parameters

that control the number of groups of mutually exclusive attributes

and their size.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their

comments and suggestions.

This work is supported by the U.S. National Science Foundation

under Grant No. CCF-2309707 and the U.S. National Institute of

Standards and Technology under Grant No. 60NANB23D152.

REFERENCES
[1] Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu,

and Renfei Zhou. 2025. More Asymmetry Yields Faster Matrix Multiplication.

In Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). Proceedings. Society for Industrial and Applied Mathematics, 2005–

2039. doi: 10.1137/1.9781611978322.63.

[2] P.E. Ammann and R.S. Sandhu. 1991. Safety analysis for the extended schematic

protection model. In Proceedings. 1991 IEEE Computer Society Symposium on
Research in Security and Privacy. IEEE Comput. Soc. Press, Oakland, CA, USA,

87–97. isbn: 978-0-8186-2168-0. doi: 10.1109/RISP.1991.130777.

[3] ANSI INCITS. 2020. Information Technology - Next Generation Access Control
(NGAC). ANSI.

[4] Matt Bishop. 2003. Computer Security: Art and Science. Addison-Wesley Profes-

sional. isbn: 978-0-201-44099-7.

[5] Timothy A. Budd. 1983. Safety in grammatical protection systems. International
Journal of Computer & Information Sciences, 12, 6, 413–431. doi: 10.1007/BF009
77968.

[6] Erzhuo Chen, Vladislav Dubrovenski, and Dianxiang Xu. 2023. Coverage-Based

Testing of Obligations in NGAC Systems. In Proceedings of the 28th ACM Sym-
posium on Access Control Models and Technologies (SACMAT ’23). Association

for Computing Machinery, New York, NY, USA, 169–179. doi: 10.1145/3589608

.3593832.

[7] Erzhuo Chen, Vladislav Dubrovenski, and Dianxiang Xu. 2021. Mutation Anal-

ysis of NGAC Policies. In Proceedings of the 26th ACM Symposium on Access
Control Models and Technologies. ACM, Virtual Event Spain, 71–82. isbn: 978-1-

4503-8365-3. doi: 10.1145/3450569.3463563.

[8] Dorothy Elizabeth Robling Denning. 1982. Cryptography and Data Security.
Addison-Wesley, Reading, Mass. isbn: 978-0-201-10150-8.

[9] H.N. Gabow, S.N.Maheshwari, and L.J. Osterweil. 1976. On Two Problems in the

Generation of Program Test Paths. IEEE Transactions on Software Engineering,
SE-2, 3, 227–231. doi: 10.1109/TSE.1976.233819.

[10] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-completeness. A Series of Books in the Mathematical
Sciences. W. H. Freeman, New York. isbn: 978-0-7167-1045-5.

[11] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. 1976. Protection in

operating systems. Commun. ACM, 19, 8, 461–471. doi: 10.1145/360303.360333.

[12] A. K. Jones, R. J. Lipton, and L. Snyder. 1976. A Linear time algorithm for

deciding security. In 17th Annual Symposium on Foundations of Computer
Science (SFCS 1976). IEEE, Houston, TX, USA, 33–41. doi: 10.1109/SFCS.1976.1.

[13] Ninghui Li and Mahesh V. Tripunitara. 2006. Security analysis in role-based

access control. ACM Transactions on Information and System Security, 9, 4,
391–420. doi: 10.1145/1187441.1187442.

[14] Ninghui Li, Mahesh V. Tripunitara, and Ziad Bizri. 2007. On mutually exclusive

roles and separation-of-duty. ACM Trans. Inf. Syst. Secur., 10, 2, 5–es. doi:
10.1145/1237500.1237501.

[15] R. J. Lipton and L. Snyder. 1977. A Linear Time Algorithm for Deciding Subject

Security. Journal of the ACM, 24, 3, 455–464. doi: 10.1145/322017.322025.

[16] Kazuhisa Makino and Takeaki Uno. 2004. New Algorithms for Enumerating

All Maximal Cliques. In Algorithm Theory - SWAT 2004. Torben Hagerup and

Jyrki Katajainen, (Eds.) Springer, Berlin, Heidelberg, 260–272. isbn: 978-3-540-

27810-8. doi: 10.1007/978-3-540-27810-8_23.

[17] Raymond E Miller and David E Muller. 1960. A Problem of Maximum Con-

sistent Subsets. Tech. rep. RC-240. IBM Research, JT Watson Research Center,

Yorktown Heights, NY.

[18] J. W. Moon and L. Moser. 1965. On cliques in graphs. Israel Journal of Mathe-
matics, 3, 1, 23–28. doi: 10.1007/BF02760473.

[19] Rajeev Motwani, Rina Panigrahy, Vijay Saraswat, and Suresh Ventkatasubrama-

nian. 2000. On the decidability of accessibility problems (extended abstract). In

Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Comput-
ing. ACM, Portland Oregon USA, (May 2000), 306–315. isbn: 978-1-58113-184-0.

doi: 10.1145/335305.335341.

[20] Charles P. Pfleeger, Shari Lawrence Pfleeger, and Lizzie Coles-Kemp. 2024.

Security in Computing. (Sixth edition ed.). Addison-Wesley, Boston Amsterdam

London. isbn: 978-0-13-789121-4.

[21] R.S. Sandhu and P. Samarati. 1994. Access control: principle and practice. IEEE
Communications Magazine, 32, 9, 40–48. doi: 10.1109/35.312842.

[22] Ravinderpal Singh Sandhu. 1992. Undecidability of safety for the schematic

protection model with cyclic creates. Journal of Computer and System Sciences,
44, 1, 141–159. doi: 10.1016/0022-0000(92)90008-7.

[23] J.A. Solworth and R.H. Sloan. 2004. A layered design of discretionary access

controls with decidable safety properties. In IEEE Symposium on Security and
Privacy, 2004. Proceedings. 2004. IEEE, Berkeley, CA, USA, 56–67. isbn: 978-0-
7695-2136-7. doi: 10.1109/SECPRI.2004.1301315.

[24] Masakazu Soshi. 2000. Safety Analysis of the Dynamic-Typed Access Matrix

Model. In Computer Security - ESORICS 2000. Frédéric Cuppens, Yves Deswarte,
Dieter Gollmann, and Michael Waidner, (Eds.) Springer, Berlin, Heidelberg,

106–121. isbn: 978-3-540-45299-7. doi: 10.1007/10722599_7.

[25] Masakazu Soshi, Mamoru Maekawa, and Eiji Okamoto. 2004. The dynamic-

typed access matrix model and decidability of the safety problem. IEICE Trans-
actions on Fundamentals, E87-A, 1, 190–203.

[26] MaheshV. Tripunitara andNinghui Li. 2013. The FoundationalWork of Harrison-

Ruzzo-Ullman Revisited. IEEE Transactions on Dependable and Secure Comput-
ing, 10, 1, 28–39. doi: 10.1109/TDSC.2012.77.

[27] Vincent Vatter. 2011. Maximal Independent Sets and Separating Covers. The
American Mathematical Monthly, 118, 5, 418. doi: 10.4169/amer.math.monthly

.118.05.418.

[28] David R. Wood. 2011. On the number of maximal independent sets in a graph.

Discrete Mathematics & Theoretical Computer Science, Vol. 13 no. 3, Combina-

torics, 543. doi: 10.46298/dmtcs.543.

https://doi.org/10.1137/1.9781611978322.63
https://doi.org/10.1109/RISP.1991.130777
https://doi.org/10.1007/BF00977968
https://doi.org/10.1007/BF00977968
https://doi.org/10.1145/3589608.3593832
https://doi.org/10.1145/3589608.3593832
https://doi.org/10.1145/3450569.3463563
https://doi.org/10.1109/TSE.1976.233819
https://doi.org/10.1145/360303.360333
https://doi.org/10.1109/SFCS.1976.1
https://doi.org/10.1145/1187441.1187442
https://doi.org/10.1145/1237500.1237501
https://doi.org/10.1145/322017.322025
https://doi.org/10.1007/978-3-540-27810-8_23
https://doi.org/10.1007/BF02760473
https://doi.org/10.1145/335305.335341
https://doi.org/10.1109/35.312842
https://doi.org/10.1016/0022-0000(92)90008-7
https://doi.org/10.1109/SECPRI.2004.1301315
https://doi.org/10.1007/10722599_7
https://doi.org/10.1109/TDSC.2012.77
https://doi.org/10.4169/amer.math.monthly.118.05.418
https://doi.org/10.4169/amer.math.monthly.118.05.418
https://doi.org/10.46298/dmtcs.543

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Organization

	2 Preliminaries
	2.1 The safety problem

	3 Computational Complexity
	4 Algorithm
	4.1 Solving DACC
	4.2 Solving the safety problem
	4.3 Analysis of running time

	5 Real-world examples and MIS
	6 Conclusions and future work
	Acknowledgments

