
ar
X

iv
:2

50
5.

06
36

4v
1 

 [
cs

.C
R

] 
 9

 M
ay

 2
02

5

LATENT: LLM-Augmented Trojan Insertion and
Evaluation Framework for Analog Netlist

Topologies
Jayeeta Chaudhuri, Arjun Chaudhuri, and Krishnendu Chakrabarty

School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, USA

Abstract—Analog and mixed-signal (A/MS) integrated circuits
(ICs) are integral to safety-critical applications. However, the
globalization and outsourcing of A/MS ICs to untrusted third-
party foundries expose them to security threats, particularly
analog Trojans. Unlike digital Trojans which have been exten-
sively studied, analog Trojans remain largely unexplored. There
has been only limited research on their diversity and stealth
in analog designs, where a Trojan is activated only during a
narrow input voltage range. Effective defense techniques require
a clear understanding of the attack vectors; however, the lack
of diverse analog Trojan instances limits robust advances in
detection strategies. To address this gap, we present LATENT, the
first large language model (LLM)-driven framework for crafting
stealthy, circuit-specific analog Trojans. LATENT incorporates
LLM as an autonomous agent to intelligently insert and refine
Trojan components within analog designs based on iterative
feedback from a detection model. This feedback loop ensures that
the inserted Trojans remain stealthy while successfully evading
detection. Experimental results demonstrate that our generated
Trojan designs exhibit an average Trojan-activation range of
15.74%, ensuring they remain inactive under most operating
voltages, while causing a significant performance degradation of
11.3% upon activation.

I. INTRODUCTION

Analog and mixed-signal (A/MS) integrated circuits (ICs)
are ubiquitous in many computing systems. A/MS designs are
incorporated in a wide range of safety-critical applications
such as automotive safety systems, military, industrial con-
trol systems, aerospace, and medical monitoring [1]. These
applications demand high levels of reliability, accuracy, and
precision. Any compromise in the functionality of the analog
IC behavior can lead to catastrophic behavior, thus compro-
mising the safety and reliability of the systems [2] [3].

As a result of globalization of the semiconductor indus-
try, the chip design process is being outsourced to multiple
foundries [4]. However, this introduces security threats, com-
monly known as hardware Trojans [5]. Hardware Trojans are
malicious components that are carefully crafted to be activated
under specific conditions, and remain dormant otherwise.
An adversary in an untrusted third-party foundry can insert
malicious logic in the design level (front-end phase) or embed
fabricated trigger circuits in unused spaces of a placed-and-
routed circuit [6] [7].

Several analog Trojans have been proposed in recent lit-
erature [6] [8] [9]. In [6], a fabrication attack-type Trojan,

A2, is developed that is triggered by a software-controlled
node (referred to as victim wire) of an OR1200 processor.
The capacitive elements of the Trojan are connected to the
victim wire; every time a rare operation occurs, the capacitor
accumulates a charge value. When a pre-defined threshold is
reached, the Trojan payload is activated. Building on the A2
Trojan, [10] explored a conditionally-gated trigger that does
not rely on frequently toggled nets to activate the Trojan.

Prior analog Trojans [8] [9] [6] [10] have primarily been
demonstrated on digital circuits. However, their stealth, specifi-
cally the Trojan activation range in analog circuits, remains un-
explored, as analog circuits exhibit unique, non-linear behavior
that are not captured by digital implementations. Moreover,
these Trojans share similar structural patterns and exhibit
limited stealth, making them all detectable by methods such as
current-sensing [11], charge-depriving and capacitor-starving
[12], watermarking [13], and large language model (LLM)-
guided analysis [14]. While existing methods [11] [13] [14]
can successfully identify prior analog Trojans, the lack of
stealthy and diverse attack strategies prevents a through eval-
uation of these techniques.

To address these challenges, we introduce LATENT, the
first-of-its-kind framework for generating novel analog Tro-
jans that are specifically tailored for analog circuits. LATENT
leverages an LLM as an intelligent agent that inserts Trojan
components into analog designs using a feedback-driven in-
sertion strategy. By integrating a detection tool into the reward
feedback loop, the framework iteratively refines its Trojan
component selection to increase the probability of evasion.
Unlike previous analog Trojans that follow structurally similar
patterns, LATENT generates analog Trojans that are uniquely
adapted to the specific structural and behavioral characteristics
of the target analog design, ensuring stealthy and functionally
correct Trojan-inserted designs.

The key contributions of this paper are as follows.
• We introduce LATENT, an LLM-based agentic framework

that generates stealthy analog Trojan-inserted circuits.
• LATENT employs a feedback-driven insertion strategy to

iteratively select Trojan components and insertion points in
an analog netlist to bypass detection mechanisms.

• LATENT integrates HSPICE for circuit simulation and
SPICED [14] to iteratively refine its attack strategy.

• We evaluate the stealth and performance impact of the
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generated Trojans across a diverse set of open-source analog
benchmark circuits.
The remainder of the paper is organized as follows. Section

II provides an overview of analog Trojan threats, existing de-
tection approaches, and the potential of LLM-driven methods
to enhance analog security. Section III explains how LLMs
can act as autonomous agents—combining iterative reasoning
and decision-making. In Section IV, we introduce LATENT,
an automated agentic workflow for injecting stealthy Trojans
into analog circuits. Evaluation results detailing the Trojan-
generation capability of LATENT, along with comparisons
among well-known analog Trojans are presented in Section
V. Finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Analog Trojans and Their Impact on A/MS Design
Analog Trojans are malicious modifications to a circuit,

either in the design phase or in the fabrication phase of
the chip. These Trojans are designed to be activated under
specific analog stimuli, such as voltage, temperature or process
variations, and remain dormant until triggered. A Trojan con-
sists of two primary components – trigger and payload. The
trigger can be either software-based or controlled externally
by an input pin. The payload, upon activation, can lead to
severe performance degradation or even circuit failure. A
stealthy analog Trojan has the following characteristics: (1)
it introduces negligible deviation in circuit performance in
its dormant state, thus evading detection by traditional run-
time mechanisms [15]; (2) it is triggered when the input
crosses a certain voltage threshold, and remains activated for a
small input activation period; (3) it causes severe performance
degradation when triggered.

In [6], authors propose a capacitive Trojan, namely A2,
which incurs small footprint and is inserted into unused
spaces of a fabricated design. Although the A2 attack was
initially implemented on a digital microprocessor, recent work
has shown the detrimental impact of A2 Trojan on A/MS
circuit performance [13] [14]. In [10], authors propose a
glitch generator to implement the trigger circuit, which can
be inserted in any node irrespective of its trigger activity.
In [9], several variants of charge-sharing capacitive Trojans
have been implemented, that can hide in digital circuits. These
Trojans have a small footprint and are activated only under
specific conditions, making them difficult to be detected during
functional verification.
B. Prior Work on Analog Trojan Detection and Prevention

Run-time detection of analog Trojans has been studied
recently. In [16], authors propose an on-chip Trojan detection
method that monitors a set of software-controlled nodes. If
the toggling frequency of any node exceeds a threshold, a
hardware interrupt is generated. Another approach relies on
thermal sensors to monitor power consumption and anomalous
temperature fluctuations [15]. In [11], a current sensor is used
to measure anomalous current spikes indicating Trojan activity.

While these methods have been evaluated specifically on
digital circuits, their impact on analog designs is limited.

Unlike digital circuits, where Trojan behavior is characterized
by bit-flips, analog Trojans exploit the continuous signal
variations in analog designs, making Trojan activation harder
to characterize. In [13], authors used an analog neural twin
to identify the least sensitive paths of an analog design that
are most susceptible to Trojan insertion, and made them
observable at circuit output through watermarks.

Prior Trojan designs [6] [10] rely on pre-defined structural
characteristics, thereby limited in stealth and diversity. Hence,
detection frameworks [10]-[14] can effectively leverage their
behavior to model and identify Trojan-induced deviations.
However, these detection techniques are not robust to emerg-
ing attack vectors, where an attacker can craft stealthy and
structurally diverse analog Trojans to bypass detection.

These limitations underscore the need for a novel approach
that can automatically generate diverse and context-aware
Trojans. LLMs, with their inherent ability to analyze vast con-
textual information and automate circuit/code generation [17]–
[24], offer a promising direction for designing stealthy and
structurally diverse Trojan strategies that can evade existing
detection frameworks.

C. Large Language Models in Security
Trojan Generation: LLMs have been shown to be effective

for generating structural variations of digital Trojans with
different trigger types [25]. Additionally, [26] employs LLMs
to insert vulnerabilities, e.g., deadlocks, into finite-state ma-
chines. In [27], LLMs are used to identify specific locations
in the HDL code for Trojan insertion.

However, these LLM-generated Trojans follow pre-defined
structural modifications, making them more easily detectable
by logic analysis and functional verification [28] [29]. More-
over, they do not account for the circuit-specific nature of real-
world attacks, where adversaries design Trojans that seam-
lessly integrate into a target circuit while evading traditional
detection mechanisms.

Trojan Detection: LLMs have also been incorporated into
bug and Trojan detection tasks [30]. In [31], LLM agents
are leveraged for iteratively refining erroneous Verilog code
until all syntactical bugs are resolved. [26] proposes a prompt
engineering-based technique for vulnerability detection in
digital circuits. Another work combines retrieval augmented
generation with LLMs to systematically and iteratively patch
HDL functional bugs [32]. While these efforts mainly target
the detection and correction of digital Trojans, [14] uses LLMs
for identifying analog Trojans within SPICE netlists. The
authors extend this work [14] in [33], where they explore
Trojan mitigation strategies in A/MS designs.

D. Motivation for Proposed Solution
Prior work has predominantly focused on digital Trojan

generation using LLM and reinforcement learning [34], leav-
ing the analog domain largely unexplored. Only a limited set
of analog Trojans [6] [10] [35] have been studied. However,
as analog circuits continue to be integrated more in system-
on-chip designs for safety-critical applications, the threat of
stealthy analog Trojans becomes increasingly severe. As noted

2



earlier, existing defense mechanisms are not generalizable due
to the limited diversity of studied Trojan instances.

To address this limitation, our work is the first to leverage
LLMs for generating analog Trojan-inserted circuits, thereby
introducing a novel attack approach that has not been explored
in prior research. This enables the automated generation of
carefully crafted, syntactically and functionally correct ana-
log Trojans. By integrating an LLM agentic workflow, our
approach involves the following:
• Natural language prompting: The agent is guided by well-

structured prompts which explain the possible modifications
and structural requirements of the Trojan components, while
strictly adhering to the SPICE syntax rules.

• Autonomous exploration of Trojan design: The agent
autonomously proposes modifications to the design netlist
to generate stealthy Trojans capable of evading detection.

• Incorporation of multiple tools: A feedback loop incor-
porating HSPICE simulation and an LLM-based detection
tool within the framework allows for immediate evaluation
of the candidate designs, ensuring that the agent refines its
strategy based on the detection outcome.

III. INTEGRATING REASONING AND ACTION VIA LLM
AGENTS

LLMs can be employed as agents that autonomously reason,
make guided decisions, and perform actions in a combined
manner [36] [37]. Unlike static LLMs that generate a single re-
sponse from a one-shot prompt, LLM agents operate iteratively
using a self-prompting process. The agents can be customized
to interact with the feedback and/or external tools to iteratively
refine their strategy. In our workflow, the process begins with
selecting an appropriate Trojan component and identifying
node locations within the circuit-under-attack (CUA) – the
target circuit being analyzed, to generate a Trojan-inserted
version of the design. Next, the framework leverages LLM-
guided detection of the generated Trojan design to provide a
feedback. This feedback is used to refine the component and
node selection processes, and guides the agent to prioritize
modifications that minimize Trojan activity while ensuring
severe performance degradation upon Trojan activation.

An LLM agent follows the Thought-Action-Observation
(TAO) framework for efficient reasoning and decision-making.
The TAO framework comprises of three primary components:
• Thought (T ): The agent analyzes the CUA and formulates a

strategy based on the detection feedback and the structural
and behavioral characteristics of the CUA.

• Action (A): In this phase, the agent selects the appropriate
Trojan component and corresponding insertion nodes in the
CUA based on the agent’s thought.

• Observation (O): The Trojan-inserted design is fed to the
detection tool which provides a feedback. This feedback
serves as an observation that guides the agent to refine its
component and/or node selection strategy.
The TAO framework can be described as:

Circuit netlist LLM
Extracted 

nodes

Component type

Best nodes for 

insertion

SPICED 

(LLM-based)

1. Detection score

2. Diagnosis report
Feedback-driven 

learning

Candidate 

design

Valid 

component,

nodes?
Insert in 

design

HSPICE

{Candidate design, 

Simulation log}

Score < 𝛾?
Accept 

modification
Reject 

modification

LLM Agent for Trojan-Inserted Netlist Generation

Trojan-inserted 

netlist

LLM action:

Yes

No

Yes No

[R C PMOS NMOS]

Syntax 

checker

Fig. 1: Stealthy Trojan insertion workflow using LATENT.

Ti = f1(Oi−1, Ti−1),

Ai = f2(Ti),
Oi = f3(Ai).

(1)

In Equation (1), f1, f2, and f3 represent the reasoning
function, the action execution function, and the feedback
function, respectively. These functions are implemented as
LLM prompts that guide the agentic workflow. The framework
iterates until a termination criteria is met, such as achieving a
pre-defined number of Trojan components in the CUA.

IV. LATENT: AUTOMATED ANALOG TROJAN-INSERTED
NETLIST GENERATION FRAMEWORK

In this section, we present the proposed agentic workflow,
LATENT, for generating stealthy Trojan-inserted analog de-
signs. Notably, LATENT integrates SPICED [14], a recently
published LLM-based analog Trojan detection method. LA-
TENT leverages this integration by guiding its agent actions
based on SPICED detection feedback, thereby generating
stealthy Trojans that are tailored to the specific structural and
behavioral characteristics of the CUA. Fig. 1 illustrates the
overall agentic workflow for Trojan-inserted netlist generation.
A. Implementation Details

1) Prompt Construction and LLM Agent Integration
We implement the agentic workflow using the ReAct frame-

work within LlamaIndex [38]. We construct a well-structured
prompt that guides the agent to generate a sequence of TAO
steps, ensuring that the agent strategically chooses the Trojan
components to minimize detection. The prompt consists of the
following inputs: (1) Candidate netlist i.e., the current netlist,
where the agent-generated Trojan components are inserted, (2)
detection feedback score and diagnosis report from SPICED
[14], (3) available nodes of the CUA, where the Trojan
component can be inserted. The agent decides the Trojan
component and the appropriate nodes of the CUA where the
selected component should be inserted, based on the detection
feedback. The LLM updates the candidate netlist with the new
component. The ReAct steps are shown in Fig. 2.

Trojan insertion via feedback: Unlike prior Trojan designs
that rely on static modifications [6] [10], LATENT integrates
an agent-driven feedback loop to continuously refine the Tro-
jan modifications. LATENT achieves stealth by selecting ap-
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Question:

Given the current SPICE netlist for an analog circuit, 

evasion reward, diagnosis report, and set of available 

nodes, which component type and node insertion points should 

be chosen to generate a Trojan-inserted design that 

minimizes risk of detection?

Thought:

I need to analyze the netlist and consider the evasion score 

and diagnosis report. Since the evasion score is 0, it means 

the previous modification was detected. Therefore, we need 

to change the component type. 

Action:

- I choose a capacitor.

Selected component: Capacitor with nodes ['23', '0’]

- I will insert the capacitor between nodes 23 and 0.

- Please note that I've chosen 75 as the random number 

between 70 and 80 for the new capacitor's name (C75).

- Here is the modified SPICE netlist with the new capacitor:

\\ Candidate design

Observation:

- Perform SPICED detection: Evasion score=1

- Modification accepted! Feedback: **Use the same component 

type** as before.

Fig. 2: ReACT prompts demonstrating the Thought-Action-
Observation framework for Trojan insertion.

Iteration 5: 

Candidate design: Here is your 

modified SPICE netlist with the new 

NMOS transistor inserted:

*SPICE Netlist for circuit 738

//Original content

..

//Trojan inserted by LLM Agent

M195 26 1 13 5 NMOS W=1u L=1u

M93 1 7 12 17 PMOS W=1u L=1u

M198 13 5 26 23 NMOS W=1u L=1u

.END

Agent feedback: I replaced "Mx" with 

"M93" and inserted NMOS transistor 

"M198” with the specified nodes.

Iteration 4:

Candidate design: Here is your 

modified SPICE netlist with the new 

PMOS transistor inserted:

*SPICE Netlist for circuit 738

//Original content

..

//Trojan inserted by LLM Agent

M195 26 1 13 5 NMOS W=1u L=1u 

Mx 1 7 12 17 PMOS W=1u L=1u

.END

Agent feedback: Please replace "Mx" 

with a random number between 70 and 

100 as per your requirement.

(a) (b)

Fig. 3: Illustration of how the LLM agent self-corrects its
previous action during the Trojan insertion process: (a) In
Iteration 4, the agent inserts a PMOS transistor but assigns
it an identifier “Mx”, which does not conform to the expected
naming convention. (b) However, in Iteration 5, the agent
updates the identifier from “Mx” to “M93”, following the user-
defined requirement. Additionally, the agent takes a new action
by inserting an NMOS transistor “M198”.

propriate component configurations and their insertion points.
The agentic workflow ensures that LATENT-generated Trojans
are significantly harder to detect compared to prior Trojans.

Syntax checker: Before the candidate netlist is updated, we
perform a syntax check on the newly added Trojan component.
We extract the agent’s response, which includes the selected
component type and the corresponding nodes for insertion.
The response is parsed and validated to ensure that only
syntactically correct Trojan components are inserted and the
selected nodes exist within the available circuit nodes. If a
syntax error is detected, the agent starts a new iteration. If no
errors are found, the component is integrated into the netlist.

2) SPICED Prompting
Since the SPICED [14] codebase is not yet publicly avail-

able, we re-implemented the framework by replicating the
supervised-learning approach and few-shot prompting tech-
niques. As [14] is explicitly provided with few-shot exam-
ples that contain only capacitive and transistor-based Trojans,
the detection model will likely be biased against identifying
resistor-based Trojans. One approach to solve this is to include

resistor-based Trojans in the few-shot examples. However, to
the best of our knowledge, no resistor-based analog Trojans
have been described in prior literature, making it infeasible to
provide such examples. To ensure a realistic attack scenario,
we instead add explicit instructions in the prompt to ensure
that resistor-induced anomalies are considered by the model.

B. Component Selection and Randomized Insertion

A critical step in developing a Trojan-inserted design is
selecting the appropriate component type and node inser-
tion points within the design. As explained in [6] [10] [9],
analog Trojans are typically capacitor, NMOS, or PMOS-
based. Our approach expands beyond these designs by also
considering resistor-induced anomalies. We employ a well-
defined, structured prompting approach to guide the agent to
select components from a pre-defined set: resistors, capacitors,
NMOS, PMOS. Next, the agent identifies viable nodes within
the netlist for inserting the Trojan components. Based on
the selected component type, the framework samples the
required number of nodes (two for passive elements, three
for MOSFETs) from the nodes present in the CUA. For
example, the agent chooses a capacitive Trojan component in
the format: C<x> n1 n2 val, where <x> is an automatically
chosen random identifier, n1 and n2 are nodes selected from
the CUA, and val is the randomly chosen capacitor value
to be consistent with the parameter setup in prior work [6].
The LLM agent updates the candidate netlist by appending a
SPICE-formatted line corresponding to the Trojan component.
Note that unlike a sequential insertion method, the LLM-
based agent employs randomization to distribute the Trojan
insertions non-contiguously throughout the netlist, making the
modifications harder to detect via pattern-based analysis [39].

The LLM agent exhibits inherent intelligence in detect-
ing SPICE syntax inconsistencies. Fig. 3 demonstrates one
such example where the agent updates the PMOS identifier
incorrectly during the Trojan-insertion process. However, in
subsequent iterations, it refines the PMOS identifier. This
showcases the LLM’s ability to recognize inconsistencies and
dynamically refine them to align with the prompt requirements.

C. Iterative Detection Feedback for Stealthy Trojan Insertion

After the agent either inserts a Trojan component or reverts
its previous action, the candidate netlist is simulated using
HSPICE to produce a simulation log, denoted as Simnetlist.

The candidate netlist and Simnetlist, which records both
voltage and current behavior of circuit nodes, are fed as
inputs to SPICED for analysis. SPICED generates a set of
suspect lines, Lsus and a detailed diagnosis report. From the
report, we extract two key pieces of information: (1) Lsus,
and (2) detailed analysis of why these lines were flagged,
including node-level anomalies in voltage/current behavior
under certain input test conditions. We use information (1) to
compute (3) the evasion reward Revade, which is formulated
as: Revade =

Lagent∩Lsus

Lagent
× 100%, where Lagent represents the

Trojan components inserted by the agent.
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Fig. 4: A Trojan-inserted design corresponding to ‘642’ of
AMSNet [40], generated by LATENT. The red-highlighted
components, including a capacitor and two NMOS transistors,
represent the Trojan elements inserted by the agent.

D. Stealthy Trojan Insertion Strategy
The agent autonomously analyzes feedback (2) and (3) to

adapt a strategic Trojan-insertion approach as follows:
• Revade = 100%: This indicates that the added Trojan

component in the candidate design evades detection by
SPICED. There is no new insight to guide the agent for
a change in its action in the next iteration. Therefore, the
agent retains the component type in the next iteration.

• Using the diagnosis report (applicable if Revade < 100%): If
Revade < 100%, LATENT leverages SPICED diagnosis re-
port to explore a new component type/node insertion points.
This approach ensures that the agent reverts to the previous
netlist configuration that was previously undetected.
Based on the above steps, LATENT outputs a Trojan-

inserted netlist that: (1) includes strategically placed Trojan
components, (2) induces performance degradation on Trojan
activation, and (3) evades SPICED detection, ensuring stealth.

Fig. 4 shows the agent-guided Trojan-inserted design of
circuit ‘642’ [40], where the selected Trojan components are
strategically placed based on SPICED feedback.
E. Determining the Upper Bound of Trojan Components

We address two key challenges in selecting the upper bound
of Trojan components:
• Over-insertion: Inserting a large number of Trojan compo-

nents (e.g., transistors) in a design can lead to increased
area and power overheads, and expands the Trojan activation
range, making detection more likely [14].

• Under-insertion: Fewer Trojan components (e.g., a single
capacitor) may not induce significant deviation in system
performance, making the Trojan ineffective.
Solution: To ensure a balance between stealth and impact,

we consider a heuristic approach in determining an upper
bound on the number of inserted Trojans. The upper bound
Lmax is formulated as: Lmax = αN , where N is the total
number of nodes in the CUA, and α is an user-configurable pa-
rameter that can be tuned based on computational constraints.

Termination criteria: The iteration process stops when one

of the following conditions is satisfied:
1) Revade = 100% for T consecutive iterations: T = 1 is

not optimal, as SPICED might have false positives in a
single run [14]. Therefore, we require Revade = 100%
for multiple consecutive iterations, thus ensuring that the
inserted Trojan components consistently evade detection.

2) Upper bound Lmax reached: If the number of inserted
Trojan components reaches Lmax, the process terminates.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
We implement LATENT using Python-3.12. We use the

GPT-4o-mini API model for LATENT and SPICED imple-
mentations. We use the default temperature setting of 0.3. We
simulate the candidate netlists using HSPICE. We evaluate
LATENT on (i) the open-source analog benchmark repository
AMSNet [40], specifically choosing the circuits with the
highest nodes (in the range 20-25), (ii) bandgap filter (265
nodes), and (iii) LDO (1655 nodes). Based on experimental
observations, we set the termination thresholds (described in
Section IV.E) to T = 3, with α set to 0.6. T = 3 ensures
that evasion is consistently achieved while preventing early
termination of the framework. Similarly, setting α = 0.6
prevents excessive circuit modifications that could make the
Trojans easily detectable. The experiments are carried out on
a 3 GHz AMD EPYC 7313 CPU with 2 TB of RAM.
B. Evaluation Metrics

We use the following performance metrics to determine the
effectiveness of LATENT:

• Node impact score (%): ntr

N × 100, where ntr is the
number of Trojan-impacted nodes.

• Activation range (%): Trigger activation inputs
Total input space × 100.

• Revade: Percentage of inserted Trojans that evade detec-
tion by SPICED.

• nit: Number of iterations required in the agentic work-
flow to achieve a feasible Trojan-inserted design.

• LT : Number of Trojan components inserted in the CUA.

C. Stealthy Trojan-Inserted Designs
Table I reports the impact of the LATENT-generated Trojan

on the activation range and detection evasion. We use one-
shot prompting approach as the baseline, where the LLM
generates a Trojan-inserted netlist in a single attempt, without
any iterative refinement or feedback loop. From Table I,
we observe that Trojans inserted via one-shot prompting are
easily detectable by SPICED. In contrast, LATENT follows a
strategic, feedback-driven approach to generate more stealthy
Trojans. Moreover, Fig. 5 illustrates how Revade evolves
with each iteration as the agent strategically inserts a Trojan
component or reverts its action, leveraging SPICED feedback.
While Fig. 5 presents results for netlists ‘738’ and ‘684’, a
comprehensive analysis of Revade for all the evaluated netlists
is provided in the appendix (Fig. 6).
D. Resource and Time Overheads

For OPAMP and AMSNet [40] circuits, the input token size
of the agent and SPICED reached 4600 and 18000, respec-
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TABLE I: Stealth and effectiveness of LATENT-generated Trojans for several analog designs.
Case Netlist Trojan Type nit

LT Revade (%) Node Impact Score (%)
One-shot LATENT One-shot LATENT One-shot LATENT One-shot LATENT

1 738 C C+NMOS 8 1 4 0 100 11.1 26
2 642 C+NMOS C+NMOS 9 2 3 0 100 22.2 27.7
3 669 C+NMOS R+NMOS 9 5 3 20 100 43.7 18.75
4 671 C+NMOS R+C+NMOS 8 4 6 25 100 29.4 23.5
5 672 C+PMOS+NMOS C+NMOS 7 6 3 33.3 66.6 19 33.3
6 673 C R+NMOS 6 3 3 0 100 9 22.7

+PMOS
7 681 NMOS+PMOS C+R+NMOS 9 2 4 50 75 40 40
8 684 C+PMOS+NMOS C+NMOS+PMOS 9 7 4 42.8 100 40 26.6
9 693 NMOS R+NMOS 8 3 4 33.3 100 10.5 19
10 705 R+C C+NMOS 7 5 3 60 100 19 15.7
11 716 C+NMOS C+NMOS 7 4 4 0 75 16.6 19
12 755 NMOS+PMOS R+NMOS+PMOS 6 6 4 50 100 28.5 26.3
13 OPAMP C+NMOS C+NMOS 8 4 4 25 100 33.3 35.7
14 LDO R+C+NMOS C+NMOS+PMOS 12 6 5 16.6 100 0.8 0.7
15 Bandgap NMOS C+R+NMOS 9 2 3 0 100 2.2 2.6

filter
Average 23.7 94.4 21.6 22.5

Trojan type is categorized as C: Capacitive, R: Resistive, NMOS/PMOS: Transistors. nit indicates the minimum number of iterations required by LATENT to converge to a stealthy
Trojan-inserted design which achieves either Revade = 100% for 3 consecutive iterations or reaches Lmax.

738 684

100

  50

   0
2     3     4     5     6     7      8      9    10     

𝑅
𝑒
𝑣
𝑎
𝑑
𝑒
(%

)

Number of iterations
Fig. 5: Revade convergence across iterations for netlists from
AMSNet [40] (⋆ indicates the minimum number of iterations
required for convergence).

TABLE II: Breakdown of average runtime overheads of LA-
TENT (the reported times for thought-action, SPICE simula-
tion, and SPICED analysis correspond to a single iteration).

Circuit LATENT (LLM agent)
Thought-Action SPICE SPICED Total

(s) simulation (s) analysis (s) time (s)
AMSNet/OPAMP 2.5 0.3 17.4 80.8

Bandgap filter 2.8 0.8 18.1 130.2
LDO 2.8 1.1 18.6 157.5

tively. Larger circuits such as the bandgap filter and the LDO
significantly increased the token requirements, with the agent
and SPICED requiring 33500 and 108000 tokens, respectively.
Since GPT-4o-mini’s input cost is around $0.15 for 1M tokens
and output cost is $0.6 per 1M tokens, LATENT offers a cost-
effective solution for Trojan-inserted netlist generation [41].
Table II reports the runtime overhead of LATENT. Notably, the
runtime can be significantly reduced if GPUs are used. Since
LATENT is platform-agnostic, it can be adapted for GPUs or
TPUs based on user requirements.
E. Comparison with State-of-the-art

We evaluate the LATENT-generated Trojans against base-
line Trojans, A2 and DELTA. For a fair comparison, we insert
A2 and DELTA at random nodes per netlist and compute their
average impact on the output performance deviation ∆P , com-
puted as: ∆P = |Vo−Vmax|

Vo
×100%, where Vmax is the output

voltage that shows the maximum deviation in the Trojan-
inserted design, and Vo is the corresponding output voltage of
the Trojan-free design, for the same input. The area overhead

∆A is computed as: ∆A =
∑NT

i=1 Wi×Li

A × 100%, where NT

is the number of transistor-based Trojan components, W (L)

TABLE III: Comparison of performance and area overheads
with prior analog Trojans.

Netlist ∆P (Activation Range) (%) ∆A (%)
A2 DELTA LATENT A2 DELTA LATENT

738 6.8 (46.1) 9.6 (46.1) 13.3 (11.1) 20 24 8.7
642 20.1 (57.6) 8.5 (46.1) 9.3 (11.1) 22.2 26.6 10.6
669 7.2 (23) 9.5 (30.7) 10.8 (10) 15.3 18.4 11.5
671 9.1 (57.6) 5.3 (23) 12.2 (23) 20 25 10
672 5.8 (23) 9.1 (46.1) 2.5 (23) 17.6 23 5.8
673 23 (30.7) 15.7 (46.1) 17.4 (11.5) 15.7 21 7.8
681 12 (23) 21.5 (57.6) 15 (19.2) 37.5 48 6.2
684 28.7 (46.1) 21 (46.1) 13.8 (11.5) 25 27.6 9
693 7.7 (23) 1.7(46.1) 12.7 (11.5) 33.3 48 8.3
705 3.5 (30.7) 4.4 (57.6) 9.8 (23) 16.6 20 6.2
716 6.1 (57.6) 6.3 (57.6) 8.2 (11.5) 16.6 20 8.3
755 13.2 (30.7) 8.3 (46.1) 14.6 (11.5) 23 25 8.3

OPAMP 8.2 (23) 3.1 (30.7) 3.7 (19.2) 17.6 23 5.8
LDO 8.2 (19.2) 10.5 (23) 19.1 (19.2) 0.8 0.86 0.6

Bandgap 1.8 (23) 5.7 (46.1) 6.3 (19.2) 6.8 9 3.4filter
Average 10.7 (34.3) 9.1 (43.2) 11.3 (15.7) 19.2 23.9 7.4

indicates the width (length) of the transistor, and A refers
to the original area of CUA. Table III presents a detailed
comparison; we observe that the LATENT-generated Trojans
have a low activation range and minimal area overhead by
strategically selecting components and insertion points based
on the specific CUA and SPICED feedback, unlike A2 and
DELTA, which have fixed structural patterns.

F. Discussion

Our work demonstrates promising results across the eval-
uated designs, including smaller circuits (∼20 nodes). Note
that these circuits are often submodules within larger, complex
A/MS systems. Even if a submodule exhibits over-insertion
of Trojan components compared to its size, its effects may
remain concealed within the overall system. For example, a
capacitive Trojan in an OPAMP may have a large activation
range in isolation but remain undetectable within an ADC.

Currently, no well-documented method exists for analyzing
the AC and small-signal characteristics of analog Trojans.
Since SPICED [14] detects Trojans based on their DC charac-
teristics, we have specifically generated DC-activated Trojans
in our work. For future work, we will explore AC and small-
signal analysis to develop a dedicated detection model, which
will subsequently enable our agentic framework to diversify
Trojan generation in these domains. We will also explore how
parametric changes such as W/L, capacitive coupling etc. can
further diversify Trojan strategies.
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VI. CONCLUSION

LATENT leverages LLM agents for feedback-guided Trojan
insertion in analog designs. The generated Trojans incur low
area overhead while achieving significant performance degra-
dation upon activation. These findings highlight the potential
of agent-driven frameworks for analog design security.
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APPENDIX

Revade vs. iterations: Fig. 6 illustrates the convergence
trend of Revade for the evaluated netlists.

Diversity of Trojan components in LATENT-generated
Trojan designs: LATENT leverages a feedback-based ap-
proach to iteratively refine its selection of Trojan compo-
nent types and their corresponding node locations for in-
sertion. Unlike one-shot prompting approach, which selects
and inserts Trojan components based entirely on the LLM’s
initial response without relying on any feedback, LATENT
continuously updates its actions based on SPICED feedback.
This feedback-driven refinement allows LATENT to generate
a diverse set of Trojan components that are uniquely tailored
to each CUA based on its specific structural and behavioral
characteristics.

(a)

(b)

Fig. 6: Revade convergence across iterations for all the eval-
uated netlists (⋆ indicates the minimum number of iterations
required for convergence).
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