
ar
X

iv
:2

50
5.

06
33

5v
1 

 [
cs

.L
G

] 
 9

 M
ay

 2
02

5
1

Remote Rowhammer Attack using Adversarial
Observations on Federated Learning Clients

Jinsheng Yuan*, Student Member, IEEE, Yuhang Hao, Yun Wu, Member, IEEE, Weisi Guo, Senior
Member, IEEE, Chongyan Gu, Senior Member, IEEE

Abstract—Federated Learning (FL) has the potential for
simultaneous global learning amongst a large number of parallel
agents, enabling emerging AI such as LLMs to be trained across
demographically diverse data. Central to this being efficient
is the ability for FL to perform sparse gradient updates and
remote direct memory access at the central server. Most of the
research in FL security focuses on protecting data privacy at
the edge client or in the communication channels between the
client and server. Client-facing attacks on the server are less
well investigated as the assumption is that a large collective of
clients offer resilience.

Here, we show that by attacking certain clients that lead to a
high frequency repetitive memory update in the server, we can
remote initiate a rowhammer attack on the server memory. For
the first time, we do not need backdoor access to the server,
and a reinforcement learning (RL) attacker can learn how to
maximize server repetitive memory updates by manipulating
the client’s sensor observation. The consequence of the remote
rowhammer attack is that we are able to achieve bit flips, which
can corrupt the server memory. We demonstrate the feasibility
of our attack using a large-scale FL automatic speech recognition
(ASR) systems with sparse updates, our adversarial attacking
agent can achieve around 70% repeated update rate (RUR)
in the targeted server model, effectively inducing bit flips on
server DRAM. The security implications are that can cause
disruptions to learning or may inadvertently cause elevated
privilege. This paves the way for further research on practical
mitigation strategies in FL and hardware design.

Index Terms—Federated Learning, Rowhammer Attack, Fault
Injection, Reinforcement Learning

I. INTRODUCTION

A. Motivation

Recent advances in artificial intelligence (AI), particu-
larly in federated learning (FL), have significantly enhanced
privacy preservation by enabling distributed model training
across numerous client devices without sharing raw data [1].
However, the increasing complexity and scale of these dis-
tributed AI systems also expose them to novel and sophis-
ticated threat vectors that transcend traditional adversarial
machine learning techniques [2]. Among hardware security
attacks, the Rowhammer attack stands out due to its potency
in inducing bit-flips within Dynamic Random Access Memory
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(DRAM) through targeted electromagnetic interference from
frequent activations of adjacent rows [3]. Despite various
industry-standard countermeasures, such as Target Row Re-
fresh (TRR), recent studies highlight persistent risks, demon-
strating that modern DRAM modules remain vulnerable to
advanced Rowhammer attacks [4], [5].

Fig. 1. Framework of our proposed threat vector. a) a PPO agent generates
b) adversarial waveforms that interfere the inputs of c) client sensors of
FL, resulting the clients to send d) clustered updates, which could trigger
Rowhammer attack on e) server DRAM

Motivated by the following complementary observations,
we explore the potential of combining physical adversarial
techniques with reinforcement learning (RL) methods to or-
chestrate Rowhammer bit-flips remotely in FL environments.
On the one hand, existing Rowhammer attack strategies
typically presume direct or indirect software-level access to
victim hardware [6]–[8]. This assumption limits their practical
applicability, particularly in scenarios where adversaries have
no explicit system-level privileges or direct remote memory
access. While on the other, physical adversarial attacks have
demonstrated the feasibility of using carefully crafted electro-
magnetic or acoustic perturbations to deceive AI-driven sensor
inputs without requiring direct digital intrusion [9], [10].

Specifically, modern FL systems deployed at scale fre-
quently integrate efficiency optimizations, such as sparse
gradient updates, pinned-memory regions, huge pages, and
Remote Direct Memory Access (RDMA), which significantly
increase their vulnerability to carefully crafted physical per-
turbations. We hypothesize that these optimizations, while
beneficial for performance, inadvertently facilitate indirect
Rowhammer attacks by enabling precisely controlled mem-
ory access patterns favorable to inducing DRAM bit-flips.

https://arxiv.org/abs/2505.06335v1
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Consequently, an adversary could exploit federated clients
by interfering their sensor inputs with maliciously crafted
noises (e.g., acoustic or electromagnetic signals) to indirectly
manipulate server-side memory access patterns, ultimately
causing disruption and degradation of FL system performance
without direct access to victim hardware.

B. Contributions

In this paper, we propose a novel threat vector that
leverages a reinforcement learning-based Proximal Policy
Optimization (PPO) agent to induce Rowhammer bit-flips on
federated learning servers indirectly via physical interference
at client devices. The PPO agent generates stealthy adversarial
waveforms projected into client sensors (e.g., microphones),
triggering clustered model parameter updates on the server.
These updates, amplified through efficiency optimizations
such as RDMA, pinned memory, and sparse gradient updates,
achieve the activation frequency and regularity necessary to
induce Rowhammer attacks on server-side DRAM.

The key contributions of this work include:
1) Novel Attack Vector: We introduce the first physical-

domain-driven Rowhammer attack vector specifically
targets federated learning (FL) systems. Unlike tra-
ditional Rowhammer attacks, our approach does not
require direct access or explicit control over victim
hardware or software resources, greatly expanding its
potential attack surface.

2) PPO-based Attack Generation Framework: We de-
sign a two-stage reinforcement learning framework
that generates stealthy adversarial waveforms, ensuring
sustained and clustered parameter updates within FL
models, which consequently induce Rowhammer bit-
flips.

3) Vulnerability Analysis: We perform experimental eval-
uations using realistic federated learning scenarios with
popular automatic speech recognition (ASR) mod-
els and datasets. Our experiments demonstrate that
Rowhammer bit-flips can be induced on FL systems en-
hanced with common efficiency optimizations through
adversarial interference on client sensors.

4) Potential Mitigation Strategies: We discuss practi-
cal countermeasures and security recommendations to
defend against the proposed threat vector, such as
adversarial input detection and systematic analysis of
optimization technique deployment.

C. Organization

The remainder of this paper is organized as follows. Section
II provides a relevant background on DRAM architecture,
Rowhammer vulnerabilities, FL security, and physical adver-
sarial attacks. Section III formally describes the proposed
attack vector, including motivation, feasibility analysis, and
attack formulation. Section IV details the experimental setups,
datasets, and evaluation methodology. Section V presents
extensive experimental results, analyzing the effectiveness of
the PPO-based adversarial attack framework. Section VI dis-
cusses potential mitigation techniques and recommendations

to counteract the proposed threat. Finally, Section VII con-
cludes the paper and outlines directions for future research.

II. BACKGROUND AND RELATED WORK

A. DRAM Architecture and Rowhammer Attack

Modern DRAM modules can be classified into single-
rank, dual-rank, and multiple-rank according to the number
of ranks. Each rank includes multiple chips that share the
same data bus. Each chip contains multiple banks, which are
organized into bank groups. It is necessary to identify the bank
group number when accessing one specific bank. A DRAM
bank consists of an array of memory cells, where all cells in a
horizontal direction are collectively referred to a DRAM row,
while those in a vertical direction are referred to a DRAM
column. Each cell represents one logical bit. Depending on
the memory strategy, a fully charged cell indicating a logical
’1’ is called a true-cell, whereas its counterpart, the anti-cell,
denotes a logical ’0’. The specific DRAM organization is
shown in Fig. 2. When data needs to be read from or written to
DRAM, the memory controller (MC) issues an ACT command
to open a row. The entire row of data is activated by the
wordline and transferred to the sense amplifiers (also known
as the row buffer). The bitlines then access specific columns
within the row buffer to perform the read or write operation.
Finally, the MC issues a PRE command to precharge the
bitlines and close the currently active row.

Fig. 2. Hierarchical organization of a DRAM system, depicting the structural
composition from the memory controller and channel architecture through
modules, ranks, and chips, down to individual bank-level components (row
decoder, sense amplifier/row buffer) and the underlying DRAM cell struc-
ture (wordline, access transistor, capacitor). The schematic illustrates the
multi-tiered interconnectivity and functional partitioning critical to DRAM
operation, spanning system-level interfaces to transistor-level charge storage
mechanisms.

For DRAM access, whether it is a read or write operation,
the MC issues both an ACT command and a PRE command
for the accessed row. The fundamental cause of the Rowham-
mer attack lies in the frequent issuance of ACT commands.
When the adjacent rows (aggressor rows) of a victim row
are repeatedly activated, the wordline voltage, which drives
the aggressor row, changes rapidly and frequently. It then
induces electromagnetic coupling with the memory cells in
the victim row, altering their charge state. It should be noted
that even if only a single aggressor row is used for the
Rowhammer attack, it still requires the coordinated activation
of two rows within the same bank. This is because if only
one aggressor row is accessed repeatedly, the MC will not
precharge this row before completing all operations, making
the attack ineffective.
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Furthermore, the reason why the Rowhammer attack re-
quires rapid and frequent access to the aggressor row lies
in the DRAM refresh mechanism. DRAM performs periodic
refresh operations to maintain the charge state of all memory
cells. Typically, this refresh period is 64 ms or 128 ms, but
under high-temperature conditions, it could be reduced to
32 ms. In each refresh period, the MC typically issues 8192
REF commands, which sequentially refresh all rows on the
DRAM module. Taking a 64 ms refresh period as an example,
the average interval between each REF command is 7.8 µs.
If the number of activations on the aggressor row fails to
effectively cause charge leakage in the victim row before its
next refresh, the attacker must accumulate more activations
again in next refresh period to execute Rowhammer attack.

The factors influencing the Rowhammer attack include
manufacturing, data pattern, and access pattern. Limited by
the current manufacturing process, there are some inherently
vulnerable memory cells in each DRAM chips that are more
prone to charge leakage compared to normal cells, regardless
of other factors. The data pattern refers to the scenario
where the Rowhammer attack is more likely to succeed
when the charge states of memory cell in the aggressor
row and victim row are different [11]. Although adversary
attempting to tailor the data in aggressor row based on the
victim data may be affected by anti-cells, existing research
has proved that the proportion of anti-cells with the same
chip is very small [3]. The access pattern includes single-
sided, double-sided, and many-rows Rowhammer attack [4],
[12]. The double-sided Rowhammer, compared to a single-
sided, involves two aggressor rows targeting the same victim
row. This type of attack is generally more effective than
single-sided Rowhammer. However, it requires more detailed
memory mapping preparation. On the other hand, the many-
rows Rowhammer is often used to bypass the TRR protection
mechanism.

1 loop:
2 mov (X), %eax
3 mov (Y), %ebx
4 clflushopt (X)
5 clflushopt (Y)
6 mfence
7 jmp loop

Listing 1. Pseudo code of Rowhammer attack utilising the clflushopt
instruction

The key points and progress details of executing and
exploiting a Rowhammer attack are as follows:

1) Selecting Rowhammer access patterns: The specific
DRAM modules of target system guides the choice of
Rowhammer attack access patterns, primarily depend-
ing on whether the victim chips have TRR enabled.
For early DDR3, both simple single-sided and more
effective double-sided Rowhammer are ideal access
patterns. However, for modern DDR4 chips, where TRR
is widely implemented, many-rows Rowhammer and
its variants must be used instead [4], [13]. This is
because TRR protection mechanism rely on its internal
sampler [14]. By using multiple dummy rows, attackers
can successfully overload the size of sampler, pre-

venting the actual aggressor rows from being affected
by extra refresh operations. It is worth noting that
error-correcting code (ECC) has been proven ineffective
against this attack [15], as efficient access patterns such
as double-sided Rowhammer can also overwhelm ECC
mechanisms [16].

2) Determining Address Mapping: Since Rowhammer
attack is triggered by adjacent rows of victim data,
determining the addresses of aggressor rows is crucial.
However, the virtual memory address used in applica-
tion do not correspond to actual DRAM address. The
process of locating the correct address typically involves
two mapping stages [17]. The first is application-level
virtual address to physical address. In operating system,
the memory management unit (MMU) in the CPU,
maps contiguous virtual addresses to non-contiguous
physical addresses in a non-linear manner. In some
operating systems, such as Ubuntu, the mapping can be
retrieved via /proc/pid/pagemap. The next stage
involves physical address to DRAM address mapping,
which varies by CPU architecture and DRAM manufac-
tory. This mapping is undocumented, and common ap-
proaches to reverse-engineering it rely on side-channel
analysis [5], [18]–[20]. A key point to mention is that in
a double-sided Rowhammer scenario, a common strat-
egy for finding usable contiguous physical addresses is
to use huge pages.

3) Avoiding Cache Effects: Frequently accessed data
will be stored in the cache to avoid CPU complex
operations. Thus, Rowhammer attack requires to use
specialized CPU instructions to bypass cache to achieve
high-frequency activations of aggressor rows in real
attack scenarios. Currently, the main instructions used
to achieve this purpose include clflush [3], [21],
clflushopt [22], and invd or wbinvd [17]. In
a carefully crafted attack sequence, incorporating the
aforementioned instructions can help the attacker by-
pass the cache. Sometimes, this also requires the use
of memory barriers such as mfence, lfence, and
sfence, but they may not achieve the optimal acti-
vation rate. Listing 1 illustrates a Rowhammer attack
sequence utilising the clflushopt instruction and
memory barrier. Additionally, there are some attacks
based on cache line conflicts to bypass [15], [23].

4) Ensuring Effective Activation Rate and Count: After
determine all above conditions, attackers should ensure
enough activations to induce bit-flips. There are two
key factors to ensure the successful execution of the
attack. One is maintaining an effective activation rate.
Even though the standard tRC (Row Cycle Time) is
only 46 ns, the average interval between two activa-
tion instructions should be around 220 ns, considering
the influence of other instructions. The other factor
is accumulating a sufficient number of activations to
ensure that the aggressor rows are activated enough
times to induce bit flips. Additionally, when TRR are
present, the dummy rows used to bypass TRR must
also be accounted for in the total activation count.
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The total number of activations should not exceed the
maximum allowable activations within a single refresh
period (64 ms) to avoid DRAM refresh interventions.

B. Federated Learning

Federated Learning (FL) is a distributed machine learning
paradigm that enables collaborative model training across
multiple devices while retaining the raw data locally [1].
Unlike conventional centralized training schemes, FL en-
hances data privacy by transmitting only model updates, e.g.,
gradients, to a central server for aggregation. This distributed
framework is particularly advantageous for use cases where
data confidentiality and regulatory compliance are paramount
(e.g., healthcare, finance, or mobile devices). Moreover, the
scalability of FL allows diverse and expansive datasets to be
leveraged by increasing the number of participating clients,
thereby improving generalization across heterogeneous data
distributions. The typical FL process involves the following
steps:

1) Local Training: Each client trains a local model using
its own private dataset.

2) Model Aggregation: In each communication round, a
designated subset of clients transmits model updates
(e.g., weights or gradients) to the central server. These
updates are then aggregated into a global model using
algorithms such as FedAvg [1].

3) Redistribution: The aggregated global model, depend-
ing on the training strategy, is redistributed to the
participating clients, or all clients, which then continue
local training in the next round.

1) Security Threats in Federated Learning: Federated
learning (FL) systems are vulnerable to a variety of security
threats that arise from both adversarial machine learning (ML)
techniques and conventional communication/network-based
attacks. The former category includes model poisoning, back-
door, and inference attacks, while the latter mainly consists
of eavesdropping and distributed denial-of-service (DDoS)
attacks. In this paper, we focus on an attack vector more
closely aligned with adversarial ML methodologies.

• Poisoning Attacks: Poisoning attacks are a specialized
form of injection attack that targets ML models. Within
FL, adversaries exploit malicious or compromised clients
to manipulate the training process, which can degrade
the global model’s performance. Specifically, data poi-
soning involves injecting or modifying training samples
(often through mislabeled or corrupted data), whereas
model poisoning targets model updates (e.g., gradients
or weights) to undermine accuracy or embed hidden
behaviors.

• Backdoor Attacks: Backdoor attacks implant triggers
in an ML model during training, allowing the adversary
to covertly control the model output. By submitting
local updates with deliberately engineered triggers or
patterns, malicious clients can force the global model to
behave normally for most inputs, yet generate attacker-
controlled outputs for specific trigger inputs. These at-

tacks are especially dangerous because they usually go
undetected until the trigger is activated.

• Inference Attacks: Inference attacks exploit partial in-
formation shared in FL systems to reveal or deduce
private data from participating clients. By analyzing
the distributed global model, adversaries may ascertain
membership (i.e., whether a particular sample was part of
the training set) or other sensitive attributes. This high-
lights the necessity for more robust privacy-preserving
techniques in FL.

2) Efficiency Optimization: Federated Learning (FL) sys-
tems, especially those deployed in high-performance com-
puting (HPC) facilities and data centers, often incorporate
efficiency-oriented techniques such as sparse gradient updates,
page-locked memory, and Remote Direct Memory Access
(RDMA) for accelerated communication and reduced over-
head.

• Sparse updates in federated learning reduce communi-
cation overhead by transmitting only a subset of model
parameter changes that exceed a chosen threshold or
rank among the largest by magnitude. Clients compute
local gradients and select the most significant updates
to send to the server which aggregates these sparse
contributions to refine the global model. This approach
can significantly lower bandwidth requirements and ac-
celerates training rounds, especially for federations of
large number of clients.

• Page-lock memory, also referred to as pinned-memory,
marks a region of memory as ’pinned’, keeping the
section of memory resident in RAM at all times, hence
improves the efficiency of program by avoiding delays
caused by relocation or page-out of memory. In modern
GPU based deep learning scenario, pinned-memory locks
a section of DRAM to enable asynchronous transfers
between DRAM and VRAM on GPUs, which signifi-
cantly improves efficiency in data loading and training
throughput.

• Huge Pages are a memory management technique that
allows the operating system to use larger page sizes
than the default 4KB, reducing the number of page table
entries, which can improve translation lookaside buffer
(TLB) hit rates and reduce the overhead of memory man-
agement. This can lead to performance improvements in
applications that have large memory footprints and high
memory access rates, such as high-performance comput-
ing (HPC) applications. For AI workloads, variables such
as model parameters, data are often too large for default
page size, hence huge pages can significantly improve
the performance of AI workloads.

• DMA and RDMA Direct Memory Access (DMA) is a
feature of computer systems that allows certain hardware
subsystems to access main system memory (RAM) inde-
pendently of the central processing unit (CPU). Remote
Direct Memory Access (RDMA) is a specialized form
of DMA that enables high-speed data transfers between
networked computers by allowing data to be transferred
directly from the memory of one computer to the mem-
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ory of another without involving the CPU. RDMA is
commonly used in high-performance computing (HPC)
and data center environments to accelerate data trans-
fers and reduce latency. By bypassing the CPU and
operating system, RDMA can achieve latencies as low
as 1-2µs and bandwidths exceeding 200 Gbps, making
it ideal for applications that require high-speed, low-
latency data transfers, such as machine learning train-
ing and distributed computing. In FL systems, RDMA
can significantly reduce communication overhead and
improve scalability by enabling efficient aggregation and
distribution of model parameters between central servers
and distributed clients. By minimizing synchronization
delays and network bottlenecks, RDMA can enhance the
overall training performance and accelerate convergence
in FL systems, particularly in large-scale deployments
involving hundreds or thousands of clients.

C. Physical Adversarial Attacks

Deep learning has revolutionized a wide range of applica-
tions, extending from computer vision to audio processing,
enabling technologies such as autonomous driving, surveil-
lance, biometric authentication, robotics, and voice-controlled
systems. However, the reliability and robustness of these
systems have been called into question due to adversarial
attacks. These attacks involve purposefully crafted pertur-
bations, which are often imperceptible to human observers,
that can mislead or corrupt a model’s predictions. Originally
explored in the digital domain, adversarial examples have
since transitioned into the physical world, maintaining their
deceptive properties even after real-world transformations like
printing, photographing, or acoustic playback [24]–[26].

In the context of computer vision, early works by Szegedy
et al. [24] and Goodfellow et al. [25] unveiled the vulnerabil-
ity of neural networks to subtle pixel-level perturbations. Ku-
rakin et al. [26] and Eykholt et al. [9] extended these findings
into the physical domain, revealing that adversarial examples
remain effective when transformed into physical objects or
printed images. Consequently, research has demonstrated that
adversarial patches [27], malicious alterations to wearable
items, and tampered traffic signs [28] can consistently deceive
image classification and object detection models. Such attacks
often operate under the radar of human vision and can be
engineered to withstand environmental noise and viewpoint
changes [29]–[31].

Adversarial attacks have also become common in the
audio domain. Speech recognition and voice-activated sys-
tems are increasingly critical in applications ranging from
smart home devices to security systems. Adversarial pertur-
bations can be embedded in audio signals to cause automatic
speech recognition (ASR) models to misinterpret commands
or produce incorrect transcriptions. These perturbations can
be made so subtle that they remain inaudible to humans.
For instance, Carlini and Wagner [10] demonstrated targeted
adversarial examples against speech-to-text systems, while
Yuan et al. [32] and Qin et al. [33] introduced methods for
embedding covert commands within naturalistic audio clips.

As with visual adversaries, these audio-based attacks persist
in the physical domain, maintaining their effectiveness when
played through speakers and recorded by microphones, thus
bypassing human scrutiny and threatening the security of
voice-controlled systems.

III. ATTACK VECTOR FORMULATION

A. Inspiration

In high-performance computing (HPC) environments, opti-
mizations meant to enhance efficiency can inadvertently intro-
duce vulnerabilities exploitable by Rowhammer-style attacks.
We identify three specific properties induced by optimizations
commonly found in federated learning (FL) systems, partic-
ularly suited for exploitation:

Fig. 3. DRAM access pathways and processes of FL. a) DRAM access
pathways. For normal access, client updates go through network to the CPU
of server before getting to the DRAM of the server, while RDMA allows
clients to bypass the CPU; b) DRAM access processes. Normally, when
mapping virtual addresses of applications to physical addresses on DRAM,
the CPU lookup TLB, and walk through the page table if TLB miss. Using
Huge Page reduces a level in page table walk, and DMA/RDMA bypass
both TLB lookup and page table walk. Page-lock prevents variables from
offloading from DRAM to disk.

1) Stability in Physical Address: In FL workflows,
training data and model parameters are assigned to
locked huge pages to maximize data transfer efficiency
between CPU and GPU. By allocating the buffer as
a huge page, fewer TLB entries are needed, reduc-
ing address-translation overhead, while page-locking
guarantees that the memory cannot be paged out or
moved. DMA/RDMA then enables the device to read or
write directly to this pinned, contiguous memory region.
When employing these three techniques simultaneously,
the operating system ensures that the allocated memory
region remains both physically contiguous and non-
swappable, effectively ’locking in’ a stable translation
to a fixed physical address, especially when considering
a short period of time such as the typical refresh
period of 64ms window for typical rowhammer attacks.
Therefore, potential attacker can lock the target row via
the FL workflows, e.g., locking a physical DRAM row
via specific continuous parameters of the global model.
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2) Minimal Cache Interference: FL systems that em-
ploy DMA or RDMA and non-temporal memory ac-
cesses to optimize distributed parameter exchange en-
able more frequent and predictable direct DRAM ac-
cesses. RDMA’s zero-copy semantics let attackers ini-
tiate high-frequency remote memory reads/writes that
bypass CPU caches on a targeted node’s DRAM. Ad-
ditionally, sparse updates—commonly used in FL to
reduce bandwidth—focus access patterns on a sub-
set of model parameters. By continuously hammering
these frequently accessed parameters or their associated
pinned-memory regions, attackers can ensure sustained
direct DRAM access while minimizing cache interfer-
ence. Non-temporal instructions, often integrated for
performance reasons, further reduce cache pollution,
promoting repeated DRAM row activations.

3) Sustained High Rate of Row Activations: With
the reduced latency and jitter in memory accesses by
above techniques, potential attackers can achieve high
hammering frequencies through the large number of
clients with sparse gradient updates. Specifically, the
gather-scatter mechanism, commonly used to efficiently
aggregate sparse gradient updates by collecting and re-
distributing only the most significant gradients (e.g., the
top 0.05%), further minimizes data transfer overhead.
This concentration on a small subset of parameters not
only enhances communication efficiency but also main-
tains consistent memory access patterns, reinforcing the
repeated activation of targeted memory rows required
for effective Rowhammer exploitation.

B. Evaluation Metrics

1) Notations: To evaluate and validate the proposed attack
strategy, we map the repeated rate of sparse client updates to
the number of Rowhammer operations required for DRAM.
We define the following terms:

• Hmax(p): The maximum number of sparse updates pro-
cessed within a single DRAM refresh period for an
update fraction p that leads to update size Supdate(p).

• p: The fraction of model parameters updated in each
sparse update.

• Tflip(r): The Rowhammer threshold, measured as the
number of updates required to induce a bit-flip in row r.

• Tflip: The average Rowhammer threshold across all rows.
2) RL Performance Metrics: For the RL agent, we define

the following metrics that comprehensively quantify the clus-
tering behavior and consistency of induced parameter updates:

• Repeated Update Rate (RUR): Measures consistency of
parameter indices updated across episodes. Higher RUR
indicates persistent, targeted updates:

RUR =

∑T−1
t=1 |Ut ∩ Ut+1|∑T−1

t=1 |Ut|
, (1)

where Ut is the set of parameter indices updated at
episode t.

• Cluster Density (CD): Evaluates how tightly parameter
updates cluster within the model’s global parameter

index space. Lower CD signifies highly localized updates
conducive to Rowhammer effects.

CD =
L

|θ|
, where L = min

1≤j≤k−m+1
(i(j+m−1)−i(j)+1)

denotes the smallest span containing 90% of updates in
each episode.

This metric captures how frequently updates concentrate on
a single layer. A higher value indicates that one layer receives
a disproportionate number of updates.

3) Bit-Flip Validation: Given the DRAM bandwidth BW ,
the refresh period ∆trefresh, and a fraction p that determines the
size Supdate(p), the maximum number of updates is computed
as

Hmax(p) =
BW ×∆trefresh

Supdate(p)
, (2)

where Supdate(p) is the size of a sparse update when a fraction
p of parameters is transmitted.

To assess the practical feasibility of inducing Rowhammer
conditions, we estimate the number of expected activations
on a single targeted DRAM row (or closely spaced group
of rows) based on empirically measured update clustering
behaviors.

The expected number of row activations induced by the re-
peated updates, denoted as EActivation, can be approximated
as:

EActivation = RUR ×Hmax(p), (3)

where RUR is the empirically measured repeated update rate
Finally, given a sparse update fraction p, bit-flips are

considered successfully triggered when EActivation is higher
than Tflip.

C. Target System

The target system is a self-supervised federated voice
recognition system, to emulate large scale voice assistant
pre-training systems, which are widely deployed on various
platforms including smart home devices, mobile phones, and
other IoT devices, and involving large quantity of clients.

1) Model Structure: We train the agent with target FL ASR
systems of the following five model structures, the size details
of these models are presented in Table I.

2) Dataset: For dataset, the FL takes the Common Voice
17.0 dataset [39] as the training data, which is a large-scale
multilingual voice dataset. We only use the English subset for
simplicity. The subset contains 1.1M voice clips with a total
duration of more than 3k hours. The data is randomly split
into equal client partitions, where the size of the partition is
determined by the number of clients.

3) Server Setups: On the server side, global model and
aggregation are performed using huge page and page-locked
memory, and the communication between the server and
clients are optimized using RDMA.
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TABLE I
COMMON ASR MODELS WITH THEIR SIZES AND COMPUTATION PRECISION.

Model Params(M) Individual Tensors Precision Hmax(0.0005)
Conformer-CTC-S [34] 8.7 480 INT8 296K
QuartzNet 5x5 [35] 6.7 130 INT8 384K
Citrinet 256 [36] 10.3 635 INT8 250K
Squeezeformer-XS [37] 9.0 480 INT8 286K
Eff. Conformer-CTC [38] 13.2 520 INT8 196K

4) Clients Setups: On the client side, each client emulates
different physical environments via applying random Gaus-
sian noise in addition to the adversarial noise generated by the
RL agent, after which the mixed waveforms are resampled to
16kHz to match the Common Voice dataset. Also, the clients
are set to send sparse updates, i.e., at each communication
round, only a controllable portion of the most significant
gradient updates are sent to the server.

D. RL Agent Design

We propose a two-stage PPO-based agent to generate
adversarial waveforms that consistently induce parameter up-
dates clustered within targeted indices of an ASR model’s
parameter vector, denoted by θ ∈ RM . The two-stage design
initially provides explicit guidance for parameter localization
(Stage 1), followed by generalized adversarial capability
under limited supervision (Stage 2).

1) Observation and Action Spaces: In Stage 1, obser-
vations explicitly encode parameter update locations ut to
facilitate clear mapping from adversarial perturbations to
model updates in initial learning, aligning with curriculum-
learning principles [40]:

• Observation: O1 = {xclean,ut}, with binary vector ut ∈
{0, 1}M indicating recently updated parameters.

• Action: A1 = {δ ∈ RD | ∥δ∥∞ ≤ ϵ}, constrained
adversarial perturbations.

In Stage 2, explicit update signals are removed to prevent
dependence on instantaneous signals, promoting robust gen-
eralization across diverse inputs:

• Observation: O2 = {xclean}, relying solely on waveform
input to generalize learned perturbation strategies.

• Action: Maintained as A2 = A1.
2) Reward Formulation: Both stages share a unified

reward structure composed of three components balancing
localization, clustering specificity, and imperceptibility con-
straints:

Rt = αEMD(ut,ut−1)︸ ︷︷ ︸
Update Stability

+β
∥ut[i : j]∥0

∥ut∥0︸ ︷︷ ︸
Target Focus

− γLperc︸ ︷︷ ︸
Stealth

(4)

Update Proximity: Earth Mover’s Distance (EMD) penal-
izes large shifts between consecutive update indices, promot-
ing stable parameter clustering.

Target Specificity: Ratio term emphasizes updates within
targeted parameter indices [i : j].

Perceptibility Penalty:

Lperc = λ1∥STFT(x′)− STFT(x)∥F + λ2 rms(δ) (5)

This perceptual constraint simultaneously limits frequency-
domain artifacts and temporal waveform distortions [10].

3) Policy Network Architecture: The policy network em-
ploys a hierarchical architecture with a shared feature extrac-
tor and stage-specific decoders. The network first processes
raw waveforms through a multi-resolution convolutional fron-
tend, followed by bidirectional temporal modeling, before
diverging into stage-dependent perturbation generators.

Shared Encoder Design: The encoder processes raw wave-
forms through parallel convolutional branches with progres-
sively larger kernels (3, 5, and 25 samples). These branches
extract localized phoneme features (4kHz resolution) and
broader spectral patterns (1kHz resolution), concatenated into
a 1536-channel representation. A 4-layer bidirectional LSTM
then models temporal dependencies across 500ms windows,
matching common ASR systems.

Stage-Specific Generators:

• Stage 1 explicitly incorporates parameter update loca-
tions by projecting the binary mask ut into a 1024-
dimensional embedding, concatenated with encoder out-
puts. This design follows curriculum learning principles,
accelerating early-stage association between perturba-
tions and targeted parameter updates.

• Stage 2 replaces explicit masking with an 8-head cross-
attention mechanism. A learned query vector q ∈ R512

interacts with encoder features through scaled dot-
product attention, enabling the agent to focus on tem-
poral regions most correlated with persistent parameter
clustering. Both stages employ identical transposed con-
volutional blocks for perturbation synthesis.

4) Training Protocol: Curriculum Phases: The phased
training aligns with the policy network’s dual-head architec-
ture to optimize parameter targeting:

1) Stage 1 (50k episodes): This phase trains the shared
encoder and Stage 1 head to establish baseline corre-
lations between waveform perturbations and localized
parameter updates.

2) Transition (10k episodes): Observation masking ut is
progressively replaced with zero vectors. The cross-
attention head is warm-started using Stage 1 encoder
weights, with orthogonal regularization (β = 0.01)
applied to BiLSTM layers to prevent feature collapse.

3) Stage 2 (20k episodes): Full O2 observations with ϵ =
0.1 enhance attack potency. The attention query vector
q is fine-tuned while freezing the shared encoder’s first
three BiLSTM layers, balancing generalization with
temporal feature retention.
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TABLE II
ROWHAMMER ATTACK THRESHOLDS UNDER DIFFERENT PATTERNS

Access Pattern Data Pattern (Victim) Data Pattern (Aggressor) Threshold (ACTs)
Single-sided 0x00000000 0xFFFFFFFF 240K
Single-sided 0xFFFFFFFF 0x00000000 185K
Single-sided 0x55555555 0x55555555 260K
Single-sided 0xAAAAAAAA 0xAAAAAAAA 265K
Double-sided 0x00000000 0xFFFFFFFF 140K
Double-sided 0xFFFFFFFF 0x00000000 115K
Double-sided 0x55555555 0x55555555 160K
Double-sided 0xAAAAAAAA 0xAAAAAAAA 165K

IV. EXPERIMENTS

A. Experimental Setups

This work utilises the DRAM Bender open-source platform
to test the Rowhammer attack threshold [41]. The platform
is built on the Alveo U200 Accelerated Card [42] and is de-
signed to emulate a memory controller using an FPGA, allow-
ing us to precisely issue Rowhammer-related instructions. The
specific memory module tested is the MTA18ASF2G72PZ-
2G3B1-16GB [43], which complies with the standard DDR4
specification. Additionally, it has data rate of 2400 MT/s
and bit-width of 72 bits. After excluding 8 bits of ECC, the
effective bit-width for transmission is 64 bits:

BW =
Data Rate × Bit-Width

8 bits/byte
(6)

According to equation (6), we can first get the bandwidth of
tested module is 18.75 GB/s. Therefore, the data throughput
for each 64ms refresh period will be approximately 1.2 GB.
Furthermore, the default tRC is 46.16 ns.

In an operating system-level attack environment, the op-
timal ACT rate based on the clflushopt instruction se-
quence is 159 ACTs/tREFI, meaning that the actual average
tRC used for frequent activations is 49 ns, which is close to
the theoretical ACT limit. Under this condition, the attacker
can issue up to 1,306K activations per refresh window.
Moreover, all other timing parameters of tested module follow
the default configuration.

B. Rowhammer Test Bench

Considering that FL may use different memory replace-
ment strategies and that data diversity plays a role, this
work tested different Rowhammer attack thresholds, based
on two access patterns and four data patterns. Compare to
single-sided access pattern, the double-sided requires less
activations. However, it is also more difficult to utilise as it
requires two adjacent rows for victim data. The data pattern
will be the data layout between victim rows and aggressor
rows. The tests not only reveal patterns that are more likely
to induce bit flips, such as 0 → 1 or 1 → 0, but also
demonstrate relatively more challenging patterns, such as 0
→ 0 or 1 → 1. Specially, we use hexadecimal strings to
represent data patterns that fills the entire DRAM row. For
example, 0xFFFFFFFF represents 32-bit data filled with all
ones, while 0x00000000 represents all zeros. The obtained
attack thresholds are derived from the average values across
all banks of the tested DRAM module.

These activation thresholds ensure that the attack induces
bit-flips in at least 95% of the DRAM rows. The inability to
obtain thresholds for all rows is likely due to the presence
of exceptionally resilient cells within the module, which
results in extreme deviations in the average threshold. These
thresholds are specifically presented in Table II. All threshold
values fall within the theoretical limit of 1,309K activations
and reserve enough dummy rows activations to bypass TRR.
It can be observed that double-sided Rowhammer generally
requires fewer activations than single-sided Rowhammer. In
the worst case, 265K activations are sufficient to induce bit
flips.

C. PPO Agent Training
We empirically evaluate our proposed PPO-based adver-

sarial framework to assess its effectiveness in consistently
inducing clustered and repetitive parameter updates in fed-
erated Automatic Speech Recognition (ASR) systems under
varying sparsity settings, which are suitable for Rowhammer
exploitation.

1) Experimental Setup: We selected five widely-used ASR
architectures of varying complexity, parameter counts, and
architectural patterns for evaluation, see in Table I the five
models and their parameter statistics.

For each model, two levels of parameter-update sparsity
were considered:

• Medium Sparsity (0.1% updates): Represents scenar-
ios where moderate communication efficiency is required
without severely limiting model convergence speed.

• High Sparsity (0.05% updates): Reflects extreme
communication efficiency conditions, simulating highly
bandwidth-constrained or large-scale deployments.

The PPO agent was trained to generate adversarial wave-
forms constrained by a maximum perturbation limit (∥δ∥∞ ≤
0.1), ensuring the adversarial audio samples remain stealthy
and practically imperceptible. The training dataset employed
was the English subset of Common Voice 17.0 [39]. Hyperpa-
rameters for the reward function were empirically optimized
as α = 1.0, β = 0.8, and γ = 0.6, with perceptibility penalty
weights set to λ1 = λ2 = 0.5.

2) Baseline Methods: To provide clear insights into the
effectiveness of our two-stage PPO approach, we compared
it against two baselines:

• Single-Stage PPO (PPO-SS): PPO trained skipping
stage 1 for the same number of total episodes.

• Unperturbed: FL operating without any external influ-
ences.
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3) Evaluation Metrics: To evaluate our PPO agent, we
measure their performance with the following metrics, pre-
viously defined in III-D.

• Repeated Update Rate (RUR)
• Cluster Density (CD)
• Average Rowhammer threshold across all rows (Tflip)
4) Results and Analysis: Tables III and IV present compre-

hensive evaluations of our PPO-TS method against baseline
approaches across different model architectures and sparsity
levels.

TABLE III
REPEATED TENSOR OVERLAP RATE (RUR, %) ACROSS ALL MODELS

AND SPARSITY LEVELS.

Model Method RUR (0.1%) RUR (0.05%)

Conformer-CTC-S
PPO-TS 73.7 68.3
PPO-SS 65.1 53.9

Unperturbed 12.5 9.3

QuartzNet 5x5
PPO-TS 75.6 71.1
PPO-SS 64.8 57.2

Unperturbed 11.8 8.7

Citrinet 256
PPO-TS 71.9 66.4
PPO-SS 57.4 52.9

Unperturbed 13.9 10.2

Squeezeformer-XS
PPO-TS 72.5 68.1
PPO-SS 61.4 54.4

Unperturbed 11.2 8.1

Eff. Conformer-CTC
PPO-TS 71.1 66.1
PPO-SS 59.3 51.7

Unperturbed 13.2 9.6

Repeated Update Rate (RUR): As summarized in Ta-
ble III, our PPO-TS approach consistently outperformed both
the PPO-SS and Unperturbed baselines. At high sparsity
(0.05%), PPO-TS achieved RUR ranging from 66.1% (Eff.
Conformer-CTC) to 71.1% (QuartzNet 5x5), significantly
surpassing PPO-SS (approximately 51% – 57%). This sub-
stantial improvement underscores the two stage design to
learn robust, long-term strategies for generating perturbations
that repeatedly affect the same parameters.

Cluster Density (CD): As detailed in Table IV, PPO-
TS resulted in significantly lower CD values compared to
baselines across all tested configurations. At the high sparsity
level, PPO-TS achieved CD values as low as 1.0%–1.6%,
marking approximately a 2–3× reduction compared to PPO-
SS (around 3.4%–4.1%). Such extreme clustering effectively
concentrates updates into tightly bound memory regions, dra-
matically increasing the probability of repeatedly activating
the same DRAM rows.

These results demonstrate the efficacy of our approach in
systematically inducing concentrated and stable update pat-
terns necessary for facilitating targeted Rowhammer attacks
in realistic FL settings.

D. Bit-Flip Validation

In this subsection, we jointly analyze the effectiveness
of our proposed PPO-based adversarial attack framework in
inducing practical Rowhammer conditions, considering both

TABLE IV
CLUSTER DENSITY (CD, %) ACROSS ALL MODELS AND SPARSITY

LEVELS.

Model Method CD (%)

0.1% 0.05%

Conformer-CTC-S
PPO-TS 1.2 0.6
PPO-SS 3.7 1.8

Unperturbed 19.2 15.4

QuartzNet 5x5
PPO-TS 1.5 0.8
PPO-SS 4.1 3.2

Unperturbed 18.6 14.8

Citrinet 256
PPO-TS 1.0 0.7
PPO-SS 3.4 1.9

Unperturbed 17.9 13.9

Squeezeformer-XS
PPO-TS 1.6 0.9
PPO-SS 3.8 2.4

Unperturbed 19.5 15.8

Eff. Conformer-CTC
PPO-TS 1.1 0.5
PPO-SS 3.6 2.3

Unperturbed 18.2 14.3

the theoretical Rowhammer thresholds obtained in Section IV-
B and the empirically measured clustering results from PPO
agent training presented in Section IV-C. Specifically, we
quantify the practical feasibility of triggering Rowhammer
bit-flips by correlating the observed Repeated Update Rate
(RUR) with the number of sparse gradient updates performed
in federated learning scenarios.

This straightforward estimation facilitates practical reason-
ing about the potential for successful Rowhammer attacks
based on experimentally observed adversarial clustering.

1) Estimated Row Activation Counts: Table V summarizes
the calculated expected row activations for all evaluated ASR
models at the medium sparsity setting (0.1%), comparing our
two-stage PPO method (PPO-TS) against single-stage PPO
(PPO-SS) and Unperturbed baseline methods.

2) Estimated Bit Flips: Refer to Table II, averaging bit
flip thresholds over different single sided aggressor patterns,
bit flips are expected when repeated activation exceeds 240K,
with more vulnerable cells flips at 200K, i.e., Tflip = 240, 000.
Our agent’s attack on QuartzNet 5x5 with sparsity of 0.05%
can be deemed successful in inducing Rowhammer bit flips,
and there is a high possibility of success in inducing Rowham-
mer bit flips through attacking Conformer-CTC-S.

V. DISCUSSION

In this section, we discuss the practical implications, lim-
itations, security considerations, and mitigation strategies re-
lated to our proposed PPO-driven Rowhammer attack against
federated learning (FL) systems.

A. Practical Implications and Feasibility

Our experiments provide empirical evidence that PPO-
generated physical-domain perturbations can effectively in-
duce clustered and repetitive parameter updates critical for
successful Rowhammer exploitation in federated learning sce-
narios. Particularly at higher sparsity levels in large-scale FL
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TABLE V
ESTIMATED ROW ACTIVATIONS BASED ON EMPIRICAL CLUSTERING (TOP 0.05% SPARSITY LEVEL)

Model Method Hmax(0.0005) RUR (%) EActivations

Conformer-CTC-S
PPO-TS 68.3 202,168
PPO-SS 296,000 53.9 159,544

Unperturbed 9.3 27,528

QuartzNet 5x5
PPO-TS 71.1 273,024
PPO-SS 384,000 57.2 219,648

Unperturbed 8.7 33,408

Citrinet 256
PPO-TS 66.4 166,000
PPO-SS 250,000 52.9 132,250

Unperturbed 10.2 25,500

Squeezeformer-XS
PPO-TS 68.1 194,766
PPO-SS 286,000 54.4 155,584

Unperturbed 8.1 23,166

Eff. Conformer-CTC
PPO-TS 66.1 129,556
PPO-SS 196,000 56.9 111,524

Unperturbed 9.6 18,816

deployments, our PPO-TS approach significantly outperforms
baseline methods by achieving high repetition rates of over
70% and highly localized cluster densities. Such performance
substantially increases the likelihood of repeatedly activating
specific DRAM rows, thus enhancing the practical feasibility
of successful Rowhammer bit-flips.

However, practical real-world deployment may introduce
complexities such as partial system knowledge, environmen-
tal variability, or limited precision in physical perturbation
generation. Despite these uncertainties, our joint evaluation
clearly demonstrates that the activation counts achieved by
our PPO-based attacks are realistically within the threshold
ranges required to trigger Rowhammer attacks, particularly
under favorable DRAM configurations or minor system opti-
mizations (e.g., higher memory bandwidth or extended refresh
intervals). Therefore, our results underscore a significant and
realistic security risk to federated learning systems utilizing
common performance optimization practices.

B. Limitations and Open Challenges

We acknowledge two primary limitations affecting the prac-
tical applicability of the proposed PPO-driven Rowhammer
attack:

1) Opacity of Target FL Setups: Real-world federated
systems typically obscure internal details such as ag-
gregation policies, memory management, and system
optimizations from external attackers. Without explicit
feedback or partial system knowledge, the current re-
inforcement learning framework might experience sig-
nificantly reduced efficiency and effectiveness. Future
research could address this limitation by developing RL
agents with highly sparse rewards or inferable rewards,
or transferable adversarial perturbation techniques.

2) Lack of Control over Specific Victim Rows: The
proposed indirect Rowhammer attack inherently lacks
precise control over the specific DRAM rows affected
by induced bit-flips, making outcomes unpredictable
and potentially transient. This uncertainty reduces the

reliability of achieving specific attack objectives (e.g.,
targeted data corruption or privilege escalation). Fu-
ture research should explore advanced side-channel
techniques or hardware-software co-design approaches
to improve the precision and predictability of the
Rowhammer effects induced by physical-domain per-
turbations.

C. Security Considerations for Federated Learning Systems

Our findings highlight significant security risks arising
from commonly used performance optimization techniques in
federated learning systems, including sparse updates, RDMA,
huge pages, and pinned memory. While these optimizations
greatly enhance computational and communication efficiency,
they also inadvertently create predictable and sustained
DRAM activation patterns exploitable by hardware-level ad-
versaries. Consequently, FL practitioners must carefully re-
consider optimization-related trade-offs, explicitly evaluating
hardware security vulnerabilities when designing and de-
ploying federated learning systems, especially in sensitive or
critical infrastructure scenarios.

D. Potential Mitigation Strategies

Based on our comprehensive analysis and findings, we
propose several practical defensive measures to mitigate the
identified threat:

• Adversarial Input Defense: From the sofware prospec-
tive, as a variant of adversarial attack, defense measures,
such as input space transformation, feature denoising
and adversarial input detection and rejection, are also
effective. The actual effectiveness of these measures
depends on the tolerance of delay on clients end, as
well as adapting settings to the variant of adversarial
attack. Input space transformation and feature denoising
can filter adversarial perturbations of lower magnitudes,
while perturbations of higher magnitudes are relatively
easier to detect and reject.
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• Hardware-Level Countermeasures: From the hard-
ware perspective, upgrading to DRAM modules with
enhanced Rowhammer resilience, such as those with ad-
vanced error correction, higher refresh frequency, offers
direct defense against Rowhammer exploitation attempts
of all sources.

• Systematic Analysis of Optimization Technique De-
ployment: When deploying new optimization tech-
niques, systematically assess and analyze the effects of
new techniques in combination of existing optimiza-
tion techniques with considerations of both software
execution and hardware characteristics, hence avoiding
inherent security risks and lowering the feasibility of the
proposed attack vector.

E. Broader Impact and Future Directions

Our study demonstrates a compelling need for interdisci-
plinary approaches combining hardware security, adversarial
machine learning, and federated learning systems design. By
integrating hardware-level vulnerabilities into FL threat mod-
eling, we advocate a holistic view that proactively identifies,
assesses, and mitigates emerging threats.

Future research directions include:
• Extending our approach to diverse model architectures,

and real-world applications through stronger agents that
can process side channel information and learn with
highly sparse rewards in real-world applications to en-
hance the attack.

• Exploring hardware-software joint-design approaches
that mitigate Rowhammer risks without severely com-
promising computational efficiency.

By addressing these open challenges and continuing to
bridge security gaps between hardware vulnerabilities and
distributed learning systems, we aim to contribute toward
more secure, dependable, and resilient federated learning
deployments.

VI. CONCLUSION

In this paper, we introduced and comprehensively evaluated
a novel Rowhammer attack vector targeting federated learn-
ing (FL) systems, exploiting physically driven interference
orchestrated by a Proximal Policy Optimization (PPO)-based
reinforcement learning agent. Unlike traditional Rowhammer
attacks, our method leverages adversarial acoustic or electro-
magnetic perturbations at client sensors, indirectly inducing
clustered and repetitive parameter updates on FL servers. Our
empirical results demonstrate the efficacy of our approach,
particularly at higher sparsity levels common in realistic FL
deployments, effectively increasing the frequency of repeated
DRAM row activations critical for triggering Rowhammer bit-
flips.

Through extensive evaluation and analysis across di-
verse Automatic Speech Recognition (ASR) architectures,
we demonstrated that the proposed two-stage PPO approach
substantially enhances adversarial capabilities compared to
baseline methods, achieving both higher repeated update rates

and more concentrated update clustering. Our joint evalua-
tion highlighted practical feasibility, with achieved activation
counts realistically approaching Rowhammer thresholds under
favorable conditions, emphasizing the tangible security threat
posed by this attack vector.

Furthermore, we analyzed the security implications associ-
ated with common FL optimizations such as sparse updates,
pinned memory, and RDMA, illustrating how performance-
oriented design choices can unintentionally expose systems
to hardware-level vulnerabilities. We outlined practical mit-
igation strategies, including randomized memory allocation,
adversarial input detection, and controlled usage of optimiza-
tion techniques, as proactive defensive measures to counteract
this emerging threat.

Our findings underscore the necessity for interdisciplinary
threat modeling, encompassing both software and hardware
domains, to ensure the secure and dependable deployment of
federated learning systems.
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