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Abstract—As Spiking Neural Networks (SNNs) gain traction
across various applications, understanding their security vulner-
abilities becomes increasingly important. In this work, we focus
on the adversarial attacks, which is perhaps the most concerning
threat. An adversarial attack aims at finding a subtle input per-
turbation to fool the network’s decision-making. We propose two
novel adversarial attack algorithms for SNNs: an input-specific
attack that crafts adversarial samples from specific dataset inputs
and a universal attack that generates a reusable patch capable
of inducing misclassification across most inputs, thus offering
practical feasibility for real-time deployment. The algorithms are
gradient-based operating in the spiking domain proving to be
effective across different evaluation metrics, such as adversarial
accuracy, stealthiness, and generation time. Experimental results
on two widely used neuromorphic vision datasets, NMINIST and
IBM DVS Gesture, show that our proposed attacks surpass in
all metrics all existing state-of-the-art methods. Additionally, we
present the first demonstration of adversarial attack generation
in the sound domain using the SHD dataset.

Index Terms—Spiking neural networks, neuromorphic com-
puting, adversarial attack.

I. INTRODUCTION

Neuromorphic computing has emerged as a revolutionary
paradigm, inspired by the structure and functionality of the
human brain, to address the growing demand for low-power
and low-latency inference in Artificial Intelligence (AI). Neu-
romorphic computing is based on Spiking Neural Networks
(SNNs), which represent a biologically plausible model of
neural computation, leveraging discrete spikes to process in-
formation. SNNs have shown significant promise in various
applications, such as vision, speech processing, and robotics
(1, [20.

With the growing reliance on Al systems, unique security
risks and challenges emerge, underscoring the need to under-
stand the vulnerabilities and threat landscape in neuromorphic
computing as the field continues to evolve rapidly. Perhaps
the most preoccupying threat is the adversarial attack [3],
which aims at exploiting subtle perturbations in the input
to manipulate the network’s behavior, leading to incorrect
predictions. While adversarial attacks have been studied exten-
sively for Artificial Neural Networks (ANNs) [4], transferring
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these attacks to SNNs presents unique challenges due to their
discrete and temporal characteristics.

Adpversarial attacks on SNNs can be classified in various
ways. They presume a real-valued input source, i.e., image
frames, which is then encoded into spike trains [S]-[8], or they
operate directly on spiking datasets, for example extracted by
a Dynamic Vision Sensor (DVS) [9]-[12]. Although spike en-
coding bridges the gap between conventional data and SNNs,
SNNs are inherently designed to work with spiking input
datasets because such datasets align naturally with their event-
driven, time-based computational paradigm. This is where
SNNs showcase their advantages, as opposed to converting
static frames to spiking data, which results in energy cost,
loss of temporal richness, and reduced biological fidelity.
Therefore, techniques designed for spiking input sources [9]-
[12] are necessary to accommodate the most efficient and
natural application of SNNs.

Another categorization of existing techniques is trial-and-
error [6], [9], [10] versus gradient-based [7[], [8], [10]-[12].
Trial-and-error refers to an iterative process where the input
sample is repeatedly modified until the desired adversarial
behavior is achieved. This approach is not effective because
it is difficult to find the optimal perturbation in the limited
search time that the attacker has.

Gradient-based approaches rely on the model’s internal
gradients to quickly determine the optimal perturbation. When
applied to SNNs [10]-[12], each iteration of the algorithm
is composed of three stages: (i) forward pass to obtain the
model prediction and compute the loss; (ii) backward pass to
compute the gradient of the loss with respect to the input of the
first layer; and (iii) update of the spiking input perturbation.
The backward pass is performed in the spiking domain using
surrogate gradients to address the non-differentiability of the
spiking activation function [|13], [14]]. The proposed techniques
mainly differ in step (iii), in particular how the continuous
gradients at the input of the first layer, which are typically
with respect to the membrane potential of the neurons, are
converted to perturbations in the spiking domain, with the
challenge being to maintain the spatiotemporal gradient in-
formation during the conversion.

A third categorization is input-specific versus universal
adversarial attacks. Input-specific attacks generate perturba-
tions that are specifically crafted for each individual input. In
contrast, universal attacks generate a single perturbation that



can fool the model across many inputs. Input-specific attacks
are less plausible as it is assumed that the attacker can capture
the running input, generate the adversarial version offline, and
modify the input, all in real-time without introducing any
delay. Universal attacks are more practical and efficient in real-
world scenarios. The vast majority of works propose input-
specific attacks [S]-[[12]] with only one work addressing the
universal attack problem [11].

Metrics used to evaluate the efficiency of adversarial at-
tacks include: (i) adversarial accuracy or attack success rate
(ASR) defined as the percentage of adversarial examples that
successfully cause the model to produce an incorrect answer;
(ii) perturbation size defined as the percentage of input spikes
across the complete input duration that are flipped; and (iii)
average elapsed time to generate the adversarial example.

In this work we make the following contributions:

1) We propose novel gradient-based input-specific and uni-
versal adversarial attacks that operate exclusively in the
spiking domain, effectively preserving the spatiotempo-
ral information within the gradients.

2) Our input-specific attack outperforms all prior state-of-
the-art gradient-based attacks in the spike domain in all
metrics [[10]-[12].

3) Our universal attack outperforms the only existing ap-
proach [[11]] as it is more successful across the entire
dataset and is inherently more stealthy.

4) While previous works focus on vision datasets [[10]—[12],
such as the NMIST [15] and IBM DVS Gesture [16]], we
demonstrate for the first time adversarial attacks on the
Spiking Heidelberg Digits (SHD) sound dataset [[17].

The rest of the article is structured as follows. In Section
we review the state-of-the-art on adversarial attacks on SNNs
following the aforementioned categorization. In Section
we discuss the generation of spiking datasets. In Section [V}
we describe the proposed adversarial attacks generation. In
Section [V] we describe the experimental setup and, in Section
we present the results. Section concludes the paper by
pointing to future work ideas.

II. STATE-OF-THE-ART ADVERSARIAL ATTACKS ON SNNs
A. Input-specific adversarial attacks

1) Real-valued input: In [3], an ANN model with the same
topology as the SNN is randomly initialized and its weights are
overwritten with the weights of the SNN. Next, the real-valued
input is converted into the spiking domain using Poisson rate
encoding and converted back to a real-valued rate input by
averaging the spikes for each pixel over the sample duration.
The classical Fast Gradient Sign Method (FGSM) [[18]] is used
to generate an adversarial input for the ANN starting from the
rate input. The ANN adversarial input is then converted to the
adversarial SNN input using the same Possion rate coding.

In [6], the algorithm follows a trial-and-error approach ap-
plying a perturbation in a subset of pixels in the middle of the
image that is imperceptible to the human eye so as to maximize
the difference between the target class probability and the
maximum class probability considering all other classes.

In [[7]], the classical adversarial generation algorithms FGSM
[18]] and Projected Gradient Descent (PGD) [|19]] proposed for
ANNSs are adapted in the spiking domain. A similar approach
is used in [8]] using PGD, but the focus was to study how the
spiking structural parameters, such as neuron threshold and
inference window, can affect the adversarial robustness.

2) Spiking input: In [9], an adversarial input is generated
by adding or removing spikes in a trial-and-error fashion,
under the constraint that the number of perturbed spikes stays
confined within a fraction e of the number of input spikes.

In [10], both trial-and-error and gradient-based attacks are
proposed for vision datasets generated by a DVS. Trial-and-
error attacks perturb spikes in the perimeter of the frame
(frame attack), in the corners (corner attack) or in two pixels at
a time (dash attack) for the whole duration of the sample. The
gradient-based attack, called sparse attack, works by updating
the input perturbation based on the gradient of the loss with
respect to the input.

In [|11]], SpikeFool is proposed, which is an adapted version
of the SparseFool attack [20] in the spiking domain. Sparse-
Fool finds a small perturbation on the input in the direction
orthogonal to the decision boundary.

In [12], a gradient-based attack is proposed specific to
SNNs that leverages the spatiotemporal backpropagation SNN
training [[13]]. In the backward pass, the real-valued gradients
with respect to the membrane potential of the input neurons
is generated. Then, a gradient-to-spike (G2S) converter using
a series of mathematical operations is proposed to convert the
first-layer input gradient map to input spiking train updates
in each iteration. For some inputs, the gradient vanishing
problem was encountered, i.e., the resultant gradient map
had all zeros. For such inputs, to circumvent this issue, the
restricted spike flipper (RSF) converter is proposed that re-
initializes the gradient map and is combined with increasing
the firing rate of neurons in the penultimate layer during the
attack.

B. Universal adversarial attacks

In [11]], the universal patch is restricted in the area of the
input that is key for correct prediction. For example, in the
case of a vision input, it is restricted in the area where the
action is performed. The proposed algorithm is adapted from
[21]]. The patch is optimized iteratively on the inputs using the
PGD gradient-based method to maximize the misclassification
rate across inputs.

III. SPIKING DATASETS

Spiking inputs are binary signals that represent discrete
events over time, mimicking the way biological neurons com-
municate with one another.

In vision tasks [15], [16], these inputs are typically gener-
ated by a DVS, which captures changes in pixel brightness
rather than absolute brightness [22]. Each event encodes the
location of a pixel, a timestamp, and a polarity indicating
whether the brightness increased or decreased. This event-
driven approach produces sparse and temporally precise data,
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making it ideal for low-power and high-speed applications.
Fig. [T] shows the spike events produced from a DVS and fed
to an SNN model. Red and blue dots represent the positive
and negative polarity of the events accordingly.

In sound tasks [17], spiking inputs are derived from record-
ing devices that convert continuous auditory signals into
spikes. This is often achieved using a bank of filters or chan-
nels that decompose the audio signal into different frequency
bands, similar to the cochlea in the human ear [[17]. Each
channel generates spikes when the energy in its frequency band
exceeds a certain threshold, preserving both the temporal and
spectral structure of the auditory signal. Fig. [2] shows the spike
events produced from a sound recording device that has 700
channels.

These spiking representations enable SNNs to process tem-
poral data efficiently while aligning with the asynchronous
nature of neuromorphic hardware [1]], [2]].

IV. PROPOSED ADVERSARIAL ATTACKS ON SNNS

As SNNs operate with binary inputs (spike or no spike),
classic gradient-based techniques cannot be utilized. Hence,
we designed a strategy that allows for direct gradient-based
optimization exclusively in the spiking domain. The techniques
used to bridge the gap between continuous gradient updates
and binary spiking inputs are the Gumbel-Softmax [23]], [24]
and the Straight-Through-Estimator (STE) [25]. The proposed
algorithms make no assumption about the architecture of the
SNN, i.e., fully connected, convolutional or recurrent, and no
assumption about the information coding scheme, i.e., rate
coding or time-to-first-spike coding.

Input optimization in the spiking domain has also been
explored in the contexts of SNN hardware accelerator testing
[26] and hardware Trojan attacks [27]], each using tailored real-
to-binary tensor conversions and task-specific loss functions.
In the first scenario, the goal is to generate a minimal-duration
input sequence that maximizes fault coverage, whereas in the
second, the objective is to design a trigger input capable of
activating the hardware Trojan.
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Fig. 3: Input-specific adversarial attack generation flow.

A. Terminology and notation

We interpret the input as being decomposed into frames of
size W x H over time and we denote it by I(ty,x;;), where
i1, denotes a discrete time point and x;; denotes the spatial
location on the frame, ¢ =1,--- ;/Wand j=1,---, H. If the
input has duration 7" and Ty denotes the global clock period,
then k = 1,---,T/Ty. At time point t, I(tg,x;;) = 1 if
pixel/channel z;; carries a spike, otherwise I(tg,z;;) = 0
denotes no spike.

Let the SNN have L layers with N* neurons in layer ,
¢=1,---,L, with N* being the number of output classes.

Let O%(I) denote the output of neuron i in layer ¢ for input
I and let OF = [OL1,...  OLN"] denote the output of the
last layer L. The winning class neuron of the output layer L
is the one that produces the largest number of spikes within a

time window: L
w = arg max [ OV (D), ()

where || - ||1 is the ¢! norm and ||O*¥(I)]|; is the spike count
of the winning class neuron w. For a given dataset sample I,
the goal of the adversarial attack is to find a slightly perturbed
sample I,4, such that a different neuron wins:

argmax [O¥(1) 1 # argmax 0% (L)1 ()
Defining the variable:
y(k,l,j) = |I(tk;xij) _Iadv(tkamijﬂ» (3)

the perturbation size, denoted by PS(I, I,4y), is given in %

by:

T/Tf —~W —H .

kilf Dim1 Zj:l y(k,i,7)
WxHxT '

B. Input-specific adversarial attack

1) Algorithm: Fig. 3] shows the flowchart of the input-
specific adversarial attack algorithm. We start with a randomly
initialized real-valued tensor I,..,; of the same size as I. I .4
is converted into a probabilistic tensor Pr with values in the
range (0, 1) using the Gumbel-Softmax function:

Pr = Gumbel Softmaz (I cqr, T),

PS(I, I,4,) = 100 - “)

(&)

where the temperature parameter 7 controls the sharpness
of the probability distribution. A high temperature produces
a softer binary distribution where probabilities are closer to
each other, while a lower temperature produces a sharper
distribution where probabilities are closer to 0 or 1.



We generate a real-valued perturbed representation 4y rcal
of I as follows:

I(t,z)+Pr(t,z)«p if I(t,x)=0

Iadv,real(ta (E) = { ( ) ( ) ( )

I(t,z)—Pr(t,z)«p if I(t,z)=1 ©

where (3 is a scaling factor controlling the level of perturbation
and is initially set to 1.

Next, the STE function is applied that transforms 4y rcai
using a threshold 0.5 into the adversarial input I,4,:

Iadu = STE(Iadv,real)~ (7)

Combining Egs. (6) and (7), we note that Pr represents the
probability of each event being perturbed. It is added to the
elements of I that are 0 and subtracted from the elements of
I that are 1. For 8 = 1, the event is perturbed if P, > 0.5,
i.e., a spike is added if I(¢,x) = 0 and a spike is removed if
I(t,z) = 1.

Now, the attack can be formulated as an optimization

problem:
min £(1, Iadv,OL), ()

LIreal
where the minimization of the loss function £ achieves the
desired adversarial objective. The loss function £ is defined

as the weighted sum of three loss functions L;, i1 =1,---,3
that will be described in detail in Section
3
L= oyx Ly, 9)
k=1

where «; are the weights for scalarizing the three loss func-
tions and aggregating them into a single one. An optimizer
(e.g. Adam [28])) is set to apply changes to I,..,; With adaptive
learning rate [r towards achieving the optimization objective.
Each iteration of the algorithm involves two stages. In the
first stage, forward pass is performed with I,4, and the loss
function £ is computed. In the second stage, gradient-based
backpropagation is performed to compute the gradient of the
loss with respect to the membrane potential of neurons in the
input layer using the same backpropagation pipeline as during
the training of the SNN. In our implementation, we used
the SLAYER framework [[14] and did not notice the extreme
gradient vanishing problem as in [[12. When, we reach the
input layer, the STE function passes on the incoming gradient
as if it was an identity function. Essentially, the STE function
generates the spiking input in the forward pass while allowing
the necessary continuous gradient flow during backpropaga-
tion. Thereafter, the gradients are computed normally because
all tensors are real-valued and differentiable. Using the chain
rule, we obtain:
6Iadv,real OPr
Vil =V S T
where % represents the Jacobian of the transformation from

A to B. Finally, I,.q is updated through the optimizer as
follows:

real adv,real (10)

Dt Tca =15 Vi, £, (an
where Iﬁle;l) is the optimized I,.,; after iteration [ of the

optimization loop. The I,.4; is being continuously optimized
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Fig. 4: Universal adversarial attack generation flow.

such that it leads to the ideal P, and eventually to the optimal
T4, The loop terminates when a specific number of iterations
Ny is reached and the best 1,4, that produced the minimum
loss is returned, as well as the elapsed time for its generation.
2) Loss functions: The three loss functions are as follows:
o Spatiotemporal similarity loss (L;): Targets minimizing
the spatiotemporal similarity between the original and
perturbed samples. For this purpose, it uses the sample
variance of the variable y(k,4,7) in Eq. denoted by
Var(y):

L1 = max(0, Var(y) — r1). (12)

Relaxation parameter 7; is adaptive starting from 0 and
increasing every few iterations if there is no improvement
in the loss. We use the sample variance instead of the
perturbation size in Eq. (@) as we experimentally found
that the optimization converges faster.

o Winning class loss (Lz): Let w denote the winning
class neuron when forward passing sample I, i.e., w =
argmax; ||OL(I)||;. This loss function measures the
spike counts of this winning neuron when forward pass-
ing the adversarial sample I,4,:

Ly = [|O" (Law) |- (13)

The idea behind this loss function lies in the fact that if
the spikes of the originally winning class are gradually
reduced, then eventually the winning class will change
achieving the adversarial objective.

o Confidence margin loss (L3): At every iteration, 4,
is optimized to force the network into misclassifying
it. When the winning class changes from w to wgqy,
this loss function ensures that there is a minimum spike
count difference d between the original and new winning
classes:

Ly =maz(0,[|0"" (Lar) 1~ 0" (Laar) [ +d). (14)
The direct gradient application and adaptive hyper-
parameters (e.g., Ir, 7, B, r1, d) make the optimization to

converge quickly and always lead to the generation of an
adversarial example.

C. Universal Adversarial Attack

Fig. @] shows the flowchart of the proposed universal adver-
sarial attack generation algorithm. The steps are as follows:



1) The dataset of size Np used to train and validate the
SNN model is being loaded and the model is set again
to training mode.

2) A global tensor global_grad is defined having the same
size as input I. global_grad is initialized with zeros:

15)

The goal is to progressively update this tensor with the
gradient information gathered from the dataset samples.

3) Every sample I; from the dataset is forward passed
through the network in order to calculate the classifi-
cation loss £ (I, ylabel), where ¢! is the target class
of I e

4) Backpropagation is performed to obtain the gradients
of the loss with respect to the membrane potential of
the neurons of the first layer, denoted by U. These
gradients, denoted by VUEI, indicate the direction and
the magnitude in which the membrane potential of the
neurons should change to either increase or decrease the
likelihood of a correct classification. By extension, the
membrane potential is defined by the number and rate
of incoming spikes, thus vyl indirectly indicates the
change in the input spike train.

5) During the inference, the gradients are accumulated in
the global gradient tensor global_grad:

global_grad = 0.

global_grad+ = VUE/. (16)

The purpose of accumulating the gradients is to capture
global patterns of sensitivity. Certain input neurons
will consistently show higher gradient magnitude across
multiple samples, which suggests that they are critical
to the decision making. These critical input neurons are
the primary target for perturbing their incoming spike
trains.

6) After the inference over the complete dataset is finished,
the Gumbel-Softmax function is applied to convert the
real-value global gradient tensor into the range (0, 1):

a7

where e controls the perturbation magnitude and initially
is set to 1. Pr here represents the probabilities of input
spikes being perturbed. Values closer to 1 mean that
the corresponding spike is highly likely to be perturbed,
whereas values close to 0 indicate that the corresponding
spike most likely will remain unchanged. 7 is crucial as
it controls the sharpness of the perturbations. Higher 7
leads to smoother perturbations whereas lower 7 leads
to more sharp perturbations.

7) In order to apply Pr to a sample of the dataset, it needs
to be in the binary domain. A rounding function gives
the final universal adversarial patch U AP as follows:

P, = GumbelSoftmaz(global_grad x e, ),

UAP = round(Pr). (18)

The stealthiness of the UAP is defined based on the spa-
tiotemporal sparsity of its spikes. It becomes a perturbation
when added to the incoming input. The perturbation can be
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expressed using the same metric in Eq. ] by setting I = 0.
A single dataset inference suffices to generate the U AP, thus
the adversarial example generation time is fixed and equals
the dataset inference time. A second inference is performed to
validate the ASR of the UAP.

The final UAP can be added to any input / during the
deployment of the SNN model to fool the prediction. In the
sound domain, the spike-based information from the U AP
can be transformed into an audio signal by mapping the spike
events to corresponding audio frequencies. This perturbation
can then be recorded and replayed to a sound-to-spike sensor,
causing the target SNN to misinterpret the input. Fig. [3
illustrates this attack flow, where human voice commands are
perturbed by the U AP, leading to confusion in the SNN. In the
vision domain, the spike-based information from the U AP can
be injected into the event stream generated by a DVS. This
modification alters the spatiotemporal event patterns before
they reach the SNN, resulting in incorrect model outputs. Fig.
[6 illustrates this attack flow.

V. EXPERIMENTAL SETUP

The adversarial attack algorithms are evaluated on three
datasets, namely NMNIST, IBM DVS Gesture, and SHD. The
SNN training and gradient-based backpropagation for attack
generation were performed using the SLAYER framework
[14]. NMNIST is a spiking version of MNIST that consists
of 60K training and 10K testing images of handwritten digits,
captured by a DVS while it views MNIST images on an
LCD monitor [[15]. The IBM DVS Gesture dataset contains
1341 samples of 11 hand and arm gestures performed by
29 individuals under three lighting conditions, and is also
recorded via a DVS [16]. The SHD dataset includes 8332
training and 2088 testing samples of spoken English and
German digits, converted into spike trains using a neuromor-
phic cochlea model, spanning in total 20 classes [[I7]. The
corresponding SNN architectures are shown in Figs. Table
summarizes the SNN characteristics, including the nominal
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Fig. 8: SNN architecture for the IBM DVS Gesture dataset.

prediction accuracy, the input spatial and temporal dimensions,
and the input spikes size considering an 1ms timestep.

VI. RESULTS

A. Input-specific adversarial attack

Table [[Ij summarizes the results of the input-specific ad-
versarial attack for the three case studies. We evaluated only
the samples that were correctly classified, as generating an
adversarial example for a misclassified sample would be mean-
ingless. The algorithm successfully generates an adversarial
example for all tested samples, achieving an ASR of 100%.
The maximum average perturbation across the three case
studies is 0.0585%, rendering the attacks extremely stealthy.
Table also shows the minimum, maximum, and average
adversarial example generation time, as well as the average
number of iterations across the tested samples. Figs. and
illustrate for the NMNIST and IBM DVS Gesture case
studies, respectively, the result for two tested samples. Each
column corresponds to one tested sample. The first three sub-
plots show three snapshots of the adversarial input, where, for
the purpose of better visualization, each snapshot projects the
spikes of 10 consecutive timesteps onto one plane. Black and
red dots indicate original and perturbed spikes, respectively.
The subplot at the bottom of the column shows the spike count
of output neurons corresponding to the different classes for
the original dataset sample and its adversarial example. The
results demonstrate that minor perturbations in spike trains,
forming an adversarial example nearly indistinguishable from
the original sample, consistently caused misclassification. This
underscores both the effectiveness of the proposed algorithm
in terms of ASR and strealthiness, and the susceptibility of
SNNs to the introduced adversarial attack.

B. Universal adversarial attack

Table [lII| presents the performance of the proposed universal
adversarial attack across the three case studies. As it can be
seen, mixing inputs with the U AP results in low perturbation
and consistently high ASR. Fig.[I2] visualizes the spike pattern
of the UAP for each case study. For the MNIST and IBM
we show three snapshots that accumulate the spikes across 10
timesteps, while for the SHD we show the spike pattern across
the channels for the first 4 timesteps. The U AP shows a sparse
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TABLE I: Benchmark SNNs characteristics.

NMNIST IBM SHD
Prediction accuracy 98.19% 86.36% 76.59%
# Output classes 10 11 20
Input spatial dimension 2x34x34 | 2x128x128 | 700x1x1
Input temporal dimension 300ms 1.45s 1s
Input spikes size 693600 47513600 700000
Size training set 60K 1080 8332
Size testing set 10K 261 2088
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spike pattern and when added to the incoming sample becomes
imperceptible. Although the perturbation is larger compared
to the input-specific adversarial attack, the advantage of the
UAP is that it can manipulate the vast majority of inputs in
real-time, fooling the network’s decision.



TABLE II: Input-specific adversarial attack results.

NMNIST IBM SHD
Samples tested 69369 1304 9921
ASR 100% 100% 100%
Average perturbation 0.0305% 0.0018% 0.0585%
Minimum generation time 0.0121s 0.122s 0.0061s
Average generation time 2.277s 2.465s 9.7688s
Maximum generation time 6.3085s 4.682s 36.4226s
Average number of iterations 114 74 1008
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Fig. 11: Adversarial examples for the IBM DVS Gesture dataset.

C. Comparison with the state-of-the-art

1) Input-specific adversarial attack: Tables and [V]
present for the NMNIST and IBM DVS Gesture case studies,
respectively, a comparative analysis with the respect to the
state-of-the-art gradient-based attacks, namely the sparse at-
tack [10]], the SpikeFool attack [[11]], and the attack in [[12]]. For
the SpikeFool attack, more than one result is shown exploring
the trade-off between ASR and perturbation. The evaluation
metrics for these prior attacks were taken from [11]]. Therein,
the spikes of each recording were binned into a reduced set
of timesteps (e.g. 60 for the NMNIST and 145 for the IBM
DVS Gesture), capping the maximum number of spikes to 1
per pixel. This reduced the input spikes size significantly from

TABLE III: Universal adversarial attack results.

NMNIST IBM SHD
Samples tested 69369 1304 9921
ASR 81.66% 87.66% 78.35%
Average perturbation 0.45% 0.079% 0.57%
0 = ] 0
5 » 201
10 40 - .
15 ., 601 & .
20 80/ S
25 100 =
30 120]

0 20 40 60 80100 120
(b) IBM DVS Gesture (10ms).

Timestep 1

0 5 10 1520 25 30
(a) NMNIST (10ms).

0 100 200 300 400 500 600 700

Timestep 2

0 100 200 300 400 500 600 700
Timestep 3

=

o

—

o

o

0 100 200 300 400 500 600 700
Timestep 4

—_

Spikes Spikes Spikes Spikes
-

o

0 100 200 300 400 500 600 700
Channels

(c) SHD (4ms).
Fig. 12: UAP illustration.

2 x 34 x 34 x 300 = 693600 to 2 x 34 x 34 x 60 = 138720
for the NMNIST and from 2 x 128 x 128 x 1450 = 47513600
to 2 x 128 x 128 x 145 = 4751360 for the IBM DVS Gesture.
Moreover, only 1000 samples were tested. In contrast, the
results for our proposed method are produced considering the
full input spike size and all samples in the dataset that are
correctly classified. In other words, the ASR for the prior
attacks is likely to be optimistic as it is computed on a sub-
dataset and, in addition, our algorithm was executed searching
in the much larger raw input spikes space, thus solving a more
challenging optimization. Still, the results show that are our
attack outperforms all prior attacks in all metrics.

2) Universal adversarial attack: Only [11] proposes a
solution providing results for the IBM Gesture IBM. The
comparison is given in Table which shows the ASR per
class, as well as the average ASR across all classes in the last
column. As it can be seen, our attack outperforms [11] in 8
out of 11 classes (while achieving 100% ASR on 5 classes)
and on average across all classes with 87.6% as opposed to
77%. The perturbation size is not reported in [11]], while we
report it for our attack in Table Qualitatively, our attack
is more stealthy as the spike pattern of the UAP is sparse
and is distributed both spatially and temporally, while in [|11]]
the patch is limited to the area where the actual gesture is
performed making it noticeable.

VII. CONCLUSION

We introduced two innovative adversarial attack methods
for SNNs leveraging spatiotemporal gradients in the spiking
domain: an input-specific attack and a universal adversarial
attack. The input-specific attack generates adversarial exam-
ples from any dataset sample while introducing minimal,
imperceptible perturbations. The universal adversarial attack



TABLE IV: Comparison of input-specific adversarial attacks on the
NMNIST.

TABLE VI: Comparison of universal adversarial attacks on the IBM
DVS Gesture.

Average 2 [ o © o 89 ol B¢ = =
Attack tSaltngles ASR Eerturba- generation In!)kut . = g z z § g § § g § ‘_.2 § ‘g ] gﬂ
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TABLE V: Comparison of input-specific adversarial attacks on the
IBM DVS Gesture.
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