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Abstract
The purpose of continuous fuzzing platforms is to enable
fuzzing for software projects via fuzz harnesses—but as the
projects continue to evolve, are these harnesses updated
in lockstep, or do they run out of date? If these harnesses
remain unmaintained, will they degrade over time in terms
of coverage achieved or number of bugs found? This is the
subject of our study.

We study Google’s OSS-Fuzz continuous fuzzing platform
containing harnesses for 510 open-source C/C++ projects,
many of which are security-critical. A harness is the glue
code between the fuzzer and the project, so it needs to adapt
to changes in the project. It is often added by a project main-
tainer or as part of a, sometimes short-lived, testing effort.
Our analysis shows a consistent overall fuzzer coverage

percentage for projects inOSS-Fuzz and a surprising longevity
of the bug-finding capability of harnesses even without ex-
plicit updates, as long as they still build. However, we also
identify and manually examine individual cases of harness
coverage degradation and categorize their root causes. Fur-
thermore, we contribute to OSS-Fuzz and Fuzz Introspector
to support metrics to detect harness degradation in OSS-Fuzz
projects guided by this research.

1 Introduction
In recent years, fuzzing has become a popular technique
among security practitioners. The method has an impres-
sive ability to find software faults, uncovering over 10,000
vulnerabilities and 36,000 bugs across 1,000 open-source soft-
ware projects via Google’s OSS-Fuzz project as of August
2023 [22, 46]. To fuzz software projects efficiently and ef-
fectively, they must be correctly integrated into the fuzzer.
In practice, this is achieved by manually creating so-called
fuzzing harnesses, which allow a fuzzer to run and provide
input to the program under test correctly. As the creation
of well-fitting harnesses is critical for fuzzing but requires
substantial manual effort [36, 42], various attempts [6, 14, 28–
31, 39, 54–57] have been made to automate the process.

The correct integration of important open source projects
and the creation of suitable harnesses are so critical for suc-
cessful fuzzing campaigns that Google’s OSS-Fuzz project
offers a financial reward system for developers that integrate
their projects with OSS-Fuzz via harnesses. Furthermore,
Google specifically rewards harnesses that cover at least
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Figure 1. Fuzz coverage across C/C++ projects in OSS-Fuzz.

50% of the project’s source code [21]. The importance of
well-fitting harnesses is also highlighted, especially in long-
lasting fuzzing campaigns such as OSS-Fuzz, as a coverage
plateau during fuzzing is often caused by an inadequate har-
ness design [17].

However, how does the effectiveness of the provided har-
ness develop after the initial onboarding over time? Modern
software projects are dynamic, as they are usually in con-
tinuous development and rely on agile development meth-
ods [4, 27, 51]. The effect of varying rates of evolution within
an ecosystem of software projects is well-studied under soft-
ware degradation [2, 5, 8, 10]. Yet, the phenomenon of har-
ness degradation remains overlooked, particularly in the
fuzzing community, despite the potential decrease in capa-
bility to find security-critical bugs in important projects.
In this paper, we conduct the first comprehensive em-

pirical study on the scale, impact, and causes of harness
degradation in real-world software. To this end, we analyze
the coverage achieved and bugs found from on-boarding
until today for 29,019 harness versions across 433 projects
integrated into OSS-Fuzz.

We find that the coverage of C/C++ projects in OSS-Fuzz
stays quite stable on average, as can be seen in Figure 1,
which indicates a surprising longevity of fuzz harnesses, as
long as the harnesses still build. However, we also find that
there is still a high variance, as there are fuzz harnesses that
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improve or degrade over time. Unsurprisingly we can con-
firm that projects with less coverage find fewer bugs, as for
projects with less than 35% coverage a bug is found for every
14,474 changed lines of code, but projects with higher cover-
age find a bug for every 3,985 changed lines. In fact, projects
that manage to improve their coverage are rewarded with a
burst of found bugs. Furthermore, we investigate the causes
for coverage drops, we find that these are usually caused by
added code (project internal or external), partial build fail-
ures, and errors during coverage measurements. Finally, we
are working with the Fuzz Introspector and OSS-Fuzz teams
to implement metrics to detect harness degradation, to avoid
cases where maintainers believe their projects to be well
fuzzed while in reality there has been a silent degradation.
In summary, we make the following key contributions

towards investigating fuzz harness degradation in practice:
• We systematically analyze and quantify harness degra-
dation and the effect of harness updates in OSS-Fuzz
based on coverage percentage and bug-finding capa-
bility.

• Wemanually analyze cases of harness coverage degra-
dation in OSS-Fuzz and categorize them into common
causes.

• Based on these causes, we contribute to Fuzz Intro-
spector introducing new metrics developed to alert of
possible harness degradation.

• We provide our complete dataset1, scraping code, case
study notes, and analysis notebook2 to facilitate fur-
ther research on this topic.

2 Background
We begin by presenting the essential background informa-
tion. Focusing on what fuzzers and fuzzing harnesses are.

Fuzzers. Fuzzers are dynamic testing tools that execute
a target program with randomized inputs. This method has
established itself as an effective and practical way to detect
bugs and security vulnerabilities. Modern general-purpose
fuzzers generally use an evolutionary approach, where in-
puts are slightly modified (“mutated”). The inputs that per-
form well, such as reaching new parts of the code or trigger-
ing new behavior, are kept to be mutated again. To kickstart
this process, it is beneficial to have a comprehensive initial
set of inputs that the fuzzer can start with, this is also called
a seed corpus. While the set of inputs found during fuzzing
is called a corpus [35, 49, 53].

Fuzzing Harnesses. The term fuzzing harness (fuzz har-
ness for short) is derived from software testing terminology,
where a test harness describes a collection of test stubs and
test drivers, which are required to execute a test suite [9].
Similarly, a fuzz harness defines the standardized entry point

1Dataset: doi:10.5281/zenodo.14000867
2Repository: https://github.com/CISPA-SysSec/fuzz-harness-degradation

into the program under test. As test stubs are less relevant for
fuzzing, the term fuzz driver is often used interchangeably
with fuzz harness [54].

To provide a flexible way of generating new inputs, most
general-purpose fuzzers settled on a standardized function [38].
This function takes a byte vector and its length as inputs.
That byte vector needs to be passed to the target program in
a syntactically and semantically correct way, which is the
goal of the fuzz harness. Thus, a typical fuzz harness func-
tion transforms this byte vector into data structures and calls
functions from the target program. If needed, the harness
includes calls to initialization and cleanup functions. So, the
harness function must encode the business logic required to
interact with the target application correctly. Thus, the har-
ness needs to be updated to keep up with potential changes
in the program’s code base. This makes fuzz harnesses in-
teresting potential points of failure, which we study in this
paper.

OSS-Fuzz. [22] OSS-Fuzz is a project developed andmain-
tained by Google that provides open-source projects with
the infrastructure to fuzz their code. However, this requires
open-source projects to integrate with the OSS-Fuzz infras-
tructure. This entails developing fitting fuzz harnesses for
their projects, setting up project-specific build configura-
tions, and providing meta information [19]. To incentivize
open-source projects to integrate with OSS-Fuzz, a bounty
program is offered [21].
OSS-Fuzz supports projects written in several program-

ming languages and supports the x86_64 or i386 architec-
tures. After successful integrationwith OSS-Fuzz, the current
version of a project is continuously built and fuzzed daily.
OSS-Fuzz relies on a scalable, distributed infrastructure to
use different fuzzers and sanitizers and provide automatic re-
porting for the project’s maintainers. This includes detected
bugs and detailed daily coverage results to facilitate further
fuzzing [19]. To our knowledge, the OSS-Fuzz project also
keeps the corpus of previous runs available for the project
maintainers and uses it, or a subset, as the seed corpus for
future runs. Finally, crucially for our research, we collect
publicly available data from the OSS-Fuzz reaching from
2016− 10 to 2024− 10, which enables a long-term study such
as the one conducted in this paper.

3 Fuzz Harness Degradation
To evaluate the impact of fuzz harness degradation, we ob-
serve two central metrics of fuzzer evaluation, code coverage
and bug-finding capability [33, 45]. As we are interested in
harness performance over time, we consider these metrics
over different harness versions, as a harness evolves. Further-
more, we are interested in the reasons for harness degrada-
tion. To this end, we manually perform case studies on code
coverage drops and classify common causes. Finally, based
on these causes we implement metrics to warn maintainers

https://github.com/CISPA-SysSec/fuzz-harness-degradation
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Table 1. Number of data points for each step of the data
preparation phase.

Raw Clean Filter
1 Projects 510 491 433

2 Coverage 665,165 574,840 527,085
3 Commits 8,297,824 2,556,947 2,495,172
4 Harness Changes 42,412 29,923 29,019
5 Monorail Bugs 68,486 53,460 50,493
6 Crash Revisions 104,494 83,863 79,530
7 Fuzz Introspector 975,213 712,094 652,495
8 Fuzz Intro. Harness 1,307,652 929,224 894,238

of possible harness degradation, with the future goal of study-
ing the effect of these new metrics. In total, we investigate
four research questions:
RQ1 What are the immediate effects of harness updates?
RQ2 What is the rate of degradation of code coverage over

time?
RQ3 Does the bug-finding capability of harnesses degrade

over time?
RQ4 What are common causes for coverage drops?
RQ5 What are practical ways to detect harness degrada-

tion?

3.1 Data
To answer these research questions, we require data that cov-
ers large parts of the lifespan for fuzz harnesses, optimally
containing many fuzz harnesses and versions. Additionally,
we need bug data and the availability of artifacts to study
individual cases of harness degradation. To our knowledge,
OSS-Fuzz is the only project that meets these criteria. Thus,
to investigate our research questions, we collect and pre-
process several datasets related to OSS-Fuzz to create one
cohesive dataset3 as follows.
We prepare each dataset in three steps, corresponding

to the three columns in Table 1. First, we collect all avail-
able data in the Raw step. Next, we remove all unusable or
irrelevant data in the Clean step. This includes data that
does not fall into the date range when the project was first
added to OSS-Fuzz or up to a week after the last commit to
a project and other cleanups explained individually below.
Finally, we filter out projects for which we do not have valid
harness data in the Filter step. As each dataset also requires
individual actions, we specify them separately as below. The
number of datapoints after each step can be found in Table 1.

3.1.1 1 Projects. Shows the number of projects for each
step, based on whether we could collect all the required data.
Note that only C/C++ projects are used in our dataset.

3Dataset: doi:10.5281/zenodo.14000867

3.1.2 2 Coverage. The daily coverage reports per project
and harness. Raw OSS-Fuzz publishes one coverage report
per day per project and harness. We do not count a datapoint
if no data is available on a particular day. However, we do
track the absence of data. This data is collected from the
HTML coverage report4, which contains line, function, and
region coverage as provided by Clang’s source-based code
coverage feature [37]. Clean We removed around 20k empty
coverage reports before the projects were first added to the
OSS-Fuzz repo.

3.1.3 3 Commits. The commits to the default branch.
Raw We try to clone every git project based on the URL pro-
vided in theOSS-Fuzz project.yaml under the key main_repo.
If the repository cannot be cloned we exclude it from our
analysis, which is the case for non-git-based repositories and
projects that specify a GitHub organization instead of a repos-
itory. In total, we gather commit data for 491 projects. We
collect every commit to the project’s default branch, includ-
ing the number of added/removed lines per file, as provided
by git. Some projects consist of multiple repositories that
include dependencies and sometimes fuzzing-related code.
Commits to these separate repositories are not included in
the commit count of a project, as this would require ana-
lyzing the Dockerfile and differentiating between libraries
and project code that happens to be in a separate reposi-
tory. Clean We remove all commits that happened before
the project was added to OSS-Fuzz or are no longer part of
OSS-Fuzz.

3.1.4 4 Harness Changes. Commits that are classified
as a harness change. Raw We use heuristics based on the
commits in OSS-Fuzz and the project’s repository to classify
the commits that introduce or update fuzzer harnesses. If
the commit is part of OSS-Fuzz, we include all commits that
change a file that is not the project.yaml, Dockerfile (or
Jenkins file, whichwas used earlier) to avoid simple changes
of metadata or dependency updates to count as a harness
update.

For commits to the project’s repository, we include changes
to files with C/C++ file extensions, where the file path in-
cludes "fuzz", however, excluding "fuzzy" as some projects
use fuzzy logic. Additionally, changes to C/C++ files contain-
ing the fuzzing functions LLVMFuzzerTestOneInput and
LLVMFuzzerInititalize are also included as harness changes.
This analysis is implemented with tree sitter [1]. Clean As
for the commit data, remove all data points before the project’s
introduction into OSS-Fuzz. Filter There is one situation
in which these heuristics can produce false positives: If the
harness is part of a larger file containing normal code, these
changes are counted as harness changes. As the code in that

4 https://storage.googleapis.com/oss-fuzz-coverage/<project>/reports/<date>/linux/
file_view_index.html
i.e.:https://storage.googleapis.com/oss-fuzz-coverage/sudoers/reports/20250226/

linux/file_view_index.html

https://storage.googleapis.com/oss-fuzz-coverage/sudoers/reports/20250226/linux/file_view_index.html
https://storage.googleapis.com/oss-fuzz-coverage/sudoers/reports/20250226/linux/file_view_index.html
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file can also contain support functions for the harness, we
cannot simply constrain our analysis to the harness function.
During our manual analysis, we detected only one project
where this is the case, which we filtered out. To avoid false
negatives, that is, a harness update is not detected, we inves-
tigate all projects with suspicious gaps of harness updates
compared to commits. We detected two projects that moved
fuzzing harnesses into a separate repository, which we fil-
tered out. Additionally, two projects only contain fuzzing
examples; as these are not relevant to our study, we filter
them out as well.

3.1.5 5 Monorail Bugs. Monorail is a issue tracker5 con-
taining bugs found via fuzzing or build of the project in
OSS-Fuzz. Note that Monorail has been deprecated and re-
placed with a new issue tracker6 for which we do not support
data gathering, our last datapoint is on the 2024 − 9 − 11.
Raw Three types of bugs are reported: security bugs, gen-
eral bugs, and build failures (that break the project’s fuzzer
build on OSS-Fuzz). We collect meta information on bugs
such as the date of the bug, labels, and comments. Note that
security-relevant bugs are hidden for 90 days, so we cannot
include these vulnerabilities in our dataset. Clean We re-
move all bug reports for projects that do not have harness
changes. We also checked that no reports before integration
into OSS-Fuzz are available. Unexpectedly, there are 25 such
reports, which we remove from the dataset. We believe that
these were manually created.

3.1.6 6 Crash Revisions. Date (and commit) ranges for
bugs in Monorail. Raw For many bugs in Monorail, auto-
mated comments are added that specify the revision which
was used when this bug was found or during what date
(commit) range a regression is introduced. Furthermore, the
project and fuzzer version in which the crash was found are
specified. These specified crash revisions are generated for
security and general bug issues. For fixed bugs, a time (and
commit) range is added to indicate when the fix occurred.
Clean The cleaning is done identically to the procedure
applied to monorail bugs.

3.1.7 7 Fuzz Introspector. Fuzz Introspector reports cre-
ated daily. Raw Fuzz Introspector [23] is a tool to analyze
the quality of fuzzing and identify potential issues with the
fuzzing setup. Most OSS-Fuzz projects have already been
integrated with Introspector in the Open Source Fuzzing
Introspection project [24], whose reports we include in our
analysis. We collect all JSON reports for each day7. Note
that these are only available if the project can be built with
the Introspector instrumentation. While we cache the full

5https://bugs.chromium.org/p/oss-fuzz/issues/list
6https://issues.oss-fuzz.com/issues
7 https://oss-fuzz-introspector.storage.googleapis.com/<project>/inspector-report/
<date>/summary.json

JSON report, we collect the following data: harness count, to-
tal complexity, complexity reached, total functions, reached
function count, and code coverage function count. Clean All
reports before the project is added to OSS-Fuzz are removed.
While there are some, they are all empty.

3.1.8 8 Fuzz Intro. Harness. Daily Fuzz Introspector
reports per harness. Raw Additionally to the combined data
discussed above, Fuzz Introspector also provides data on
a per-harness basis. If a report is available, we collect for
each harness per day the following data: the harness name,
corpus size (the number of inputs found during fuzzing), the
number of functions reached during fuzzing, and statically
calculated during the instrumentation by Fuzz Introspector:
the total number of reachable basic blocks, total reachable
cyclomatic complexity, the total number of reachable files,
and the number of reachable functions. Clean Again, we
remove all reports of the time before a project is included in
OSS-Fuzz.
Based on this combined dataset we investigate the research
questions. Beginning with an analysis of coverage changes
over time.

Days since Harness Update
−5 0 5

0.05

0.10

0.15

Bugs per Modified Lines during Harness Updates

overall
< -5%
-5% to 5%
> 5%

Figure 2. Bug finding relative to harness updates.

3.2 RQ1: What are the immediate effects of harness
updates?

We hypothesize that harnesses slowly degrade over their life-
time and that this can be counteracted by maintenance in the
form of harness updates. Which cause an immediate increase
in coverage and a burst of new bugs after the introduction of
the new harness version. To verify our hypothesis, we study
the specific events of harness updates and the immediate
effects these changes have.

First, we start with the effects on coverage by comparing
the maximum coverage in the 7 days before a harness update,
with the maximum coverage after a harness update.

Our results show that contrary to our original hypothesis,
harness updates do not have a vastly positive effect on cov-
erage. Instead, we find a rather low mean coverage increase
of only 0.26%, while the median coverage change is exactly
at 0.0%. We observe a rather high variance, with a standard
deviation of 4.34, which we attribute to the stark differences
between projects in our data set.

https://bugs.chromium.org/p/oss-fuzz/issues/list
https://issues.oss-fuzz.com/issues
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Coverage change since last harness update
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Figure 3. Relative coverage change since a harness update, aggregated across all projects.

To filter out minor changes, we divide harness updates
into three categories. We consider a harness improved, if the
project coverage increases at least 5%. Similarly, we consider
a harness degraded if coverage decreases by 5% or more.
Everything in between is considered as a maintained harness,
which is the predominant category with 92.36% of harness
updates. While 5.54% improve and 2.1% of harness updates
actually degrade coverage.

To analyze the effects these types of harness updates have
on the bug finding capability of the projects, we collect the
amount of bugs detected in the week before and after a
harness update. This data can be seen in Figure 2 which
shows the code churn adjusted rate of bugs detected for
the earlier mentioned categories of harness updates. The
data shows that our hypothesis of initial bug bursts can be
trivially confirmed for improved harnesses. For degraded and
maintained harnesses, the correlation is less pronounced.

Harness updates have a surprisingly minor effect on
coverage.We find only a slight mean increase of 0.26%.
We can see initial bug bursts after harness updates,
especially when coverage increases.

3.3 RQ2: What is the rate of degradation of code
coverage over time?

We hypothesize that the fuzzing coverage degrades over time
if the project changes faster than the fuzzing harness is main-
tained. To investigate this hypothesis, we need to identify
changes in the project code related to fuzzer maintenance,
which we do as described in Section 3.1.4. We show the cov-
erage changes since the last harness update in Figure 3. Note
that we use the highest coverage found during the first three
days, to compensate for possibly slow coverage saturation
and delays until the fuzzer uses a new harness update. We
want to emphasize that we are interested in the degradation
of a harness over time, not the impact of the harness update
itself (which we discussed in Section 3.2). Furthermore, we
exclude harnesses that completely break and do not count

them as zero coverage, which would strongly influence the
results. Note that this influence has already been investigated
by Nourry et al. which found that around 12% of builds to
be broken over time [41].

As seen in Figure 3(a), we can only observe a slight down-
ward trend for the mean coverage. However, there is a large
variance as the harnesses get older. To avoid showing possi-
blymisleading data, we cut off the tail endwhere #Harnesses
falls below 100. We expected the downwards trend to be
much larger and therefore consider the results a surprising,
but positive result. While it is expected that some projects
suffer a decrease in coverage over time, it is, in our opinion,
unexpected to see a similar number of projects that have an
upswing over time. This keeps the median rather neutral and
just when the mean seems to reach a significant downtrend,
we are reaching the limit of our data.

How is it possible that the coverage percentages increase
without a harness change? We have observed two common
scenarios: Newly added code that can already be reached
by the existing harnesses and thus is directly covered as
soon as it is added to the project. This leads to a larger share
of covered code, thus increasing the relative line coverage.
The second scenario includes bug fixes or code changes that
unlock previously blocked parts of a program. This enables
a fuzzer to get deeper into the code and increase coverage
without the need for harness updates. However, as we are
concerned with harness degradation and not improvements,
we leave a more thorough investigation to future research.

For the first plot, we use time as a simple proxy for project
churn. However, the number of changed lines is a more pre-
cise approximation, which is shown in Figure 3(b). Similarly
to the analysis by time, the data shows a high variance and
a neutral mean and median result. Indeed, we also investi-
gated a stratified analysis separating projects by activity and
updates of the fuzzing harness. However, looking at these
subsets of the data, the results remain similar, and the vari-
ance is still very high. Thus, we provide these results as part
of the dataset and do not discuss them further.
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Figure 4. Found bugs per changed lines since the last harness update

This result likely stems from the maturity of the projects
in OSS-Fuzz, as only relatively mature projects with a sig-
nificant user base are added to OSS-Fuzz. For less mature
projects with more active development, we would expect to
see significantly more degradation. Additionally, this high-
lights the effectiveness of fuzzers as this result demonstrates
the ability of fuzzers to successfully cover code influenced
by code churn without manual intervention.
While our analysis does not show an overall coverage

decline due to harness degradation in the mean and median
over all projects, this does not mean that no harnesses in
OSS-Fuzz are affected by harness degradation. To measure
the number of harnesses that decrease in coverage over time,
we instead visualize the number of harnesses that fall below
a threshold compared to their initial coverage. This data can
be seen in Figure 3(c). The data shows that around 5% of
harness versions degrade after half a year.

The coverage over time is surprisingly stable for OSS-
Fuzz projects, mainly due to the large number of sta-
ble projects. However, individual projects can still
have large increases and decreases in coverage, where
5% or more decreased coverage is reached by 5% of
projects after half a year.

3.4 RQ3: Does the bug-finding capability of
harnesses degrade over time?

We hypothesize that if a harness is not kept up to date, its
bug finding capability will decrease over time due to project
churn.
To investigate whether harnesses that are not updated

find fewer bugs over time, we discuss Figure 4. As previously,
these plots are relative to the time a harness has been updated.
A harness counts as active until it is updated, at which point
a "new" harness version starts again at the beginning. This

Time since last harness update

St
ar

t

8 
w

ee
ks

16
 w

ee
ks

 B
ug

s 
pe

r 
A

ct
iv

e 
H

ar
ne

ss

0.00

0.05

0.10

Over All Projects

Time since last harness update

St
ar

t

8 
w

ee
ks

16
 w

ee
ks

#A
ct

iv
e 

H
ar

ne
ss

 V
er

si
on

s

0

10,000

20,000

New Crash
Regressed - Before
Regressed - During

Regressed - Overlap
#Active Harnesses

Figure 5. Bugs by crash revision type over time since the
last harness update across all projects.

is why the number of harnesses reduces over time. Note that
we again cut off the plot when reaching 500 harnesses to
avoid misleading results.

In Figure 4a we can see the ratio of bugs found per modi-
fied (added/changed) line of code. As established in previous
research [13], coverage has a strong correlation with the
ratio of bugs found, which means that projects with good
coverage are able to uncover more bugs via fuzzing. However,
according to our data this relationship does not seem to hold
linearly as projects with coverage above 35% perform rather
similarly to projects above 50% coverage. This can have a
number of reasons, maybe the used fuzzers just reach their
limits or projects with over 50% coverage could also have
more thorough tests outside of fuzzing, thus, reducing the
relative number of bugs found. In any case, projects below
35% coverage, show a significant decrease in bug detection
performance, as expected.
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Notably, our data does not show a significant decrease
in code churn-adjusted bug finding capability, over the first
half year of a harness version after which our data starts to
be too sparse. We again see that coverage plays a large role
even if not as a relative increase.
Next, we are also interested in whether changes to the

relative coverage percentage during the lifetime of a harness
version changes the ratio of bugs found.We already observed
a positive effect by harness updates in Section 3.2. However,
does increasing coverage through project updates alone also
improve bug finding? The code churn adjusted bug ratio
split by recent coverage changes is shown in Figure 4b. It
shows the number of bugs found per modified line, split
by whether coverage increased (>5%), decreased (>5%) or
stayed neutral (in between) comparing the maximum code
coverage of the past and next 7 days throughout the lifetime
of a harness. Again, the data shows bug burst for coverage
increases, so the improved bug finding is not necessarily
linked to a harness update. Notably, this is also true in the
other direction, where coverage reductions also severely
reduce bug finding capability, even when compared against
no coverage change. Again confirming that coverage changes
also strongly influence bug finding capability, even over the
lifetime of harnesses. In summary, we can see that the fuzzing
performance overall remains quite effective. On average, this
remains true, even when the projects keep evolving without
updating the harness.
We now investigate the second part of the hypothesis,

that bugs are found due to updating the harness, which the
earlier version misses. Looking at the crash revision data as
described in Section 3.1.6, we can differentiate between two
types of bugs: First, bugs that existed during the previous
harness version but were found only after an update. The
second category is bugs, which are introduced and found,
while the harness version is already active. To create this
separation, we group all Monorail bugs by the first crash re-
vision mentioned in their reports. Some reports have "Fixed"
as the first entry, these are excluded from analysis, as we
do not know when these bugs were found. Similarly, bugs
without crash revision data are also excluded. This leaves the
revision types "New Crash" and "Regression". A "New Crash"
revision contains the version fuzzed when the bug was found.
"Regression" contains a range of possible commits where this
bug was introduced, which we separate into three groups
those where the range ends before the current harness ver-
sion ("Before"), where it overlaps with the harness version
("Overlap"), and where the range is contained in the current
harness version’s lifetime ("During"). This visualization can
be seen in Figure 5. Note that this figure is adjusted for active
harness versions, and we again cut at 100 active harnesses
to remove a possibly misleading tail end of the data.

We can only use "Before" and "During" to answer whether
a harness update was required to find missed bugs. That is
because "NewCrash" does not give us information as towhen

the bug was introduced, and for "Overlap" it is uncertain if
the bug belongs to the "Before" or "During" group. Still, for
completeness, we show all four groups. We would expect
bugs of type "Crash", "Before", and "Overlap" to have a large
initial burst which then reduces over time as the new harness
version is explored. "During" should reflect the frequency of
new bugs being introduced, similar to "Crash". Moving on to
the interpretation of figure Figure 5, we can mostly confirm
these expectations. As expected, an initial bug burst in all
categories is visible in the first days after the harness update.
While "During" starts as expected from none, it also has a
slight increase within the first days of the harness lifecycle
compared to later points in time. Note, however, that this can
be likely explained by the heightened project activity within
the first days of the harness update. Noteworthy is also that
the number of regression bugs is constantly vastly higher
than that of new bugs. This confirms the results by Zhu
and Böhme [58], who found that about 77% of new bugs
discovered are regression bugs introduced with a recent
commit.

We observe an initial bug burst once the harnesses
are updated. This is caused by bugs not found by the
previous harness version, as well as active develop-
ment shortly after harnesses are changed. However,
unexpectedly, the number of bugs found by a harness
version does not decrease automatically due to degra-
dation. Instead, the degradation is limited to projects
with degrading coverage.

3.5 RQ4: What are common causes for coverage
drops?

Even though our data shows that overall C/C++ projects in
OSS-Fuzz maintain their coverage quite well, our results also
show a significant decrease of bug finding capability when
coverage drops. As such it is important to identify cases
where this happens, especially when coverage decreases
silently.

To evaluate causes for coverage drops, we must first iden-
tify relevant instances of harness degradation to study. Thus,
we filter for coverage drops that reduce coverage by 5% points
or more, comparing the month before and after the drop. We
chose 5% points to get a clear signal that a harness degra-
dation occurred and to keep the number of cases to study
manageable. This filter will help us focus on cases that result
in long-term harness degradation. Additionally, we filter for
days with a 5% coverage drop, allowing us to focus the case
studies on the days where the drop actually happened. How-
ever, several projects with unstable coverage exist, where
these two filters still retain many uninteresting cases, as
they are just repeated up and downswings. To remove these
cases, we additionally filter for maximum coverage of the
previous month, dropping by 5% over the following month.
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(d) Serenity coverage over time.

Figure 6. Reports and coverage for Curl (a, b, c) and Serenity (d).

Note that we are excluding harnesses that no longer built
at all. While this can be seen as an extreme form of harness
degradation, which results in zero coverage, it is also easily
detected, and thus not interesting to study. This results in 267
instances of harness degradation, all of which we manually
analyze by comparing coverage reports on the day before
and on the coverage drop, if available, we also include the
Fuzz Introspector reports for these days. Additionally, during
our investigation, we documented other related cases, reach-
ing a total of 308 case studies. As part of our analysis, we
categorize each instance into one of the following categories:

3.5.1 Harness Build Failure. (Cases: 24) We identified
multiple instances where harnesses no longer build correctly.
This can be caused by a dependency no longer building ac-
curately, a misconfiguration of the compilation environment
(such as compiler flags), or a variety of similar reasons that
have been studied in more depth before [41, 42]. The cases
we investigated do not lead to a full but only a partial build
failure that still severely impact fuzzer performance. These
usually surface as a small drop of the total number of covered
lines but a large drop in the coverage percentage. Note that
these cases are sometimes not reported to Monorail as they
are typically configuration mistakes or errors handled by the
build script, so a build is not even attempted; thus, a build
failure cannot be reported.
For example, Curl [15] experienced around one year of

ineffective fuzzing, see Figure 6(a, b, c), which started8 at
the end of 2022 and lasted until the issue was resolved in
early 2024. The reason was that OpenSSL [43] was no longer
building9. However, that did not completely stop the build
process, as some harnesses were still working.

3.5.2 Project Code Added / Code Churn. (Code added:
44, code churn: 24)

In these cases, the project is developed further, increasing
code size or changing semantics (Code Churn). However,

8before: https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/
20221130/linux/src/report.html
after: https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/
20221201/linux/src/report.html
9https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53965

the harnesses are not updated to reflect these changes ap-
propriately. This is what we initially imagined as the typical
reason for harness degradation. However, many projects in
OSS-Fuzz are quite mature, and this effect can mainly be ob-
served in projects with active development, which leads to a
relatively low number of observed cases. This degradation
usually surfaces as an increase in total lines of covered code
and a code coverage drop or as a coverage drop only.
One example of a project that degrades over time is the

Serenity project[47], see Figure 6d. Initially, some parts seem
well fuzzed, but the harnesses are not updated for newly
added code as the project ages, leading to harness degrada-
tion.

3.5.3 External Code in Coverage Report. (Cases: 45)
Within this category, we classify projects that include code
not part of the project proper in the coverage report, such as
external libraries or third-party code. This is important for
coverage measurement, which is a potentially error-prone
process [45], as this additional code distorts the coverage
measurement of the actual program under test.

One extreme example is a 255 line project10 (grpc-httpjson-
transcoding [26]), shown in Figure 8. Towards the end of
2021, the Protobuf [44] and googletest[18] libraries with 42k
lines of code11 are added to this project, as can be seen in Fig-
ure 8c. This caused a drop in relative coverage by 93% points.
This happens again in mid-202312, which adds another ~50k
lines of code, as shown in Figure 8d. Overall, any nuance in
the coverage over time is lost due to adding these external
libraries, as is shown in Figure 8a.

These cases can be observed by a huge relative change in
total lines covered and a large drop in coverage percentage.
While the core project code can remain well-fuzzed, it will
be difficult to detect actual harness degradation and other
performance issues in the future, as the coverage report is
(predominantly) influenced and distorted by the external
code.
10 https://storage.googleapis.com/oss-fuzz-coverage/grpc-httpjson-transcoding/
reports/20210922/linux/proc/self/cwd/report.html
11 https://storage.googleapis.com/oss-fuzz-coverage/grpc-httpjson-transcoding/
reports/20210927/linux/proc/self/cwd/report.html
12 https://storage.googleapis.com/oss-fuzz-coverage/grpc-httpjson-transcoding/
reports/20230701/linux/proc/self/cwd/report.html

https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221130/linux/src/report.html
https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221130/linux/src/report.html
https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221201/linux/src/report.html
https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221201/linux/src/report.html
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53965
https://storage.googleapis.com/oss-fuzz-coverage/grpc-httpjson-transcoding/reports/20210922/linux/proc/self/cwd/report.html
https://storage.googleapis.com/oss-fuzz-coverage/grpc-httpjson-transcoding/reports/20210922/linux/proc/self/cwd/report.html
https://storage.googleapis.com/oss-fuzz-coverage/grpc-httpjson-transcoding/reports/20210927/linux/proc/self/cwd/report.html
https://storage.googleapis.com/oss-fuzz-coverage/grpc-httpjson-transcoding/reports/20210927/linux/proc/self/cwd/report.html
https://storage.googleapis.com/oss-fuzz-coverage/grpc-httpjson-transcoding/reports/20230701/linux/proc/self/cwd/report.html
https://storage.googleapis.com/oss-fuzz-coverage/grpc-httpjson-transcoding/reports/20230701/linux/proc/self/cwd/report.html
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3.5.4 Corpus Size Decrease and Low Corpus Size. (Size
decreases: 59, low counts: 84)
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Figure 7. Sudoers coverage over time.

We noticed several cases where the corpus created by
the fuzzer drops to a small fraction of its previous size. For
example, one harness for Sudo [48] decreases from ~12k
corpus entries13 to 2114 at the start of 2023, as shown in
Figure 7. In general, once this drop happens, a small corpus
size and unstable coverage percentage will remain, as also
manifests for the "sudoers" project.
We have investigated the code related to the coverage

measurement and identified that for projects with this phe-
nomenon the libFuzzer either detects a OOM, which is lim-
ited to 2GB, or is timing out, however, libFuzzer does not
report these incidents with a non-zero returncode causing
the coverage measurement to be reported as successful while
only partially completing the coverage run. We have sub-
mitted a patch to OSS-Fuzz but as of the time of writing,
have not received a response, as such we are not able to
provide an accurate number of such cases. However, even
though this is an artifact of OSS-Fuzz, in cases where the
fuzzer produces a tiny corpus, we argue that fuzzing is still
ineffective. To illustrate, imagine a project with a seed corpus
that covers 80% of the project. However, the project uses a
data integrity check, stopping the fuzzer from creating new
accepted mutated inputs. This project will pass the required
coverage measurements based on the seed corpus alone, but
the fuzzing process is ineffective and no interesting inputs
beyond the seed corpus will be found.

3.5.5 Others. We encounter some (6) intermittent clang
coverage tool [37] errors causing nonsensical coverage re-
ports. These explain some single-day variations in coverage.
Additionally, some projects intended the removal of har-
nesses (3), which still cause a reduction in code coverage.
Additionally, in some (14) cases we are missing the required
familiarity with the project to be certain of how to classify
them correctly.

13 https://storage.googleapis.com/oss-fuzz-coverage/sudoers/reports/20230104/linux/
src/sudo/plugins/sudoers/regress/fuzz/fuzz_sudoers.c.html#L190
14 https://storage.googleapis.com/oss-fuzz-coverage/sudoers/reports/20230105/linux/
src/sudo/plugins/sudoers/regress/fuzz/fuzz_sudoers.c.html#L190

Projects with Broken Harnesses. During our analysis,
we encountered 28 projects that seem to have ineffective har-
nesses, some of which the maintainers might not be aware of.
At the time of writing we are still in the process of informing
the projects of these findings.

We identify four common causes for coverage drops.
Harness build failures, added project code, added ex-
ternal code, and errors during coverage measurement.

3.6 RQ5 What are practical ways to detect harness
degradation?

Aswe have now identified common causes of coverage drops,
we can continue to explore how to detect harness degrada-
tion. We aim to identify practically useful metrics to moni-
toring over time. This is in line with the approach of Fuzz
Introspector and OSS-Fuzz, which already provide certain
metrics to identify problems in the fuzzing pipeline. Thus,
to provide context, we first discuss already existing metrics:
(1) The project and the fuzzing harness should build and run
successfully. Failures are reported as build errors in the issue
tracker for OSS-Fuzz. (2) Bugs resulting from found crashes
are reported to the issue tracker. As crashes can severely
impede fuzzer effectiveness, these can be seen as a type of
notification. (3) Introspector reports a "blocked fuzzer" if
the achieved code coverage is too low compared to what is
possible based on static analysis. (4) Introspector also reports
functions as blockers if they lead to unexplored code with
large complexity, and the fuzzer cannot get through them.
This is less of a metric and more a guidance for maintainers
on what to focus on to improve fuzzing.

While all of these are important to monitor for maintain-
ers, the number of slowly degrading OSS-Fuzz projects, as
previously discussed and seen in figure 3, shows that the cur-
rently implemented monitoring mechanisms are insufficient.
Therefore, to complement these signaling metrics, we pro-
pose a set of additions as discussed in the following. These
novel metrics are based on our previous analysis results,
especially the findings of RQ4 as described in section 3.5.
(1) Improve coverage measurement error reporting. Cur-

rently, timeouts and cases where the coverage measurement
runs out of memory are not reported to maintainers. Based
on our analysis, this is a fundamental issue, which affects ap-
proximately at least 10% of harnesses. Exact numbers can be
provided, once this change is integrated. Our correspondence
with maintainers revealed that this has been a surprising
behavior for all maintainers we had correspondence with.
(2) Statefulness of harnesses is currently not detected. This
can be another cause of inconsistent coverage results. Note
that this has been a planned feature of OSS-Fuzz before. At
the time of writing, we have a working prototype but have
not received a response regarding the integration into OSS-
Fuzz. (3) A closely related metric is the corpus size in relation

https://storage.googleapis.com/oss-fuzz-coverage/sudoers/reports/20230104/linux/src/sudo/plugins/sudoers/regress/fuzz/fuzz_sudoers.c.html#L190
https://storage.googleapis.com/oss-fuzz-coverage/sudoers/reports/20230104/linux/src/sudo/plugins/sudoers/regress/fuzz/fuzz_sudoers.c.html#L190
https://storage.googleapis.com/oss-fuzz-coverage/sudoers/reports/20230105/linux/src/sudo/plugins/sudoers/regress/fuzz/fuzz_sudoers.c.html#L190
https://storage.googleapis.com/oss-fuzz-coverage/sudoers/reports/20230105/linux/src/sudo/plugins/sudoers/regress/fuzz/fuzz_sudoers.c.html#L190
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Figure 8. The coverage performance and report of grpc-httpjson-transcoding.

to covered code or covered complexity. While coverage is
a useful metric, it does not allow assessing how well the
covered code is fuzzed. For example, a single seed corpus
entry may cover 80% of the code, but there could be a data
integrity check stopping the fuzzer from generating any new
related inputs. So, while the coverage percentage is at an
acceptable level, based on the seed corpus alone, the project
is effectively not being fuzzed. We propose a very simple and
practical metric, the number of corpus entries compared to
the complexity or lines covered. As we expect this metric to
suffer from some level of noise, we suggest setting a rather
conservative threshold.
None of the existing or so far proposed metrics consider

the temporal aspect, as in how the fuzzing harness perfor-
mance evolves over time. Thus, we add the following metrics
to detect harness degradation issues which are easily visible
over time:
(4) Keep track of project harnesses used in the past and

inform the maintainers if one is no longer available. If re-
moval was intended, this can act as a confirmation; if not, it
should be reported. While OSS-Fuzz warns of project-wide
build failures, it misses cases where individual harnesses
stop building. Alternatively, a list of expected harnesses (or
removed and renamed harnesses) could be kept up-to-date
by the maintainers. (5) We noticed that most harnesses have
very stable coverage results over time, even down to indi-
vidual lines. Based on this insight, a metric that compares
the coverage results over time is useful as a catch-all detec-
tion tool. Note that harnesses that do not have stable results
either have: a broken coverage measurement or stateful har-
nesses, which should be addressed in any case; or have had
project code changes, for which we want to detect possible
degradation. This approach can also account for the case of
harness degradation where new code is added or changed,
but the harness is not updated. Note that this coverage drop
should ideally be judged in the long term; small changes
over time still add up. Therefore, a reasonable threshold
needs to be chosen that avoids spurious alarms and is high
enough to warrant action by the maintainer. Finally, to make
this coverage-based metric meaningful, it is best to classify
code as intended to be fuzzed by a harness or not. While it

is true that all code can have security implications, includ-
ing third-party library code, it is usually better to fuzz such
code separately. To ensure this, exclusion detection can be
performed by static reachability analysis, which is already
included in Fuzz Introspector.
At the time of writing, we are actively working with the

Fuzz Introspector and OSS-Fuzz teams to integrate them.
While we have received positive feedback so far, not all of
our pull requests have been accepted at the time of writing.
To provide full transparency, we include an exhaustive list
of our pull requests in the aforementioned repository. Note,
however, that there is no feasible way for us to effectively
anonymize our official pull requests.

To counteract the measured degradation of fuzzing
performance in OSS-Fuzz projects, we propose to
monitor certain metrics, which include statefulness,
rapid changes in corpus size, and coverage over time.
We implement these metrics as part of OSS-Fuzz and
Fuzz Introspector to make them available for public
use to support the maintainers and contributors of
OSS-Fuzz projects. The metrics will detect all cases
of coverage drops discussed in RQ4, but also provide
alerts for more specialized issues.

4 Threats to Validity
We reflect on possible issues and mitigations regarding gen-
eralizability, methodological mistakes, and the selection of
experiments from which we draw our conclusions.

External validity. Refers to the degree to which our re-
sults can be generalized to other fuzzing harnesses outside
of those included in our analysis. We analyzed all OSS-Fuzz
projects (i) that are written in C/C++ (ii) for which we could
access their git repository (iii) and where we could detect har-
nesses (iv). See Section 3.1 for more details. In the following,
we discuss each point and how it influences generalizability.

(i) Projects accepted in OSS-Fuzz “must have a signifi-
cant user base and/or be critical to the global IT infrastruc-
ture” [20]. Thus, we expect projects included in OSS-Fuzz to
be open source, have an incentive for securing the project,
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and usually be quite mature. Indeed, while not all harnesses
are optimal, many projects spend significant effort on inte-
grating fuzzing. Many projects in OSS-Fuzz are mature and
have relatively little new functionality added, as we also ob-
served in Section 3.3. Additionally, OSS-Fuzz offers a bounty
program to incentivize integration and well-maintained har-
nesses [21]. Regarding the effects on generalizability, we
expect these selection criteria to favor mature projects with
an incentive to create effective fuzzer harnesses. However,
we expect that time spent on security and fuzzing by open-
source maintainers depends on their priorities [50], which
should be motivated by the OSS-Fuzz reward program [21].
As a result, we expect a comparatively high effort to be
spent on fuzzing that smaller projects might not be able to
replicate. (ii) While the choice of C/C++ projects is to focus
our research, we expect that generalizing to memory-safe
languages will be difficult, especially regarding bug-finding
capability. Also, we identified dependency management of
C/C++ as an issue that negatively influences harness main-
tenance, which might differ from other languages. (iii) The
choice to focus on Git repositories is reasonable, as this still
allowed us to get data for most projects in OSS-Fuzz (491
/ 510). However, it is plausible that projects not using Git
might have a different engineering culture, which could in-
fluence generalizability. (iv) Our method of detecting harness
changes (see section 3.1.4) likely introduces some bias. This
is because projects that separate fuzzer harnesses from the
main project presumably see the development of the fuzzing
components as independent of the project’s code. This is an
error-prone approach, as this can lead to code version mis-
matches and quicken harness degradation. However, during
a manual investigation, we only found two projects that use
separate repositories, which are excluded from our data as
described in Section 3.1.4.

Internal validity. Refers to the degree to which our study
minimizes potential methodological mistakes. While we can-
not guarantee the absence of errors in our experiments, we
follow a twofold approach to mitigate this issue. First, we
combine our quantitative analysis with manual analyses. Sec-
ond, we open-source our experimental infrastructure, scripts,
and case study notes15.

Construct validity. Refers to the degree to which our
study measures what we intend to measure. We mitigate
this threat by using multiple metrics to measure and assess
harness degradation and the associated effects. Note that
we observed a coverage measurement error in the OSS-Fuzz
infrastructure, as described in Section 3.5.4.

5 Related Work
Effectiveness of fuzzing. Ding and Le Goues [16] analyze

the life cycle of bugs found in OSS-Fuzz and identify spikes

15Repository: https://github.com/CISPA-SysSec/fuzz-harness-degradation

of rapid bug discovery (punctuated equilibria) amidst long
periods of low bug-finding activity. At around the same time,
Zhu and Böhme [58] also studied the lifecycle of bugs discov-
ered by OSS-Fuzz and found that after an initial burst of bugs
found as soon as projects are integrated into OSS-Fuzz, new
bugs continue to be found at a constant rate throughout the
lifetime of the project in OSS-Fuzz. At this point about 77% of
new bugs discovered are regressions (bugs introduced with
a recent commit). The rate of regression bugs increases after
the initial burst of found bugs. Other studies [11, 34] demon-
strate diminishing returns even within a fuzzing campaign
as it continues for a long time. In contrast, we study whether
harnesses continue to be maintained within OSS-Fuzz and
how fuzzer effectiveness may degrade over time as a result.
Nourry et al. [41] analyze build failures in OSS-Fuzz and

found that only 5% of builds for the median project fail, and
that 80% of those failures are fixed within one day, which
shows that fuzzingmostly remains functional over a project’s
lifetime. As reasons for build failures, they identify environ-
ment, project dependency, and configuration issues, amongst
others. Nourry et al. [42] studied Github Issues to understand
which challenges developers face. They found, for instance,
that developers find writing good harnesses hard, or that
projects might suddenly fail to build for project-unspecific
reasons, like changes to the fuzzing framework.

Automatic harnessing. Writing good fuzzing harnesses
has been known to be a tedious and difficult part of fuzzer
integration [36, 42] while further automation is seen as
a central challenge in modern-day fuzzing [12, 52]. This
resulted in various attempts to automate the process, in-
cluding static analysis [14, 55, 56], guidance by runtime
data [29, 31, 57], or a combination of both dynamic and static
approaches [54]. Others suggest using artifacts such as unit
tests [30] or client code for libraries [6, 28]. Finally, LLMs
have been proposed [39] to generate fuzz harnesses. This in-
cludes efforts by Google’s OSS-Fuzz project, which recently
adapted techniques to automatically generate fuzzing har-
nesses via LLMs [25]. The result of our study motivates the
development of automatic harness maintenance techniques
that should reactively handle the degradation or build fail-
ures of harnesses.

Test suite degradation. The degradation over time of
unmaintained software components [2, 5, 8, 10, 40] or of
unmaintained test suites [3, 7, 32] has been well-studied in
software engineering. Test suites specifically do not only
degrade like other software components; they also degrade
due to individual test cases becoming obsolete. Fuzzing as
a testing technique is, by design, less prone to this kind
of degradation, as test cases can automatically be added or
removed by a fuzzer if the program under test changes. Our
findings further underline the robustness of fuzzing as a
method of test case generation specifically regarding the
aspect of harness degradation.

https://github.com/CISPA-SysSec/fuzz-harness-degradation
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6 Conclusion
In this paper we study fuzzing harness degradation by col-
lecting a dataset based on OSS-Fuzz and analyzing coverage
and bug-finding capability over time. Furthermore, we man-
ually investigate coverage percentage drops and collect a set
of common causes. Additionally, we contribute to OSS-Fuzz
via implementations of metrics to detect harness degradation
based on this research.
Our results confirm that fuzzing is effective and efficient

in finding bugs [12, 22]. Our research shows that fuzzing har-
nesses have a surprisingly long effective lifetime where bugs
are still found. However, they perform even better when ac-
tively maintained; this includes keeping harnesses updated
when code changes, fixing harnesses that no longer build,
and fixing bugs found by fuzzers, as fuzzers can get stuck on
these bugs. To detect decreased fuzzer performance, we pro-
pose to monitor certain metrics, which include statefulness,
rapid changes in corpus size, and coverage over time.
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A.1 Coverage Since Harness Update

#Commits

1 10 10
0

1,
00
0

10
,0
00

24
8,
10
7

#P
ro
je
ct
s

0

100

200

300

400

482

#Harness Updates

1 10 10
0

10
00

49
66

#P
ro

je
ct

s

0

100

200

300

400

482

Update Type

OSS-Fuzz
In Project
Combined

#Commits / #Harness Updates

1 10 10
0

1,
00

0

7,
13

1

#P
ro

je
ct

s

0

100

200

300

400

482

Figure 9. Cumulative number of projects, respectively, by number of commits, harness updates, and ratio of commits to
harness updates. Dotted lines in red mark the cutoff points.

As the projects are quite diverse in their activity level and number of harness updates. We separate the projects twice, once
based on the number of commits, to approximate activity (with the cutoff point at 500 commits), and again by those with
a high ratio of harness updates to commits, to approximate harness maintenance (with the cutoff point at 30 commits per
harness update on average). This results in four quadrants, those with high activity and high harness maintenance, high
activity and low maintenance, and so on. The following plots show combinations of these quadrants, such as those with high
and low maintenance or high and low maintenance for a high activity. Comparing to the overall result, the trends seem a bit
clearer. For example, Figure 10 (high maintenance ratio projects) seems to trend better than Figure 11 (low ratio). However,
overall we are not quite convinced that variance is small enough to truly interpret these results.

Coverage change since last harness update

#H
ar

ne
ss

es

0
1,000
2,000
3,000
4,000

(a) Time

1 
da

y

2 
da

ys

1 
wee

k

2 

wee
ks

4 

wee
ks

8 

wee
ks

16
 w

ee
ks

32
 w

ee
ks

64
 w

ee
ks

12
8 

wee
ks

Li
ne

 C
ov

er
ag

e 
%

−10

−5

0

5

10
0

5,000
10,000

(b) Commits

1 10 10
0

−10

−5

0

5

10
0

1,000
2,000
3,000
4,000

(c) Time: Percentage Degraded

1 
da

y

2 
da

ys

1 
wee

k

2 

wee
ks

4 
wee

ks

8 

wee
ks

16
 w

ee
ks

32
 w

ee
ks

64
 w

ee
ks

12
8 

wee
ksP

er
ce

nt
ag

e 
D

eg
ra

de
d 

%

0

5

10

15

Percentile 5% / 95% Percentile in 10% steps Median Mean

Figure 10. Coverage since the last harness update for projects with a high ratio of harness updates.
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Figure 11. Coverage since the last harness update for projects with a low ratio of harness updates.
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Figure 12. Coverage since the last harness update for projects with a high number of commits.
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Figure 13. Coverage since the last harness update for projects with a low number of commits.
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Figure 14. Coverage since the last harness update for projects with a high number of commits and a high ratio of harness
updates.
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Figure 15. Coverage since the last harness update for projects with a high number of commits and a low ratio of harness
updates.
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