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Abstract. Algebraic Manipulation Detection (AMD) codes is a cryptographic primitive that was

introduced by Cramer, Dodis, Fehr, Padró and Wichs [1]. They are keyless message authentica-

tion codes that protect messages against additive tampering by the adversary assuming that the

adversary cannot “see” the codeword. For certain applications, it is unreasonable to assume that

the adversary computes the added offset without any knowledge of the codeword c. Recently,

Ahmadi and Safavi-Naini [2], and then Lin, Safavi-Naini, and Wang [3] gave a construction of

leakage-resilient AMD codes where the adversary has some partial information about the code-

word before choosing added offset, and the scheme is secure even conditioned on this partial

information.

In this paper we establish bounds on the leakage rate ρ and the code rate κ for leakage-resilient

AMD codes. In particular we prove that 2ρ+ κ < 1 and for the weak case (security is averaged

over a uniformly random message) ρ+κ < 1. These bounds hold even if adversary is polynomial-

time bounded, as long as we allow leakage function to be arbitrary.

We present constructions of AMD codes that (asymptotically) fulfill the above bounds for almost

full range of parameters ρ and κ. This shows that the above bounds and constructions are in-fact

optimal.

In the last section we show that if a leakage function is computationally bounded (we use the

Ideal Cipher Model) then it is possible to break these bounds.

http://arxiv.org/abs/2505.06174v1
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1. Introduction

Algebraic Manipulation Detection (AMD) codes [1] are keyless message authentication codes that

protect messages against additive tampering by the adversary assuming that the adversary cannot

“see” the codeword. In AMD codes, a message m ∈ {0, 1}k is encoded to a codeword C in {0, 1}n ,

and the codeword is stored such that the adversary cannot get any information about the codeword.

The adversary is assumed to be able to add an arbitrary element A to C such that C + A could

potentially decode to a message m′ 6= m. In a δ-secure AMD code, such a manipulation succeeds

with probability δ, and with probability 1 − δ, the decoder on input C + A, either outputs m or a

special symbol ⊥ indicating that the tampering (by the adversary) has been detected. Another notion

that has been considered in [1] is that of weakly secure AMD codes (also called weak AMD codes),

where the security guarantee is only for a uniformly random message over the message space {0, 1}k ,

and the coding scheme is deterministic.

As mentioned in [1], AMD codes find useful applications in linear secret sharing schemes (e.g.

Shamir’s secret sharing [4]) and Fuzzy Extractors [5]. In particular, AMD codes can be used to turn

any linear secret sharing scheme into a so called robust secret sharing scheme [6], which ensures that

no unqualified subset of players can modify their shares and cause the reconstruction of a string s′

which is different from the secret s. Similarly, AMD codes can help turn fuzzy extractors into robust

fuzzy extractors that were first considered by Boyen et al. [7, 8]. We direct the reader to [1] for a more

detailed discussion of these applications.

In reality, the assumption that the adversary computes the offset A without any knowledge of

the codeword c might be unrealistic due to the presence of side channel attacks [9, 10, 11], where

the adversary can obtain partial information (leakage) on the secret state of an implementation of a

cryptographic scheme, by exploiting physical phenomena.

Recently, Ahmadi and Safavi-Naini [2], and then Lin, Safavi-Naini, and Wang [3] gave a con-

struction of so called ρ-Linear Leakage-Resilient AMD (ρ-LLR-AMD) codes where the adversary

has some partial information about the codeword c before choosing A, and the scheme is secure even

conditioned on this partial information. In [2], the authors consider the notion of a coding scheme

from m ∈ {0, 1}k to c ∈ {0, 1}n where the encoding algorithm uses randomness R ∈ {0, 1}σ , and

the adversary computes A given partial information Z such that the entropy of R conditioned on Z is

at least (1−ρ)σ. A similar notion of weak ρ-LLR-AMD codes was defined and constructed where the

security is for a uniformly random message M , and the entropy of M conditioned on Z is assumed to

be at least (1− ρ)k.

In the subsequent work, Lin, Safavi-Naini, and Wang [3] considered a stronger notion of ρ-AMD

codes, where Z carries information about the codeword, and the entropy of the codeword C condi-

tioned on Z is at least (1− ρ)n. Similar to the original AMD codes defined in [1], the authors defined

weak and strong ρ-AMD codes as deterministic and randomized codes that guarantee security for a

uniformly distributed message and any message, respectively. Since ρ-AMD codes are the main topic

of our paper, we briefly restate the main application of ρ-AMD codes as discussed in [3].

Robust ramp secret sharing scheme. A (t, r)-ramp secret sharing scheme [12, 13] is a secret shar-

ing scheme such that any t or fewer shares reveal nothing about the secret s, and any r or more shares
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are enough to reconstruct the secret. If the number of shares a is between r and t, then an a−t
r−t fraction

of the secret is leaked. Some authors such as [14] refer to this as a linear ramp secret sharing scheme.

By encoding a secret with a ρ-AMD code with error δ, and then using a (t, r)-ramp secret sharing

scheme, we can ensure that as long as the number of shares are at most t+ ⌊ρ(r− t)⌋, the probability

of being able to reconstruct the secret is upper bounded by δ. Notice that if we assume that the secret

is chosen uniformly at random, then even a weak ρ-AMD code will be sufficient for this application.

For this application, or for that matter any other application of ρ-AMD codes, we want the leakage

fraction ρ to be as large as possible and for the efficiency of the scheme, we additionally want the rate

of the codeword κ := k
n also to be as large as possible. In [3], the authors give a construction of strong

ρ-AMD codes with error δ, where κ = d
d+2 , and ρ = 1

d+2−ε, where ε is a small constant that depends

on δ, and d is a positive integer. In order to maximise the leakage, we can set d = 1, which will imply

that ρ ≈ 1
3 , and the rate of the code is 1

3 . Also, it was shown in [3] that for any strong ρ-AMD code

with any error δ, we must have that κ+ ρ < 1. This leads us to the following question.

Question 1. Does there exist a strong ρ-AMD code with leakage rate ρ ≥ 1
3? Can we obtain a better

tradeoff between κ and ρ?

In this paper, we answer both these questions in the affirmative. In Section 4, we generalise the

construction from [3] to obtain a construction of a whole family of ρ-AMD codes for a wider range

of parameters. More precisely (see Corollary 4.4 for details), we have constructions that are secure

as long as 2ρ + κ < 1. Moreover, we show in Section 5 that there exists no construction of strong

ρ-AMD codes that is secure if 2ρ + κ ≥ 1. This means that we covered the whole space of possible

values of ρ and κ. On the other hand, we prove that if we work in Ideal Cipher Model we can go even

further: we can break proven barrier and achieve ρ arbitrary close to 1. See Section 6 for details.

Similarly, as above, for weak ρ-AMD codes with error δ, Lin et al. gave a construction with

κ = d
d+1 , and ρ = 1

d+1 − ε, where ε is a small constant that depends on δ, and d is a positive integer.

Setting d = 1, we get ρ ≈ 1
2 , and κ = 1

2 . They, however, failed to obtain any nontrivial condition

under which there exist weak ρ-AMD codes. We can again ask a question similar to Question 1 for

weak ρ-AMD codes.

Question 2. Does there exist a weak ρ-AMD code with leakage rate ρ ≥ 1
2? Can we obtain some

nontrivial tradeoff between κ and ρ?

We answer the first question in the negative and the second in the affirmative by showing in Sec-

tion 5 that for any ρ ∈ (0, 1) there exists no weak ρ-AMD code with ρ + κ ≥ 1, or ρ ≥ κ. In other

words, for any secure weak ρ-AMD code, we must have ρ + κ < 1, and ρ < κ. We also include a

construction achieving parameters similar to [3] in Section 4.

We would again like to remark that all our constructions and proofs in Section 4 closely resemble

those in [1, 3]. Our main contribution is to show that these constructions are optimal and that we can

cover the whole space of feasible parameters.

In the following, we briefly discuss the leakage models that have been considered in the literature.
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1.1. Leakage models

In general, we consider the leakage as f(x) where f is the leakage function, and x is the secret state.

Notice that for achieving any security guarantee, we have to restrict the amount of leakage allowed, or

else the adversary can leak the entire state.

Bounded Leakage The most widely used leakage model is the bounded leakage model introduced

by Dziembowski and Pietrzak [15]. The popularity of this model is in part due to its simplicity. In this

model, it is assumed that |f(x)| is bounded, and (significantly) smaller than |x|.

Noisy Leakage The main limitation of the bounded leakage model is that real world side channel

information obtained by the adversary is rarely bounded in length. Typically, the length is huge, but

the correlation between the leakage and the secret state is small, i.e., most of the leakage is “noise”.

This model was first considered by Naor and Segev [16] informally, and was more formally introduced

by [17]. In this model, the idea of weak correlation between the leakage and the secret is captured by

the assumption that the average min-entropy of x given f(x) remains high.

As shown in Lemma 2.1, the noisy leakage model is more general than the bounded leakage model.

Thus, all results in this paper are in the noisy leakage model.

2. Preliminaries

For an integer m ∈ N, we denote the set of integers {1, . . . ,m} by [m]. Unless otherwise stated,

F = Fq denotes a finite field of size q.

The min-entropy of a random variable X is defined as H∞(X)
def
= − log(maxx Pr[X = x]).

This notion is fundamental for cryptographic community as it it is used to measure the probability of

guessing a random element drawn out from the distribution X.

We also define average (aka conditional) min-entropy of a random variable X conditioned on

another random variable Z as

H̃∞(X|Z)
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
,

where Ez←Z denotes the expected value over z ← Z . Intuitively, if H̃∞(X|Z) is high, then

almost certainly (for all except only negligible fraction of events from Z) the probability of guessing

X conditioned on some z ← Z is low. Placing the operator E inside the logarithm is crucial in the

definition to hold this intuition. For more discussion on this notion one is referred to [5].

The following lemma shows a fundamental property of conditional min-entropy.

Lemma 2.1. ([17])

Given distributions X, Y where |support(Y )| ≤ 2λ, we have that

H̃∞(X|Y ) ≥ H∞(X,Y )− λ ≥ H∞(X)− λ.
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We will need also the following result:

Lemma 2.2. Let 0 < p < 1, and let E1, . . . , Et be pairwise independent events such that Pr(Ei) = p
for all i ∈ [t]. Then

Pr(∪ti=1Ei) ≥ t · p−
t2 · p2

2
.

Proof:

Using Bonferroni inequality [18], we have that

Pr(∪ti=1Ei) ≥

t∑

i=1

Pr(Ei)−
∑

i,j∈[t],i 6=j

Pr(Ei ∩ Ej)

= t · p−
t(t− 1)

2
p2

> t · p−
t2 · p2

2
.

⊓⊔

3. Definitions

We first define a general coding scheme.

Definition 3.1. A coding scheme is given by an encoding function Enc : Fk×Fσ 7→ F
n from k-length

messages to n-length codewords1, and a decoding function Dec : Fn 7→ F
k ∪ {⊥} such that, for each

m ∈ F
k, r ∈ F

σ, we have that Pr(Dec(Enc(m, r)) = m) = 1.

Additionally, the coding scheme is called regular if Enc is a one-to-one function.

We now define AMD codes.

Definition 3.2. Let Enc : Fk × F
σ 7→ F

n, Dec : Fn 7→ F
k ∪ {⊥} be a coding scheme. We say that

(Enc, Dec) is a strong (ρ, δ)-AMD code if for any m ∈ F
k, R uniform in F

σ,

Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥}] ≤ δ ,

where Z ∈ Z is a random variable such that H̃∞(Enc(m,R)|Z) ≥ H∞(Enc(m,R)) − ρ · (n log q),
and A : Z 7→ F

n is an arbitrary randomized function chosen by the adversary. The probability is over

the randomness of the encoding, the possibly independent randomness of the leakage function, and

the randomness of the adversary, i.e., over R,Z,A.

If the adversary is only allowed time polynomial in n to compute A(Z), then the underlying

scheme is said to be a computationally secure strong (ρ, δ)-AMD code.

1The encoding function takes randomness of length σ, which we make explicit in the definition for convenience.
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If the security guarantee is only for a uniform message distribution, then we call such an AMD

code a weak AMD code. More formally,

Definition 3.3. Let Enc : Fk 7→ F
n, Dec : Fn 7→ F

k ∪ {⊥} be a coding scheme. 2 We say that (Enc,

Dec) is a weak (ρ, δ)-AMD code if for M uniform in F
k, we have that

Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥}] ≤ δ ,

where Z ∈ Z is a leakage variable such that H̃∞(Enc(M)|Z) ≥ H∞(Enc(M)) − ρn log q, and

A : Z 7→ F
n is an arbitrary function chosen by the adversary.

If the adversary is only allowed time polynomial in n to compute A(Z), then the underlying

scheme is said to be a computationally secure weak (ρ, δ)-AMD code.

4. Constructing Leakage-resilient AMD codes

In the following, we show that given AMD codes, we can construct leakage-resilient AMD codes.

Lemma 4.1. For any δ > 0, 0 < ρ < 1, any regular coding scheme Enc : Fk × F
σ 7→ F

n, Dec :
F
n 7→ F

k ∪ {⊥} that is a strong (0, δ)-AMD code is also a strong (ρ, qρnδ)-AMD code.

Proof:

Since (Enc,Dec) is a (0, δ)-AMD code, we have that for a uniform R in F
σ, and any m ∈ F

k, α ∈ F
n,

Pr(Dec(Enc(m,R) + α) /∈ {m,⊥}) ≤ δ .

Define BAD(m,α) to be the set of all c in the support of Enc(m,R) such that Dec(c+ α) /∈ {m,⊥}.
From the equation above, we have that

|BAD(m,α)| ≤ δ · qσ . (1)

Now, consider a leakage variable Z such that H̃∞(Enc(m,R)|Z) ≥ H∞(Enc(m,R)) − ρn log q.

Since (Enc,Dec) is a regular coding scheme, we have that H∞(Enc(m,R)) = H∞(R) = σ log q,

and hence H̃∞(Enc(m,R)|Z) ≥ (σ−ρn) log q. Thus, using the definition of conditional min-entropy,

we have that
∑

z∈Z

Pr(Z = z) ·max
c∈Fn

Pr(Enc(m,R) = c | Z = z) ≤
1

qσ−ρn
. (2)

2In this paper, we restrict our attention to weak leakage resilient AMD codes that are deterministic as in [2, 3]. In gen-

eral, when talking about AMD codes without leakage-resilience, we typically don’t assume that the encoding function is

deterministic.
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We now bound the probability of incorrect decoding when the adversary computes the offset given Z .

Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥}]

=
∑

z∈Z

(
Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥} | Z = z] · Pr[Z = z]

)

=
∑

z∈Z

Pr[Enc(m,R) ∈ BAD(m,A(Z)) | Z = z] · Pr[Z = z]

≤
∑

z∈Z

(
|BAD(m,A(Z)|max

c∈Fn

Pr(Enc(m,R) = c | Z = z) · Pr(Z = z)
)

≤δ · qσ ·
1

qσ−ρn
= δ · qρn ,

where the last inequality uses the inequalities (1) and (2). ⊓⊔

Similar to the above, we can construct weak AMD codes with leakage-resilience from a weak

AMD code without leakage-resilience. The proof (and even the parameter changes in the formulas) of

the following lemma is similar to that of Lemma 4.1, but we include it here for completeness.

Lemma 4.2. For any δ > 0, 0 < ρ < 1, any regular coding scheme Enc : Fk 7→ F
n, Dec : Fn 7→

F
k ∪ {⊥} that is a weak (0, δ)-AMD code is also a weak (ρ, qρnδ)-AMD code.

Proof:

Since (Enc,Dec) is a (0, δ)-AMD code, we have that for a uniform M in F
k, and any α ∈ F

n,

Pr(Dec(Enc(M) + α) /∈ {M,⊥}) ≤ δ .

Define BAD(α) to be the set of all c in the support of Enc(M) such that Dec(c+α) /∈ {M,⊥}. From

the equation above, we have that

|BAD(α)| ≤ δ · qk . (3)

Now, consider a leakage variable Z such that H̃∞(Enc(M)|Z) ≥ H∞(Enc(M)) − ρn log q. Since

(Enc,Dec) is a regular coding scheme, we have that H∞(Enc(M)) = H∞(M) = k log q, and hence

H̃∞(Enc(M)|Z) ≥ (k − ρn) log q. Thus, using the definition of conditional min-entropy, we have

that

∑

z∈Z

Pr(Z = z) ·max
c∈Fn

Pr(Enc(M) = c | Z = z) ≤
1

qk−ρn
. (4)
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We now bound the probability of incorrect decoding when the adversary computes the offset given Z .

Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥}]

=
∑

z∈Z

(
Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥} | Z = z] · Pr[Z = z]

)

=
∑

z∈Z

Pr[Enc(M) ∈ BAD(A(Z)) | Z = z] · Pr[Z = z]

≤
∑

z∈Z

(
|BAD(A(Z)|max

c∈Fn

Pr(Enc(M) = c | Z = z) · Pr(Z = z)
)

≤δ · qk ·
1

qk−ρn
= δ · qρn ,

where the last inequality uses the inequalities (3) and (4). ⊓⊔

We now give a construction of an efficient coding scheme without any leakage. This construction

closely resembles the construction of AMD codes from [1].

Theorem 4.3. For any positive integers k < q − 2, σ, there exists an efficient regular coding scheme

Enc : Fk × F
σ 7→ F

k+2σ, Dec : Fk+2σ 7→ F
k ∪ {⊥} that is a strong (0,

(
k+1
q

)σ
)-AMD code.

Proof:

Let f : Fk × F 7→ F be defined as

∀m ∈ F
k, a ∈ F, f(m,a) := ak+2 +

k∑

i=1

mia
i ,

where m = (m1, . . . ,mk) such that mi ∈ F for i ∈ [k]. Then consider the coding scheme is defined

as

∀m ∈ F
k, x ∈ F

σ,

Enc(m,x) := (m,x, f(m,x1), . . . , f(m,xσ)) ,

The decoding function Dec on input m′ ∈ F
k, x′ ∈ F

σ, y1, . . . , yσ ∈ F checks whether yi = f(m′, x′i)
for i ∈ [σ]. If there exists an i such that yi 6= f(m′, x′i), then Dec(m′, x′, y1, . . . , yσ) = ⊥, else

Dec(m′, x′, y1, . . . , yσ) = m′.
Clearly the coding scheme is regular. We now proceed to show that the scheme is secure.

For any m ∈ F
k, α ∈ F

k, β ∈ F
σ, γ ∈ F

σ, and a uniform X ∈ F
σ we need to bound

Pr(Dec(Enc(m,X) + (α, β, γ)) /∈ {m,⊥}) .

Notice that if α = 0, then the above probability is 0, since by definition, for any m,β, γ, Dec(Enc(m,X)+
(α, β, γ)) is either m or ⊥. Also, if α 6= 0, then Dec(Enc(m,X) + (α, β, γ)) is either m+ α 6= m,

or ⊥. Thus, it is sufficient to bound

Pr(Dec(Enc(m,X) + (α, β, γ)) 6= ⊥)
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for any m ∈ F
k, α ∈ F

k \ {0}, β ∈ F
σ, γ ∈ F

σ, and a uniform X ∈ F
σ. Using the independence of

X1, . . . ,Xσ, we have that

Pr(Dec(Enc(m,X) + (α, β, γ)) 6= ⊥)

=

σ∏

j=1

Pr

(
Xk+2

j +

k∑

i=1

miX
i
j + γj = (Xj + βj)

k+2 +

k∑

i=1

(mi + αi)(Xj + βj)
i

)

=

σ∏

j=1

Pr

(
Xk+2

j +

k∑

i=1

miX
i
j + γj − (Xj + βj)

k+2 −

k∑

i=1

(mi + αi)(Xj + βj)
i = 0

)

≤

(
k + 1

q

)σ

,

since

P (Xj) = Xk+2
j +

k∑

i=1

miX
i
j + γj − (Xj + βj)

k+2

−

k∑

i=1

(mi + αi)(Xj + βj)
i

is a non-zero polynomial in Xj of degree at most k + 1. To see that the polynomial is non-zero,

note that if βj 6= 0, then the co-efficient of Xk+2
j in P (Xj) is zero, and that of Xk+1

j is (k+2)βj 6= 0.

On the other hand, if βj = 0, then let t be the largest index such that αt 6= 0. Note that one such

index exists since α 6= 0. Then, the coefficients of Xk+2
j , . . . ,Xt+1

j in P (Xj) are 0, and that of Xt is

−αt 6= 0.

The desired result follows. ⊓⊔

The following corollary immediately follows from Lemma 4.1 and Theorem 4.3.

Corollary 4.4. For any positive integers k < q− 2, σ, and 0 < ρ < 1
2 , there exists an efficient regular

coding scheme Enc : Fk×Fσ 7→ Fk+2σ, Dec : Fk+2σ 7→ Fk∪{⊥} that is a strong (ρ, qρ(k+2σ)−σ(k+
1)σ)-AMD code.

We remark that assuming q ≫ k, as long as ρ < σ
k+2σ the above construction is secure.

The last expression is equivalent to 2ρ(k + 2σ) + k < 2σ + k. This, since the code rate for Enc,

κ = k
k+2σ , may be rewritten as 2ρ + κ < 1. This formulation is the most interesting for us since it

clearly states the postulated tradeoff between ρ and κ.

Now we will construct weak AMD codes without any leakage. Notice that a construction with

similar parameters was already shown in [3]. We include the construction here for completeness. In

Section 5, we show that the parameters obtained in this construction are optimal.

Theorem 4.5. Let k be a positive integer, and let the characteristic of F be greater than 2. Then there

exists an efficient regular coding scheme Enc : Fk 7→ F
k+1, Dec : Fk+1 7→ F

k ∪ {⊥} that is a weak

(0, 1q )-AMD code.
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Proof:

Let g : Fk 7→ F be defined as

∀m ∈ F
k, g(m) :=

k∑

j=1

m2
j .

where m = (m1, . . . ,mk) such that mj ∈ F for j ∈ [k]. Then consider the coding scheme is

defined as

∀m ∈ F
k, Enc(m) := (m, g(m)) ,

The decoding function Dec on input m′ ∈ F
k, y ∈ F checks whether y = g(m′). If y 6= gi(m

′), then

Dec(m′, y) = ⊥, else Dec(m′, y) = m′.

For any α ∈ F
k, β ∈ F, and a uniform M ∈ F

k we need to bound

Pr(Dec(Enc(M) + (α, β)) /∈ {M,⊥}) .

Notice that if α = 0, then the above probability is 0, since by definition, for any β, Dec(Enc(M) +
(α, β)) is either M or ⊥. Also, if α 6= 0, then Dec(Enc(M) + (α, β)) is either M + α 6= M , or ⊥.

Thus, it is sufficient to bound

p = Pr(Dec(Enc(M) + (α, β)) 6= ⊥)

for any α ∈ F
k \ {0}, β ∈ F, and a uniform M ∈ F

k. Without loss of generality, let αi 6= 0. Then,

p = Pr




k∑

j=1

(
(Mj + αj)

2 −M2
j

)
= β




= Pr




k∑

j=1

(
2αjMj + α2

j

)
= β




= Pr(2αiMi = A) ,

where A depends on M1, . . . ,Mi−1,Mi+1, . . . ,Mk, α1, . . . , αk, β, and is independent of Mi. Thus,

using the independence of Mi from M1, . . . ,Mi−1,Mi+1, . . . ,Mk, we see that p = 1
q . ⊓⊔

The following corollary immediately follows from Lemma 4.2 and Theorem 4.5.

Corollary 4.6. For any positive integers k, and 0 < ρ < 1
k+1 , there exists an efficient regular coding

scheme Enc : Fk 7→ F
k+1, Dec : Fk+1 7→ F

k ∪ {⊥} that is a weak (ρ, qρ(k+1)−1)-AMD code.

Thus, as long as ρ < 1
k+1 , or in other words, ρ+ κ < 1, and ρ < κ, the above construction is secure.
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5. Optimal Bounds on Leakage and Code Rate

In this section we show that the constructions in Section 4 are asymptotically optimal. In fact, even

if we allow that adversary is polynomial-time bounded (as long as the leakage is arbitrary), there still

does not exist a construction of leakage resilient AMD codes that allow a better tradeoff between the

rate of the code and the allowed leakage.

The following corollary is immediate from Lemma 2.2.

Corollary 5.1. Let FN be a finite field, and let A,B be uniform and independent in FN . Let y1, . . . , yt
be some fixed distinct elements of FN . Also, let S be a subset of FN . Then the probability that there

exists i ∈ [t] such that Ayi +B ∈ S is at least

t · |S|

N
−

t2 · |S|2

2N2
.

Proof:

Let E denote the main event described in the statement and also (for all i ∈ [t]) let Ei be the event

that Ayi +B ∈ S. Then, of course we have E = ∪ti=1Ei and Pr(Ei) =
|S|
N . Now, all is set in such a

way, that the final result is a conclusion of a direct use of the Lemma 2.2. The only missing part is to

show that events E1, . . . , Et are pairwise independent:

To see this, note that for any a, b ∈ FN , and any i, j ∈ [t] such that i 6= j, we have that

Pr(Ayi +B = a,Ayj +B = b)

= Pr

(
A =

b− a

yj − yi
, B =

byi − ayj
yi − yj

)

(⋆)
= Pr

(
A =

b− a

yj − yi

)
Pr

(
B =

byi − ayj
yi − yj

)

=
1

N
·
1

N
= Pr(Ayi +B = a) · Pr(Ayj +B = b) .

(The step (⋆) follows from the independence of A and B.)

The above calculations finish the proof of the pairwise independence of E1, . . . , Et which also

ends the whole proof of the Corollary 5.1.

⊓⊔

We are now ready to prove the optimality of our leakage-resilient AMD codes.

Theorem 5.2. For any ρ ∈ (0, 1), there does not exist a computationally secure strong (ρ, 3
16 )-AMD

code Enc : {0, 1}k × {0, 1}σ 7→ {0, 1}n , Dec : {0, 1}n 7→ {0, 1}k ∪ {⊥} with 2ρ+ k
n ≥ 1.

Proof:

Let R be uniform in {0, 1}σ . Also, let t = 2(n−k)/2. We divide the proof in two cases.
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Case 1 There exists a message m such that the support of Enc(m,R) has cardinality at most t. Let

C(m) be the support of Enc(m,R). We define the set of good codewords G ⊆ C(m) such that

G :=

{
c ∈ C(m) : Pr(Enc(m,R) = c) ≥

1

2t

}
.

The probability that Enc(m,R) /∈ G is less than 1
2t · t = 1

2 . Thus, the probability that C =
Enc(m,R) ∈ G is greater than 1

2 .

Now, we interpret the domain of the randomness of the Enc function, i.e., {0, 1}σ as a finite field

of size 2σ , and let A,B be uniformly random variables in {0, 1}σ chosen by the adversary. Also, let

y1, . . . , yt be fixed and distinct elements of {0, 1}σ .

We define the random variable Z to be the index i ∈ [t] such3 that Enc(m,Ayi+B) = Enc(m,R).
If no such i exists, then Z is chosen to be an arbitrary index in [t]. Furthermore, we fix a codeword c∗

such that Dec(c∗) /∈ {m,⊥}.
Then the function A(Z) chosen by the adversary is defined as

A(Z) = −Enc(m,AyZ +B) + c∗ .

Notice that Dec(Enc(m,R)+A(Z)) = Dec(c∗) if Enc(m,R) ∈ G and there exists an i ∈ [t] such that

Enc(m,Ayi +B) = Enc(m,R). Conditioned on the event that Enc(m,R) ∈ G (which happens with

probability greater than 1/2), the number of r ∈ {0, 1}σ such that Enc(m, r) = Enc(m,R) is at least
2σ

2t . Thus, using Corollary 5.1, the probability that there exists an i ∈ [t] such that Enc(m,Ayi+B) =
Enc(m,R) is at least

t

2t
−

t2

2 · 4t2
= 3/8 .

Thus, Dec(Enc(m,R) + A(Z)) = Dec(c∗) /∈ {m,⊥} with probability 3/16.

Case 2 For every message m′, the support of Enc(m′, R) has cardinality greater than t. We fix a

message m ∈ {0, 1}k , and the codeword C = Enc(m,R).
Now, we interpret the code space, i.e., {0, 1}n as a finite field of size 2n, and let A,B be uniformly

random variables in {0, 1}n chosen by the adversary. Also, let y1, . . . , yt be fixed and distinct elements

of {0, 1}n. We define the random variable Z to be the index i ∈ [t] such that Dec(C + Ayi + B) /∈
{m,⊥}. If no such i exists, then Z is chosen to be an arbitrary index in [t]. The function A(Z) chosen

by the adversary is defined as AyZ +B.

We now compute the probability that Dec(C + A(Z)) /∈ {m,⊥}. The number of strings x ∈
{0, 1}n such that Dec(C + x) /∈ {m,⊥} is greater than (2k − 1)t since by assumption, for every

message m′, the support of Enc(m′, R) has cardinality greater than t. Thus, using Corollary 5.1, the

probability that there exists an index i ∈ [t] such that Dec(C +Ayi +B) /∈ {m,⊥} is at least

t2(2k − 1)

2n
−

t4(2k − 1)2

2 · 22n
=

1

2
−

1

22k+1
≥

3

8
,

3We note here, that index i has t values, thus by lemma 2.1, leakage Z fulfills our noisy leakage definition, and is in line

with definition 3.2.
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for k ≥ 1.

⊓⊔

Remark 5.3. We note that the adversary strategies considered in the proof of Theorem 5.2 are rem-

iniscent of the strategies used by Paterson and Stinson [19] to obtain bounds on the parameters of

weak AMD codes. In particular, Case 1 is similar to the Guess strategy where guessing the codeword

or leaking the randomness that generates the codeword is easy, and Case 2 is similar to the Random

strategy where a randomly selected offset will be successful with high probability.

Theorem 5.2 shows that if 2ρ + κ ≥ 1, where the leakage rate is ρ and the code rate is κ, then

strong leakage-resilient AMD codes are impossible. This, combined with Corollary 4.4, gives an

(asymptotically) tight characterization of code rate and leakage rate for which leakage-resilient strong

AMD codes exist.

Next, we show that there is no leakage-resilient (even computationally secure) weak AMD code

from k-bit messages to n-bit codewords with leakage rate ρ such that ρ+ k
n ≥ 1.

Theorem 5.4. For any ρ ∈ (0, 1), there does not exist a computationally secure weak (ρ, 38 )-AMD

code Enc : {0, 1}k 7→ {0, 1}n, Dec : {0, 1}n 7→ {0, 1}k ∪ {⊥} with ρ+ k
n ≥ 1 or ρ ≥ k

n .

Proof:

Let M be chosen uniformly at random in {0, 1}k , and let C = Enc(M) be fixed. If ρ ≥ k
n , then let Z

be Dec(C), and let A(Z) be −Enc(Z) + Enc(m′) for some m′ ∈ {0, 1}k \ {M}. Then, it is easy to

see that Dec(C + A(Z)) = m′ /∈ {M,⊥} with probability 1. This shows that ρ < k
n .

Let t = 2n−k. We interpret the code space, i.e., {0, 1}n as a finite field of size 2n, and let A,B
be uniformly random variables in {0, 1}n chosen by the adversary. Also, let y1, . . . , yt be fixed and

distinct elements of {0, 1}n . We define the random variable Z to be the index i ∈ [t] such4 that

Dec(C+Ayi+B) /∈ {M,⊥}. If no such i exists, then Z is chosen to be an arbitrary index in [t]. The

function A(Z) chosen by the adversary is defined as AyZ +B.

We now compute the probability that Dec(C + A(Z)) /∈ {M,⊥}. The number of strings x ∈
{0, 1}n such that Dec(C+x) /∈ {m,⊥} is 2k−1, one corresponding to each message in {0, 1}k\{M}.
Thus, using Corollary 5.1, the probability that there exists an index i ∈ [t] such that Dec(C + Ayi +
B) /∈ {M,⊥} is at least

t(2k − 1)

2n
−

t2(2k − 1)2

2 · 22n
=

1

2
−

1

22k+1
≥

3

8
,

for k ≥ 1. ⊓⊔

Theorem 5.4 shows that if ρ+κ ≥ 1, where the leakage rate is ρ and the code rate is κ, then weak

leakage-resilient AMD codes are impossible. This, combined with Corollary 4.6, gives an (asymp-

totically) tight characterization of code rate and leakage rate for which leakage-resilient weak AMD

codes exist.

4We note that index i has t values. By lemma 2.1, leakage Z fulfills the requirements set in definition 3.3.
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6. Breaking the ρ <
1
2 barrier for AMD codes in the Ideal Cipher Model

In Section 5 we state an inequality 2ρ+ k
n ≤ 1 that must hold for all strong (ρ, 3/16)-AMD codes as

introduced in Definition 3.2. The definition assumes that the leakage variable Z is arbitrary with the

only constraint being that the entropy of the codeword conditioned on the knowledge of Z is 1 − ρ
fraction of the original entropy. However, as we will see in this section, our result does not necessarily

hold if we impose further conditions on the leakage variable Z .

We will work in the Ideal Cipher Model (abbr. ICM), which is equivalent to the Random Oracle

Model, see [20]). As a reminder: ICM is a model with a public oracle (accessible fully to all parties)

that gives access to a family {fi}i∈I of random (and independent) permutations. Any party may ask

for fi(u) and for f−1i (u) for any chosen i and u. For our application we can even simplify the model

and assume that we have only one random permutation f with access to both forward and inverse

queries to the oracle for f .

We will consider the following simple encoding: Encbr(m, r) = (m, f(m, r)), where m ∈ F
k,

f : Fk × F
σ 7→ F

k × F
k+σ is the oracle permutation from ICM described above and r ∈ F

σ is some

(potentially huge in comparison to m) randomness. Obviously the function Encbr is efficient and also

there exists efficient decoding function that may efficiently (using f−1 oracle) check if the codeword

is correct.

Now we are ready for introducing the theorem about an interesting property of Encbr. Please note

that this time we assume something about Z from Definiton 3.2. More specifically: We assume that Z
is computed by some Turing Machine (called leakage oracle) that is bounded by the number of queries

to the ICM oracle.

Theorem 6.1. The above Encbr is a strong (ρ, q−k+ t/qσ−ρn))-AMD code in the Ideal Cipher Model

if the number of queries to ICM oracle (made together by both the adversary and the leakage oracle)

is bounded by t.

Proof:

Let us assume that the adversary knows original m and let us denote by m′ the new value of the

message in the modified codeword. Also let us denote x = f(m, r). Now the goal of the adversary is

to construct e such that f−1(x+ e) = (m′, r′) for some r′.

During the execution, the adversary and the leakage oracle learned at most t values y1, . . . , yt
such that f−1(yj) = (m′, r′) for some r′. This means that if (x+ e) is not equal to any of such yj for

j ∈ [t], then the result is simply uniform at random so the probability of success is exactly q−k.

So, the only hope to make the probability of winning greater is to pick e such that x+ e = yj for

some 1 ≤ j ≤ t. However since H̃∞(x|Z) ≥ σ log q − ρn log q then this happens with probability

less or equal to t
2σ log q−ρn log q

= t
qσ−ρn .

These two facts about two cases above together imply the statement. ⊓⊔

Thus, this construction gives an AMD code in the Ideal Cipher Model with ρ ≈ σ
2k+σ , and κ =

k
2k+σ . In this case, we can achieve leakage arbitrarily close to 1 by having k ≪ σ.
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7. Conclusion

Theorem 5.2 and Corollary 4.4 show that strong leakage-resilient AMD codes exist if and only if

2ρ+ κ < 1, where the leakage rate is ρ and the code rate is κ.

Similarly, Theorem 5.4 and Corollary 4.6 show that weak AMD codes exist if and only if ρ+κ < 1.

Our results are asymptotically tight, but it would be interesting to prove that our bounds are tight

when the message size is small. We leave this as an open question.
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