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Abstract—Global navigation satellite systems (GNSSs) are vul-
nerable to spoofing attacks, with adversarial signals manipulating
the location or time information of receivers, potentially causing
severe disruptions. The task of discerning the spoofing signals
from benign ones is naturally relevant for machine learning,
thus recent interest in applying it for detection. While deep
learning-based methods are promising, they require extensive
labeled datasets, consume significant computational resources,
and raise privacy concerns due to the sensitive nature of position
data. This is why this paper proposes a self-supervised federated
learning framework for GNSS spoofing detection. It consists of a
cloud server and local mobile platforms. Each mobile platform
employs a self-supervised anomaly detector using long short-
term memory (LSTM) networks. Labels for training are gener-
ated locally through a spoofing-deviation prediction algorithm,
ensuring privacy. Local models are trained independently, and
only their parameters are uploaded to the cloud server, which
aggregates them into a global model using FedAvg. The updated
global model is then distributed back to the mobile platforms and
trained iteratively. The evaluation shows that our self-supervised
federated learning framework outperforms position-based and
deep learning-based methods in detecting spoofing attacks while
preserving data privacy.

Index Terms—Secure localization, GNSS spoofing detection,
federated learning

I. INTRODUCTION

Global navigation satellite systems (GNSSs) provided loca-
tion and time information is integrated into many aspects of
everyday life, with applications ranging from autonomous ve-
hicles to mobile map navigation. However, GNSS is vulnerable
to spoofing attacks, with false satellite signals tampering with
the location or time information of the GNSS receivers. This
can result in misleading navigation [1], making an autonomous
vehicle crash [2], or disrupting timing, e.g., in power systems
[3]. Furthermore, attack sophistication can range from ones
mounted with single relatively simple devices to multiple
sophisticated spoofers [4].

A multiplicity of methods has been proposed to defend
GNSS receivers, including receiver autonomous integrity mon-
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itoring (RAIM), signal processing, and statistical testing [5]–
[8]. Such schemes can be effective in detecting attacks utilizing
Doppler shift, signal-to-noise ratio (SNR), signals of oppor-
tunity (SOP), and inertial measurement unit (IMU), as these
opportunistic data and signal properties inherently assist the
detection process. These detectors are typically implemented
at individual GNSS receivers or their encompassing platforms,
with little consideration of privacy preservation or the uti-
lization of distributed data across multiple devices. Operating
in diverse volatile settings, with complex radio propagation
environments, while facing adversaries, can be challenging,
with varying attack detection performance. This calls for data-
driven methods to improve accuracy and reliability.

A promising approach to enhance detection is to collect
data from mobile platforms with GNSS and leverage machine
learning to train detection models. Deep learning-based meth-
ods [9], [10] can use signal properties and opportunistic data
as input features, e.g., power, phase, and SNR. These methods
need a large number of labeled datasets, which are costly
and labor-intensive in real-world environments. Moreover, they
require significant processing power on the server side. Beyond
these challenges, the collection and upload of data to the
server for training raises privacy concerns. Position data is
highly sensitive, which limits the sharing of data among
GNSS receivers and restricts the development of collective,
robust detection methods; thus, federated learning [11], [12]
is proposed to enhance privacy and detect GNSS attacks.

While recent federated learning approaches [11]–[14] can
be used for attack detection, none of the existing works
have explored self-supervised federated learning for GNSS
attack detection. Since labeling datasets is labor-intensive, self-
supervision is important for enabling real-time and adaptive
online training, offering greater practicality for real-world
applications. Therefore, the objective of this paper is to inves-
tigate a self-supervised federated learning framework based on
our previous GNSS attack detection scheme [8], which locally
generates spoofing likelihood as labels from its detector by us-
ing SOP and IMU. A key challenge is how to use these labels
with GNSS, opportunistic data, and signals’ properties to train
local models across mobile platforms. Another challenge is
how to federate and aggregate the local models from different
mobile platforms into a stronger global model for detection. In
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addition, due to privacy concerns, sharing datasets containing
positional, motion, and network-related information with other
mobile platforms or server is prohibited by design.

Our proposed framework contains two main parts. The
server part is a cloud server responsible for tasks such as
housing the global detector model and model aggregation.
The edge clients part involves numerous local mobile plat-
forms, each equipped with a self-supervised anomaly detector
model. These models utilize long short-term memory (LSTM)
networks, which are also well-suited for capturing temporal
dependencies in sequential data. Each platform processes a
local dataset, which includes time-series information collected
from GNSS receiver (GNSS position, automatic gain control
(AGC), carrier to noise density ratio (C/N0), Doppler shift,
etc.), network infrastructures (network position), and onboard
sensors (acceleration, attitude, etc.). The self-supervised model
is trained using the spoofing-deviation labels generated from
the method in [8]. The local mobile platforms do not upload
their local datasets to the cloud server. Instead, they transmit
only the parameters of their respective local models. Upon
receiving these parameters, the cloud server performs model
aggregation by combining them into a single global model
using the FedAvg algorithm. The aggregated global model is
distributed back to the mobile platforms and then trained again.

In the experimental evaluation, we test GNSS spoofing
data that we collected from Jammertest 2024 [15] using
multiple vehicle-mounted smartphones. The dataset includes
both independent and identically distributed (i.i.d.) and non-
i.i.d. GNSS positions and opportunistic data across different
mobile devices—the former refers to training and testing data
originating from the same trace and device, while the latter
involves data from different traces or devices. We found
that the proposed self-supervised federated learning and its
corresponding centralized learning have performance gains
over the baseline. Meanwhile, the proposed federated method
preserves position privacy for mobile platforms.

The novelty and contributions of this paper are:

• Utilization of self-supervised federated learning with op-
portunistic data for GNSS spoofing detection.

• Elimination of the requirement for labeled or annotated
datasets in deep learning-based GNSS spoofing detection.

• Performance gain over position-based and deep learning-
based methods on real GNSS spoofing detection, in terms
of accuracy.

It is also noteworthy that the above are achieved without user
privacy deterioration compared with the deep learning method
with centralized training.

The remainder of the paper is organized as follows: Sec. II
provides background and reviews related work for GNSS
attacks and learning-based countermeasures. Sec. III presents
our system model and adversary. Sec. IV details the problem
and the proposed scheme. Sec. V discusses evaluation and
comparison with baseline methods. Finally, Sec. VI concludes
the paper.

II. RELATED WORK AND BACKGROUND

This section provides an overview of GNSS attacks and
reviews related work of attack detection using machine learn-
ing techniques, including deep learning. Subsequently, we
summarize recent advancements in federated learning with a
focus on security and privacy.

A. GNSS Jamming and Spoofing Attacks

GNSS jamming disrupts receivers by transmitting high-
power radio frequency signals within or near GNSS frequency
bands, effectively overpowering the legitimate satellite sig-
nals. GNSS spoofing maliciously manipulates user position
and time, especially because civilian GNSS usually lacks
authentication, and the protocol, encoding, and modulation are
publicly available. Even if GNSS signals were authenticated,
the attacker can launch a relaying or replaying attack on GNSS
[16]. Prior to spoofing, GNSS jamming is often used to force
the GNSS receiver out of the satellite signal lock [17]. The
simplest way of generating a spoofing signal is meaconing,
which is the retransmission of legitimate GNSS signals with
a time delay [16]. However, if the receiver has an accurate
timer and already knows its recent location, the delayed time
introduced by the meaconer will result in a sudden time shift,
which may be detected. A variation of meaconing, selective
delay, can rebroadcast individual satellite signals [18]. This
can modify the position solution only without changing the
time. Other sophisticated spoofing attacks can overcome more
technical limitations, such as portable spoofers, which are
attached to the victim [19]. Additionally, [20] focuses on the
strategy of global positioning system (GPS) spoofing, which
combines the road contextual information of the city map and
can generate a designed route for spoofing a moving receiver.

B. Artificial Intelligence for GNSS Security

Machine learning, particularly deep learning, against GNSS
attacks has shown promising potential and gained momentum,
utilizing a range of models such as random forest [21], support
vector machine (SVM) [9], [21], multilayer perceptron (MLP)
[10], [22], [23], convolutional neural network (CNN) [22],
[24], [25], Gaussian mixture model (GMM) [26], LSTM [24],
[27], and recurrent neural network (RNN) [27].

For detecting GNSS jamming, [21] focuses on analyzing
three common GNSS interference signals by extracting various
entropy features (e.g., power spectral entropy), creating a com-
bined entropy dataset, and utilizing SVM and radio frequency
methods to classify the signals. Alternatively, [9] treats the
classification of jammers in GNSS bands as a black-and-
white image classification problem. Time-frequency analysis
and image mapping of jammed signals are used to categorize
the received signal into six classes. This method achieves
notable classification accuracies of up to 94.90% with SVM
and up to 91.36% with CNN.

To detect GNSS spoofing, [22] explores a cross-ambiguity
function to train data-driven models for probabilistic classifi-
cation, which focuses on each satellite individually and makes
use of complex neural networks, including an MLP and two



types of CNNs. In [26], a GMM-based unsupervised method
detects and mitigates GNSS signal spoofing by clustering
the positions generated by the benign GNSS signals and
isolating spoofed pseudoranges. Furthermore, [24] utilizes
both CNN and LSTM to identify a spoofer by classifying the
pairwise cross-correlation of different receivers and comparing
the cyclic profiles, then observes that CNN achieves the
highest accuracy. LSTM for anomaly detection leverages the
predictability of the Doppler traits of the received GNSS
signals: the data was collected using cost-effective software-
defined radio (SDR) receivers and processed on affordable
embedded platforms (e.g., Jetson Nano) to predict Doppler
shift for spoofing detection [27].

When GNSS signals are mixed up with jamming, spoofing,
and other interference signals, a robust deep learning technique
combined pre-trained CNN with transfer learning to detect and
classify disruptions of GNSS signals based on time-frequency
analysis in [25]. An artificial neural network (ANN) trained by
particle swarm optimization is proposed to detect various types
of interactions affecting GNSS [23]. By using received signal
power and distortion in the correlation function as feature vec-
tors, this ANN classifies received signals into categories such
as jammed, spoofed, multi-path afflicted, or interference-free.
[28] introduces the GNSS-Finland monitoring platform, which
employs the FinnRef reference network and deep learning
methods to analyze big data from GNSS-Finland to identify
trends in signal quality, detect anomalies, assess continuity,
and forecast crucial failures in positioning and timing.

However, the limitations of these machine learning meth-
ods come when high-quality training data with annotation is
unavailable. Additionally, when processing non-i.i.d. datasets,
the offline deep learning models face challenges in achieving
generalization.

C. Federated Learning for Security and Privacy

Federated learning [29] has emerged as a promising ap-
proach for training machine learning models while addressing
privacy concerns. Instead of transferring the raw dataset to a
central server for training, participating devices collaboratively
train the model locally and share only the model updates
(gradients or weights) with the central server.

Considering the application of federated learning in security,
since the increasing deployment of Internet-of-Things (IoT)
devices in daily life has resulted in many vulnerable devices,
yet existing intrusion detection techniques are ineffective due
to the massive scale of the problem and diverse types of de-
vices and manufacturers involved. Therefore, [13] introduces
an autonomous self-learning distributed system that utilizes
device-type-specific communication profiles to detect anoma-
lous deviations in communication without human intervention
or labeled data, leveraging a federated learning approach for
efficient profile aggregation, making it the first system to
employ this approach for intrusion detection based on anomaly
detection. FedCRI in [14] is a solution for sharing cyber-
risk intelligence, wherein mobile cyber-risks were transformed
into effective risk detection models based on contributions

from different mobile service providers, and their extensive
evaluation on real-world user databases representing 23.8 mil-
lion users of security-critical mobile apps, enabling effective
identification of risks on mobile devices.

Federated learning has also proven its success in privacy-
preserving applications beyond security. To improve next-word
prediction in smartphone virtual keyboards, Google deploys
an RNN language model trained using federated learning
[30], a distributed on-device learning framework and the
effectiveness of server-based training with stochastic gradient
descent is compared to client device training, which showcases
the advantage of training language models on client devices
without compromising user data privacy and gives users more
control over their data usage. Similarly, for object detection
in autonomous driving systems, [31] proposes a federated
learning-based approach that preserves data privacy while
maintaining performance by training the model in a decentral-
ized manner and analyzes the impact of this decentralized ap-
proach on object detection performance in a real-world traffic
environment. In addition, the challenge of deep learning-based
medicine lies in finding sufficiently large and diverse datasets,
which are rare in individual institutions, leading to privacy and
ownership challenges. Then, in [32], through a paradigm for
data-private multi-institutional collaborations, models trained
among 10 institutions achieve 99% of the quality achieved
with centralized data.

Despite its advantages, federated learning is vulnerable to
adversarial attacks. Current defenses either rely on techniques
such as differential privacy or analyze model weights using
outlier detection methods limited to specific data distributions,
so [33] proposes CrowdGuard, a model filtering defense that
leverages client data and secure enclaves to analyze individual
models without data leaks. It introduces a novel metric to ana-
lyze network hidden layer outputs, coupled with a significance-
based detection algorithm, enabling effective detection of
poisoned models even in non-i.i.d. scenarios. Metric-Cascades
in [34] use multiple detection metrics, such as Euclidean
magnitude and direction, to filter poisoned model updates.
The evaluation demonstrated that it successfully distinguishes
backdoors from distortions, making it the first defense resilient
to strong adaptive adversaries in real-world scenarios with
minimal overhead. On the other hand, a malicious server
can also use uploaded models to derive sensitive information.
Hence, a decentralized framework is proposed in [35] that
utilizes multi-party computation primitives like secret sharing,
providing strict privacy guarantees against curious aggregators
or colluding data owners.

III. SYSTEM MODEL AND ADVERSARY

As shown in Fig. 1, we consider multiple mobile GNSS
platforms (e.g., smartphone, car, and drone) equipped with
common modules (e.g., Wi-Fi, Bluetooth, cellular, IMU, and
speed sensors), and streaming signal-level properties from
satellites (AGC, antenna C/N0, baseband C/N0, and Doppler
shift). The platforms are connected to a cloud server, which is
curious but honest, so sharing datasets that contain location,
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Fig. 1. System and adversary model illustration.

motion, and network information with the cloud server or other
mobile platforms is not acceptable.

Provided that a GNSS position attack is available, when
a mobile platform moves and navigates within the attack
area, the GNSS-provided location will deviate from the actual
location. As a result, network-provided positions, motion in-
formation, and signal-level properties will be inconsistent with
GNSS position information and its benign behavior. However,
the training data (encompassing the GNSS receiver, network
infrastructures, and onboard sensors) is not manually labeled
or annotated to indicate “benign” or “under attack”. Mobile
platforms may differ, i.e., they may be navigating in different
areas and using different hardware. This results in a so-called
non-i.i.d. data situation. Similarly, if the hardware were the
same and the navigation traces were similar, the data could be
considered i.i.d..

The external adversary uses spoofed or replayed/relayed
GPS and/or Galileo signals to force GNSS receivers to in-
correctly compute their positions (and/or time) [16], [36]–
[38]. We assume that the adversary knows the victim location
and can use state-of-the-art attack techniques. We assume the
attacker only operates within the GNSS domain and does not
attack other network infrastructures, including cellular and Wi-
Fi communications. Additionally, we assume the attacker does
not have physical control over the server and mobile platforms,
and thus cannot manipulate the process of deriving detection
models and model parameters.

Notations. We denote the position of the mth mobile plat-
form at time t is located at the coordinates ptrue(m, t) ∈ R2,
where m = 1, 2, ...,M ; M is the total number of mobile
platform. The said platform has a GNSS provided position
pgnss(m, t), a network-provided position pnet(m, t), as well
as speed v(m, t), acceleration a(m, t), attitude ω(m, t) from
onboard sensors, and GNSS signal properties s(m, t), which
encompasses mean, median, minimum, and maximum values
of AGC, antenna C/N0, baseband C/N0, and Doppler shift.

IV. PROPOSED SCHEME

The proposed scheme uses a federated self-supervised
learning-based detection framework, as depicted in Fig. 2. This
framework allows for effective collaboration and online knowl-
edge sharing among mobile platforms while safeguarding the
privacy of user data.

The mobile platforms collect pgnss(m, t), pnet(m, t),
v(m, t), a(m, t), ω(m, t), and s(m, t) to construct local

datasets (Sec. IV-A). Each platform trains an LSTM regression
model in Sec. IV-C using its local dataset as input with
the generated labels from Sec. IV-B, and then uploads the
model parameters to the cloud server. The cloud server adopts
the FedAvg algorithm to aggregate model parameters trained
based on the distributed datasets (Sec. IV-D) to improve both
the accuracy of spoofing detection and data privacy.

A. Feature Engineering

On each mobile platform, we construct two kinds of fea-
tures from the local dataset: position-based and signal-based
features.

The position-based features stem from our previous scheme
[8], which provides a secure fused position µ ∈ R2 with
uncertainty σ ∈ R2 using pgnss(m, t), pnet(m, t), v(m, t),
a(m, t), and ω(m, t). Four elements are encompassed: the
estimated position residual and uncertainty of latitude and
longitude, calculated by {µ(m, t)−pgnss(m, t), σ(m, t)} ∈ R4.
The signal-based features are four statistics of satellite signals.
We calculated mean, median, minimum, and maximum values
of the following physical properties for GPS L1 and Galileo
E1 (can be extended to other constellations):

• AGC: Regulates signal amplitude by automatically ad-
justing the receiver’s gain to compensate for variations in
signal power, which can also indicate interference.

• Antenna C/N0: Represents the ratio of the signal power
to the noise power density at the antenna, influenced by
atmospheric conditions, satellite elevation, and interfer-
ence.

• Baseband C/N0: Measures the signal quality after down-
conversion and filtering, similar to antenna C/N0.

• Doppler shift: Captures frequency changes caused by
satellite-receiver relative motion, essential for satellite
fingerprint construction and velocity estimation.

In a benign environment, AGC, C/N0, and Doppler shift
of different satellites should be different for each satellite.
However, spoofing often causes artificially similar values and
typically higher signal power. These signal-based features
have 4 × 4 × 2 elements, corresponding to four types of
statistics, four properties, and two constellations. Hence, the
extracted feature set includes 32 signal-based elements and
four elements representing the estimated position residual and
uncertainty in latitude and longitude, in a total of 36 elements.

Moreover, features are normalized and cleaned within the
local dataset. For the position-based features, the estimated
position residual and uncertainty may contain extreme values.
To mitigate extremes, values exceeding the 95th percentile are
capped at the 95th percentile threshold. In the signal-based
feature, some signal properties contain invalid values (e.g.,
missing or faulty measurements). These invalid values are
replaced with the minimum value within their respective valid
range. Finally, a min-max scaling strategy is applied separately
to each feature type. Each feature is rescaled to the range [0, 1]
to ensure stable training.
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Fig. 2. Overview of self-supervised federated GNSS spoofing detection.

B. Label Generation

Self-supervised labels are generated based on the method
proposed in [8]. The generation uses pgnss(m, t), pnet(m, t),
v(m, t), a(m, t), and ω(m, t) to compute a scalar value of the
estimated GNSS position deviation, normalized to the range
[0, 1], for each (m, t) in a fully automated manner.

We first compute the Euclidean norm of the estimated
position residual, µ(m, t)−pgnss(m, t) (the difference between
the secure fused position in [8] and GNSS position), to
obtain a scalar representation of the estimated GNSS deviation.
To remove extreme values, deviations exceeding the 95th
percentile are capped at this threshold. Finally, we apply min-
max scaling to normalize the values.

These normalized values serve as self-supervised labels,
representing the estimated GNSS position deviation at each
(m, t). As they are generated entirely locally without any
external manual annotation, this approach enables self-
supervised learning. Note that the algorithm used for the
generation of these labels is not a contribution of this work;
instead, we use these labels to build our self-supervised
federated learning for GNSS spoofing detection.

C. Model Structure

We implement the detection model based on an LSTM
neural network on each mobile platform, as LSTM is well-
suited for processing time series data. The network input is
the features from Sec. IV-A, and the output is a scale value in
[0, 1]. The objective is to capture the temporal dependencies
of each signal feature and identify anomalies.

Layer structure. The model contains two LSTM layers and
a fully connected output layer. The first LSTM layer contains
100 units, which takes time series feature input and outputs a
sequence of hidden states at each moment. The second LSTM
layer also contains 100 units but processes the sequence of
hidden states from the first layer and outputs the hidden state
at the last time step only.

Activation function. In the last fully connected layer, we
use the Sigmoid activation function to output a probability
value to indicate whether the current position is a result of
GNSS spoofing.

Loss function. The loss function of the model uses the
mean squared error (MSE) to reduce the prediction error of
deviation.

Batch size and learning rate. The batch size of the model
is set to 72; the learning rate is adjusted proportionally to adapt
to the different data volumes of each device.

Early stopping strategy. The EarlyStopping strategy is
used in training. When the verification loss does not improve
after 20 epochs, the training is stopped to avoid overfitting.

D. Model Aggregation

Mobile platforms do not upload local datasets but upload
trained local model parameters. The cloud server aggregates
these local model parameters and uses the FedAvg algorithm
to average them to form a global model. The server sends
global model parameters to all devices after each iteration to
achieve continuous learning. It performs multiple iterations of
aggregation on the local dataset of different devices to improve
the generalization ability of the model.
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Fig. 3. Jammertest main test area (right) and mounted smartphones in a
vehicle (left).

E. Quality Control

After the global model undergoes sufficient rounds of fed-
erated training, its detection accuracy should stabilize. At this
point, the system initiates a quality control process to assess
parameter updates from each local model. In each learning
iteration, upon receiving a local model update, the cloud server
distributes this update to other participating mobile platforms
for independent evaluation on their respective local datasets.
Then, the mobile platforms upload the predicted labels, and
the server computes a performance metric—specifically, the
area under the curve (AUC) score—based on these uploaded
labels and the predictions from the previous global model. The
FedAvg algorithm will only accept this parameter update (from
a local model) if the metric is better than a criterion threshold.
Given that we only consider all participants who contribute
model parameters that are benign, the quality control here aims
to filter out low-quality data samples.

V. EXPERIMENTAL EVALUATION

As shown in Fig. 3, our GNSS spoofing dataset is sourced
from Jammertest 2024 [15], and includes data collection
from six Android smartphones. Phone 1 and Phone 4 are
Google Pixel 8. Phone 2 and Phone 6 are Google Pixel 4
XL. Phone 3 is Xiaomi Redmi 9, and Phone 5 is Samsung
Galaxy S9. All smartphones support multiple constellations,
while only Google Pixel 4 XL and Pixel 8 support double
frequencies. The dataset consists of 85 drive-testing traces in
total that were recorded throughout the day, from morning to
evening, around Bleik town. The smartphones record times-
tamps, GNSS positions, network positions, IMU data, and
GNSS signal properties (AGC, antenna C/N0, baseband C/N0,
and Doppler shift) via Android APIs. Ground truth positions
are obtained from two u-blox ZED-F9P receivers using benign
constellations with the help of a nearby reference station. La-
bels for self-supervised learning are generated locally through
the opportunistic data fusion algorithm [8], as Sec. IV-B.

The deep learning framework is Keras with a TensorFlow
backend, and we choose LSTM module to process time series
data, so it can capture temporal dependencies in features.
Regarding the federated learning part, we implement the
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Fig. 5. ROC curves of the proposed self-supervised detection for each
smartphone based on their local i.i.d. data.

FedAvg algorithm on the cloud server to average all local
model parameters. Additionally, we do not simulate processing
overhead, transmission delays, or packet loss in wireless
communications between the server and clients.

We have different train/test data-splitting methods. One
is to split the data based on different smartphones without
considering different traces. Another is to randomly choose
10% of traces for testing, while the rest of the traces are for
training. In addition, as our detection is self-supervised, we use
the entire dataset for training and testing for the comparison
of centralized or federated detection.

A. Evaluation Metrics

To evaluate the performance of the proposed scheme,
we use true positive rate (RTP) versus false positive rate
(RFP) and plot receiver-operating characteristic (ROC) curves.
Additionally, we calculate AUC values, which are the area
under the ROC curves. To systematically evaluate different
scenarios, our experiments analyze the metrics across same-
device training and testing, same-model training and testing,
and cross-model generalization using same or different traces.
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each smartphone model. Training and testing data are collected from the same
smartphone model and driving traces.

B. Evaluation Results

1) Comparison Between Centralized and Federated:
We compare the detection accuracy of the proposed self-
supervised detection in a centralized or federated manner with
the position-based detection scheme (PDS) [8]. ROC curves
for the methods of position fusion, centralized training, and
the proposed federated learning are shown in Fig. 4. We find
ROC curve and training loss value of the proposed become
stable after 600–1000 epochs. The centralized training curve
has an AUC value of 86.6%. The federated learning curve’s
AUC is 87.4%, while the curve of PDS is 83.5%.

This comparison shows that the self-supervised learning-
based approach outperforms the baseline method, and validates
that federated learning can achieve competitive performance
compared to centralized training. Furthermore, the proposed
scheme has at most 10% true positive rate gain over PDS [8]
in Fig. 4, and preserves location data privacy.

In our scheme, centralized training achieves a higher accu-
racy than federated one, when RFP < 10%. This phenomenon
is common in federated learning due to data samples being
sequential and shuffled across batches in centralized training.
In contrast, federated learning involves parallel training across
clients, where each client trains on relatively unrefined models
and locally available data. As a result, the model struggles to
generalize effectively by capturing shared patterns across the
entire dataset.

2) Generalization Between Different Devices: This evalua-
tion aims to assess the generalization performance of the pro-
posed method across different devices, both within individual
devices and among devices of the same smartphone model.

First, we compare the detection accuracy of the pro-
posed self-supervised detection within every individual phone,
termed one device training and same device testing. The result
is shown in Fig. 5. The phones will not upload data; instead,
they conduct training and testing of detectors separately and
locally. Phone 1 and Phone 4 are the exact smartphone model,
but the data of collected driving traces are different (non-i.i.d.).
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Fig. 7. ROC curves of the proposed self-supervised federated detection for
different smartphone models. Train/test data-splitting is based on smartphone
model: Training data is collected from one smartphone model and testing data
from another model, both obtained along the same driving traces.

Phone 2 and Phone 6 are also the same smartphone model,
while Phone 3 and Phone 5 refer to different smartphone mod-
els. We can observe that the true positive rate of our algorithm
for the Google Pixel 4 XL phones is not as good as other
phones. These varying levels of performance across different
phone models are potentially due to hardware differences or
non-i.i.d. data distributions.

Then, we conduct self-supervised federated detection within
devices of the same smartphone model name, termed one
model training and same model testing. The result is shown
in Fig. 6. Compared with the results of individual device
training and testing in Fig. 5, federated detection within
a smartphone model has higher accuracy, highlighting the
benefits of collaborative training.

Similarly, we attempt to train the detection using the devices
of one smartphone model and test the detection using other
smartphone models, termed one model training and different
model testing. The result is shown in Fig. 7. The curve of
Phone 1&4 uses Google Pixel 8 phones for training and all
other phones for testing; the curve of Phone 2&6 uses Google
Pixel 4 XL phones for training and all other phones for testing.
We observe that the detector cannot perform well on a given
hardware model if it has not been trained on data from the
same model.

3) Generalization Between Different Traces: Different from
the previous comparisons that use the same trace for both
training and testing, this experiment divides the traces into
training traces and testing traces.

In Fig. 8, we compare the performance of the proposed
self-supervised detection in a centralized or federated manner.
The centralized training curve has an AUC value of 86.5%.
The federated learning curve is 86.7%, while the PDS curve
is 83.4%. These AUC values and their corresponding curves
closely match those depicted in Fig. 4, i.e., 0.7% difference
at most. This indicates that the proposed method is good at
generalizing between different traces.

Likewise, we compare the detection accuracy of the pro-
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Fig. 8. ROC curves of the centralized and federated self-supervised detection,
and the position-based detection. Train/test data-splitting is based on driving
trace: 10% of traces are randomly chosen for testing, while the rest of the
traces are for training.
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Fig. 9. ROC curves of the proposed self-supervised detection for each
smartphone. Train/test data-splitting is based on driving trace. Specifically,
for each curve, training and testing data are from the same smartphone but
with different traces.

posed self-supervised detection within every individual phone,
but with different traces for training and testing. The results
in Fig. 9 show similar true positive rate curves and relative
performance gains to those in Fig. 5.

Next, we conduct self-supervised federated detection within
devices of the same smartphone model name but using dif-
ferent traces for training and testing. Compared to Fig. 6,
which is based on i.i.d. data where the same traces are
used for both training and testing, Fig. 10 shows a similar
performance. However, we observe that their true positive
rate is a bit lower than Fig. 6. Additionally, detection perfor-
mance varies across different smartphone models: Phone 1&4
achieves much higher accuracy than Phone 2&6. This may
be attributed to the larger training set available for Phone 1&4
(9899+10626 samples) compared to Phone 2&6 (6238+6734
samples). A larger dataset generally improves accuracy, and
the transition from an i.i.d. setting (Fig. 6) to a non-i.i.d. setting
(Fig. 10) also introduces additional generalization challenges.
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Fig. 10. ROC curves of the proposed self-supervised detection for each
smartphone model. Training and testing data are collected from the same
smartphone model but with different driving traces, i.e., train/test data-splitting
is based on driving trace.
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Fig. 11. ROC curves of the proposed self-supervised detection for different
smartphone models. Training and testing data are collected from different
smartphone models and driving traces. Specifically, the curve for Phone 1&4
is trained on Google Pixel 8 and tested on other phones. Within each model,
the train/test split is further based on driving traces.

Furthermore, similar to Fig. 7, we extend our evaluation
by training the detector on devices of one smartphone model
using traces of the training set, then testing it on a differ-
ent smartphone model with different traces. The results are
presented in Fig. 11. Fig. 7 and Fig. 11 show a similar
performance, as both involve non-i.i.d. training and testing
settings. The key difference is that Fig. 11 needs a more
comprehensive generalization, since it introduces the train-test
split for both the smartphone model and the driving traces.

C. Discussion

Our detection method is self-supervised and federatively
trained by multiple devices that provide heterogeneous traces
and opportunistic data. Unlike existing deep learning-based
detections, the proposed method does not require manual
annotation for training data, meaning that its training process
is self-supervised by the labels generated from a traditional



detection, PDS [8]. Interestingly, while PDS provides training
labels for the proposed federated detection, the proposed
method outperforms PDS in accuracy. Additionally, without
any loss of privacy, each device transmits only model param-
eters instead of position-related data.

The proposed federated detection can be generalized to
different situations, and we show the generalization of the de-
tection model through a comprehensive evaluation. It evaluates
on different devices, smartphone models, and driving traces.
The results demonstrate that the method performs robustly on
i.i.d. and non-i.i.d. data.

D. Limitations and Roadmap

We observe that the detection performance on Pixel 4 XL
(Phone 2 and Phone 6) is lower than that on other smartphones.
Based on feature engineering, this may be because Pixel 4 XL
has a significantly different distribution of signal power from
satellites than other smartphones. Furthermore, the dataset
size, including network position data, for the Pixel 4 XL is
much smaller than that of the Pixel 8.

Our next step is to implement this self-supervised federated
detection in a real-world wireless communication environment.
Although the current evaluation is based on a real-world
dataset, the federated learning algorithm has not yet been
deployed on actual mobile platforms with live communication.
Communication will introduce network delay and loss, which
may affect our detection. Furthermore, we currently consider
all mobile platforms to be benign and honestly contribute
model parameters. If attackers participate in model aggrega-
tion, we need to introduce more practical defense mechanisms,
supported by theoretical analysis, to defend against attacks.

VI. CONCLUSION

In this paper, we present self-supervised federated GNSS
spoofing detection leveraging opportunistic data that enables
mobile platforms to share knowledge about GNSS spoofing
without leaking position privacy. Furthermore, it achieves
better privacy preservation and detection performance than
existing position-based and deep learning-based methods due
to the expected benefits of self-supervised and federated GNSS
spoofing detection. Labels are generated by PDS [8], which
are used to train local LSTM models immediately. The LSTM
input features include estimated position deviations and fea-
tures derived from GNSS signals. Local model parameters are
uploaded to a server, not the actual measurements, and then
the server performs model aggregation and quality control.
Our evaluation using a real-world dataset from Jammertest
2024 shows performance improvements and exhibits a good
generalization across different devices, smartphone models,
and driving traces.
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