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Abstract. Private Information Retrieval (PIR) schemes enable users to
securely retrieve files from a server without disclosing the content of their
queries, thereby preserving their privacy. In 2008, Melchor and Gaborit
proposed a PIR scheme that achieves a balance between communication
overhead and server-side computational cost. However, for particularly
small databases, Liu and Bi identified a vulnerability in the scheme using
lattice-based methods. Nevertheless, the rapid increase in computational
cost associated with the attack limited its practical applicability, leaving
the scheme’s overall security largely intact. In this paper, we present a
novel two-stage attack that extends the work of Liu and Bi to databases
of arbitrary sizes. To this end, we employ a binary-search-like prepro-
cessing technique, which enables a significant reduction in the number of
lattice problems that need to be considered. Specifically, we demonstrate
how to compromise the scheme in a matter of minutes using an ordinary
laptop. Our findings are substantiated through both rigorous analytical
proofs and comprehensive numerical experiments.

1 Introduction

Private Information Retrieval (PIR) schemes enable users to access data from a
server while preventing the server from inferring the specific file being requested.
Thus, PIR schemes maintain the confidentiality of users’ queries. However, this
process introduces significant computational overhead. In the worst-case sce-
nario, the user would have to download the entire database to securely conceal
the query. Although the request remains hidden, this solution is impractical for
large databases with many files. However, as demonstrated in [3], this is the only
method to achieve information-theoretical secrecy.

As a more practical alternative, the concept of computationally secure PIR
schemes has emerged, providing a trade-off between privacy and communica-
tion cost. The majority of PIR schemes focus on optimizing communication cost
while ensuring a predetermined level of security. In 2008, Melchor and Gaborit
[8] introduced a PIR scheme that addressed both communication costs and the
often-overlooked computational burden on the server side. The authors aimed

http://arxiv.org/abs/2505.05934v1


2 Svenja Lage

at balancing both aspects to develop a secure and efficient PIR scheme. How-
ever, in 2016, Liu and Bi [6] discovered a linear relationship between the queries
and the secret noise matrix holding the information about the desired file index,
which can be exploited using a lattice reduction approach. However, their attack
requires performing an amount of lattice reductions which grows linearly with
the number of files in the database, rendering it infeasible for large databases.

In this paper, we propose a two-stage attack that compromises the scheme
for databases of all sizes. Our approach involves adding a preprocessing step
that significantly reduces the number of lattice reductions required, allowing
the original attack to be applied subsequently. The time complexity of our im-
proved attack grows only logarithmically with the number of files in the database,
making it possible to consider arbitrarily large databases. After introducing the
original scheme and the initial attack, Section 5 describes our enhanced attack
and proves its correctness. Subsequently, a numerical analysis is presented to
underscore the efficiency of the attack.

2 Preliminaries

We first introduce some definitions and results needed for the subsequent sec-
tions. For a prime p, let Zp be the finite field with p elements and denote the
set of all n × m matrices over Zp by Mn,m(Zp). For the special case of square
matrices, we write Mn(Zp). The subset of all non-singular n × n matrices over
Zp is denoted by GLn(Zp). For any A ∈ Mn,m(Zp), we use A|[u:v,:] to refer to
the submatrix of A consisting of rows u through v and A|[:,u:v] to refer to the
submatrix of A consisting of columns u through v.

A lattice L ⊂ Rd is formally defined as a discrete subgroup of Rd. For a set of
linearly independent vectors B = [b1, . . . , bn] with bi ∈ Rd, the lattice generated
by B is defined as

L(B) = {y ∈ Rd : y = Bx for some x ∈ Zn}. (1)

The matrix B is called a lattice basis, while n is referred to as the rank of the
lattice.
In this work, we focus on q-ary lattices, which are defined as

Lq(B) = {y ∈ Zd : y = Bx mod q for some x ∈ Zn
q }

for a fixed q ∈ N and B ∈ Zd×n
q . The lattice basis in q-ary lattices is defined

as the columns of the matrix E = (B | qId), where Id denotes the d-dimensional
identity matrix. This augmented matrix construction enables the lattice to si-
multaneously capture the linear combinations generated by B and the modular
reductions imposed by the parameter q. Utilizing the basis E, we can display
the q-ary lattice as an ordinary lattice L(E) as defined in (1). Conversely, every
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lattice L with qZd ⊆ L ⊆ Zd is an q-ary lattice.

In lattice theory, the Shortest Vector Problem (SVP) is fundamental and
provides a basis for numerous cryptographic applications. It can be stated as
follows.

Definition 1 (Shortest Vector Problem (SVP)) Given a basis B of a lat-
tice L and a norm || · ||, find a non-zero vector v ∈ L such that

||v|| = min
u∈L\{0}

||u||.

The SVP seeks the shortest non-zero lattice vector with respect to a given norm.
Unless otherwise specified, in the following sections, any reference to a norm,
denoted as || · ||, shall be interpreted as the Euclidean norm. The computational
complexity of SVP depends on the problem’s dimensionality and the quality of
the lattice bases provided. However, in the Euclidean norm, the SVP is at least
known to be NP-hard under randomized reductions [1].

Closely related to the SVP is the Closest Vector Problem (CVP), which asks
for the lattice vector nearest to a given target vector t. The CVP is known to
be NP-hard in the Euclidean norm [4].

Definition 2 (Closest Vector Problem (CVP)) Given a basis B of a lat-
tice L, a target vector t /∈ L and a norm || · ||, find a vector v ∈ L such that

||v − t|| = min
u∈L

||u− t||.

In our subsequent attack, we are initially confronted with an instance of the
Closest Vector Problem on a lattice L and target vector t. Given the existence
of more efficient solvers for Shortest Vector Problems, we leverage Kannan’s
embedding technique [5] to transform the CVP into a higher-dimensional SVP.

Kannan’s approach starts with a short basis B ∈ Zd×d of the lattice L,
where a short basis is characterized by its reduced norm and nearly orthogonal
vectors. If the initial basis B does not already possess these desirable properties,
a lattice reduction algorithm is utilized to transform B into a short basis, thereby
optimizing its form for subsequent computations. As a second step, an embedded
lattice with basis

(

B t
0 M

)

∈ Z(d+1)×(d+1)

is constructed for an embedding factor M ∈ N. Calculating the shortest vector
(e,M)T in the embedded lattice, we obtain the closest vector to t by consid-
ering the vector (t − e). According to [10], the selection of M has a significant
impact on the difference between the shortest and the second shortest vector in
the embedded lattice. When M is excessively large, the gap between these vec-
tors diminishes, thereby complicating the task of identifying the shortest vector.
Conversely, the probability of Kannan’s embedding technique failing to produce
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the closest vector to t rises as M decreases. As suggested by [10], a balanced
trade-off for M is to select a value proportional to the expected value of ||e||.
However, each application necessitates a separate study of the optimal choice of
M .

To estimate the number of lattice points within a certain distance to a given
point, we employ the following definitions. The d-dimensional sphere of radius
R > 0 centered at x ∈ Rd is denoted by BR(x) with

BR(x) = {y ∈ Rd : ||y − x|| ≤ R}.

Let NR(x) represent the number of integer points within BR(x), which is given
by

NR(x) = |{y ∈ Zd : ||y − x|| ≤ R}|.

Estimating NR(x) precisely is non-trivial. However, for d ≥ 4, it can be shown
[2], that NR(x) can be approximated by the volume of the d-dimensional sphere
as

NR(x) =
π

d
2

Γ
(

d
2 + 1

)Rd + O(Rd−2),

where Γ (·) denotes the Gamma function and O(·) represents the big O nota-
tion. It is important to note that shifting the center x between integers does not
change NR(x). However, shifting x to a non-integer point does indeed influence
the number of integer points within the sphere, as demonstrated in [7].

3 The original PIR scheme

The authors of [8] introduced a lattice-based PIR scheme, which operates on a
database consisting of n files, each represented as an L×N matrix, A1, A2, . . . , An

over Zp. The user aims to retrieve the file indexed by i0 ∈ {1, 2, . . . , n}, while
ensuring that no information about i0 is disclosed to the server. In this scheme,
the parameter N is a crucial scheme parameter influencing the lattice size. Mean-
while, the parameter L is chosen to be sufficiently large to allow for the encoding
of all files within the database.

3.1 Query generation

For each file in the database, the user generates a query Bi, i = 1, . . . , n, where
Bi ∈ MN,2N(Zp) is calculated according to the following procedure.

1. Define the parameters l0 and q as l0 = ⌈log(nN)⌉ + 2 and q = 22l0−1,
respectively. Additionally, a prime number p is chosen such that p > 23l0 ,
thereby guaranteeing that q remains small compared to p.
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2. Two random matrices, M1 ∈ GLN (Zp) and M2 ∈ MN(Zp), are generated,
along with a random scrambling matrix ∆ ∈ GL2N (Zp). These matrices will
be utilized in the construction of all query matrices B1, B2, . . . , Bn and must
be stored for later use during information extraction.

3. For each i = 1, . . . , n generate a random matrix Pi ∈ GLN (Zp). In addition,
randomly generate noise matrices ǫi ∈ {−1, 1}N×N .

4. For the index of interest i0, modify the noise matrix by multiplying its diago-
nal entries with q. This step embeds the index of interest into the amplitude
of the noise, which conceals the user’s query.

5. For each i = 1, . . . , n compute the query matrix Bi as

Bi = [PiM1 |PiM2 + ǫi]∆.

Finally, the user transmits the request tuple (B1, . . . , Bn, p) to the server, thereby
initiating the privacy-preserving retrieval process.

3.2 Answer encoding

In the database, the files A1, . . . , An are represented as L ×N matrices, where
each entry is an l0-bit scalar. In response to a query, the server computes the
L × 2N matrix R as R = AB, where A is the L × nN matrix obtained by
horizontally concatenating the individual file matrices A1, . . . , An. Formally, A
is given by

A = [A1| . . . |An] ∈ ML,nN(Zp).

The matrix B is the nN × 2N matrix constructed by vertically stacking the
transposes of the query matrices B1, . . . , Bn, i.e.,

B = [BT
1 | . . . |BT

n ]
T ∈ MnN,2N(Zp).

The server performs the matrix multiplication over Zp and returns R as the
response to the user’s query.

3.3 Information extraction

Once the server encodes the query response, the user can extract the file Ai0 from
the matrix R. To this end, the user adopts a row-wise approach. Specifically, for
each row Vi, i = 1, . . . , L, of R the user employs the following procedure.

1. Since ∆ is invertible, calculate ∆−1 and unscramble Vi as

V ′
i = Vi∆

−1.

2. The user partitions the modified row V ′
i into two segments: the undisturbed

part V ′
i (U), comprising the first N columns, and the disturbed part V ′

i (D),
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consisting of the remaining N columns. Subsequently, using that M1 is non-
singular, the user computes the error vector ei as

ei = V ′
i (D)− V ′

i (U)M−1
1 M2.

It is noteworthy that the error vector ei depends solely on the noise matrices
and the database files. Furthermore, the information extraction process only
requires knowledge of the matrices M1, M2, and ∆, thereby obviating the
need for the user to store the matrices P1, . . . , Pn at high cost.

3. For each entry ei,j , j = 1, . . . , N in ei set

e′i,j =

{

p− ei,j if ei,j >
p

2

ei,j else.

4. Calculate

e′′i,j =

{

e′i,j − (ei,j mod q) if (e′i,j mod q) < q

2

e′i,j − (ei,j mod q) + q else

for every j = 1, . . . , N .
5. Given that the elements of the file Ai0 are related to the error vector e′′i,j by

Ai0 [i, j] =
e′′i,j
q

for every j = 1, . . . , N , the user can reconstruct the file Ai0

by iterating over all rows Vi of R.

Although the authors don’t claim particular security levels, they analyze the
scheme’s vulnerability to lattice and structural attacks. For practical implemen-
tation, they finally recommend using the parameters l0 = 20, q = 239, N = 50,
p = 260 + 325, and a maximum database size of n ≤ 10, 000. As intended, the
authors demonstrate that the PIR scheme can be viewed as a trade-off between
communication costs and computational costs.

4 The first attack

As demonstrated by the authors in [6], a linear relationship between the query
B = (B1, . . . , Bn)

T and the noise matrices ǫ = (ǫ1, . . . , ǫn)
T can be established.

This linear relationship reveals a vulnerability in the scheme, particularly for
small databases. Since our attack builds upon their approach, we provide a brief
summary of their method.
Consider the lattice

Lp(B) = {y ∈ ZnN : y = Bx mod p for some x ∈ Z2N
p }.

The structural properties of B enabled the authors to demonstrate [6, Theorem
1], that the columns of ǫ are themselves contained within the lattice. This, in
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turn, implies the existence of a bridging matrix D ∈ M2N×N(Zp), such that







B1

...
Bn






D =







ǫ1
...
ǫn






(2)

with the multiplication performed in Zp. The entries of the columns of ǫ are
restricted to values in {−1, 1}. The only exception is the diagonal entries of ǫi0 ,
which take values in {−q, q}. Given that q is significantly smaller than p, the
columns of ǫ can be characterized as short lattice vectors.

Initially, it may seem intuitive to apply lattice reduction techniques directly
to the lattice Lp(B). However, a closer examination reveals that this approach
is impractical due to the lattice’s high rank, which renders the computational
requirements prohibitively expensive. Instead of directly manipulating the origi-
nal lattice, the authors of [6] introduce a sequence of reduced-dimension lattices,
denoted by Li, to make the problem computationally manageable. Thereby, the
lattices Li are defined by

Li = {y ∈ Z2N+k : y = Cix mod p for some x ∈ Z2N
p },

where the matrices Ci ∈ Z
(2N+k)×2N
p are consecutive rows of B formed as

Ci =





Bi

Bi+1

Bi+2|[1:k,:]





for every i = 1, . . . , n and an attack parameter k ∈ {1, . . . , N}. To ensure the
well-definedness of the equation, set Bi+n = Bi.

From (2), we directly obtain

CiD =





ǫi
ǫi+1

ǫi+2|[1:k,:]



 = ǫi (3)

for every i = 1 . . . , n. To facilitate the recovery of the index of interest, the
authors formulated a CVP on the reduced-dimension lattices Li. Specifically,
they investigated CVP instances with target vectors tj = (0, . . . , 0, q, 0, . . . , 0) ∈
Z2N+k for j = 1, . . . , N , where the value q is located in the j-th position. The
value q in the target vector aligns with the amplified diagonal entries of the noise
matrix ǫi0 , enabling the adversary to distinguish the desired index i0.

Based on the provided definition, the authors demonstrated [6, Theorem 2]
that, when considering the lattice Li0 , the closest vector to tj is, apart from the
sign, the j-th column of ǫi0 as given in (3) with high probability. However, the
columns of ǫi0 have a specific structure: the elements are restricted to {−1, 1},
except for values corresponding to the diagonal entries of ǫi0 , which are ±q. Due
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to this highly non-random structure, we can distinguish Li0 from other lattices
Li, i 6= i0, with high probability by analyzing the closest lattice vector.

To solve the CVP, the authors utilized Kannan’s embedding technique [5].
Initially, a short lattice basis S of Li was constructed. Using this short basis, an
embedded lattice

Li,j =

{

y ∈ Z2N+k+1 : y =

(

S tj
0 1

)

x for some x ∈ Z2N+1

}

is defined. As discussed in Section 2, solving the SVP on Li,j yields the solution
to the CVP on Li with respect to tj if the parameters are appropriately chosen.

To summarize, the attack proceeds as follows. Initially, we iterate over all
lattices Li and, within each lattice, over all target vectors tj . For each target
vector, we solve the CVP as an SVP on the embedded lattice Li,j. If the solution
exhibits the specified structural properties, we identify the current index i as
the desired file index, thereby recovering the target file. Within this attack, the
choice of k represents a trade-off between computational cost, which increases
with the value of k, and the growing gap between the shortest and second shortest
vector within the embedded lattice, which also increases with k. This larger gap
facilitates the more efficient solution of the SVP.

Remark 1 Instead of restricting the non-zero entry in tj to the first N out of
the 2N + k positions, an alternative strategy could involve varying the position
of q in tj across all possible positions. This approach would entail examining a
larger number of target vectors. Meanwhile, we only need to study a fraction of
all lattices Li. While the overall number of SVPs to be solved is similar for both
approaches, the complexity of this approach is slightly better. The reason behind
this improvement is the ability to reuse the short lattice basis S of Li for each
target vector, thereby enhancing the computational efficiency of the algorithm.

Remark 2 It is important to note that, from a mathematical perspective, iterat-
ing over all target vectors tj, j = 1, . . . , N is not required since solving the CVP
exactly with the first target vector would already yield the desired result. Never-
theless, lattice reduction algorithms are inherently approximative in nature. By
iterating through multiple target vectors tj, the risk of obtaining a false result is
mitigated, thereby enhancing the reliability of the algorithm.

In [6], the authors empirically validated the efficacy of their proposed attack
through numerical experiments conducted on a database with n = 9 files. How-
ever, there is a linear dependency between the number of files in the database
and the number of lattice reduction needed for the attack. More specifically,
even if only one target vector tj is considered for each lattice Li as suggested in
Remark 2, the average number of CVPs that need to be solved is n

2 , with the
worst-case scenario requiring n CVPs. Taking into account the large computa-
tional time for lattice reduction algorithms, this linear dependency makes the
attack impractical for databases exceeding a certain size.
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5 Improved attack

While the attack strategy outlined in the previous section is valid for small
databases, its scalability is compromised by a time complexity that grows lin-
early with the number of files in the database. To address this issue, we introduce
a two-stage approach that combines the original attack with a preprocessing step
designed to decrease the number of blocks in the matrix B = (B1, . . . , Bn). By
iteratively eliminating blocks Bi that do not match the block Bi0 , we generate
a condensed query matrix that can be efficiently processed using the original
attack, thus extending its applicability to larger databases.

To obtain a logarithmic instead of a linear complexity in n, we proceed as in
a binary search and initially split B = (B1, . . . , Bn) into two parts

B|[1:3lN,:] =







B1

...
B3l






and B|[3lN+1:nN,:] =







B3l+1

...
Bn






,

where l = ⌈n
6 ⌉. By selecting l in this manner, we ensure that each part contains

approximately n
2 of the n matrices Bi. In the subsequent analysis, we first exam-

ine the matrix B|[1:3lN,:] to determine whether Bi0 is included within this part
of B. If i0 is found to be within the range {1, . . . , 3l}, we proceed with the first
matrix and disregard the second; otherwise, we move to the second matrix and
disregard B|[1:3lN,:].

To determine whether i0 is included in the first 3l indices, we further divide
the matrix B|[1:3lN,:] into blocks of three matrices each and sum those blocks up
such that we obtain

H =





H1

H2

H3



 =

l−1
∑

i=0





B1+3i

B2+3i

B3+3i



 . (4)

Summing blocks reduces the number of candidate matrices while preserving the
overall structure, which can be illustrated as follows. Adding two matrices Bi

and Bj results in

Bi +Bj = [(Pi + Pj)M1 | (Pi + Pj)M2 + (ǫi + ǫj)]∆

for i, j ∈ {1, . . . , n}. Given that Pi +Pj is again a random matrix, the structure
of the sum remains similar to the original, with the exception of the noise term.
The noise matrix ǫi+ ǫj in the sum is now characterized by entries in {−2, 0, 2},
where each of ±2 occurs with a probability of 1

4 and 0 occurs with a probability
of 1

2 . Generalizing this to the summation of l matrices yields

Hj = [P̃jM1 | P̃jM2 + γj ]∆
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for j = 1, 2, 3 with

P̃j =

l−1
∑

i=0

Pj+3i

being a random matrix. The noise matrix γj is given by

γj =

l−1
∑

i=0

ǫj+3i

for j = 1, 2, 3, such that the entries of γj follow a shifted binomial distribution
either on {−l, . . . , l} ∩ (2Z) if l is even or on {−l, . . . , l} ∩ (2Z + 1) if l is odd.
We can directly transfer the bridging relation (2) to the summed matrices as

HD =





γ1
γ2
γ3



 = γ. (5)

Study the lattice defined by the summed matrix H as

Lp(H) = {y ∈ Z3N: y = Hx mod p for some x ∈ Z2N
p }. (6)

From the bridging relation (5), we directly obtain the following relation between
γ and the lattice Lp(H).

Lemma 1 Let Lp(H) denote the lattice defined by (6), where H is derived from
the summation of submatrices of B as specified in (4). Then each column of
γ = (γ1, γ2, γ3)

T represents a lattice vector within Lp(H).

Note that the columns of γ are not only lattice vectors but also short lat-
tice vectors when l is small, since the entries of γ are confined to a subset
of {−l, . . . , l}. In analogy to the original attack, our objective is to solve a
CVP on the lattice Lp(H). To this end, we define a set of target vectors tj =
(0, . . . , 0, q, 0, . . . , 0) for j = 1, . . . , 3N , where the value q is placed at the j-th
position. It is worth noting that, as highlighted in Remark 1, our approach em-
ploys a larger set of target vectors, yet reduces the number of lattices utilized
compared to the original attack. This modification is motivated by an improve-
ment in computational efficiency.

The subsequent theorem establishes that, for sufficiently small values of l, it
is possible to decide whether Bi0 is contained in H or not.

Theorem 1 Suppose that the number of additions l is bounded from above such
that

N√
3lN (0) ≤ pN−2,

where NR(x) is the number of integer points within the 3N -dimensional sphere
as defined in Section 2. Assume that the desired file index i0 is an integer such
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that i0 ∈ {1, . . . , 3l}. Then there is an a ∈ {1, 2, 3} such that Bi0 is a summand
in Ha. Let Lp(H) be the lattices as defined in (6) and consider the target vector
tj, where the index j satisfies

(a− 1)N < j ≤ aN.

In other words, we are considering a target vector with a non-zero entry within
the same block as Bi0 . Then

u = j − (a− 1)N ∈ {1, . . . , N}

is the row within block a, in which tj has the non-zero entry. If the corresponding
diagonal entry in ǫi0 equals ǫi0 [u, u] = q, then with probability at least

exp

(

−p−2 p3N

p3N − 1

)

,

the closest lattice vector with respect to tj is given by γ[:,u]. Conversely, if ǫi0 [u, u] =
−q then with the same probability, the closest lattice vector with respect to tj is
given by −γ[:,u].

Remark 3 The formulation of Theorem 1 is quite technical, such that we want
to give a more accessible interpretation before proceeding with its proof. From an
intuitive perspective, it is evident that the number of additions l must be bounded
from above. If l would be unbounded, the difference between ǫi0 with ±q on its
diagonal and all other ǫi becomes negligible in the summed matrix H. The bound
given in the theorem is implicit, requiring that l is chosen such that the number
of integer points inside a 3N -dimensional sphere of radius

√
3Nl centered at

the origin is at most pN−2. Utilizing the approximation on NR(x) from Section
2, this implicit definition can be translated into an approximate bound on l. In
detail, we obtain the upper bound lmax of l as

lmax ≈ Γ
(

3N
2 + 1

)
2

3N

3Nπ
p

2

3
(1− 2

N
)

≈ 1

2πe
p

2

3
(1− 2

N
),

using that

lim
x→∞

x
√

Γ (x+ 1)

x
→ e−1.

The initial paper proposed values of p = 260 +325 and N = 50, yielding an esti-
mated maximum length lmax ≈ 2.12 ·1010. Notably, our approach involves adding
at most ⌈n

6 ⌉ blocks. Given the constraint on database size, where n ≤ 10, 000,
it is evident that in this case l significantly falls below lmax. Consequently, for
practical applications and parameters as suggested in [8], the assumption on l
can be readily fulfilled.
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Consider a matrix H that incorporates Bi0 . According to Theorem 1, for a suit-
ably chosen target vector tj, the closest vector to tj is given by a particular
column of γ with probability

exp

(

−p−2 p3N

p3N − 1

)

≈ 1− p−2.

Substituting the proposed value p = 260 + 325 into this expression yields an ap-
proximate probability of (1− 7.52 · 10−37) that the closest vector is indeed given
by this column of γ. Although the probability obtained is already remarkably high,
it is reasonable to expect an even higher probability of success in practical appli-
cations. This is because the proof is based on a worst-case analysis, considering
the maximum possible value of l and the maximum possible length of the column
of γ. In reality, the actual values of these parameters are likely to be more favor-
able, leading to an even higher probability of success. Consequently, it is highly
unlikely that this theorem will ever fail in practical applications.

Proof. Initially, let us examine the vector γ[:,u]. As a result of the summation,
for every v ∈ {1, . . . , 3N} \ {j}, the v-th entry of this vector satisfies

γ[v,u] ∈ {−l, . . . , l}.

In contrast, when v = j the corresponding entry is constrained to the range

γ[j,u] ∈ {−l+ 1, . . . , l − 1} ± q

such that

|| ± γ[:,u] − tj || ≤
√

(3N − 1)l + (l − 1)

≤
√
3Nl.

Note that, due to the entries of γ being distributed according to a shifted
binomial distribution, the length of the columns will be even shorter with high
probability.

As a subsequent step, we demonstrate that, with high probability, there exists
no lattice vector with a distance to the target vector that is equal to or shorter
than this threshold. To this end, let R > 0 be fixed and recall that BR(x) denotes
the 3N -dimensional sphere of radius R centered at x ∈ R3N . We establish a lower
bound for the probability that no lattice vector has a distance to tj that is less
than or equal to R, which can be expressed as

P (∄ y ∈ Lp(H) : ||y − tj || ≤ R)

=P (∄ y ∈ BR(tj) ∩ Lp(H))

=P (∄ y ∈ BR(tj) ∩ Z3N : y = Hx mod p for some x ∈ Z2N
p ),
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where we used the definition of the lattice Lp(H) in (6). Due to the randomness
of H , we obtain

P (∄ y ∈ Lp(H) : ||y − tj || ≤ R) =
∏

y∈BR(tj)∩Z3N

P (∄x ∈ Z2N
p : y = Hx mod p)

=
∏

y∈BR(tj)∩Z3N

∏

x∈Z2N
p

(1− P (y = Hx mod p)).

For a random choice of the matrix H ∈ Z3N×2N
p and a random vector x ∈ Z2N

p ,

the product Hx is randomly distributed in Z3N
p such that

P (y = Hx mod p) = p−3N .

It follows that the probability of no lattice vector being within a distance of R
or less from tj is equal to

P (∄ y ∈ Lp(H) : ||y − tj || ≤ R) =(1 − p−3N)p
2NNR(tj)

=exp
(

p2NNR(tj) log(1− p−3N )
)

.

Due to our assumption, for the radius R =
√
3Nl we obtain

N√
3lN (tj) ≤ pN−2.

For the overall probability that no lattice vector with distance shorter or
equal to R exists, this yields

P (∄ y ∈ Lp(H) : ||y − tj || ≤
√
3Nl) ≥ exp

(

p−2+3N log(1 − p−3N)
)

=exp

(

−p−2+3N
∞
∑

k=1

p−3Nk

k

)

using the series representation of log(1− x). Finally,

P (∄ y ∈ Lp(H) : ||y − tj || ≤
√
3Nl) ≥ exp

(

−p−2+3N
∞
∑

k=1

p−3Nk

)

=exp

(

−p−2 p3N

p3N − 1

)

,

which finishes the proof. ⊓⊔

Under the assumptions of Theorem 1, the closest lattice vector with respect
to tj exhibits a distinctive pattern with high probability. Specifically, dependent
on l, the entries of this vector are either all even or all odd, with the notable
exception of the j-th entry, which possesses the opposite parity. Remarkably, the
occurrence of such a configuration is exceedingly rare in random instances, such
that this behavior of the closest lattice vector can serve as the foundation for
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our attack.

As in [6], we use Kannan’s embedding technique to solve the CVP on Lp(H).
Therefore, let S ∈ Z3N×3N be a short basis of Lp(H) and let the embedded
lattice be given by

LH,j =

{

y ∈ Z3N+1 : y =

(

S tj
0 M

)

x for some x ∈ Z3N+1

}

.

By Theorem 1, if Bi0 is contained in H and the index of the target vector is
appropriately selected, the shortest vector is effectively determined by a column
of γ. Building upon this result, our proposed attack proceeds as follows. Initially,
we partition the matrix B into two segments and compute the sum of the first
segment to obtain the matrix H . We then define the lattice Lp(H) and calculate
a short basis S of Lp(H). To mitigate computational complexity, as argued in
Remark 2, we restrict our attack to the target vectors t1, tN+1, and t2N+1. For
these three target vectors, we solve the SVP on the embedded lattice. If the
solution exhibits a structural consistency with a column of γ, we can infer that
Bi0 is contained in H . Furthermore, by retaining the target vector that yields
the successful outcome, we can even identify the specific block of H in which
Bi0 is contained. This enables us to not only disregard the second half of the
matrix B but also eliminate the two blocks of H that do not contain Bi0 , thereby
reducing the number of blocks to be considered in the subsequent iteration to l.
Conversely, if Bi0 is not present in H , we can deduce that it is contained in the
second half of B, and the procedure continues with this half. In average, this
reduces the number of matrices to be considered by a factor of 1

3 . By recursively
applying this approach, we can further narrow down the number of matrices
until it reaches a manageable size for the original attack. The pseudocode pre-
sented in Algorithm 1 provides a concise summary of the proposed attack.

The original attack becomes impractical for large databases because the num-
ber of CVPs to solve scales linearly with n. Specifically, in the worst-case sce-
nario, the classical attack requires solving n CVPs, while on average, it necessi-
tates solving n

2 CVPs. Our improved approach exhibits a logarithmic dependence
on n, making the attack suitable for all database sizes.
To underscore the low complexity of our improved attack, we examine both
the worst-case and average-case scenario. Notably, the worst-case scenario cor-
responds to the instance where i0 = n, necessitating the solution of three CVPs
in each iteration without yielding a successful outcome, thereby proceeding with
the latter half of the matrix. Let t denote the threshold value that triggers the
original attack. A theoretical approximation of the number of CVPs to be solved
is given by

#CVPsWorstCase ≈ 3
log(n)− log(t)

log(2)
+ 0.5t. (7)
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In contrast, for the average case, we derive

#CVPsAverageCase ≈ 2.5
log(n)− log(t)

log(3)
+ 0.5t. (8)

To illustrate the practical implications for the complexity, we consider a thresh-
old value of t = 6 and plotted the exact as well as the approximate number of
CVPs to be solved in our improved attack for various database sizes n in Figure
1. The variability within the exact worst-case curve can be attributed to the
interplay between precomputing and original attack. As the size of n fluctuates,
the original attack is initiated with matrices of varying dimensions, resulting in
a non-monotonic curve. In contrast, the averaging process in the average case
largely mitigates the impact of disparate starting lengths for the original attack,
thereby smoothing the curve. The approximate formulas presented in (7) and (8)
demonstrate a satisfactory level of precision in approximating the actual number
of CVPs for both scenarios.

Algorithm 1: Improved attack on the lattice-based PIR scheme

Data: Matrix B = (B1, . . . , Bn)
Result: Index of interest i0

1 Preprocessing:
2 while |RemainingBlocks| ≥ Threshold do

3 split RemainingBlocks into two parts;
4 Part1 = First 3l blocks
5 Part2 = Remaining blocks
6 for Part1 do

7 sum up Part1 to obtain H

8 define lattice Lp(H)
9 find a short basis S for Lp(H)

10 for each tj do

11 define the embedded lattice LH,j

12 solve the SVP on LH,j

13 if closest vector is valid then

14 found=TRUE
15 break

16 if found=TRUE then

17 update RemainingBlocks to include only the blocks of Part1 related
to tj

18 else

19 RemainingBlocks = Part2

20 start the original attack with RemainingBlocks
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Fig. 1. Exact and approximate number of CVPs to be solved in the worst case and the
average case for different database sizes n and a threshold value of t = 6.

6 Numerical results

Using SageMath [9], we implemented the attack to display its efficiency. Follow-
ing the parameters suggested in [8], we set l0 = 20, q = 22l0−1, N = 50, and
p = 260 + 325. The suggested database size for these parameters is n ≤ 10, 000.
We continued the preprocessing until t = 6 or fewer blocks were left. Subse-
quently, we initiated the original attack using k = 34 as recommended in [6].
For all lattice reductions, we employed the LLL algorithm. For the embedded
lattice, we set M = 1 as the embedding factor. This choice ensures that the gap
between the shortest and the second shortest lattice vector is large. Meanwhile,
it also increases the probability of false results. However, for this particular case,
the procedure operates correctly, leading us to retain this parameter choice. The
results are presented in Table 1. We display the minimal and maximal run time
of the attack as well as the success rate, which is measured across 100 trials.
All calculations were conducted on a laptop equipped with an Intel Core i7-
1370P processor with 16 GB RAM. Regardless of the database size, the index of
interest can be recovered reliably within minutes, demonstrating the complete
breakdown of the scheme. For an easier comparison, the computational process
is not executed in parallel. However, the described approach is particularly well-
suited for parallel computing. By dividing the query matrix into separate blocks
and searching within these blocks in parallel, the computational time can be
further reduced.
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Table 1. Minimal and maximal attack time as well as success rate over 100 trials for
our improved attack with different database sizes n using l0 = 20, q = 22l0−1, N = 50
and p = 260 + 325. The original attack is triggered at t = 6 with k = 34.

n
min. attack max. attack success
time (min) time (min) rate (%)

100 2.1 7.4 100
1,000 3.6 12.3 100
5,000 4.2 17.8 100
10.000 5.4 18.6 100

7 Conclusion

In this paper, we identified a critical vulnerability in the lattice-based Private
Information Retrieval (PIR) scheme proposed by Melchor and Gaborit. Our con-
tribution builds upon the previous work by Liu and Bi, which was restricted to
databases of specific sizes, and extends it to databases of arbitrary sizes. By
employing a binary-search-like approach to presort the matrices, we substan-
tially reduce the number of lattice problems that need to be considered. This
optimization reduces the complexity of the attack from linear to logarithmic in
n, rendering the scheme insecure for all parameter choices. Additionally, our nu-
merical evaluations underline the feasibility and reliability of our approach, with
successful attacks executed within minutes on standard hardware.

Acknowledgement. This work has been supported by funding from Agentur
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