
ar
X

iv
:2

50
5.

05
69

7v
1 

 [
cs

.C
R

] 
 9

 M
ay

 2
02

5

Bringing Forensic Readiness to Modern Computer Firmware
Tobias Latzo, Florian Hantke, Lukas Kotschi and Felix Freiling∗

Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

A R T I C L E I N F O
Keywords:
UEFI
memory acquisition
forensic readiness
firmware

A B S T R A C T
Today’s computer systems come with a pre-installed tiny operating system, which is also known as
UEFI. UEFI has slowly displaced the former legacy PC-BIOS while the main task has not changed:
It is responsible for booting the actual operating system. However, features like the network stack
make it also useful for other applications. This paper introduces UEberForensIcs, a UEFI application
that makes it easy to acquire memory from the firmware, similar to the well-known cold boot attacks.
There is even UEFI code called by the operating system during runtime, and we demonstrate how to
utilize this for forensic purposes.

1. Introduction
The role of main memory analysis has become a more

and more important part of digital forensic investigations.
Main memory often contains valuable data that is never writ-
ten to persistent storage. Examples are running processes,
open network connections or even encryption keys that are
necessary to decrypt containers. Furthermore, there is file-
less malware that cannot be detected otherwise.

Memory acquisition has, therefore, become an essential
part of forensic investigations. Ideally, memory acquisition
cannot be detected by the target system, does not change
data, and is performed atomically [21]. To provide the high-
est level of authenticity, memory acquisition should be per-
formed on as low a level as possible, i.e., below the operat-
ing system (OS) [8]. However, main memory acquisition
is much more intricate than acquiring hard disk contents.
Nowadays, there are numerous ways of memory acquisition
[20], e.g., using kernel support or modules like the Linux
tools Pmem [16] or LiME [17]. Virtualized target systems
can often be halted and the memory acquired using built-in
tools of the hypervisor. It is even possible to virtualize the
target system on-the-fly [10]. However, most of these tech-
niques have the following requirements: (1) Forensic soft-
ware has to be deployed on the target system at runtime, and
(2) this software has to run with root privileges. Moreover,
even if these requirements can be met, there are anti-forensic
techniques that may circumvent or tamper with memory ac-
quisition [13, 15]. In general, it would therefore be useful if
forensic software was “pre-installed” on the system, a con-
dition known as forensic readiness [14].

The Unified Extensible Firmware (UEFI) was introduced
as the successor of the meanwhile nearly 40 years old PC-
BIOS and is a “pre-installed” software, albeit not for foren-
sic purposes. UEFI allows to start the OS in long mode,
supports Secure Boot, and even own EFI applications can
be executed in the UEFI Shell. Most UEFI implementa-
tions even come with a full network stack and sometimes

∗Corresponding author
tobias.latzo@fau.de (T. Latzo); florian.hantke@fau.de (F.

Hantke); lukas.kotschi@fau.de (L. Kotschi); felix.freiling@cs.fau.de (F.
Freiling)

ORCID(s):

even with a web browser. UEFI also specifies Runtime Ser-
vices (RTSs) that can be called by the OS. These allow, for
example, reading and setting UEFI variables or updating the
firmware. There is a UEFI reference implementation called
EFI Development Kit II (EDK II) [18].

In this paper, we exploit modern computer firmware’s
high capabilities and bring forensic readiness to the UEFI.
For this, we introduce

UEFI built-in memory forensics

(abbreviated as UEberForensIcs) for which we integrated foren-
sic memory acquisition software. That can be used during
the boot process. The memory acquisition is based on the
concept of cold boot, which is explained in more detail be-
low. Furthermore, we show how to persist code in the UEFI
RTSs and get code execution that can also be used for foren-
sic software. Additionally, we have built a tracer that traces
calls of UEFI RTSs.
1.1. Related Work

In 2008, Halderman et al. [6] introduced cold boot at-
tacks. They exploited the fact that DRAM modules are not
instantly cleared when unplugged, which is also known as
the memory remanence effect. To acquire memory, they
transplanted DRAM modules and attached it to an analy-
sis system where the module is readout. During the replug
procedure, the RAM module is cooled with coolant spray.
Eventually, the researchers were able to restore encryption
keys.

While the focus of Halderman et al. [6] was key recovery
after memory transplantation, the authors also mentioned
the possibility of hard resets and booting a system for mem-
ory acquisition. In the latter, one has to deal with the BIOS
footprint that overwrites few megabytes of the RAM. Further
research [5] revealed that newer RAM modules are not as
vulnerable to memory transplant attacks as the older DDR2
modules. Furthermore, newer modules do scramble data
to avoid the parasitic effects of semiconductors. However,
memory scrambling has not proven to be effective protec-
tion against cold boot attacks [1].

Regarding related work on UEFI, we are aware of a Mas-
ter’s thesis [9]. The students made use of a signed UEFI

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU) 2021, March 29–April 1, 2021 Page 1 of 9

https://arxiv.org/abs/2505.05697v1


Latzo et al.:Bringing Forensic Readiness to Modern Computer Firmware

application that was used to dump physical memory to a
USB flash drive. They focused on building a static chain of
trust whereby the trust anchor is the firmware. Furthermore,
there is a blog post by Frisk who used the UEFI RTSs to cir-
cumvent 4 GiB DMA limitations in PCILeech [3]. Usually,
the Linux kernel is mapped into the upper physical mem-
ory. So PCILeech cannot inject code via 32 bit DMA. To
get around this limitation, he manipulated the UEFI RTSs
function pointer table — that is located in lower memory
regions — to inject own code.

ISO/IEC 27043:2015 [7] defines digital forensic readi-
ness as the “process of being prepared for a digital inves-
tigation before an incident has occurred.” Forensic readi-
ness is related to preparation phases in many process mod-
els of incident response and digital forensic investigations
and usually involves establishing a capability for securely
gathering legally admissible evidence in case of an incident
[14]. In practice, the quality of forensic readiness is closely
related to the level of logging, the effectiveness of alerting
and incident management processes and the quick availabil-
ity of evidence acquisition capabilities which ideally are pre-
deployed as software [11] or in hardware [2].
1.2. Contribution

This paper shows how to make a computer’s UEFI foren-
sic ready. The main contributions of this are as follows:

1. We introduce UEberForensIcs show how to integrate
forensic software that enables cold boot like memory
acquisition directly into a computer’s firmware. The
evaluation in this paper reveals that this approach can
also be practically used.

2. Furthermore, we show how to persist code in the UEFI
that is executed when the operating system is running.
This code runs with kernel privileges and can also be
used for memory acquisition.

3. We developed an OS-independent RTS tracer. The
RTS are thereby traced in the RTS itself. Our evalua-
tion gives insights which and how often specific RTS
are typically called in different scenarios.

We have published UEberForensIcs 1 and the RTS tracer 2
on Github.
1.3. Outline

In Section 2 background information about the UEFI and
EDK II is given. The architecture and setup of our experi-
ments is described in Section 3. Then, we show insights into
the implementation of the built-in forensic acquisition soft-
ware including an evaluation. In Section 5 we show how
the RTS tracer runs with hooking. Finally, in Section 6 this
paper is concluded.

2. Background
In the following, we want to give some background infor-

mation on some existing concepts that are used in this paper.
1https://github.com/ueFAUrensics/UEberForensIcs
2https://github.com/ueFAUrensics/RTStracer

2.1. Criteria for Memory Acquisition
Vömel and Freiling [21] defined three criteria for foren-

sically sound memory acquisition: correctness, atomicity
and integrity. In the following, we want to briefly explain
these criteria and show how to quantify them [4].

A memory snapshot is considered to be correct if the
used memory acquisition software acquired the memory’s
actual content. Obviously, this criteria is very fundamental
for memory acquisition.

Memory acquisition software that is running on the tar-
get itself usually cannot stop all other system activity. This
may lead to memory dumps that show the effects of events
for which the actual cause has not been recorded. If such
inconsistencies do not occur — this is usually the case if the
system can be halted — a memory dump is called atomic.
Gruhn and Freiling [4] quantified the atomicity of a mem-
ory dump by the time between the acquisition of the first
memory region and the last memory region.

Integrity is ensured if the content of a memory image is
not changed after an investigator decides to take a snapshot.
Vömel and Freiling [21] state that integrity can be quanti-
fied by the level at which the process of taking the snapshot
changes memory.
2.2. Unified Extensible Firmware Interface

The UEFI was introduced in 1998 as a successor of the
legacy PC-BIOS. Often the UEFI is still called BIOS. A
more generic term for UEFI and BIOS is firmware. The
UEFI boots itself into protected mode (32 bit) or long mode
(64 bit) instead of the real mode (16 bit). Obviously, this
makes development much easier. As a consequence, the
UEFI implementations are often tiny OSs with own appli-
cations, network stack, and so on. There are several speci-
fied stages, e.g., the Security (SEC) phase as the first stage,
followed by the Pre EFI initialization (PEI) and Driver Exe-
cution Environment (DXE) phase. When reaching the DXE
phase, basically all hardware initializations happened, and
hardware can be used.

In 2004, Intel released an open-source implementation
called Tiano of an EFI. Tiano evolved to EDK II and is now
maintained by the TianoCore community [18].

3. Architecture and Setup
Developing and debugging firmware is an intricate affair

and usually requires a special setup to be performed. We
now describe the setup in which we developed our system
and performed the experiments.

Figure 1 shows a simplified graph of the architecture we
use for our experiments. Filled boxes indicate that these
modules are our own developments. The target is running
in a virtual machine with QEMU hypervisor. This makes
development easier because, in this case, we do not need to
reprogram SPI flash chips for every change. Furthermore,
it simplifies debugging. The right side of the graph is dedi-
cated to the built-in cold boot part (see also Section 4) while
the left side is dedicated to the runtime forensics part (see
also Section 5).

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU) 2021, March 29–April 1, 2021 Page 2 of 9

https://github.com/ueFAUrensics/UEberForensIcs
https://github.com/ueFAUrensics/RTStracer


Latzo et al.:Bringing Forensic Readiness to Modern Computer Firmware

Host Machine

Target

Runtime Services

OS Kernel

RTS Tracer

call
RTS

QEMU Monitor

continue
RTS call

hook

Restart

UEberForensIcs

Forensic Workstation

Runtime

Dump

store

Serverexfiltrate

perform acquisition

UEFI Shell

Cold Boot Forensic Analysis
Software

[RTSTracer]{
  'service': 'GetTime',
  'id':0,
  'type':'OUT',
  'argmuent':'Time',
  'data':{
    'Year': 2020,
    'Month': 9,
    'Day':22,
    'Hour':16,
    'Minute':12,
    'Second':49,
    'Pad1':0,
    'Nanoseconds':0,
    'TimeZone':2047,
    'Daylight':0,
    'Pad2':0
  }
}

Figure 1: Simplified architecture of UEberForensIcs and the RTS tracer.

Table 1
Memory map of the virtual machine we used for our experiments.

# Start End Pages Size Purpose
1 0x00000000 0x0009ffff 160 640 kiB System RAM
2 0x000a0000 0x000bffff 32 128 kiB PCI Bus
3 0x00100000 0x7fffffff 524032 2047 MiB System RAM

3.1. Hardware Setup
The entire research was conducted on a standard laptop

with an Intel Core i5-5200U CPU (2.20GHz, 2 cores) and
8 GiB of RAM. It runs Ubuntu Linux 18.04.4 with kernel
version 4.15.0-118. The installed QEMU version is 4.2.92.
3.2. VM Setup

Usually, virtual machine monitors come with special-
ized firmware implementations. In most cases, emulating
firmware is not intended. For virtual machines, there is a
target for EDK II called OVMF. This port supports QEMU’s
virtual hardware. In Listing 1 one can see the command to
start the corresponding QEMU Virtual Machine (VM). The
VM is running Ubuntu Linux 20.04 and has 2 GiB of RAM.
qemu −bios edk2/Build/OvmfX64/RELEASE_GCC5/FV/OVMF.fd

−drive format=raw, file =ubuntu−linux.raw
−drive format=raw, file =fat :rw:vm−content
−global virtio −net−pci. romfile =""
−nic tap ,model=virtio−net−pci
−m 2048M
−debugcon file :debug.log
−enable−kvm −cpu host
−cdrom ubuntu−20.04−desktop−amd64.iso

Listing 1: Start of the virtual machine using QEMU.
Table 1 shows the physical memory map of our virtual

machine. In this case, memory is quite cohesive. Memory
range #3 is by far the largest memory region. A real system’s
RAM is usually more fragmented than those in QEMU. There
is only a single memory hole from #2 to #3.

4. Built-in Cold Boot
In this section, we give insights into the implementation

of UEberForensIcs. UEberForensIcs is a forensic cold boot
like acquisition software that is integrated into the firmware.

The use case of UEberForensIcs is that it is pre-installed
on the firmware of a computer. While the OS is running, a
potential incident happens, and so an incident responder is
alerted. The incident responder wants to analyze what hap-
pened on the system with memory analysis. For the acqui-
sition, they restart the computer into the EFI Shell and per-
form memory acquisition using UEberForensIcs. Therefore,
the analyst needs no special equipment or installed tools on
the host. The dump is transferred via network to the Forensic
Workstation where it can be analyzed.
4.1. Implementation

UEberForensIcs can be used as a standalone application
or a dynamic command. For the evaluation, we used the
latter variant. Basically, UEberForensIcs is implemented as
a DXE driver.

We do not save the memory dump on the local drive be-
cause that would lead to corruption. Instead, we exfiltrate the
data via the network (see also Figure 1). So UEberForensIcs
requires an active network connection to the Forensic Work-
station, and so we make use of EDK II’s TCP stack. The IP
address is obtained via DHCP. When the connection is es-
tablished, UEberForensIcs traverses the memory and sends
it page-wise to the Forensic Workstation.

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU) 2021, March 29–April 1, 2021 Page 3 of 9



Latzo et al.:Bringing Forensic Readiness to Modern Computer Firmware

OS running

Q1

Reset into UEFI Shell

Q2

Dump via UEberForensIcs

Q3UF
Time

Figure 2: Timeline of the system with the four memory dumps.

4.2. Evaluation
Gruhn and Freiling [4] provided a framework to evalu-

ate memory acquisition tools in terms of correctness, atom-
icity and integrity [21]. Basically, cold boot like attacks are
performed atomically, i.e., the RAM module is removed, or
there is a hard reset. So in this evaluation, we want to focus
on correctness and integrity. For this purpose, we have gen-
erated the following four memory dumps, which one can see
in Figure 2. The dumps are acquired in the following way:

Q1 The first dump is acquired using QEMU’s pmemsave

feature while the OS is running. Before pmemsave is started,
the system is paused. We consider this dump as the ground
truth.

Q2 The second dump is also performed using QEMU’s
pmemsave after the reset when the EFI Shell is started. To
acquire memory atomically, the system is also paused. Fur-
thermore, the OS is not running anymore. This means that
processes that have run before do not alter memory any-
more. However, EDK II also overwrites some smaller parts
of memory.

UF The third dump is generated with our tool. Since
the dump is performed on the same system, we cannot pause
the system. However, we consider it to be atomic because
the processes and any other thread of the OS processes are
not running anymore. The only running activities belong to
EDK II and so are not important.

Q3 The last dump is acquired using QEMU’s pmemsave

after the UEberForensIcs dump is completed.
The evaluation of correctness and integrity is based on

the analysis of differing bytes and pages of different dumps.
In Table 2 one can see the results of pairwise dumps. A
visualization of page-wise (4 kiB) diffs can be found in Fig-
ure 3. A blue pixel indicates that the corresponding page is
the same in both dumps. A red pixel indicates that the corre-
sponding pages are differing by at least one byte. There are
1024 rows with 512 pages per line, i.e., 2 MiB per line. Ad-
dresses are growing from left to right and from the bottom
to the top.

In the following two sections, we use these results to
show to what extent UEberForensIcs affects memory and ar-
gue that UEberForensIcs works properly.
4.2.1. Correctness

First, we want to show that UEberForensIcs works prop-
erly. To show this, we compare the ground truth (Q1) with
the UEberForensIcs dump (UF), i.e., diff(𝑄1,UF) and with
the dump Q3, i.e., diff(𝑄1, 𝑄3). It is striking that the total
differing numbers are in the same order of magnitude (see
also Table 2). Furthermore, the corresponding diffs’ visual-

izations in Figure 3b and Figure 3c show that the diffs are
very similar. The ranges of diffing memory regions are ba-
sically the same for all dumps. Note that the dump of UF is
made sequentially and transferred via network. The dump of
Q3 is acquired atomically after the execution of UEberFor-
ensIcs. So, these diffs are not completely the same.

The diff(𝑄2,UF) shows that the QEMU pmemsave dump
and the UEberForensIcs dump are differing in about 5 MiB.
The corresponding visualization in Figure 3d also reveals
that the corresponding memory regions are basically the same.
For diff(UF, 𝑄3) the diff is around 5.8 MiB. However, as Fig-
ure 3f shows, the differing pages are in the upper memory
regions as before.

The comparisons of the diffs showed that the dump of
UEberForensIcs looks reasonable. Basically, the only dif-
fering pages are located in the upper memory regions that
we can also observe with the QEMU built-in pmemsave.
4.2.2. Integrity

Memory acquisition using UEberForensIcs is performed
on the target system. This means that we do change mem-
ory. In this section, we show how much memory is changed.
We also show which parts of the memory get changed by
UEberForensIcs.

Figure 3 gives a good impression of what and how much
memory is changed when using UEberForensIcs. All diffs
with the dump when the OS was running (Q1) show that
some memory is overwritten in the lower memory regions
— basically starting at 0x1000000 — when the computer
is reset. This region has a size of about 7 MiB. When the
system is restarted, there is no change in this memory region
anymore (see also Figure 3d, Figure 3e and Figure 3f).

Furthermore, Figure 3 also shows that the reboot of the
system has the most impact. The execution of UEberForen-
sIcs also has impact (see also Figure 3d, Figure 3e and Fig-
ure 3f). However, most of these memory regions are changed
because of the reboot anyway.

Overall, we can say that the execution of UEberForensIcs
changes about 32 MiB of the whole memory. Thereof the
most considerable amount is overwritten because of the re-
boot that loads the firmware. The majority of the firmware in
our environment was located in the upper memory regions.
There was no single differing byte in the middle of the mem-
ory.
4.3. Discussion

Writing software for UEFI is much easier than for the
former PC-BIOS. EDK II code is written in C, and there are

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU) 2021, March 29–April 1, 2021 Page 4 of 9



Latzo et al.:Bringing Forensic Readiness to Modern Computer Firmware

(a) diff(𝑄1, 𝑄2): 24.6 MiB (b) diff(𝑄1,UF)): 29.1 MiB (c) diff(𝑄1, 𝑄3): 32.7 MIB

(d) diff(𝑄2,UF)): 4.9 MiB (e) diff(𝑄2, 𝑄3): 8.5 MiB (f) diff(UF, 𝑄3): 5.8 MiB
Figure 3: Visualization of the page-wise diff. Addresses are growing from the left to the
right and from the bottom to the top.

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU) 2021, March 29–April 1, 2021 Page 5 of 9



Latzo et al.:Bringing Forensic Readiness to Modern Computer Firmware

Table 2
The table shows the results of differing bytes of the dumps and the corresponding proportion
of total memory that is changed.

# Dump 1 Dump 2 Total Pages Total Size Proportion
1 Q1 Q2 8143 24.6 MiB 1.2 %
2 Q1 UF 10245 29.7 MiB 1.4 %
3 Q1 Q3 10260 32.7 MiB 1.6 %
4 Q2 UF 2634 4.9 MiB 0.2 %
5 Q2 Q3 2568 8.5 MiB 0.4 %
6 UF Q3 2588 5.8 MiB 0.3 %

many features like a full network stack that facilitate the de-
velopment of their own software.

The evaluation showed that UEberForensIcs is working
correctly. However, the whole acquisition process using UE-
berForensIcs changes about 30 MiB of RAM. This may dif-
fer from setup to setup depending on the firmware’s foot-
print. In our setup, the memory ranges that were changed
are located on the upper and lower border of the RAM, and
so we argue that memory acquisition using UEberForensIcs
is practical since we can acquire most memory atomically
and do not rely on software on the host that may be manipu-
lated by malware.

However, there are also countermeasures for cold boot
attacks. RAM reset on reboot [5], memory scrambling [1]
or locking the firmware that an adversary cannot boot from
an own device are three examples. In our scenario, we con-
trol the firmware. So we can control that such countermea-
sures are not implemented or are only effective during nor-
mal reboots and not when an analyst is present. A particular
hardware device could indicate this.

5. Runtime Service Forensics
In the previous section, we have seen how our UEFI driver

can be used to perform cold boot attacks. Now, we want
to provide the first steps towards forensic memory acquisi-
tion using UEFI drivers at runtime. Thus, incident response
teams could extract memory without rebooting and installing
any memory acquisition software on the target that would
change evidence.

In the following sections, we describe how to persist foren-
sic tools in the UEFI RTSs and gain code execution. For this,
we provide a proof-of-concept tool that traces all RTS calls.
Basically, this technique can also be used to perform mem-
ory acquisition in the RTSs.
5.1. Implementation

Same as the former tool, the runtime tool is developed
as a DXE driver. However, this time the driver needs to
continue execution even after ExitBootServices() is called,
something common drivers do not fulfill. Therefore, the
driver needs to be of the type DXE_RUNTIME_DRIVER.

Runtime drivers start in the DXE phase and continue
executing after the boot process is finished when the OS
is running. Also, they have access to both RTS and boot
services. Boot services stop to work after the OS loader

calls ExitBootServices(), RTSs persist after the DXE phase.
Their pointers get converted from physical addresses to vir-
tual ones when SetVirtualAddressMap() is called.

To execute code after the DXE phase, the driver needs to
be called by another instance, such as the OS. The OS in our
research is an instance we do not control. Hence we decided
to take RTSs that are called by the OS as a trigger for code
execution. To activate the code execution, we implemented
hooks for all RTSs and set them in the DXEs phase when it
initializes our driver. Therefore, the driver stores the origin
service pointer and replaces its address table entry with a
pointer to our hook. Furthermore, it registers a notifier to
react when the OS calls SetVirtualAddressMap() and converts
all pointers.

The hooks allow us to execute arbitrary code at runtime,
which we developed further to implement an open-source
RTS tracer. With the tracer, we can follow the called ser-
vices and view their arguments to analyze the UEFI behav-
ior thoroughly. The tracer outputs its information in JSON
format.

An example call can be seen in Listing 2. Every JSON
object contains one argument of the called service and its
data. The JSON is limited to a maximum of 255 characters,
which is why not all arguments fit in one object. Addition-
ally, every argument is either of the type INput or OUTput
and accordantly listed before or after the origin call. The ex-
ample shows two output arguments of the service GetTime.

5.2. Evaluation
The evaluation of the runtime service section is split into

two parts. First, we show that we have arbitrary code exe-
cution at any time at runtime. Second, we evaluate the data
created by the RTS tracer and compare various scenarios.

As mentioned before, we make use of runtime service
hooks to execute code in UEFI. UEFI code execution at run-
time could be used by incident response teams to extract
memory without rebooting the OS. A requirement for this
is that it can be executed at any time. However, our trigger
depends on RTSs being called, which is not often the case
after the user logged in. Nevertheless, our tests show that
the OS calls the RTS GetVariable whenever the user reads
the efivars (/sys/firmware/efi/efivars/). To prove this, we
successfully modified our hook to force System_Reset as soon
as we read efivars. Thus we fulfill the requirement to execute
code at any time at runtime, which finishes the first part of

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU) 2021, March 29–April 1, 2021 Page 6 of 9



Latzo et al.:Bringing Forensic Readiness to Modern Computer Firmware

[ RTSTracer ] {
' s e r v i c e ' : ' GetTime ' ,
' id ' : 0 ,
' type ' : ' OUT' ,
' argmuent ' : ' Time ' ,
' d a t a ' : {

' Year ' : 2020 ,
' Month ' : 9 ,
' Day ' : 2 2 ,
' Hour ' : 1 6 ,
' Minute ' : 1 2 ,
' Second ' : 4 9 ,
' Pad1 ' : 0 ,
' Nanoseconds ' : 0 ,
' TimeZone ' : 2 0 4 7 ,
' D a y l i g h t ' : 0 ,
' Pad2 ' : 0

}
}
[ RTSTracer ] {

' s e r v i c e ' : ' GetTime ' ,
' id ' : 0 ,
' type ' : ' OUT' ,
' argument ' : ' C a p a b i l i t i e s ' ,
' d a t a ' : {

' R e s o l u t i o n ' : 0 ,
' Accuracy ' : 0 ,
' Se tsToZero ' : 0

}
}
Listing 2: The log shows an example result provided by the
RTS tracer.

the evaluation.
For the second part, we evaluate the RTS tracer. There-

fore, we recorded the RTS calls on our Ubuntu VM in six
different scenarios:

• Boot - We started the VM but did not log in.
• Login - We started the VM and logged in as the user.
• Working - We started the VM, logged in as the user,

and performed standard working tasks for 15 minutes.
These tasks were reading, writing, and configuring OS
settings.

• Hour - We started the VM, logged in as the user, and
let it run for one hour. The power save mode caused a
lock screen, which we unlocked in the end.

• Switch - We started the VM and logged in as the user.
Afterward, we switched the user.

• Reboot - We started the VM, logged in as the user, and
rebooted the machine. Then we logged in again.

For every scenario, our RTS tracer collected data. We wrote
a parser in Python which is also included in the RTS tracer
Github, to analyze and interpret the information. Table 3
shows the summarized results. It shows how often which
runtime service was called in each scenario. The table lists
only five of the 14 runtime services that are available ac-
cording to section 5 in the EDK II UEFI Driver Writer’s
Guide [19]. Even if the guide lists more services, we only
observed these five services in all scenarios.

When we look at the different scenarios, we can see that
Login, Working, and Hour have the same number of services
called. Further, going into more detail, we can see that the
calls’ arguments are the same every time. This means that
the RTSs used during the startup routine remain the same.
Moreover, even without studying the EDK II source, we can
conclude from the same call number in the three scenarios
that during standard OS usage, no RTS is used after the lo-
gin.

The login and logout processes, on the other hand, make
use of RTSs. This is shown by the difference of counted
calls in the scenarios Boot, Login, and Switch. We see that
32 additional calls are registered on login and 32 more on lo-
gout in the results. All of them are GetVariable calls that re-
quest either the OsIndicationsSupported or the OsIndications

variable. Both variables tell the OS which UEFI firmware
features are supported and activated.

The last scenario, Reboot, is different from the previous
ones as the counted call number is a lot more. For GetTime
and ConvertPointer the numbers are twice as large compared
to the Login scenario. This makes sense as we boot the sys-
tem two times. On the other hand, we count 45 more Get-
Variable calls, 69 more GetNextVariableName calls, and 55
less SetVariable calls on the second boot process. This is be-
cause the second boot process does not register every vari-
able again but uses initialized variables from the first boot
process. The variable OsIndications, for instance, is only
set in the first boot process. Afterward, it is requested 45
times during the first boot and 46 times during the second
boot.

As shown above, the RTS tracer works well and gives
clear insights into the usage of RTSs.
5.3. Discussion

In this section, we showed how to gain code execution
from the UEFI during OS runtime. As a proof-of-concept,
we implemented an RTS tracer. The corresponding code
is not resident on the hard drive but on the SPI flash chip
and copied to the RAM by the system’s firmware. However,
in contrast to System Management Mode (SMM)-based ap-
proaches [12], RTSs are not executed on a higher privilege
level but on the same as the OS. Developing code for the
RTS is much easier than SMM’s 16-bit Real Mode code.

It is also possible to perform memory acquisition from
the RTSs. However, the exfiltration of memory is more com-
plicated than in UEberForensIcs. The OS manages the net-
work stack and has configured the network interface card.
Other possibilities are to use persistent storage. Neverthe-

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU) 2021, March 29–April 1, 2021 Page 7 of 9



Latzo et al.:Bringing Forensic Readiness to Modern Computer Firmware

Table 3
The table shows the number of RTS calls in various scenarios

Runtime Service Boot Login Working Hour Switch Reboot
GetTime 46 46 46 46 46 92
GetVariable 754 786 786 786 850 1617
SetVariable 110 110 110 110 110 165
GetNextVariableName 499 499 499 499 499 1067
ConvertPointer 91 91 91 91 91 182
Total 1500 1532 1532 1532 1596 3123

less, similar to the network interface, the OS manages hard
drives. So it is not easy to use the RTS for memory exfiltra-
tion without adapting the OS kernel or drivers.

6. Conclusion and Future Work
In this paper, we introduced UEberForensIcs that brings

forensic memory acquisition to modern computer firmware.
With UEberForensIcs, an analyst can perform simple cold
boot attacks without any craftsmanship. Additionally, the
dump can be considered to be atomic. The only precondition
is that the UEFI is forensic-ready, i.e., UEberForensIcs must
be part of the UEFI before the need for memory acquisition
arises.

Our evaluation showed that only small distinct parts of
the memory get overwritten by the firmware. For the devel-
opment and evaluation, we used a QEMU VM. However, fu-
ture work should also consider compatibility and other pos-
sible memory layouts on actual physical systems.

Furthermore, we demonstrated how to gain code execu-
tion with kernel privileges without injecting code into the
kernel without any persistent file on the hard drive. There-
fore, we hook the UEFI RTSs. As a proof-of-concept, we
developed an RTS tracer that traces all occurring RTS calls
of the OS kernel. The discussion in Section 5.3 yielded that
integrating memory acquisition software in the RTSs can be
beneficial. However, it is hard to exfiltrate data from there.

Acknowledgments
This research is supported by Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) as part of
the Research and Training Group 2475 "Cybercrime and Foren-
sic Computing" (grant number 393541319/GRK2475/1-2019).

CRediT authorship contribution statement
Tobias Latzo: Conceptualization, Investigation, Method-

ology, Software, Supervision, Validation, Visualization, Writ-
ing – original draft, Writing – review & editing. Florian
Hantke: Conceptualization, Investigation, Software, Vali-
dation, Visualization, Writing – original draft, Writing – re-
view & editing. Lukas Kotschi: Conceptualization, Inves-
tigation, Software, Validation, Writing – review & editing.
Felix Freiling: Supervision, Methodology, Writing – origi-
nal draft, Writing – review & editing.

References
[1] Bauer, J., Gruhn, M. and Freiling, F. C. [2016], ‘Lest we forget:

Cold-boot attacks on scrambled ddr3 memory’, Digital Investigation
16, S65–S74.

[2] Carrier, B. D. and Grand, J. [2004], ‘A hardware-based mem-
ory acquisition procedure for digital investigations’, Digit. Investig.
1(1), 50–60.
URL: https://doi.org/10.1016/j.diin.2003.12.001

[3] Frisk, U. [2017], ‘Attacking UEFI Runtime Services and Linux’.
URL: http://blog.frizk.net/2017/01/attacking-uefi-and-linux.html

[4] Gruhn, M. and Freiling, F. C. [2016], ‘Evaluating atomicity, and in-
tegrity of correct memory acquisition methods’, Digital Investigation
16, S1–S10.

[5] Gruhn, M. and Müller, T. [2013], On the practicability of cold boot
attacks, in ‘2013 International Conference on Availability, Reliabil-
ity and Security, ARES 2013, Regensburg, Germany, September 2-6,
2013’, IEEE Computer Society, pp. 390–397.

[6] Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson, W., Paul,
W., Calandrino, J. A., Feldman, A. J., Appelbaum, J. and Felten,
E. W. [2008], Lest we remember: Cold boot attacks on encryption
keys, in P. C. van Oorschot, ed., ‘Proceedings of the 17th USENIX
Security Symposium, July 28-August 1, 2008, San Jose, CA, USA’,
USENIX Association, pp. 45–60.
URL: http://www.usenix.org/events/sec08/tech/full_papers/

halderman/halderman.pdf

[7] International Organization for Standardization [2015], ‘Iso/iec
27043:2015: Information technology – security techniques – incident
investigation principles and processes’.

[8] Latzo, T., Palutke, R. and Freiling, F. [2019], ‘A universal taxonomy
and survey of forensic memory acquisition techniques’, Digital Inves-
tigation 28, 56–69.

[9] Markanovic, M. and Persson, S. [2014], ‘Trusted memory acquisition
using uefi’.
URL: http://www.diva-portal.org/smash/get/diva2:830892/

FULLTEXT01.pdf

[10] Martignoni, L., Fattori, A., Paleari, R. and Cavallaro, L. [2010], Live
and trustworthy forensic analysis of commodity production systems,
in S. Jha, R. Sommer and C. Kreibich, eds, ‘Recent Advances in Intru-
sion Detection, 13th International Symposium, RAID 2010, Ottawa,
Ontario, Canada, September 15-17, 2010. Proceedings’, Vol. 6307 of
Lecture Notes in Computer Science, Springer, pp. 297–316.
URL: https://doi.org/10.1007/978-3-642-15512-3_16

[11] Moser, A. and Cohen, M. I. [2013], ‘Hunting in the enterprise: Foren-
sic triage and incident response’, Digit. Investig. 10(2), 89–98.
URL: https://doi.org/10.1016/j.diin.2013.03.003

[12] Oleksiuk, D. [2015], ‘Building reliable SMM backdoor for UEFI
based platform’.
URL: http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-
for-uefi.html

[13] Palutke, R. and Freiling, F. [2018], ‘Styx: Countering robust memory
acquisition’, Digital Investigation 24.

[14] Rowlingson, R. [2004], ‘A ten step process for forensic readiness’,
International Journal of Digital Evidence 2(3), 1–28.

[15] Sparks, S. and Butler, J. [2005], ‘Shadow walker: Raising the bar for
rootkit detection’, Black Hat Japan 11(63), 504–533.

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU) 2021, March 29–April 1, 2021 Page 8 of 9

http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://www.diva-portal.org/smash/get/diva2:830892/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:830892/FULLTEXT01.pdf


Latzo et al.:Bringing Forensic Readiness to Modern Computer Firmware

[16] Stüttgen, J. and Cohen, M. [2013], ‘Anti-forensic resilient memory
acquisition’, Digital Investigation 10, S105–S115.

[17] Sylve, J. [2012], ‘LiME’. https://github.com/504ensicsLabs/LiME.
[18] TianoCore [2020], ‘EDK II Project’.

https://github.com/tianocore/edk2.
[19] TianoCore [n.d.], ‘EDK II Driver Writer’s Guide’. https://edk2-

docs.gitbook.io/edk-ii-uefi-driver-writer-s-guide/5_uefi_services.
[20] Vömel, S. and Freiling, F. C. [2011], ‘A survey of main memory ac-

quisition and analysis techniques for the windows operating system’,
Digit. Investig. 8(1), 3–22.
URL: https://doi.org/10.1016/j.diin.2011.06.002

[21] Vömel, S. and Freiling, F. C. [2012], ‘Correctness, atomicity, and in-
tegrity: defining criteria for forensically-sound memory acquisition’,
Digital Investigation 9(2), 125–137.

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU) 2021, March 29–April 1, 2021 Page 9 of 9


	Introduction
	Related Work
	Contribution
	Outline

	Background
	Criteria for Memory Acquisition
	Unified Extensible Firmware Interface

	Architecture and Setup
	Hardware Setup
	VM Setup

	Built-in Cold Boot
	Implementation
	Evaluation
	Correctness
	Integrity

	Discussion

	Runtime Service Forensics
	Implementation
	Evaluation
	Discussion

	Conclusion and Future Work

