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Abstract

We propose a new symmetric cryptographic scheme based on functional in-

variants defined over discrete oscillatory functions with hidden parameters. The

scheme encodes a secret integer through a four-point algebraic identity preserved

under controlled parameterization. Security arises not from algebraic inversion but

from structural coherence: the transmitted values satisfy an invariant that is com-

putationally hard to forge or invert without knowledge of the shared secret. We

develop the full analytic and modular framework, prove exact identities, define

index-recovery procedures, and analyze security assumptions, including oscillator

construction, hash binding, and invertibility conditions. The result is a compact,

self-verifying mechanism suitable for secure authentication, parameter exchange,

and lightweight communication protocols.
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Introduction

Toward a New Cryptographic Principle

Most of modern cryptography is grounded in algebraic intractability: the presumed hard-
ness of solving problems in number-theoretic or lattice-based structures. These include
discrete logarithms, integer factorization, and short vector search [5, 10]. While these
systems are powerful, they share a key constraint: their security relies on the internal dif-
ficulty of algebraic inversion, and their constructions tend to be rigid, externally opaque
but structurally transparent.

In this work, we propose a new direction—cryptography based on functional invariants.
This approach focuses not on hiding elements within algebraic groups, but on preserving
stable identities across observable data points. In other words, we encode structure not
through algebraic concealment, but through analytical coherence. The central object is
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an invariant: a deterministic relation that holds across a small number of function values
and resists deformation unless the underlying generative rule is preserved.

Invariant-Based Cryptography

Invariant-based cryptography (IBC) introduces a framework in which:

• Security stems from the internal consistency of a function whose values are linked
by an exact relation—an invariant—known only through derived data;

• Authenticity and integrity are ensured by the ability to reconstruct one value from
the others using this invariant, without exposing any direct secret;

• Flexibility is achieved by allowing the function’s shape and internal parameters to
vary pseudorandomly across sessions, yielding distinct but structurally verifiable
patterns.

Instead of encrypting data or signing messages in the traditional sense, we embed
information in the geometry of its transformation. Any attempt to alter a value in the
sequence will break the invariant, and any observer without structural knowledge will find
the values indistinguishable from noise.

The functional invariant behaves like a hidden contract between values—compact,
irreversible, and self-validating.

This work builds upon the recent introduction of deterministic invariant structures in
small functional tuples [18].

Scope and Motivation

The construction presented in this work is a minimal instance of IBC: it uses only a single
scalar function, evaluated at a small number of points, to encode structure that is both
recoverable and resistant to attack. No public-key infrastructure is required. There is no
need for modular inversion, elliptic curves, or lattice trapdoors. The mechanism relies
only on:

• controlled exponential growth;

• anti-symmetric pseudo-random oscillations;

• a fixed numerical identity binding four consecutive evaluations.

The scheme offers a compact and efficient tool for secure data transmission, mutual
authentication, and controlled data reconstruction. Its core is structurally elementary but
cryptographically nontrivial.

Research Context and Outlook

This work initiates a broader research direction: the study of functional invariants as
cryptographic primitives. It raises natural questions:

• What classes of functions admit invariant structures suitable for cryptographic use?

• How do such systems behave under composition, noise, or approximation?
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• Can invariants yield post-quantum or complexity-theoretic guarantees comparable
to standard assumptions?

More generally, we suggest that invariants offer a new axis of design: not only what is
secret, but what is structurally preserved—and how such preservation can serve as proof.

1 Foundations of Invariant-Based Cryptography

1.1 Motivation for a New Primitive

Modern cryptography typically relies on algebraic asymmetry: the presumed difficulty
of reversing number-theoretic operations such as discrete exponentiation, factoring, or
lattice-based transformations. These assumptions underpin most symmetric and public-
key primitives. Yet all of them encode security through algebraic opacity—by hiding
internal structure from external view.

This work proposes a distinct paradigm: cryptography based on invariant structure.
Instead of relying on algebraic trapdoors, we construct systems where certain function
values satisfy an exact identity that remains invisible without hidden coordinates. The
goal is to encode a secret not through concealment, but through preservation: a functional
contract that remains stable only under legitimate derivation.

At the heart of this approach is a deterministic relation—an invariant—that links sev-
eral values of a function in a rigid algebraic identity. The identity cannot be validated or
reconstructed without knowledge of internal alignment parameters, such as a hidden eval-
uation index. This framework offers a structurally minimal, analytically rich alternative
to traditional hardness assumptions.

1.2 Defining the Invariant Primitive

We define an invariant primitive as a 4-tuple of function evaluations (s0, s1, s2, s3), where
each si := s(ti) for distinct points ti ∈ Q, such that the following identity holds:

I(s0, s1, s2, s3) = const(p).

Here:

• s(t) is a structured function with pseudorandom components and exponential terms;

• t ∈ Q \ {0} is a secret evaluation index;

• The identity I is exact and algebraically rigid: any three of the values determine
the fourth;

• The constant const(p) depends on a base parameter p, itself deterministically derived
from shared context (e.g., p = H(S, z) modM).

The function s(t) is constructed so that its values resemble pseudorandom noise unless
the generator parameters (such as the index t, the base p, and oscillatory seeds) are known.
The observable outputs are thus externally structureless, yet internally constrained.
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1.3 Target Properties of the Primitive

We treat the invariant relation as a cryptographic object in its own right. A viable
invariant primitive should satisfy:

• Reconstructability: Any three of the values si uniquely determine the fourth via
the invariant;

• Non-invertibility: Without knowledge of the secret index t, predicting values such
as s(t+ δ) is computationally hard;

• Verifiability: A party with partial values and a known identity constant can detect
tampering or forgery;

• Session uniqueness: Parameters such as p, oscillator seeds, and grid steps are
tied to a nonce z, preventing cross-session correlation;

• Analytic indistinguishability: The function s(t) resists approximation or mod-
eling due to embedded pseudo-random antiperiodic oscillations.

These properties mimic classical cryptographic guarantees—secrecy, integrity, bind-
ing—yet arise from functional coherence rather than group structure.

1.4 Hardness Assumption: Invariant Index-Hiding Problem

We introduce a general version of the Invariant Index-Hiding Problem (IIHP) as the
foundational hardness assumption for a class of cryptographic schemes based on functional
invariants. A concrete instantiation will be presented after the full protocol structure is
defined.

Invariant Index-Hiding Problem (IIHP): Let s : Q → ZM be a function gen-
erated using a hidden rational index t = i

K
∈ Q \ {0}, internal session parameters,

and a known invariant relation:

I
(

s(t), s(t +∆1), s(t+∆2), s(t+∆3)
)

= Const,

for some fixed offsets ∆j ∈ Z and an invariant function I defined over 4 inputs in
ZM .
The adversary is given a finite subset of values {s(t + ∆j)} and associated public
metadata, sufficient to verify the invariant identity.
The adversary’s goal is to:

• Forge a new value s∗ = s(t + δ∗) for some offset δ∗ /∈ {∆1,∆3},

• Such that the invariant identity remains valid over a modified 4-tuple including
s∗,

• And the forgery passes a cryptographic verification step (e.g., via a hash-based
check).

The IIHP is said to be hard if no probabilistic polynomial-time adversary can succeed
in this task with non-negligible probability in the security parameter.
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This definition captures the essential structure of invariant-based protection: a secret
evaluation index masked by functional and algebraic complexity, and a fixed relation
that acts as both a constraint and a verification mechanism. Concrete realizations will
instantiate the function s(t), the invariant I, and the verification logic in more detail.

1.5 Theoretical Directions

To support the development of invariant-based primitives, we propose the following the-
oretical questions:

1. Classification of useful invariants: What kinds of functional identities yield
cryptographic asymmetry? How many points are required for minimal security?

2. Security models: Can the classical notions of indistinguishability (IND), unforge-
ability (EUF), and non-malleability be rephrased in terms of invariant coherence?

3. Hardness from approximation theory: Are index-recovery or extension prob-
lems reducible to known hard tasks in transcendental number theory or analytic
continuation [20]?

4. Algebraic independence and entropy: Can values s(t+ i) be approximated by
polynomials or rational functions under bounded entropy assumptions?

5. Composable structures: Can invariant relations be embedded into larger proto-
cols—e.g., zero-knowledge proofs, commitments, or symmetric key agreements?

These questions invite the exploration of a new class of symbolic-hardness assumptions
rooted not in algebraic concealment, but in the analytic rigidity of generated values.

1.6 Outlook

The invariant-based model offers an alternative route to cryptographic security—one
based not on one-way functions or trapdoors, but on the impossibility of structurally
consistent extension. This model invites post-quantum constructions, lightweight designs,
and verification mechanisms that rely on functional symmetry rather than reversible arith-
metic.

As with all new primitives, formal reductions and models remain to be developed. Yet
the central insight remains compelling: what is preserved can also be protected.

2 Analytic Four-Point Invariant on the Real Line

To initiate the construction of invariant-based cryptography, we begin with the analytic
form of a specific four-point identity. This section is devoted to defining the invariant,
analyzing its structure, and explaining the properties that make it suitable as a crypto-
graphic primitive.

While the final cryptographic protocols will be implemented over finite fields or mod-
ular rings, the real-valued construction provides clarity, analytical tractability, and a nat-
ural route toward generalization. Working over R allows us to isolate the core functional
behavior before introducing discretization [17], rounding, or modular reduction. This also
provides a clean setting for proofs and algebraic decomposition.
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2.1 The Four-Point Invariant

Let s(t) be a real-valued function defined on an open domain of the real line. The central
invariant relation we study is:

s(t) · t + s(t+ 1) · (t+ 1)

s(t+ 2) · (t + 2) + s(t+ 3) · (t+ 3)
=

1

p2

This equation relates the values of the function s(t) at four consecutive positions, using
weighted linear coefficients derived from the evaluation points themselves. Crucially, the
relation holds exactly, under specific functional assumptions.

2.2 The Generating Function

The function s(t) is defined as follows:

s(t) =
pt + q1 sin(r1πt) + q2 cos(r2πt)

t

where:

• p > 0 is a real (or complex) base parameter, typically close to 1;

• q1, q2 ∈ R are amplitude coefficients;

• r1, r2 ∈ Zodd are frequency multipliers;

• t ∈ R \ {0} is the evaluation point.

This function combines smooth exponential growth (or decay) with bounded oscilla-
tions from sine and cosine terms [4]. The denominator t serves to normalize the amplitude
and introduce asymptotic decay near the origin. Despite its simple appearance, this struc-
ture admits a precise four-point identity.

2.3 Structure of the Invariant

The key property is that when s(t) is defined as above, the four-point ratio simplifies:

s(t) · t+ s(t + 1) · (t + 1)

s(t+ 2) · (t+ 2) + s(t+ 3) · (t+ 3)
=

pt + pt+1

pt+2 + pt+3
=

1

p2

due to cancellation of the sinusoidal components under specific parity conditions on
r1 and r2, and algebraic factoring of the exponential terms. This identity is exact and
invariant under a wide range of parameter values.

The proof and full structural analysis of this identity have been developed in prior
work [18], where the derivation is presented in full detail. That study also includes
numerical stability analysis and generalizations to variable spacing.
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3 Transition to the Discrete Model

To bridge the gap between analytic structures and practical cryptographic implemen-
tations, we now transition from real-valued continuous functions to discrete algebraic
constructions [19]. Cryptographic schemes are typically realized over finite rings, integer
lattices, or rational domains. Consequently, we replace the smooth domain R with a
discretized rational setting, where both evaluation points and function values belong to
computationally representable sets.

The invariant introduced in the continuous model remains structurally preserved under
discretization. By maintaining its algebraic form, we enable both efficient computation
and mathematically grounded cryptographic applications.

3.1 Discretization Grid and Parameters

Let K ∈ N be a discretization parameter, typically chosen as a power of two. We define
a rational grid:

t :=
i

K
, i ∈ Z \ {0}.

Function evaluations are restricted to these grid points. All oscillatory components
and coefficients are accordingly adapted to preserve algebraic structure on this domain.

We introduce a period scaling parameter C ∈ N, which determines the frequency of
oscillations in the discrete setting. Define two functions ϕ, ψ : Q → Z, evaluated only on
the subgrid:

{

Ct : t =
i

K
, i ∈ Z \ {0}

}

.

These functions are defined to be antiperiodic with period C:

ϕ(t+ C) = −ϕ(t), ψ(t + C) = −ψ(t).

3.2 Oscillatory Functions

The discrete functions ϕ and ψ serve as bounded oscillators analogous to sin and cos in
the continuous model. Their antiperiodicity ensures that their contributions cancel out
over symmetric spans of four consecutive points {t, t+ 1, t+2, t+3}, which is crucial for
the invariant structure discussed below.

3.3 Discrete Generating Function

We define the discrete generating function:

sd(t) =
pt + q1 · ϕ(Ct) + q2 · ψ(Ct)

t
,

where:

• p ∈ Q>0 is the base parameter;

• q1, q2 ∈ Q are amplitude coefficients;
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• ϕ, ψ : Q → Z are discrete antiperiodic functions;

• t = i
K

∈ Q \ {0}, as above.

This function retains the essential structure of the continuous model: an exponential
term modulated by bounded oscillations and normalized by the evaluation index.

3.4 Discrete Invariant Identity

We now establish the discrete four-point invariant. Consider the expression:

sd(t) · t+ sd(t + 1) · (t + 1)

sd(t+ 2) · (t+ 2) + sd(t + 3) · (t + 3)
.

Substituting sd, the numerator becomes:

pt + pt+1 + q1 [ϕ(Ct) + ϕ(Ct+ C)] + q2 [ψ(Ct) + ψ(Ct+ C)] .

The denominator is similarly:

pt+2 + pt+3 + q1 [ϕ(Ct+ 2C) + ϕ(Ct+ 3C)] + q2 [ψ(Ct+ 2C) + ψ(Ct+ 3C)] .

By antiperiodicity:

ϕ(Ct+ C) = −ϕ(Ct), ϕ(Ct+ 3C) = −ϕ(Ct + 2C),

and similarly for ψ. Therefore:

ϕ(Ct) + ϕ(Ct+ C) = 0, ϕ(Ct+ 2C) + ϕ(Ct+ 3C) = 0,

ψ(Ct) + ψ(Ct+ C) = 0, ψ(Ct+ 2C) + ψ(Ct+ 3C) = 0.

The oscillatory components cancel exactly, leaving:

pt + pt+1

pt+2 + pt+3
.

This simplifies as:

=
pt(1 + p)

pt(p2 + p3)
=

1 + p

p2(1 + p)
=

1

p2
.

Hence, the discrete invariant identity holds:

sd(t) · t+ sd(t+ 1) · (t+ 1)

sd(t+ 2) · (t+ 2) + sd(t + 3) · (t + 3)
=

1

p2
.

This confirms that the algebraic structure of the invariant is preserved exactly in the
discrete setting. The exponential component determines the value, while the oscillatory
terms cancel precisely due to their antiperiodicity and alignment with the scaled grid.
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3.5 Generalized Discrete Invariant with Aligned Indices

We refine the generalized discrete invariant by adjusting the final index to preserve expo-
nential symmetry. Define:

s0 = sd(t),

s1 = sd(t + 2v + 1),

s2 = sd(t + 2u),

s3 = sd(t + 2u+ 2v + 1).

The expression under consideration is:

s0 · t + s1 · (t+ 2v + 1)

s2 · (t+ 2u) + s3 · (t+ 2u+ 2v + 1)
.

Substituting the definition of sd, the numerator becomes:

pt + pt+2v+1 + q1 [ϕ(Ct) + ϕ(Ct+ C(2v + 1))] + q2 [ψ(Ct) + ψ(Ct + C(2v + 1))] .

The denominator becomes:

pt+2u + pt+2u+2v+1 + q1 [ϕ(Ct+ 2uC) + ϕ(Ct+ C(2u+ 2v + 1))]

+ q2 [ψ(Ct+ 2uC) + ψ(Ct + C(2u+ 2v + 1))] .

Using antiperiodicity:

ϕ(Ct+ C(2v + 1)) = −ϕ(Ct), ϕ(Ct + C(2u+ 2v + 1)) = −ϕ(Ct + 2uC),

ψ(Ct+ C(2v + 1)) = −ψ(Ct), ψ(Ct + C(2u+ 2v + 1)) = −ψ(Ct+ 2uC),

we obtain cancellation:

ϕ(Ct) + ϕ(Ct+ C(2v + 1)) = 0, ϕ(Ct + 2uC) + ϕ(Ct+ C(2u+ 2v + 1)) = 0,

ψ(Ct) + ψ(Ct+ C(2v + 1)) = 0, ψ(Ct + 2uC) + ψ(Ct+ C(2u+ 2v + 1)) = 0.

Thus, the invariant reduces to:

pt + pt+2v+1

pt+2u + pt+2u+2v+1
=

pt(1 + p2v+1)

pt · p2u(1 + p2v+1)
=

1

p2u
.

This cleanly matches the original invariant in the base case v = 0, u = 1, where:

1

p2

is recovered. Therefore, the generalized discrete invariant holds:

s0 · t+ s1 · (t+ 2v + 1)

s2 · (t+ 2u) + s3 · (t+ 2u+ 2v + 1)
=

1

p2u
.
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3.6 Construction of Antiperiodic Pseudorandom Oscillators on

a Rational Grid

We now define the oscillatory components ϕ(t) and ψ(t) used in the discrete generating
function. These functions play a role analogous to sin(t) and cos(t) in the continuous
model, but are represented as discrete pseudorandom sequences with controlled periodic-
ity.

Grid and Period Setup

Let K ∈ N be the discretization parameter. We evaluate all functions at points of the
form:

t =
i

K
, i ∈ Z \ {0}.

Let C ∈ N be the base period length (measured in t-units). Then the number of
sampling points in a single interval [0, C) is:

P := K · C.

We define the function ϕ(t) at these P discrete points by choosing a finite pseudoran-
dom seed [6]:

ϕ0, ϕ1, . . . , ϕP−1 ∈ Z.

These values correspond to the grid:

ti =
i

K
, 0 ≤ i < P.

Antiperiodic Extension

We now extend ϕ(t) to all t = i
K

∈ Q \ {0} by defining its values piecewise:

• On [0, C): define ϕ(ti) := ϕi for i = 0, . . . , P − 1.

• On [C, 2C): define ϕ(ti+P ) := −ϕi.

• Extend to all t ∈ 1
K
· Z by periodicity with period 2C:

ϕ(t+ 2C) := ϕ(t).

This construction ensures that:

ϕ(t+ C) = −ϕ(t), for all t =
i

K
,

i.e., the function is antiperiodic with period C on the rational grid.

Second Oscillator

The function ψ(t) is constructed in the same way using an independent seed:

ψ0, ψ1, . . . , ψP−1 ∈ Z.

10



Example: Antiperiodic Oscillator with K = 4 and C = 2

Let the discretization parameter be K = 4, and let the antiperiod be C = 2. Then:

P = K · C = 8.

We define the pseudorandom seed as:

ϕ0, . . . , ϕ7 = (2, −1, 0, 3, −2, 1, 1, −3).

These values correspond to the grid points:

ti =
i

4
, i = 0, . . . , 7, so t ∈ [0, 2) with step 1

4
.

The function is extended to the interval [2, 4) via antiperiodic reflection:

ϕ (ti+8) := −ϕi, i = 0, . . . , 7.

Examples:

ϕ

(

8

4

)

= −ϕ0 = −2, ϕ

(

11

4

)

= −ϕ3 = −3.

The full function is defined on all t ∈ 1
4
· Z by periodicity:

ϕ(t + 4) = ϕ(t), so ϕ(t+ 2) = −ϕ(t).

This yields an integer-valued function ϕ : 1
4
· Z → Z, fully determined by 8 initial

values, with perfect antiperiodicity over intervals of length 2.

4 Modular Formulation of the Generalized Discrete

Invariant

To enable efficient computation and alignment with modular cryptographic protocols,
we now reformulate the generalized discrete invariant over finite rings. This modular
reinterpretation allows the invariant structure to be preserved in bounded arithmetic,
where all operations occur modulo a prime or a composite modulus. The key challenge
is to ensure that both exponential and oscillatory components remain well-defined and
behave predictably under modular reduction.

4.1 Modular Domain and Function Definition

Let M ∈ N be the modulus, typically chosen as a large prime or a power of two. All
arithmetic is performed in the ring ZM . Assume:

p ∈ Z×
M , q1, q2 ∈ ZM .

We redefine the discrete generating function modulo M as:

sM(t) :=
pt + q1 · ϕ(Ct) + q2 · ψ(Ct)

t
mod M,

for all t = i
K

∈ Q \ {0} such that t−1 ∈ ZM . The functions ϕ, ψ : Q → ZM are now
treated as integer-valued functions followed by modular reduction.
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4.2 Antiperiodicity Modulo M

The oscillatory functions ϕ, ψ retain their antiperiodic property modulo M :

ϕ(t + C) ≡ −ϕ(t) mod M, ψ(t + C) ≡ −ψ(t) mod M.

Since ϕ and ψ are generated from integer seeds and extended by integer reflection,
their values remain in Z, and modular antiperiodicity holds automatically after reduction.

4.3 Modular Invariant Identity

We now state the modular version of the generalized invariant. Define:

s0 = sM(t),

s1 = sM(t + 2v + 1),

s2 = sM(t + 2u),

s3 = sM(t + 2u+ 2v + 1).

Then the modular invariant is:

IM(t; u, v) :=
s0 · t + s1 · (t+ 2v + 1)

s2 · (t+ 2u) + s3 · (t+ 2u+ 2v + 1)
mod M.

As in the rational case, oscillatory terms cancel in numerator and denominator due to
modular antiperiodicity:

ϕ(Ct) + ϕ(Ct+ C(2v + 1)) ≡ 0 mod M,

ψ(Ct+ 2uC) + ψ(Ct+ C(2u+ 2v + 1)) ≡ 0 mod M.

This yields:

IM(t; u, v) ≡
pt + pt+2v+1

pt+2u + pt+2u+2v+1
mod M.

Assuming p2u ∈ Z×
M , this simplifies to:

IM(t; u, v) ≡
1 + p2v+1

p2u(1 + p2v+1)
=

1

p2u
mod M.

4.4 Parameter Selection for Consistency and Invertibility

To guarantee that the modular discrete invariant is mathematically well-defined and com-
putationally valid, the parameters K,C, p,M must satisfy the following compatibility
conditions:

• Discretization parameter K: Determines the rational evaluation grid t = i
K
. To

ensure that each t is invertible modulo M , we require:

gcd(K,M) = 1 and gcd(i,M) = 1 for all i ∈ Z used in computation.

• Oscillator period C: A positive integer controlling the frequency of oscillations
via arguments ϕ(Ct) and ψ(Ct). Since the grid is closed under integer scaling, it
suffices that:

C ∈ N.

For efficiency, powers of two are recommended.
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• Exponential base p: The algebraic base used in the term pt. In order for the
modular inverse p−2u mod M to exist, it must satisfy:

gcd(p,M) = 1.

When M is a power of two, p must additionally be odd.

• Modulus M : Defines the ring ZM over which all arithmetic takes place. It is
typically chosen as:

– A large prime M , for full invertibility of all nonzero elements.

– A power of two M = 2k, in which case extra care must be taken:

p and K must be odd to ensure gcd(t,M) = 1.

4.5 Equivalence Classes of Invariant Pairs

An important structural consequence of the modular invariant identity is the existence of
multiple input pairs that yield the same invariant value. Specifically, for fixed parameters
p, u,M , and under consistent construction of the evaluation points t, there exists a family
of distinct index shifts v ∈ N and corresponding output pairs (s1, s3) ∈ Z2

M that all satisfy:

IM(t; u, v) =
1

p2u
mod M.

This defines a modular equivalence class:

(s1, s3) ∼ (s′1, s
′
3) if IM(s1, s3; t, u, v) = IM(s′1, s

′
3; t

′, u, v′)

where the underlying evaluation points differ but preserve the same structural relationship.

Cryptographic Implication. The presence of many such equivalent pairs—typically
on the order of M or more—prevents the verifier from learning anything about the orig-
inal index t, the shift v, or the secret S. From the outside, the values (s1, s3) appear
pseudorandom, yet are guaranteed to belong to a well-defined invariant-preserving set.

Algebraic Interpretation. Each invariant value c = 1
p2u

mod M defines a level set

(or fiber) in Z2
M consisting of all pairs (s1, s3) that satisfy the corresponding modular

relation. This makes the invariant function IM a non-injective algebraic map over Z2
M ,

enabling structured obfuscation while retaining local verifiability.

Use in Protocol Design. This redundancy allows secure message structures to be
instantiated with diverse random seeds while remaining verifiable against a common in-
variant key. It also enables the construction of chained or parallel message blocks that
preserve a shared invariant value while hiding individual internal parameters.
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5 Evaluation Example: High-Offset Indices in the

Modular Invariant

We now present a detailed computation of one term of the modular discrete invariant using
nontrivial index shifts. Specifically, we focus on the value of the oscillatory component
ϕ(Ct) contributing to s3, corresponding to a highly offset argument of the form t+ 2u+
2v + 1.

5.1 Step-by-Step Evaluation of ϕ(Ct) for s3

Let the parameters be:

• Discretization: K = 4

• Oscillator period: C = 2

• Modulus: M = 257

• Exponential base: p = 3 ∈ Z×
257

• Oscillator seed: ϕ0, . . . , ϕ7 = (2, −1, 0, 3, −2, 1, 1, −3)

• Evaluation point: t = 3
4

• Invariant parameters: u = 5, v = 17

Then the target index for s3 is:

t3 := t+ 2u+ 2v + 1 =
3

4
+ 10 + 34 + 1 =

3

4
+ 45 =

183

4

We now compute the argument of the oscillator:

Ct3 = C · t3 = 2 ·
183

4
=

366

4
=

183

2

This corresponds to the index:

i =
183

2
·K =

183

2
· 4 = 366

The oscillator period length is:

P := K · C = 4 · 2 = 8

We reduce the index modulo 2P = 16 to find the corresponding signed value from the
base seed:

366 mod 16 = 14

Now determine the sign and oscillator value:

• Compute the period block index:
⌊

366
8

⌋

= 45

• Since 45 is odd, apply antiperiodic reflection: ϕ366 = −ϕ366 mod 8

• Compute position in the base seed: 366 mod 8 = 6

• Thus: ϕ
(

183
2

)

= −ϕ6 = −1
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Conclusion. The contribution of the oscillator to s3 is:

ϕ(C(t+ 2u+ 2v + 1)) = −1

This example illustrates how oscillator values can be efficiently retrieved from a short
integer seed via modular arithmetic and parity-based antiperiodic extension, even when
the index offset is large.

5.2 Handling of pt

The exponential term pt in the discrete generating function

sM(t) :=
pt + q1 · ϕ(Ct) + q2 · ψ(Ct)

t
mod M

requires careful interpretation when t = i
K

is rational. Since modular exponentiation [9] is
defined only for integers, we distinguish two consistent approaches: root-based evaluation
and relative approximation.

Root-based definition. Assume p ∈ Z×
M , K ∈ N, and that p admits a formal K-th

root in ZM [7], i.e., there exists r ∈ Z×
M such that:

rK ≡ p mod M.

Then define:
pi/K := ri mod M, for all i ∈ Z.

This provides an explicit and algebraically valid assignment of pt for all grid values t = i
K
.

When M is prime and d = gcd(K,M − 1), a root r exists if:

p(M−1)/d ≡ 1 mod M.

Example. Let M = 257, p = 3, K = 4. Then:

3(256)/4 = 364 ≡ 1 mod 257 ⇒ a 4-th root of 3 exists.

One such root is r = 365 ≡ 16 mod 257, so:

pi/4 := 16i mod 257.

Relative approximation. If no such root exists or is impractical to compute, define
pt via relative consistency. Fix a scale A ∈ Z×

M , then:

pt := A, pt+1 := A · p, pt+2 := A · p2, . . .

This enforces:
pt+a

pt+b
≡ pa−b mod M,

which preserves the invariant identity:

s0 · t+ s1 · (t + 2v + 1)

s2 · (t + 2u) + s3 · (t + 2u+ 2v + 1)
≡

1

p2u
mod M.
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Note. If M is a power of two or K does not divide φ(M), the root p1/K mod M may
not exist. In such cases, the relative method is the only valid option.

Implementation strategy.

• Root-based: If r = p1/K mod M exists, precompute and store pt = ri mod M
for all t = i

K
in use.

• Relative-based: Fix pt = 1, define later terms via pt+i = pi, and tabulate pi

mod M . This avoids any roots.

Cryptographic considerations. If si values are exposed to external verification, the
value of pt must remain fixed and secret-consistent:

• Use a fixed A ∈ Z×
M , or derive it securely from a secret (e.g., A := H(k, t)).

• Avoid changing A across sessions; otherwise, si becomes non-reproducible and in-
validates invariant-based checks.

Security warning. Inconsistent choice of A allows adversaries to inject false data:

If A 6= A′,
A′(1 + p)

A′p2(1 + p)
6≡

1

p2
mod M.

5.3 Evaluation of s1 Using Structured Exponent Splitting and

Pseudorandom pt

We now compute the value of the term s1 = sM(t+2v+1), continuing the same example
with t = 3

4
, u = 5, v = 17. In the previous subsection, we demonstrated how to com-

pute the oscillator term ϕ(Ct); here we focus on how to compute s1 without explicitly
evaluating fractional exponents.

Definition recap. The discrete generating function is:

sM(t) :=
pt + q1 · ϕ(Ct) + q2 · ψ(Ct)

t
mod M,

with parameters:
q1 = 12, q2 = 35, M = 257, p = 3.

Target evaluation point. We have:

s1 = sM(t+ 2v + 1) = sM

(

3

4
+ 35

)

= sM

(

143

4

)

.
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Rational decomposition. Let us decompose the rational index t = 143
4

as:

t =
143

4
= 35 +

3

4
,

i.e., we extract:

Integer part: a = 35, Numerator: i = 3, Denominator: K = 4.

We now interpret pt via the decomposition:

pt = pa+
i

K = pa · PRF(i, K),

where:

• pa = 335 mod 257 is computed normally,

• PRF(i, K) ∈ Z×
M is a pseudorandom function [2] of (i, K), e.g., derived as:

PRF(i, K) := H(i ‖ K) mod M,

for a secure hash H .

Example values. Assume:

PRF(3, 4) = 113 mod 257, p35 mod 257 = 183.

Then:
p143/4 = pt = 183 · 113 = 20679 ≡ 81 mod 257.

Assume from prior computation:

ϕ(Ct) = −2, ψ(Ct) = 4.

Then:

s1 =
81 + 12 · (−2) + 35 · 4

143
4

=
81− 24 + 140

143
4

=
197
143
4

.

Now invert the denominator modulo M :

1

t
=

1

143/4
=

4

143
mod 257.

First compute 143−1 mod 257. Since 143 · 36 = 5148 ≡ 1 mod 257, we have 143−1 ≡ 36
mod 257. Then:

4

143
≡ 4 · 36 = 144 mod 257.

Final result:

s1 = 197 · 144 mod 257 = 28368 mod 257 = 53.

Conclusion. This demonstrates that even with pseudorandom or hash-derived approx-
imations for pt, the invariant structure and modular arithmetic remain intact and com-
putable. Oscillators ϕ, ψ were assumed precomputed, as shown in earlier subsections.
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6 Hash-Based Generator for pt: Salt-Parameterized

Invariant Structure

The flexibility in defining pt moduloM , as long as the exponential progression is preserved,
allows us to construct a cryptographically useful pseudorandom generator for pt based on
a public or private salt. This transforms an apparent ambiguity into a feature, enabling
secure, parameterized, and dynamic control of the invariant structure.

6.1 Salt-Parameterized Definition

Let H(s) ∈ Z×
M be a cryptographic hash of a chosen salt s, interpreted moduloM . Define:

pt := H(s), pt+i := H(s) · pi mod M, for i ∈ N.

Here:

• s ∈ {0, 1}∗ is a session identifier, shared secret, nonce, or public salt;

• H is a secure hash function (e.g., SHA-256 [16]), reduced modulo M ;

• p ∈ Z×
M is the fixed base for exponentiation;

• t = i
K

∈ Q \ {0} lies on a rational evaluation grid.

6.2 Invariant Preservation

This definition preserves the core structure of the discrete invariant. Any ratio:

pt+a

pt+b
≡
H(s) · pa

H(s) · pb
= pa−b mod M

is independent of the salt and thus guarantees:

pt + pt+2v+1

pt+2u + pt+2u+2v+1
≡

1

p2u
mod M.

This makes the invariant evaluation reproducible across devices or sessions that share
the same salt, while rendering the values pt pseudorandom to any observer lacking s.

6.3 Security Implications

The use of a hash-based generator offers several cryptographic advantages:

• Pseudorandom masking: Each evaluation of sM(t) includes a hidden multiplica-
tive factor H(s), unpredictable to an attacker without knowledge of s.

• Session separation: Different salts produce distinct sets of si, preventing cross-
protocol or cross-session correlation.

• Compact control: The entire structure is determined by a single 256-bit salt.

• Efficient implementation: The hash is computed once per salt and reused via
table lookup for pi.
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7 Symmetric Invariant-Based Scheme

7.1 Common Setup

• Public parameters:

– Invariant formula (generalized 4-point form);

– Modulus M ∈ N;

– Hash functions Hp, HK , HC , Hq, HB, Ht with domain separation [8];

– Cryptographic PRGs for generating oscillators ϕ, ψ;

– Evaluation grid defined by rational steps t = i
K
, with gcd(K,M) = 1.

• Shared secret: A binary string S ∈ {0, 1}∗, known to both parties.

7.2 Alice’s Generation

Given a session-specific nonce z ∈ {0, 1}∗, Alice performs:

1. Derives parameters:

p := Hp(S, z) modM, gcd(p,M) = 1,

K := HK(S, z), C := HC(S, z),

i := Ht(S, z) mod K, abort if i = 0,

B := HB(S, z) modM,

t := B +
i

K
mod M.

Security note. The index t is derived from a fresh nonce z, ensuring that each
session uses a unique evaluation point on the rational grid. As long as z is never
reused, the structure of t, and thus the entire functional configuration s(t), remains
unlinkable across sessions. Only repeated use of the same z (with different u, v)
introduces the risk of t-based correlation attacks. The protocol therefore requires
that each session uses a unique, non-repeating nonce.

2. Chooses secure random integers u, v ∈ N and computes:

t0 = t,

t1 = t+ 2v + 1,

t2 = t+ 2u,

t3 = t+ 2u+ 2v + 1.

3. Derives oscillator amplitudes:

q1 = Hq(S, z, 1), q2 = Hq(S, z, 2),

q3 = Hq(S, z, 3), q4 = Hq(S, z, 4).
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4. Instantiates pseudorandom oscillators:

ϕ := PRGϕ(S, z), ψ := PRGψ(S, z),

ensuring antiperiodicity and bounded range in ZM .

5. Evaluates function:
s0 := sM(t0; q1, q2),

s1 := sM(t1; q1, q2),

s2 := sM(t2; q3, q4),

s3 := sM(t3; q3, q4),

where

sM(t; qi, qj) :=
pt + qi · ϕ(Ct) + qj · ψ(Ct)

t
modM.

6. Checks invertibility condition:

D := 2(s1p
2u − s3) 6≡ 0 mod M (abort if not invertible).

7. Computes verification hash:

Hcheck := H(S, v, s1, s3, u, z).

8. Sends to Bob:
〈s1, s3, u, z, Hcheck〉.

Modular Reduction of Rational Indices. Let t = B + i
K

be a rational number,
where:

• B ∈ ZM ,

• i ∈ Z \ {0},

• K ∈ N with gcd(K,M) = 1.

We define the modular reduction of t modM canonically as:

t modM := ((B modM) ·K + i) ·K−1 mod M,

where:

• K−1 ∈ ZM is the modular inverse of K mod M ,

• all arithmetic is performed modulo M .

This definition embeds rational values from the grid Z+ 1
K
Z into ZM while preserving

their fractional structure, and ensures consistent evaluation of expressions involving t
under modular arithmetic.
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7.3 Bob’s Verification and Recovery of v

1. Recomputes session parameters:

p, K, C, i, t, q1, . . . , q4, ϕ, ψ from S, z.

2. Evaluates:
s0 := sM(t0; q1, q2),

s2 := sM(t2; q3, q4),

p2u ∈ ZM .

3. Checks denominator:

D := 2(s1p
2u − s3) mod M, abort if gcd(D,M) 6= 1.

4. Solves for v ∈ ZM :

v ≡
−s0 · p

2ut− s1 · p
2u(t + 1) + s2 · (t+ 2u) + s3 · (t+ 2u+ 1)

2(s1p2u − s3)
mod M.

5. Verifies integrity:

H(S, v, s1, s3, u, z)
?
= Hcheck.

6. Optional: Check v ∈ N and within expected bounds.

8 Security Analysis and Assumptions

This section consolidates all security-critical properties, assumptions, and remaining risks
of the proposed invariant-based cryptographic scheme. While the construction lacks for-
mal reduction proofs, its security relies on a structured combination of pseudorandom
derivation, non-linear functional identities, and evaluation masking.

8.1 Invariant-Based Hardness: Core Assumption

Functional Construction. We consider a function s : Q → ZM with the following
analytic structure:

s(t) :=

(

pt + qiϕ(Ct) + qjψ(Ct)

t

)

modM,

where:

• p, qi, qj ∈ ZM are derived from a shared secret S and session nonce z,

• ϕ, ψ : Q → ZM are pseudorandom antiperiodic oscillators,

• t = i
K

∈ Q \ {0} is a hidden rational evaluation point on a grid of spacing 1/K.
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Since modular exponentiation with rational exponents is undefined over ZM , we rein-
terpret the expression pt via index decomposition. Let t = ⌊t⌋+δ, where δ = t−⌊t⌋ ∈ [0, 1).
We then define:

pt := p⌊t⌋ · PRF(i, K),

where PRF(i, K) is a pseudorandom function acting as a masked substitute for the frac-
tional exponent pδ. This is not an approximation, but a deterministic replacement that
preserves unpredictability and hides the structure of δ under the secret seed S. The
resulting masked form is:

s(t) :=

(

p⌊t⌋ · PRF(i, K) + qiϕ(Ct) + qjψ(Ct)

t

)

modM.

Invariant Structure. Let ∆1,∆2,∆3 ∈ Z be fixed session parameters (e.g., ∆1 = 2v+1,
etc.). Then the values

s0 := s(t), s1 := s(t +∆1), s2 := s(t+∆2), s3 := s(t+∆3)

are guaranteed to satisfy a known invariant identity of the form:

I(s0, s1, s2, s3) =
1

p2u
modM,

where u ∈ Z is also session-specific and derived from S and z.

Invariant Index-Hiding Problem (IIHP). We define the core assumption that un-
derlies the security of the scheme:

IIHP (Strict Formulation). Let s(t) be the masked function defined above,
with internal parameters derived from a secret seed S and a session nonce z. The
adversary is given a fixed transcript:

(s1, s3, u, z,Hcheck),

where s1 = s(t+∆1), s3 = s(t+∆3) with ∆1 = 2v+1, ∆3 = 2u+2v+1, and v ∈ N

is a hidden session parameter.
The adversary must attempt to produce a forgery:

(s∗, δ∗) ∈ ZM × Z

such that:

• δ∗ /∈ {∆1, ∆3},

• The recovered value v∗ := RecoverV(s1, s
∗, u, z) satisfies:

H(S, v∗, s1, s
∗, u, z) = Hcheck.

The IIHP is said to be hard if no probabilistic polynomial-time adversary can succeed
in this task with non-negligible probability in the security parameter.
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Security Implication. The hardness of IIHP ensures that no adversary can forge a new
evaluation point consistent with the invariant structure without recovering the hidden
index t or solving for the masked session offset v. Since the invariant equation rigidly
couples multiple points of the function s(t), any forgery that passes hash verification
implies the ability to predict internal structure masked by pseudorandom oscillators and
exponentials.

Why is the index t critical? The index t = i
K

determines the geometric position of
all evaluations involved in the invariant. Although it is never revealed, knowledge of t
enables reconstruction of the functional configuration and alignment of all parameters.
Without it, the attacker cannot simulate the structure of s(t+ δ), and thus cannot forge
values that satisfy the invariant constraint. Preserving the secrecy of t protects not only
individual evaluations but also the integrity of the underlying symbolic structure.

8.2 Structural Rationale and Security Heuristics

The security of the scheme does not rely on any single operation being hard in isolation.
Instead, it emerges from the compounded structure of multiple interacting components.
We outline below how each design element contributes to computational intractability
and resistance to cryptanalysis.

• Hidden geometric anchor. The function is evaluated at a secret point on a
rational grid. Although the spacing is known, the exact index remains concealed,
and its disclosure would compromise all derived values. This index plays the role of
a geometric anchor from which the invariant structure unfolds.

• Exponentially perturbed evaluation. The core of the function includes expo-
nential scaling relative to the hidden index. While exponentiation over modular
rings is not inherently hard, the use of fractional exponents masked via pseudoran-
dom factors makes recovery of the base or the index non-trivial.

• Oscillatory masking. The oscillators act as a session-specific modulation, pre-
venting analytical modeling or interpolation. Their antiperiodic nature ensures that
nearby evaluations exhibit controlled but unpredictable shifts, which mask any sim-
ple algebraic relationship between points.

• Invariant alignment constraint. The invariant imposes a rigid constraint on
multiple evaluations, but only if the internal offsets and parameters are correctly
aligned. Even a minor deviation in the index or amplitude breaks the identity. This
rigidity serves as both a validator and a gatekeeper.

• Unordered external appearance. To an observer lacking the secret seed, the
outputs resemble structured randomness—consistent enough to satisfy an internal
law, but indistinguishable from noise without knowledge of how the law is instanti-
ated.

• Session independence. All critical parameters, including oscillators, grid den-
sity, and base coefficients, are derived anew for each session. This eliminates the
possibility of cross-session learning or cumulative attacks.
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• Combinatorial unpredictability. The function’s form does not admit simplifi-
cation via interpolation, lattice attacks [13], or low-degree approximants. Its pseu-
dorandom, non-linear, and index-dependent nature defies traditional cryptanalytic
tools.

• Minimal structure leakage. No component of the output directly reveals the
index or base, and the masking layers make reverse-engineering impractical. Fur-
thermore, positions in the invariant are semantically fixed, breaking reordering or
substitution strategies.

These properties, while informal, illustrate the system’s robustness against both algebraic
and statistical attacks. Together, they form the structural basis for believing the Invariant
Index-Hiding Problem to be a meaningful cryptographic hardness assumption.

8.3 Correctness and Implementation Requirements

• Invertibility check: To compute v from the invariant, the formula

v ≡
−s0p

2ut− s1p
2u(t+ 1) + s2(t + 2u) + s3(t + 2u+ 1)

2(s1p2u − s3)
modM

requires checking gcd(2(s1p
2u − s3),M) = 1. The scheme must abort otherwise.

• Grid invertibility: The index t = i
K

modM is reduced using:

t :=
(

(B ·K + i) ·K−1
)

modM,

where gcd(K,M) = 1 is required for invertibility.

• Oscillator generation: The oscillators ϕ and ψ must be deterministically gen-
erated from the shared seed (S, z) using cryptographically secure pseudorandom
mechanisms. Each oscillator behaves as a pseudorandom function evaluated at a
rational index Ct, where the period parameter C controls the scale and frequency
of antiperiodic fluctuation.

Two implementation strategies are possible:

– Precomputed PRG table: The entire oscillator sequence of length C is gener-
ated once per session using a secure PRG (e.g., AES-CTR or HMAC-DRBG),
producing a table:

ϕ[i] := PRG(S, z, ϕ)[i], for i = 0, . . . , C − 1.

Then each evaluation ϕ(Ct) is computed as ϕ[⌊Ct⌋ mod C], allowing constant-
time random access with no recomputation. This strategy is efficient for mod-
erate values of C (e.g., 224 or 232) if memory permits.

– On-demand PRF generation: If memory constraints prohibit precomputation,
oscillator values can be derived directly using a pseudorandom function:

ϕ(Ct) := PRFϕ(S, z, ⌊Ct⌋),

where the PRF is instantiated via HMAC, AES, or another secure keyed func-
tion. This eliminates the need for a table but incurs higher per-evaluation
cost.
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Both methods yield function values indistinguishable from random [12] without
knowledge of S, and ensure that nearby evaluations ϕ(C(t+ δ)) and ϕ(Ct) exhibit
controlled but unpredictable variation.

• Hash binding: The hash Hcheck := H(S, v, s1, s3, u, z) must be included in the
transmitted message to ensure integrity and resist tampering.

• Parameter bounds: All parameters should lie within practical and cryptograph-
ically sound bounds. In particular:

|S| ≥ 256, |z| ≥ 128, u, v ≤ 264.

This range ensures efficient modular exponentiation and bounded side-channel ex-
posure, but larger values are permitted in applications that can accommodate the
computational cost.

• Replay prevention: Nonce z must be globally unique per session, enforced via
timestamps, counters, or ephemeral keys.

8.4 Security Game and Advantage Definition (Realistic Variant)

We define a security game that precisely models the real capabilities of an adversary [3]
interacting with the symmetric invariant-based protocol. The goal is to capture the
difficulty of forging a new valid value consistent with the transmitted invariant identity.

Game IIHP (Strict Version). Let λ ∈ N be the security parameter. The protocol
parameters are chosen such that:

log2M ≥ λ, K ≥ 2λ/2, |S| = |z| = λ.

Public Output. The adversary A is given the following session transcript:

(s1, s3, u, z, Hcheck),

where:
Hcheck := H(S, v, s1, s3, u, z),

and v ∈ N is a hidden session-dependent value recoverable only through evaluation of the
invariant relation.

No Oracles. The adversary has no access to oracle evaluations of s(t+δ), as the protocol
does not expose any such interface. All available information is included in the transcript.

Winning Condition. The adversary outputs a forgery:

(s∗, δ∗) ∈ ZM × Z,

and wins if all of the following hold:

1. δ∗ /∈ {∆1, ∆3}, where:

∆1 := 2v + 1, ∆3 := 2u+ 2v + 1;
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2. Let v∗ := RecoverV(s1, s
∗, u, z) be the value computed using the invariant;

3. The hash check passes:

H(S, v∗, s1, s
∗, u, z) = Hcheck.

Value Recovery Function. Let RV := RecoverV(s1, s
∗, u, z) denote the result of ap-

plying the invariant recovery formula (used by Bob) to compute a candidate v∗ ∈ ZM
from the forged value s∗. The function is defined as:

RV :=
−s0 · p

2u · t− s1 · p
2u · (t + 1) + s2 · (t+ 2u) + s∗ · (t+ 2u+ 1)

2(s1 · p2u − s∗)
mod M,

where:

• p,K,C, i, t are deterministically recomputed from (S, z);

• s0 := sM(t0; q1, q2), s2 := sM(t2; q3, q4), using the same generation logic as in the
original protocol;

• Oscillators ϕ, ψ and amplitudes qi are regenerated from (S, z) as per the session
definition;

• All arithmetic is performed in ZM .

The output v∗ is the value that Bob would compute assuming s∗ was the legitimate
third evaluation in the invariant tuple. If this value satisfies the hash condition, the
forgery is accepted.

Adversarial Advantage. The adversary’s advantage is defined as:

Adv
A
IIHP

(λ) := Pr





A outputs (s∗, δ∗) such that:
δ∗ /∈ {2v + 1, 2u+ 2v + 1}, and
H(S, v∗, s1, s

∗, u, z) = Hcheck



 .

Hardness Assumption. We assume that for all PPT adversaries A, the advantage is
negligible:

Adv
A
IIHP

(λ) ≤ negl(λ).

This assumption is grounded in the pseudorandom structure of s(t), the secrecy of the
shared seed S, and the infeasibility of inverting the invariant without recovering the
hidden index t or parameter v. It can be viewed as an invariant-constrained analogue of
pseudorandom function indistinguishability or structure-respecting forgery resistance.

9 Heuristic Justification and Hardness of Game IIHP

We analyze the cryptographic difficulty of Game IIHP from the perspective of a real-
world adversary. The goal is to understand why forging a valid output that passes the
invariant-based hash check is infeasible under standard assumptions.

26



9.1 Adversarial Model and Observability

The adversary operates in a constrained setting:

• Receives only a static transcript (s1, s3, u, z,Hcheck) from a single session.

• Has no access to oracle queries s(t + δ), and cannot interact with or probe the
evaluation function.

• Possesses no knowledge of the secret index t = i
K
, the internal parameters p, C, v,

or the oscillator values ϕ, ψ.

The only permitted action is to produce a candidate pair (s∗, δ∗) such that a derived
value v∗ := RecoverV(s1, s

∗, u, z) passes the final hash check:

H(S, v∗, s1, s
∗, u, z) = Hcheck.

9.2 Attack Vectors and Their Complexity

Brute-force search. The adversary could attempt to guess s∗ ∈ ZM and hope the
recovered v∗ satisfies the hash condition. The probability of success is bounded by the
size of M :

Pr[hash collision] = O(2−λ) for log2M ≥ λ.

Structure inference from known outputs. The attacker might hope to interpolate
s(t+ δ∗) using s1 = s(t+∆1) and s3 = s(t+∆3). This fails because:

• The internal index t is rational and secret;

• The exponent pt := p⌊t⌋ · PRF(i, K) is masked via PRF-like transformation;

• Oscillators ϕ, ψ are seeded with S and modulate the signal in a pseudorandom,
anti-interpolatable way.

Hash collision. Forging (s∗, v∗) to pass the hash check without solving the functional
structure is as hard as breaking the collision resistance of H , which is assumed negligible.

Grid-based inversion. Even if the attacker tries to guess the grid index t = i
K
, the

search space is exponential forK ≥ 2λ/2. Moreover, each guess requires evaluating masked
expressions with no access to PRGs.

9.3 Comparison to Standard Cryptographic Assumptions

Game IIHP implicitly combines and extends the hardness of several standard crypto-
graphic primitives and design paradigms:

• PRF security: The masked function s(t) incorporates pseudorandom components
(oscillators and exponent masks) derived from secure seeds, making its outputs
indistinguishable from random to outsiders.
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• Message forgery resistance: Any valid response must satisfy a structured alge-
braic invariant and match the committed hash [11]. This constraint is stronger than
typical MAC or signature consistency, as it is symbolic and value-sensitive.

• Hidden index problems: The unknown rational index t serves a similar role to
a hidden exponent in Diffie–Hellman-based problems. Recovering it from function
evaluations is infeasible without internal secrets.

• Pseudonoise masking: The oscillators ϕ, ψ act as pseudorandom noise layers.
Their values shift with high entropy across t, making algebraic interpolation or
approximation attacks ineffective—conceptually similar to the masking in LWE [15],
though without actual lattices.

• Hash-based binding: Final verification relies on a hash function applied to the
recovered value v∗, which ensures that even if the algebraic structure is (partially)
satisfied, the forgery fails unless the hash also matches.

9.4 Quantitative Hardness Estimate

Assuming:

• H is modeled as a random oracle;

• PRGs PRGϕ,PRGψ are secure;

• Parameters M,K satisfy log2M ≥ λ, K ≥ 2λ/2;

then for any PPT adversary A,

Adv
A
IIHP

(λ) ≤ negl(λ).

This guarantees that the probability of producing a forgery that passes the invariant
hash binding is negligible in the security parameter λ.

10 Formal Soundness: Invariant-Based Forgery Re-

sistance

In this section, we formally analyze the security guarantees of the symmetric invariant-
based scheme under the assumption that the Invariant Index-Hiding Problem (IIHP) is
hard. Our goal is to demonstrate that no adversary can successfully bypass the invari-
ant structure or construct valid forgeries without implicitly solving IIHP. In other words,
we reduce the feasibility of a successful attack to the hardness of IIHP: we show that
all strategies available to the adversary ultimately require predicting hidden internal pa-
rameters or satisfying the invariant identity at an unauthorized offset, both of which are
infeasible under standard cryptographic assumptions.

We distinguish two key cases depending on how session parameters are reused or
distributed. For each case, we prove that the probability of successful forgery remains
negligible in the security parameter λ.
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10.1 Case 1: Unique Session Parameters

Lemma 10.1 (Forgery Resistance under Unique Session Parameters). Let the session
parameters z ∈ {0, 1}λ and u ∈ N be chosen freshly and independently for each execution
of the protocol. Then for any probabilistic polynomial-time adversary A, the probability
that A produces a valid forgery (s∗, δ∗) satisfying the IIHP game conditions is negligible
in λ. In particular,

Adv
A
IIHP

(λ) ≤ negl(λ).

Proof of Lemma 1. Let A be any probabilistic polynomial-time adversary that is given a
single protocol transcript:

(s1, s3, u, z,Hcheck),

where:

• z ∈ {0, 1}λ is a unique session nonce,

• u ∈ N is a unique session parameter,

• s1 := s(t+ 2v + 1), s3 := s(t+ 2u+ 2v + 1), and Hcheck := H(S, v, s1, s3, u, z),

• S is a shared secret known only to the honest parties.

The adversary must produce a forgery (s∗, δ∗) ∈ ZM × Z such that:

1. δ∗ /∈ {2v + 1, 2u+ 2v + 1},

2. the value v∗ := RecoverV(s1, s
∗, u, z) ∈ ZM satisfies:

H(S, v∗, s1, s
∗, u, z) = Hcheck.

We analyze the probability of such a forgery being successful.

Key Observation: The values s1, s3 are evaluations of a masked function

s(t) :=

(

p⌊t⌋ · PRF(i, K) + qiϕ(Ct) + qjψ(Ct)

t

)

modM,

with internal parameters derived from the unique session tuple (S, z, u, v). These param-
eters define a unique structure for this session, and are not repeated or reused.

Hence, the attacker faces the following challenges:

• The index t is derived via a hidden hash of (S, z), and belongs to a rational grid
i
K

modM , where both i and K are unknown and derived via cryptographic hash
functions.

• The values p, C, qi, qj, ϕ, ψ are deterministically derived from (S, z), and are pseu-
dorandom from the adversary’s perspective.

• The output s(t+ δ) is pseudorandomly masked and nonlinear in δ.
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The adversary has no method of evaluating s(t+δ∗) or predicting RecoverV(s1, s
∗, u, z)

without full knowledge of t, p, ϕ, ψ, and the oscillator amplitudes. Each of these depends
on S and is cryptographically protected.

Thus, for any value s∗ guessed by the adversary, the probability that the derived v∗

will satisfy:
H(S, v∗, s1, s

∗, u, z) = H(S, v, s1, s3, u, z)

is negligible in λ, due to the collision resistance and pseudorandomness of H , and the
uniqueness of v 6= v∗ when s∗ 6= s3.

Conclusion: Unless the adversary breaks the collision resistance ofH , or predicts internal
values masked by PRFs, the success probability is bounded by:

Pr[forgery] ≤ Pr[guess correct s∗] + Pr[hash collision] ≤
1

M
+ negl(λ),

which is negligible for log2M ≥ λ.

10.2 Case 2: Multiple Evaluations with Fixed (z, u)

Lemma 10.2 (Invariant Robustness under Bounded Evaluation Reuse). Fix a pair (z, u)
shared across a session, and let Alice generate at most Vmax ∈ N distinct values of v,
producing corresponding public outputs (s

(i)
1 , s

(i)
3 , u, z,H

(i)
check) for i = 1, . . . , Vmax. Then for

any adversary A given access to this multiset, the probability of constructing a new pair
(s∗, δ∗) that passes the IIHP hash verification and does not duplicate any of the existing
δi := 2vi + 1, 2u+ 2vi + 1 is negligible in λ, provided vi are selected randomly.

Proof of Lemma 2. Let z ∈ {0, 1}λ and u ∈ N be fixed, and let the honest sender (Alice)
generate at most Vmax ∈ N distinct values v1, . . . , vVmax

∈ N, producing corresponding
outputs:

(

s
(i)
1 , s

(i)
3 , u, z,H

(i)
check

)

, for i = 1, . . . , Vmax,

where:
s
(i)
1 = s(t+∆

(i)
1 ), ∆

(i)
1 = 2vi + 1,

s
(i)
3 = s(t+∆

(i)
3 ), ∆

(i)
3 = 2u+ 2vi + 1,

H
(i)
check = H(S, vi, s

(i)
1 , s

(i)
3 , u, z),

and t = t(S, z) is a hidden rational index on the evaluation grid.
Suppose the adversary A is given all of these public outputs. Its goal is to construct

a new pair (s∗, δ∗) such that:

1. δ∗ /∈ {∆
(i)
1 ,∆

(i)
3 : 1 ≤ i ≤ Vmax},

2. The recovered value v∗ := RecoverV(s
(j)
1 , s∗, u, z) (for some j) satisfies:

H(S, v∗, s
(j)
1 , s∗, u, z) = H

(j)
check.

We now argue that such forgery is infeasible.
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1. No structural predictability. The values s
(i)
1 , s

(i)
3 are masked nonlinear function

evaluations with session-dependent oscillator values, amplitudes qk, and hidden exponen-
tials. Even with multiple samples:

{

s
(i)
1 , s

(i)
3

}Vmax

i=1
,

the adversary cannot recover:

• the secret index t, or

• the internal oscillator states ϕ(C(t+ δ)), ψ(C(t+ δ)), or

• the masked fractional exponent pt := p⌊t⌋ · PRF(i, K).

Thus, the attacker cannot interpolate or simulate a new value s∗ = s(t + δ∗) for any

δ∗ /∈ {∆
(i)
k }.

2. Invariant structure is rigid. The recovery formula for v∗ imposes strict consistency
between four evaluation points, including the unknown base point t. Without correct
alignment to the internal grid structure, any attempt to fabricate a new s∗ will result
in an invalid value of v∗ under the invariant. This invalid v∗ will then fail the hash
verification:

H(S, v∗, s
(j)
1 , s∗, u, z) 6= H

(j)
check.

3. No hash substitution. Even if the adversary correctly guesses one of the session
values vi, the corresponding hash H

(i)
check = H(S, vi, s

(i)
1 , s

(i)
3 , u, z) remains secure. This

is because reproducing either s
(i)
1 or s

(i)
3 without knowing the internal index t and the

oscillator functions is infeasible. Both values are derived from pseudorandom function
evaluations at masked, rationally shifted indices, and cannot be predicted or reconstructed
from vi alone. Therefore, even with a correct vi, the adversary cannot forge the remaining
values required to satisfy the hash equation. The hash remains binding on the full tuple.

4. Probability bound. Even if the adversary attempts to guess a correct s∗ ∈ ZM
such that the hash equation holds by chance, the probability is:

Pr[hash collision] ≤ 2−λ.

Repeating this across Vmax ≤ poly(λ) known pairs does not yield a non-negligible advan-
tage.

5. On the Feasibility of Algebraic Inversion via Guessed Values. Suppose the
adversary accumulates V valid public pairs (s

(i)
1 , s

(i)
3 ) corresponding to different hidden

values vi, all within the same fixed session (z, u). Let us assume that a subset of these
values, say m, are correctly guessed, i.e., the adversary knows vi such that:

s
(i)
1 = s(t+ 2vi + 1), s

(i)
3 = s(t + 2u+ 2vi + 1),

for i = 1, . . . , m.
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The adversary now has access to a system of 2m functional equations involving the
same underlying hidden parameters:

p, q1, q2, q3, q4, t, K, C, ϕ, ψ.

These parameters govern the evaluations of the masked function s(t) at rationally shifted
inputs. The adversary could in principle attempt to solve for the unknowns by treating
these as a nonlinear algebraic system over ZM .

However, this attack faces the following fundamental limitations:

• Dimensionality. The number of independent unknowns is at least 8 (assuming
fixed oscillator structure), potentially more if oscillators are PRG outputs with
internal state. To determine all parameters uniquely, the adversary would need
at least m = 5 full value pairs (s

(i)
1 , s

(i)
3 ), i.e., at least 10 correct values from the

protocol, each requiring a correct prediction of vi.

• Brute-forcing individual values vi from public outputs. Given a single public
pair (s

(i)
1 , s

(i)
3 ), the adversary may attempt to guess the internal session parameter

vi that determines the offsets δ1 = 2vi + 1, δ3 = 2u + 2vi + 1. However, the
recovery formula for v is highly sensitive to the hidden base index t, as well as other
secret parameters p, oscillator amplitudes, and PRF-masked components. Without
knowledge of these values, any attempt to evaluate the correctness of a guessed vi
reduces to brute-force search. If vi is uniformly sampled from a 32-bit or 64-bit
domain, the chance of a successful guess is:

Pr[vguessi = vi] = 2−32 or 2−64,

respectively. Since each guess requires full recomputation of masked function values
and recovery logic, even moderate repetition becomes computationally infeasible.
No partial structural leakage is available to narrow the search space, as the invariant
recovery formula behaves as a pseudorandom function over masked inputs.

• Matching leaked values vj to unknown public outputs. Suppose the adver-
sary somehow obtains m true session values {v1, . . . , vm}, while observing V ≥ m

public pairs (s
(i)
1 , s

(i)
3 ) from the same session (z, u). The attacker’s goal is to identify

which of the V outputs correspond to the known values. This reduces to searching
over all injective mappings from the known values vj to distinct observed outputs.
The number of such mappings is:

#matchings =
V !

(V −m)!
,

which becomes prohibitively large for even small m. For example, with V = 100,
m = 5, there are over 9 · 109 possible mappings. Without knowledge of the internal
structure of the masked function, all mappings are equiprobable. Moreover, incor-
rect matchings violate the invariant identity, producing inconsistent values of v∗

that will fail the hash verification step. No adaptive feedback is available to guide
the attacker toward a correct match. Thus, even partial leakage of vj values does
not assist the adversary unless the exact mapping to outputs is revealed.
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• Algebraic hardness. Even assuming m correct values are known, solving the
resulting system involves nonlinear combinations of modular exponentials, rational
inverses, and pseudorandom oscillators evaluated at unknown rational shifts. The
masking via PRFs and antiperiodic oscillators renders symbolic simplification or
Gröbner-style algebraic methods infeasible. Moreover, any small noise or error in
s
(j)
i (due to guessing or measurement) breaks solvability.

• No symbolic reduction. The oscillators ϕ(Ct), ψ(Ct) are not simple functions
but pseudorandom bitstreams seeded from S. Even with known input points t+ δi,
their values are uncomputable without access to the PRG state.

As both the probability of guessing sufficient correct vi values and the feasibility of
solving the resulting algebraic system are negligible in λ, their conjunction is negligible as
well. Therefore, the attacker gains no advantage from accumulating public observations,
regardless of statistical or symbolic strategy.

Conclusion. For any PPT adversary A, the probability of constructing a valid forgery
(s∗, δ∗) /∈ {∆

(i)
k } such that v∗ := RecoverV(·) passes the hash verification for any session i

is negligible in λ. Hence, the invariant remains unforgeable even with repeated evaluations
over a fixed (z, u).

Remark. The same security argument applies when the adversary accumulates multiple
invariant evaluations with fixed z but varying internal parameters u, v. Since all values
are tied to the same hidden function sz(t), and the invariant structure remains rigid and
non-interpolable, no forgery advantage is gained beyond the case analyzed in Lemma 2.

11 On the Hardness of the Invariant Index-Hiding

Problem

We now present a formal justification for the cryptographic hardness of the Invariant
Index-Hiding Problem (IIHP). Rather than assuming IIHP to be a standalone primitive,
we derive its intractability from the structural properties of the masked function s(t),
the rigidity of the invariant relation, and the unpredictability of index-dependent values
under pseudorandom masking.

Theorem 11.1 (Structural Unforgeability under Invariant Constraints). Let s(t) ∈ ZM
be the masked function defined by the invariant-based scheme, with all internal parameters
derived from a secret seed S. Then, for any probabilistic polynomial-time adversary A,
the probability of producing a forgery (s∗, δ∗) such that:

1. δ∗ /∈ {2v + 1, 2u+ 2v + 1},

2. v∗ := RecoverV(s1, s
∗, u, z) is valid,

3. H(S, v∗, s1, s
∗, u, z) = H(S, v, s1, s3, u, z),

is negligible in the security parameter λ, even when the full transcript (s1, s3, u, z,Hcheck)
is revealed.

33



11.1 Proof Strategy

To prove this result, we analyze the two fundamental constraints any successful forgery
must satisfy:

• the algebraic constraint: the value s∗ must satisfy the invariant equation with the
same base index t,

• the cryptographic constraint: the hash binding condition must be satisfied exactly.

We show that the set of s∗ ∈ ZM that satisfy both constraints is, with overwhelming
probability, a singleton — namely, the true value s3. Thus, no other value s∗ 6= s3 can
satisfy the invariant structure and the hash check simultaneously.

We divide the proof into the following lemmata:

• Lemma 1: For fixed session parameters (z, u, v), the invariant equation has at most
one solution s∗ = s3 consistent with a valid recovered value v∗.

• Lemma 2: Any s∗ 6= s3 leads to v∗ 6= v, which invalidates the hash check.

• Lemma 3: For any PPT adversary, the probability of constructing such an s∗ without
knowing t, p, and oscillator values is negligible.

Each lemma formalizes an essential rigidity in the scheme. Together, they prove that
IIHP is hard under standard cryptographic assumptions.

11.2 Lemma 1: Uniqueness of Valid Invariant Completion

Lemma 11.2 (Uniqueness of Valid Invariant Completion). Let the session parameters
(z, u, v) and the values s0 = s(t), s1 = s(t+2v+1), and s2 = s(t+2u) be fixed. Then the
value s3 := s(t+ 2u+ 2v + 1) is the only element of ZM such that the invariant recovery
formula

v∗ :=
−s0p

2ut− s1p
2u(t+ 1) + s2(t+ 2u) + s∗(t + 2u+ 1)

2(s1p2u − s∗)
mod M

returns the correct session value v∗ = v.

Proof. Fix all values (z, u, v), and consider the equation defining v∗ as a function of the
variable s∗ ∈ ZM . All other quantities — s0, s1, s2, t, p

2u — are fixed within the session.
We rewrite the expression as a rational function:

f(s∗) =
A+Bs∗

C − s∗
mod M,

where:

• A := −s0p
2ut− s1p

2u(t+ 1) + s2(t+ 2u),

• B := t+ 2u+ 1,

• C := s1p
2u.
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The equation f(s∗) = v mod M is equivalent to the modular congruence:

A+Bs∗ ≡ v(C − s∗) mod M.

Bringing all terms to one side and grouping by s∗, we obtain a linear congruence:

s∗(B + v) ≡ vC −A mod M.

This congruence has a unique solution modulo M provided B+ v 6≡ 0 mod M . How-
ever, in the actual protocol, the value v is chosen such that the denominator of the recovery
formula,

2(s1p
2u − s3) ≡ 2(C − s∗) mod M,

is invertible. Alice checks this condition explicitly and aborts otherwise. Hence, the
scheme guarantees that B+ v 6≡ 0 mod M , and the congruence admits a unique solution
for s∗ ∈ ZM .

Hence, there exists a unique value s∗ ∈ ZM such that v∗ = v, and this value is precisely
s3 = s(t+ 2u+ 2v + 1).

Discussion. The significance of Lemma 1 lies in the uniqueness of the value s3 that
leads to correct recovery of v under the invariant. Since Bob computes v deterministi-
cally from (s1, s3, u, z), any forgery attempt must produce a fake value s∗ that satisfies
RecoverV(s1, s

∗, u, z) = v, or else the hash will not verify.
However, the attacker cannot compute such an s∗ without full knowledge of the internal

parameters used to define the masked function s(t): namely, the hidden index t, the
exponent p2u, the oscillator amplitudes qi, and the values of the PRF-masked components.
Inverting the recovery equation without this information is equivalent to breaking the
entire function structure.

Conversely, even if the attacker wishes to embed an arbitrary value vtarget into the
protocol, they would have to compute a matching s∗ such that RecoverV(s1, s

∗, u, z) =
vtarget, which again requires complete control over the function. In both directions —
faking s∗ for a known v, or embedding a chosen v — the forgery implies full compromise
of the invariant construction. The scheme thus resists tampering unless its entire internal
state is revealed.

11.3 Lemma 2: Invalid Hash for Incorrect Invariant Completion

Lemma 11.3 (Invalidity of Hash under Forged Evaluation). Let the session parameters
(z, u, v) and values s1, s3 be defined as in the protocol. Let Hcheck := H(S, v, s1, s3, u, z).
Then for any s∗ ∈ ZM such that s∗ 6= s3, the recovered value v∗ := RecoverV(s1, s

∗, u, z)
satisfies v∗ 6= v, and the forged tuple fails the hash verification:

H(S, v∗, s1, s
∗, u, z) 6= Hcheck.

Proof. By Lemma 1, for fixed session parameters (z, u, v), the invariant recovery equation
yields v∗ = v if and only if s∗ = s3. Therefore, any forged value s∗ 6= s3 leads to a
computed v∗ 6= v.

Now suppose an adversary nonetheless manages to construct such an s∗. There are
two possibilities:
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• Either the attacker has found a value s∗ such that RecoverV(s1, s
∗, u, z) = v. But

by Lemma 1, this can only happen if s∗ = s3, so this case is ruled out.

• Or the attacker accepts that v∗ 6= v, and hopes to satisfy:

H(S, v∗, s1, s
∗, u, z) = H(S, v, s1, s3, u, z).

But now the attacker must find a collision in the hash function involving different
inputs — i.e., to find

(v∗, s∗) 6= (v, s3)

such that the hash still matches. This amounts to a chosen-input collision, which is
assumed to be computationally infeasible under standard cryptographic assumptions
(or negligible under the random oracle [1] model).

Thus, even if the adversary could manipulate the invariant to produce a valid-looking
v∗, the hash function ensures that only the authentic combination (v, s3) is accepted. In
effect, the hash function transforms a rare success (in producing v∗ = v) into an even
rarer success (collision of full tuple hashes), acting as a final binding gate in the protocol.

Discussion. Lemma 2 illustrates the layered defense provided by the scheme. Even if
an attacker could bypass the invariant constraint and produce a forged evaluation s∗ that
leads to a plausible recovered value v∗, the hash function enforces a strict commitment to
the original tuple. The hash binding ensures that not only must the recovered v∗ match
the original v, but also that the entire evaluation tuple (v, s1, s3, u, z) is preserved exactly.

Therefore, any deviation from the true s3 results in either a mismatch in v, or a collision
in the hash function — both of which are cryptographically infeasible. The scheme relies
on this double barrier: algebraic rigidity from the invariant, and cryptographic binding
from the hash. Forging both simultaneously implies full compromise of internal state,
which contradicts the assumed hardness of IIHP.

11.4 Lemma 3: Infeasibility of Forgery Without Internal Knowl-

edge

Lemma 11.4 (No Forgery Without Structural Knowledge). Let the masked function s(t)
be defined as in the protocol, with secret seed S and session nonce z. Then for any
probabilistic polynomial-time adversary with access only to the public session transcript
(s1, s3, u, z,Hcheck), the probability of generating a value s∗ ∈ ZM , such that:

1. s∗ 6= s3,

2. v∗ := RecoverV(s1, s
∗, u, z) is computable (or RV(s∗) for shorter notation),

3. H(S, v∗, s1, s
∗, u, z) = Hcheck,

is negligible in the security parameter λ, unless the adversary can recover the internal
parameters of the function s(t).

Proof. Assume the adversary is given only the public values (s1, s3, u, z,Hcheck), and has
no access to the secret seed S. To construct a valid forgery s∗, the adversary must
simultaneously satisfy two independent constraints:
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• Algebraic constraint: The forged value s∗ must yield a recovered v∗ := RV(s∗)
that satisfies the invariant recovery equation. However, this recovery depends on
the internal structure of the masked function s(t), including:

– the hidden rational index t ∈ ZM ,

– the masked exponent pt := p⌊t⌋ · PRF(i, K),

– the oscillator functions ϕ, ψ : Q → ZM , which are generated by cryptographic
pseudorandom generators (PRGs) seeded with (S, z),

– the amplitudes qi, derived via keyed hashes.

These components are unknown to the adversary, and any attempt to compute or
predict s(t+δ) for arbitrary shifts δ without this knowledge is equivalent to inverting
or predicting outputs of secure PRGs and PRFs — a task assumed to be infeasible
for PPT adversaries.

• Hash constraint: Even if the adversary guesses a value s∗ that yields some v∗, the
hash binding still requires:

H(S, v∗, s1, s
∗, u, z) = Hcheck.

Without access to the seed S, and without being able to produce the exact commit-
ted tuple, the adversary faces either a preimage problem (to find a value hashing to
a known digest) or a chosen-input collision — both of which are cryptographically
hard under standard hash function assumptions.

Therefore, the joint probability of passing both constraints — algebraic consistency
and hash verification — is negligible in λ. Any adversary capable of such forgery would, by
implication, break either the pseudorandomness of the internal generators or the binding
property of the hash, contradicting standard cryptographic assumptions.

11.5 Conclusion: Security of the IIHP Game

Combining the previous results, we obtain the following:

Theorem 11.5 (Security of the Invariant Index-Hiding Problem). Let λ ∈ N be the
security parameter. Assume that:

• The hash function H is modeled as a collision-resistant random oracle;

• The oscillator functions ϕ, ψ are derived from secure PRG or PRF constructions
seeded from (S, z);

• The masked exponent pt is derived via a pseudorandom function [14];

• The protocol parameters M , K, and nonce entropy satisfy log2M ≥ λ, K ≥ 2λ/2,
|S| = |z| = λ.

Then for any probabilistic polynomial-time adversary A, the probability of producing a
successful forgery in the IIHP game is negligible:

Adv
A
IIHP

(λ) ≤ negl(λ).
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Proof Sketch. The theorem follows by reduction to the previously proven lemmas:

• Lemma 1 ensures that only a single value s3 yields the correct v under the recovery
formula;

• Lemma 2 shows that any deviation from s3 results in a different v∗, which fails the
hash check;

• Lemma 3 proves that no adversary can forge a consistent pair (s∗, v∗) without recov-
ering the internal structure of s(t), which is infeasible under the pseudorandomness
assumptions.

Therefore, the adversary’s only strategy would require either inverting the pseudo-
random generators or finding a collision in H , both of which are assumed hard. The
scheme thus reduces the IIHP game to standard cryptographic assumptions and ensures
its security under well-established hardness models.

12 Parameter Recommendations and Security Ratio-

nale

This section defines a complete and cryptographically justified set of parameters required
for the secure operation of the invariant-based scheme. Each parameter is chosen to ensure
classical 128-bit security and structural robustness against post-quantum adversaries. The
ranges prevent brute-force recovery of the hidden rational index, enforce unpredictability
of oscillator-based masking, and ensure that all transmitted values remain strongly bound
to the internal structure of the protocol through collision-resistant hashing. The recom-
mendations are intended to support long-term cryptographic viability while remaining
practical for real-world deployment.

Prime Modulus M . The arithmetic modulus M defines the finite field ZM used in
all evaluations. It must be a prime number of at least 256 bits. To ensure long-term
and post-quantum resistance, values in the range 2256 ≤ M < 2384 are recommended.
The modulus should be selected to avoid structural weaknesses (e.g., special primes) and
support efficient modular arithmetic.

Exponential Base p. The base p ∈ Z×
M is used in the masked exponential term pt. To

ensure well-defined modular exponentiation and the existence of modular inverses such
as p−2u, the value of p must satisfy gcd(p,M) = 1. When M is a power of two, p must
be odd. The value of p may be derived per session from the shared secret S and nonce z
using a hash function such as p := Hp(S, z) modM .

Grid Resolution K. The parameter K ∈ N defines the rational evaluation grid Z+ 1
K
Z

for the hidden index t = i
K
. The value K must satisfy gcd(K,M) = 1 and be large enough

to prevent exhaustive search. Values in the range 2160 ≤ K ≤ 2256 provide sufficient
resistance, ensuring that recovery of t requires infeasible effort.
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Oscillator Frequency C. The oscillator frequency C ∈ N controls the internal pe-
riodicity of the pseudorandom oscillators ϕ and ψ. To avoid short cycles and ensure
decorrelation, C should lie in the range 224 ≤ C ≤ 232. It is required that gcd(C,M) = 1
to guarantee that oscillator output sequences fully span ZM and avoid modular repetition.

Index Spacing Parameter u. The public parameter u ∈ N determines internal spacing
between rational points used in the invariant. A value of 32 bits is sufficient to balance
arithmetic feasibility and structural alignment.

Secret Offset Parameter v. The session-specific secret offset v ∈ N is recovered by
Bob using the invariant identity. To ensure resistance to brute-force attacks, v must lie
in the range 264 ≤ v ≤ 2128. This ensures infeasibility of parallelized guessing even under
hardware acceleration.

Shared Secret S. The master key S ∈ {0, 1}256 seeds all session parameters, PRGs,
and hash inputs. Its entropy must match or exceed 256 bits to ensure full coverage of the
domain space and collision resistance under standard assumptions.

Session Nonce z. The nonce z ∈ {0, 1}256 provides per-session uniqueness, domain
separation, and protection against replay and cross-session correlation. Its length must be
at least 256 bits to ensure statistical uniqueness across concurrent sessions in distributed
systems.

Hash Output Hcheck. The verification hash must provide collision and preimage resis-
tance. A 256-bit output is required. Acceptable implementations include SHA-3-256 or
truncated SHAKE256.

Parameter Type Range Bit Size Security Role

M Prime modulus ≥ 2256 256-384 Finite field for all arithmetic

K Grid resolution 2160-2256 160-256 Hides rational index t

C Oscillator frequency 224-232 24-32 Governs pseudorandom oscillators

p Exponential base ∈ Z×
M 256 Used in masked exponentiation

u Public spacing parameter 232 32 Index offset

v Secret session parameter 264 64 Recovered via invariant equation

|S| Shared secret key 256 256 Seeds all PRFs, hashes, and masks

|z| Nonce 256 256 Enforces session uniqueness

H Hash output SHA-3-256 256 Binds the transcript and invariant

Table 1: Security parameters and recommended sizes

13 Serialized Message Format and Size Estimate

We specify the structure and size of the data transmitted from Alice to Bob during a
session. This message must contain all the information necessary for Bob to verify the
invariant and recover the secret session value v.

• All fields are encoded in big-endian format.
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Field Type / Domain Size (bits) Purpose

s1 ZM 256 Evaluation at t + ∆1 = t +
2v + 1

s3 ZM 256 Evaluation at t + ∆3 = t +
2u+ 2v + 1

u Z 32 Public index spacing param-
eter

z {0, 1}256 256 Session nonce (prevents re-
play)

Hcheck {0, 1}256 256 Hash binding the invariant
and session

Total — 1056 bits 132 bytes

Table 2: Serialized message format: fields and size estimate

• Fields s1, s3, and u are interpreted modulo M .

• The hash Hcheck binds all transmitted values and must be validated prior to any
invariant processing.

• The 256-bit nonce z ensures session unlinkability and uniqueness.

The serialized message contains all values necessary for verifying the invariant and
recovering the session-specific secret v, with a total size of exactly 1056 bits (132 bytes).
This compact format is comparable to modern digital signature schemes and remains
efficient for use in bandwidth-constrained or embedded environments.

Conclusion and Future Directions

We have introduced a symmetric cryptographic scheme that transmits a hidden session-
dependent value v through a verifiable invariant structure. The construction combines
algebraic alignment, pseudorandom masking, and deterministic recovery to enforce struc-
tural integrity without revealing intermediate components or the internal evaluation point
t.

The scheme is built on three core principles:

• Structure — values are bound by an invariant identity with rational index spacing;

• Control — the receiver deterministically recovers v from partial data, using no
external oracle;

• Masking — all evaluations are obfuscated using PRF-based oscillators, ensuring
that outputs are unlinkable and unpredictable.

Comparison to classical primitives. Unlike standard MACs or hash-based signa-
tures, this scheme does not merely bind values to a shared secret — it binds them through a
structured, algebraic law. The transmitted values reveal neither the secret nor the internal
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state. Verification proceeds via algebraic reconstruction rather than external challenge-
response, enabling new modes of interaction. In this respect, the invariant plays a similar
role to a signature equation or zero-knowledge relation.

Structural Advantages over Classical Symmetric Schemes. The invariant-based
symmetric construction provides several capabilities not typically found in traditional
MAC, AEAD, or PRF-based systems. These advantages stem from the algebraic struc-
ture of the protocol, the masking of internal state via pseudorandom oscillators, and the
invariant-preserving design. Below we highlight key features that distinguish this scheme:

• Unbounded Secret Reuse: A single 256-bit secret can be reused across unlimited
sessions without degradation or risk of linear exposure.

• Session Unlinkability under Repetition: Even repeated transmissions of the
same internal value (e.g., the same v) produce unlinkable ciphertexts due to ran-
domized index masking.

• Algebraic Binding Without Decryption: Integrity is verified through a fixed
invariant identity, eliminating the need for decryption or access to plaintext.

• Forward Unpredictability: Given partial outputs (e.g., s1, s3), recovery of session
parameters (such as v, t) is infeasible due to the pseudorandom structure and hidden
index.

• Composable and Chainable Design: The invariant can be embedded recur-
sively or composed across multiple layers, enabling advanced cryptographic work-
flows (e.g., chain-of-trust encoding).

• Structure Verification as First-Class Feature: Unlike MAC or AEAD schemes
that protect only output authenticity, this protocol enforces internal structural cor-
rectness as part of the cryptographic guarantee.

Security assumptions. The scheme’s security relies on the hardness of recovering or
simulating values constrained by a masked nonlinear identity over a hidden rational grid.
This involves:

• Secret-dependent oscillators modulated through a non-algebraic basis;

• Masked exponential terms with fractional exponents approximated via PRF;

• Absence of any known quantum algorithms for inverting this structure.

Thus, the scheme resists both classical and quantum attacks. In particular, it is believed
to be secure against Shor-style discrete log attacks, as no group operation is exposed, and
the core inversion problem is non-linear, non-abelian, and non-periodic.

Use cases and limitations. The scheme is suitable for scenarios where:

• Confidential values must be verifiably transmitted without direct exposure;

• Structural integrity and tamper resistance are more important than bandwidth or
throughput;
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• Session uniqueness and unlinkability are critical (e.g., one-time credentials, commit-
ments).

It is not optimized for high-throughput symmetric encryption or continuous data
streams. The construction introduces additional computational cost due to pseudoran-
dom oscillator evaluation and rational arithmetic, making it best suited for lightweight
cryptographic exchanges, signature-like authentication, or commitment protocols.

Future directions. Next steps include:

• Extending the invariant framework to allow multidimensional or multivalue bind-
ings;

• Exploring families of invariants with varying verification complexity and algebraic
resilience;

• Construction of asymmetric schemes based on analogous invariants, enabling a
prover to demonstrate structural knowledge without revealing secret information.

These directions aim to expand the invariant-based paradigm into a broader cryp-
tographic toolkit, uniting algebraic verification with pseudorandom masking for secure,
verifiable communication.
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