arXiv:2505.05648v1 [cs.CL] 8 May 2025

Privacy-Preserving Transformers: SwiftKey’s Differential
Privacy Implementation

Abdelrahman Abouelenin, Mohamed Abdelrehim, Raffy Fahim,
Amr Hendy and Mohamed Afify
Microsoft

Abstract

In this paper we train a transformer us-
ing differential privacy (DP) for language
modeling in SwiftKey. We run multiple
experiments to balance the trade-off be-
tween the model size and run-time speed
and accuracy. We show that we get small
and consistent gains in the next-word-
prediction and accuracy with graceful in-
crease in memory and speed compared to
the production GRU. This is obtained by
scaling down a GPT2 architecture to fit the
required size and a two stage training pro-
cess that builds a seed model on general
data and DP finetunes it on typing data.
The transformer is integrated using ONNX
offering both flexibility and efficiency.

1 Introduction

Transformers provide state-of-the-art performance
for many natural language processing (NLP) and
language modeling tasks. Since their introduc-
tion for machine translation in (Vaswani et al.,
2017) they showed impressive performance on mul-
tiple domains, mainly by an exponential increase
in the number of parameters. We explore using
transformers for context modeling in the SwiftKey
keyboard. This requires deploying the model on-
device and puts strict constraints on the model
size. Also, transformers are usually trained on gen-
eral data like web data, textbooks and conversa-
tions. The latter heavily mismatch the character-
istics of typing data entered by users on their key-
boards. Hence, using language models trained on
general data results in poor typing quality. An ob-
vious solution is to train models directly on typing
data. This poses serious privacy concerns and risks
leaking personal data typed by the users(Carlini
et al., 2019). We approach this problem by first
pre-training models on general data followed by us-
ing differential privacy (DP)(Dwork, 2006) to fine-
tune the resulting models on user typing data. This
requires carefully tuning the training recipe to mit-
igate any performance loss due to DP fine-tuning.

In WWDC last year Apple announced that the
new versions of i0S and macOS come with a trans-

former language model that will give users predic-
tive text recommendations as they type. While
they didn’t announce the model details, some at-
tempts to reverse engineer it (Cook, 2023) ! reveal
a GPT-2 like model with 6 decoder blocks, 512 hid-
den dimension and 34M parameters. The vocabu-
lary is BPE-based of size around 15K sub-words.
In contrast, we use our transformer for core typing
and train models as small as 6MB after quantiza-
tion.

The rest of the paper is organized as follows.
We first give a quick primer on language model-
ing in SwiftKey and differential privacy in Sec-
tion 2. The transformer model development is
then given in Section 3. This includes the train
and test data, model architecture, training recipe,
fluency (decoder) integration followed by results
and comparison to our recurrent (GRU) models.
We mainly show that we can get performance as
good as the current production GRUs with slightly
larger transformers. Additional experiments to im-
prove the performance along multiple dimensions
including training hyper-parameters and DP recipe
are provided in Section 4. We then show initial re-
sults for relative positional embeddings which help
alleviate length mismatch in Section 5. We finally
summarize our findings in Section 6.

2 Language Modeling and
Differential Privacy Primer

This section is a quick primer on language model-
ing in SwiftKey and differential privacy (DP). This
is not meant as an in-depth overview but rather
provides context for the rest of the paper.

2.1 Language Modeling in SwiftKey

Language models calculate the probability of
a word given the previous N words i.e.
plwi|wi—q...... w;—n). In Swiftkey, these are re-
ferred to as context probabilities and are used in
the search, with other knowledge sources, to pre-
dict the best words given the user input. Initially,
n-grams (Chen and Goodman, 1996) were used for
language modeling. They provide excellent perfor-
mance for short contexts but can’t properly model

"https://github. com/jackcook/predictive-spy

https://github.com/jackcook/predictive-spy
https://arxiv.org/abs/2505.05648v1

longer sequences and don’t generalize well to un-
seen events. To address these limitations, gated re-
current units (GRU) (Nosouhian et al., 2021) were
later deployed to a subset of locales having suffi-
cient data and were trained on user typing data.
Due to privacy regulations, e.g. GDPR, the user
data was limited to data from or before 2018. This
results in poor modeling of recent data. Last year
we used differential privacy (DP), more on this be-
low, to train GRUs on more recent typing data and
update GRUs for a number of locales.

Transformers (Vaswani et al., 2017) are currently
showing state-of-the-art performance for language
modeling, they are being adopted by competitive
keyboards and can unlock different scenarios, like
sentence completion and grammar correction, in
addition to core typing. In spite of their attractive-
ness, transformers pose some challenges regarding
real-time speed, memory and DP fine-tuning. We
will address these challenges below to ship trans-
former for core typing as mentioned above. We will
also benchmark the resulting transformers against
production GRUs.

2.2 Differential Privacy

Fine-tuning language models on domain data is a
crucial step to achieve better in-domain results. It
has been widely used for language modeling where
a pre-trained model is built using a large amount of
data and then fine-tuned on specific domain data
to improve it’s predictive capabilities on this do-
main e.g. (Zheng et al., 2024). Unfortunately, a
problem could emerge here if the data contains any
private information. In this case, the model be-
comes vulnerable to membership attack where the
attacker can deduce if a specific data point was
used to fine-tune the model.

In our case to safely fine-tune the model on user
data, we need to guarantee that it is resilient to
membership attack. This is the main role of differ-
ential privacy (DP) in our training pipeline. Intu-
itively, DP is a randomized algorithm that can be
applied to any algorithm to guarantee that any of
its output is not heavily influenced by the presence
of a single data point.

An algorithm M is (e, d) differentially private if
for all X and X’ and for events S

PriM(X)e S| <ePr[M(X')e S|+

Where X and X' are neighboring datasets that
differ only in a single data point. One of the major
advantages of DP is to quantify the privacy guar-
antees using € and 4. The lower the value of €
the tighter the privacy guarantees. Training DP
neural networks is usually implemented using the
DP SGD proposed in (Abadi et al., 2016) and its

variants.

The standard deviation of the noise added at
each step is a function e, § and gradient clip-
ping C. For Gaussian mechanism, this is given
by C? x \/2log(1.25/8)/e (Abadi et al., 2016). It is
also shown that privacy scales with the number of
iteration k as gev/k where ¢ = L/N where L is the
batch size and N the total size of training data.
We will experiment with some of these parameters
in Section 4.

3 Model Development

In this section we describe in detail the develop-
ment of a transformer model and compare it to the
current production GRU. This includes the train
and test data, model architecture, training recipe,
fluency (decoder) integration and results.

3.1 Train and Test Data

In this section we describe the train and test data
used in our experiments.

For training we use pre-training data for the seed
model and typing data to obtain the final model.
The pre-training data come from common crawl
and twitter and consists of two sets:

e Pre-training I: A relatively small subset for
fast turn-around that consists of 171.6M sen-
tences and 2.9B tokens.

e Pre-training II: The full set that consists of
479M sentences and 11.1B tokens.

The fine-tuning data comes entirely from user typ-
ing data and also comprises two sets:

e Fine-tuning I: a relatively small set for fast
turn around of experiments that has around
280M sentences, 934M tokens and 1.9M users.

e Fine-tuning II: a larger set that consists of
around 628M sentences, 2.63B tokens and
6.8M users.

For privacy, the typing data is anonymized by re-
placing all entities by a general placeholder.
The test data also consists of two sets:

e Snippets Set: The final models are tested on
typing data. Full typing sessions which record
the full user input are called snippets. For pri-
vacy, these snippets are limited to a maximum
of 4 commits. These sessions allow calculat-
ing the typing accuracy !, or edit rate = 1 -
accuracy, as well as NWP. The Snippets data

has size 6.6K sentences from January, 2024.
taccuracy = (true positive 4 true negative)/ (true
positive 4 true negative + false positive + false nega-
tive).

Vocab OOV Rate
64k 24.70%
+ 64k Unigram 23.59%
] 10k | 58.14%
+ 64k Unigram 24.72%
20k | 3781%
+ 64k Unigram 23.92%

Table 1: OOV Analysis on different vocab sizes
based on BUS 50k testset

e Typing Data Set: Snippets are generally short
with an average length of 4. To better test for
longer contexts, the typing data set comprises
50K sentences held out from the training data
of lengths varying from 2 to 15 tokens with an
average of around 7 tokens. We report NWP
and simulated accuracy? for this set.

3.2 Vocabulary Construction

Vocabulary selection is crucial for good typing ac-
curacy. We use a word-based vocabulary and will
consider sub-word vocabulary in future work.

For vocabulary selection, we use a frequency-
based approach. We combine the pre-training data
and the weighted typing data® and then select the
top N most frequent words. Currently, we use a vo-
cabulary of size 20K words that gives a reasonably
good trade-off between out-of-vocabulary (OOV)
rate and model size. Table 1 shows the OOV rate
for different vocabulary sizes for en_US evaluated
on the BUS 50k test set that has 19k unique words.
It clearly shows that the OOV improves signifi-
cantly by going from 10K to 20K vocabulary.

While a 20K vocabulary gives a good compro-
mise between coverage and model size it still has
significant OOV rate. One way to overcome this,
that we will explore in future work, is to use a sub-
word vocabulary. Here, we use a back-off unigram
language model to account for the unknown words
i.e. to give non-zero probabilities to words out-
side the main vocabulary. The vocabulary of the
unigram model is constructed from the most fre-
quent 64K words in the data and not in the neural
model vocabulary. The OOV rate after adding the
unigram model is also shown in Table 1%.

3.3 Model Architecture

In this section we describe the model architecture
used in this work. A transformer decoder archi-
tecture similar to GPT2 is employed but scaled

2Typing data is simulated using a keypress model
since no typing data is available for this set.

3In initial experiments we found that a weight of 5
gives best results.

4While the OOV rate for the three vocabularies is
still relatively high it is compensated by the user dy-
namic vocabulary but this is out of scope of this paper.

GRU

Transformer @

10k % m 6k k

Figure 1: Pretraining evaluation loss of GRU and
transformer model with same number of parame-
ters. Eval set consist of 100k sentences taken from
pretrained data

down to satisfy on-device memory and speed re-
quirements. We build a 4-layer model with 4 at-
tention heads and a hidden dimension of 512.

The input embeddings take a substantial part of
the total model size. Therefore, we limited the em-
bedding dimension to 128. In initial experiments,
we found that there is very small difference in per-
formance between embedding size of 128 and 256.
Finally, one byte quantization is applied to all the
parameters. The total model size is around 6MB
after quantization. To validate the selected archi-
tecture, we trained a transformer on the seed data
and compared it to a similar size GRU model®.
The evaluation loss of the two models during the
training is shown in Figure 1. It is clear that the
transformer has significantly lower evaluation loss
for the same number of parameters. Based on
this encouraging result, we finetuned the resulting
transformer on typing data and compared it to the
production model as will be discussed below.

3.4 Training Recipe

Our training recipe is divided into three main
parts. Data preparation and vocabulary creation,
pretraining on general data and DP fine-tuning on
reconstructed typing data. These steps are auto-
mated to eliminate manual intervention and facil-
itate training scaling.

3.4.1 Data Preparation

Data preparation is done using our internal tools
which comprise input retrieval and vocabulary and
quality filters. The retrieval part is straightforward
and comprise fetching the data from the corre-
sponding stream. The vocabulary filters mainly re-
move profane and non-linguistic words using some
predefined dictionaries while quality filters are high
level filters to ensure quality of training data e.g.
removing non-linguistic events or text in a different
language.

5The GRU has a 20K vocabulary, 512 units in the
hidden layer.

evalfloss

Figure 2: eval loss dp vs non dp

3.4.2 Model Training

Model training, either pretraining or DP finetun-
ing, is done using the DP_transformer library ©.
This library has a flexible architecture that sup-
port huggingface models and allows training trans-
formers in DP and non-DP modes by integrating
Opcaus (Yousefpour et al., 2021) with huggingface.
As mentioned above, we first train a seed model
on general data then DP finetune it on typing data
to create the final model. DP training has two
important parameters that control the amount of
privacy versus accuracy, namely (4,€). In our ini-
tial experiments we fix § at 10~® and target € at
14 i.e. it will increase throughout the training un-
til it reaches the target value. This allows us to
calculate the noise level that will be added to the
gradient at each iteration. We finetuned our seed
model for 28k updates with an effective batch size
of 64K sentences and learning rate le-4. We also
finetuned the same model without DP. The evolu-
tion of the loss for both DP and non-DP finetuning
is shown in Figure 2. We can observe some perfor-
mance loss due to DP finetuning. This is the price
to pay for increased privacy. We will run some
experiments to mitigate the loss in Section 4.

3.5 Fluency Integration

In order to make the transformer model compat-
ible with a generic framework, a crucial step in-
volves converting it into the Open Neural Net-
work Exchange (ONNX) format. This conver-
sion facilitates seamless integration of the model
into various frameworks and enhances its accessi-
bility and usability across different platforms. The
model’s forward function is modified to return the
probabilities for the next word prediction only in-
stead of the whole sequence and a special handling
for empty sequences is added. While the current
ONNX conversion lacks caching state handling, ef-
forts are underway to address this, aiming to opti-
mize the model’s performance and speed. Swiftkey
keyboard is powered by an internal engine called
"Fluency” where the context model (tranfsormer

Shttps://github.com/microsoft /dp-
transformers/tree/main

Time in milliseconds
BN
5 8 %

GRU 10k vocab GRU 20k vocab Transformer - 4 layers

model

Transformer - 12 layers

—e—meantime per prediction ==e==95th quantile of time per prediction

Figure 3: Inference Time

Sizein MBs
o kN w & 0 ® N ® ©

GRU 10k vocab GRU 20k vocab Transformer - 4 layers

M

Transformer - 12 layers

Figure 4: Different LM Sizes

model) is a part of multiple search techniques con-
tributing to its probability distribution for the next
word prediction. In Fluency the ONNX model is
loaded and used as part of inference.

Performance tests are conducted to evaluate the
speed of the transformer model and compare it to
the production GRU for typing. A dataset com-
posed of 630 typing samples is used. The sample is
incrementally given as input to Fluency to predict
the next word and each input is treated as an event
where its time is calculated. Figure 3 shows the
mean and 95th quantile inference time in ms for the
production GRU, a 20K vocabulary GRU, a 4-layer
transformer and a 12-layer transformer. It can be
observed that the 4-layer transformer gracefully in-
creases the mean inference time while a deeper 12-
layer transofrmer significantly increases it with re-
spect to the GRU. The increase is more significant
for the 95th quantile as longer sequences take more
time due to the lack of caching for the transformers
unlike for the GRU which caches hidden states for
the sequence as we add a new word to it. However,
adding caching mechanism for the transformer in
our engine is in progress. Also Figure 4 shows the
LM size for different transformer and GRU archi-
tectures. Most notably, for the same vocabulary
size e.g. 20K the transfomer increases the size by
20-25% compared to the GRU.

3.6 Results

In previous sections we showed that we can DP-
train a transformer model with graceful increase in
memory and speed requirements compared to the

production GRU. In this section we first present
offline results varying the architecture, the training
data size and DP vs non-DP finetuning. In the
tables, L and A stand for the number of layers and
attention heads resectively. The train data referred
to 300M uses the smaller pretrain and finetuning
sets while the 600M uses the larger sets. Following
this we show flight results for the converged 4L 4A
model vs production GRU.

3.6.1 Offline Results

Here we show offline results of the model. This
includes the accuracy and NWP on snippets data
and 50K BUS data. We compare the model against
the production GRU with 10K vocabulary and a
20K vocabulary GRU.

Table 2 shows results for the GRU trained on
the full data set and (4L,4A) transformer trained
on 300M set for both 10K and 20K vocabularies.
These models are trained using DP. For GRU, we
notice a significant gain in NWP and, to a lesser
extent, the accuracy for both test sets by increasing
the vocabulary size. The improvement is less for
the transformer. This can be explained by the fact
that the GRU is trained on larger data and that
DP might hurt the performance of transformer for
a smaller number of users. Generally, the gains on
the 50K BUS set is larger than the snippets due to
larger average length.

The first four rows in Table 3 show results with
and without DP for different number of trans-
former layers on the smaller training set. We
clearly see that DP leads to a clear gap and that
deeper transformer results in significant gains at
the expense of increased memory and speed. In
the next two rows we train the 4-layer transformer
on the larger training set we see nice gains espe-
cially for the DP case due to the increased num-
ber of users. Finally, the last row shows the same
model trained for more iterations showing some ad-
ditional gains.

3.6.2 Flight Results

We run a market flight for the production GRU”
against the converged 4L transformer®. We use
Edit Rate (l-accuracy) as a metric. For each
model, we randomly sample 1 million real user typ-
ing data from a 2-week period running flight. Fig-
ure 5 reports aggregated edit rate scores. We ob-
serve small difference in the aggregated edit rate.
This is a bit in contrast to the clear gain in the of-
fline results. The explanation is that the dynamic
user model starts to kick in after certain period
and override the improvements from the static lan-
guage model. For this reason, we show the edit
rate sliced by user age and notice some gains for
the early ages in Table 4.

"First row in Table 2.
8Last row in Table 3.

4 Additional Experiments

Following the initial results in Section 3 we con-
ducted multiple experiments to optimize the per-
formance. These include: a search over the train-
ing hyper-parameters mainly the batch size and
learning rate as well as several aspects of DP fine-
tuning like user sampling and gradient clipping.
These experiments are conducted using the smaller
training set and are discussed below.

4.1 Training Hyper-parameters

In this section we show the effect of varying the
batch size (bsz) and learning rate (lr) when DP
finetuning the model. Increasing the batch size
generally improves the overall loss of the model
but it significantly reduces the number of updates a
model can achieve before reaching a target epsilon
because decreasing the batch size reduces the pri-
vacy cost of each training step. We can see in Fig-
ure 6 that higher batch size reduces the evaluation
loss but at the same time the training stops pre-
maturely since it reached the target epsilon more
quickly. Also larger batch sizes result in less noisy
gradient estimates and hence we can safely increase
learning rate for faster convergence. This is also
clear in Figure 6. We conclude that the best set-
ting is an effective batch size (bsz)=32%512%4 =
64K and learning rate (Ir)=1e-4. However, higher
batch size might be preferable for larger amount of
data.

4.2 Relaxed Author Sampling

We apply DP at user level mainly to make users in-
distinguishable in the resulting model. One major
problem here is that the number of data points
per user are widely inconsistent. For example,
some users have around 67k sentences while oth-
ers have only 20 sentences. Therefore, sampling
using the user distribution will result in batches
that are dominated by a limited number of users
and hence very poor results for most users. To fix
this issue, we sampled sentences while maintaining
a uniform sampling probability across all sentences
but imposing the constraint that any user occurs
only once per batch. We refer to this as relaxed
author sampling. Improving the sampling, reduced
the evaluation loss and improved hit rate as shown
in Figure 7.

4.3 Gradient Clipping

Gradient clipping is a crucial factor that affects the
noise added and hence the training. This is due
to the fact that the noise added at each step de-
pends on the value of the gradient clipping. On one
hand, higher clipping increases the sensitivity and
therefore the noise and on the other hand a lower
clipping value reduces the noise. It would seem

Model Arch Train Data (Millions) Vocab Size Snippets 50k BUS
NWP Accuracy | NWP Accuracy
GRU 600 10K 16.20 90.90 26.74 81.20
GRU 600 20K 17.32 90.68 28.59 81.69
S 4L4A 300 10k | 1620 ~ 90.08 | 26.76 80.99
4L 4A 300 20k 16.31* 90.59* 27.44% 81.47*

Table 2: Different vocab results. Best scores across different systems are marked bold. * denotes the best
results among Transformer systems.

Model Arch DP Train Data (Millions) Snippets 50k BUS
NWP Accuracy | NWP Accuracy
4L 4A N 300 17.05 90.55 28.70 81.66
4L 4A Y 300 16.31 90.59 27.44 81.47
- 12L4A N 300 | 17.39 90.54 | 30.03 8174
12L 4A Y 300 16.89 90.54 28.56 81.62
C 4L4A N 600 | 1727 90.82 | 28.64 81.66
4L 4A Y 600 17.17 90.82 28.46 81.82
4L 4A Converged Y 600 | 1734 00.83 | 28.76 81.84

Table 3: Results for different training data setups and system arch on DP and non-DP training. Best
scores across different systems are marked bold.

trace_name @ control @treatment

012 [

0.10

> 0.06

0.04

* control_mean: 3'%&
0.00 .

0 20 40 60 80

X

Figure 5: Flight Results for GRU 10k vocab and Transformer 20k vocab trained on 600M training-set
systems for two weeks.

that we should always use the lowest gradient clip-
ping value possible. However, reducing the clip-
ping norm value degrades the overall model perfor-
mance because it distorts the gradient. Therefore,
we conducted an experiment to see to which ex-
tent we should reduce the clipping value before we
have a noticeable degradation in our model perfor-
mance.

—— ga_256_Ir_le-4
ga_512_Ir_le-4
—— ga_128_Ir_le-4
ga_4096_Ir_Se-4
ga
ga_512_Ir_le-4
ga_2048_Ir_5Se-4

—— ga_256_Ir_Se-4

256_Ir_le-4

ga_1024_Ir_le-4

N
——

T
2000

We can reduce the noise added by increasing the
total amount of data but the clipping factor is a
hyperparamter that needs tuning. To this end, we
removed the noise for all clipping norms and ob-

T T T
1000 3000 4000 5000

Figure 6: DP finetuning evaluation loss with dif-
ferent batch size and learning rate, batch size 2048
and 4096 are superior than smaller batch sizes.

served the effect of each on the training evalua-
tion loss. We can see in Figure 8 that decreasing
the norm after 0.001 has a negative impact on the
model training, while increasing the grad norm af-
ter 0.1 doesn’t quite improve the training and only

Age Group

Edit Rate

GRU 10k Transformer 20k

0-3 7.34
4-7 6.68
8-14 6.53
15-90 6.25
90+ 5.68

7.21
6.70
6.54
6.23
5.68

Table 4: Flight results for different age groups

s Author Sampling

Relaxed Author
Sampling

YT
N
I

|

(a) hit @ 3
s Author Sampling

Relaxed Author
Sampling

(b) Eval loss

Figure 7: comparison between author sampling
and relaxed author sampling

result in more noise being added. Due to this trade
off, we concluded that using a grad clipping norm
of 0.01 is suitable for our case.

5 Positional Encoding

Our transformer model is trained using learnable
absolute positional encoding. One drawback of
this approach is that it cannot generalize beyond
the maximum context length set in training since
each position is represented as a row in an embed-
ding table. Most of the recent transformer LLMs
such as (Abdin et al., 2024) (Touvron et al., 2023)
use some variation of relative position encoding

—— grad_norm_0.0001
5.454 grad_norm_10.0
grad_norm_0.001
5.4 grad_norm_1.0
—— grad_norm_0.01
5.354
5.34
5.25
5.29

T T T T
500 1000 1500 2000

Figure 8: effect of Grad clipping

| abs | rel
no change | 30.04 | 29.13
shifted | 24.24 | 30.09

Table 5: The effect of shifting the position ids on
hit @3 scores when using absolute position encod-
ing vs using relative position encoding

since they show better length generalization (Li
et al., 2023). We did experiments where we re-
place the absolute positional encoding in our cur-
rent architecture with FIRE (Li et al., 2023) posi-
tional encoding hoping to answer whether relative
positional encoding provides benefits under con-
text lengths seen in SwiftKey. Figure 9 shows that
there are no differences in results between relative
and absolute positional encoding when testing with
context lengths up to 25 words. We also noticed
during our experiments that relative position en-
coding is robust to shifts in position ids. Table 5
shows that the negative effect from shifting the po-
sition ids to start from a 0 < N < len(context) is
much larger when using absolute position encoding
compared to using relative position encoding.

6 Summary

In this report we showed that we can DP-train
a transformer for language modeling in SwiftKey.
Compared to the production GRU we observe some
small consistent gains in the next-word-prediction
and accuracy with graceful increase in memory and
speed requirements. This is obtained by scaling
down a GPT2 architecture to fit the required size,
a two stage training process that builds a seed

Figure 9: Hit @3 on different at different lengths
on BU&S testset.

model on general data and finetune it on typing
data, and careful tuning of the training and privacy
parameters. The transformer is shipped through
ONNX conversion which is supported by the Flu-
ency decoder and allows for a flexible framework
for sequence-to-sequence context models.

Areas of future work include training larger
models and distilling them into the required size
since we observed significant gains by increasing
the model size, moving to subword models to im-
prove the coverage and benefit from transformer
longer context modeling and bridging the gap be-
tween the non-DP and DP training.

Acknowledgement

We thank members of the Language and Intelli-
gence team in London and Cairo for useful discus-
sions and suggestions during this work.

References

Martin Abadi, Andy Chu, Ian Goodfellow,
H. Brendan McMahan, Ilya Mironov, Kunal Tal-
war, and Li Zhang. 2016. Deep learning with
differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and
Communications Security, CCS’16. ACM.

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad
Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash
Bakhtiari, Harkirat Behl, et al. 2024. Phi-
3 technical report: A highly capable language
model locally on your phone. arXiv preprint
arXi:2404.14219.

Nicholas Carlini, Chang Liu, Ulfar Erlingsson,
Jernej Kos, and Dawn Song. 2019. The secret
sharer: Evaluating and testing unintended mem-
orization in neural networks.

Stanley F. Chen and Joshua Goodman. 1996. An
empirical study of smoothing techniques for lan-
guage modeling. In 34/th Annual Meeting of
the Association for Computational Linguistics,
pages 310-318, Santa Cruz, California, USA. As-
sociation for Computational Linguistics.

Jack Cook. 2023. A look at Apple’s new
Transformer-powered predictive text model.
https://jackcook.com/2023/09/08/
predictive-text.html. [Online;
23-June-2024].

accessed

Cynthia Dwork. 2006. Differential privacy. In Au-
tomata, Languages and Programming, pages 1—
12, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Shanda Li, Chong You, Guru Guruganesh, Joshua
Ainslie, Santiago Ontanon, Manzil Zaheer,
Sumit Sanghai, Yiming Yang, Sanjiv Kumar,
and Srinadh Bhojanapalli. 2023. Functional in-
terpolation for relative positions improves long
context transformers. In The Twelfth Interna-
tional Conference on Learning Representations.

Shiva Nosouhian, Fereshteh Nosouhian, and Ab-
bas Kazemi Khoshouei. 2021. A review of re-
current neural network architecture for sequence
learning: Comparison between Istm and gru.
Preprints.

Hugo Touvron, Louis Martin, Kevin Stone, Pe-
ter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. 2023. Llama
2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. CoRR, abs/1706.03762.

Ashkan Yousefpour, Igor Shilov,
Sablayrolles, Davide Testuggine, Karthik
Prasad, Mani Malek, John Nguyen, Sayan
Ghosh, Akash Bharadwaj, Jessica Zhao, Gra-
ham Cormode, and Ilya Mironov. 2021. Opacus:
User-friendly differential privacy library in Py-
Torch. arXiv preprint arXiv:2109.12298.

Alexandre

Jiawei Zheng, Hanghai Hong, Xiaoli Wang, Jing-
song Su, Yonggui Liang, and Shikai Wu. 2024.
Fine-tuning large language models for domain-
specific machine translation.

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
https://jackcook.com/2023/09/08/predictive-text.html
https://jackcook.com/2023/09/08/predictive-text.html
https://doi.org/10.20944/preprints202107.0252.v1
https://doi.org/10.20944/preprints202107.0252.v1
https://doi.org/10.20944/preprints202107.0252.v1
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2402.15061
http://arxiv.org/abs/2402.15061

