
Optimal Regret of Bernoulli Bandits under Global Differential Privacy

Achraf Azize*
ACHRAF.AZIZE@ENSAE.FR

FairPlay Joint Team, CREST, ENSAE Paris

Yulian Wu†
YULIAN.WU@KAUST.EDU.SA

King Abdullah University of Science and Technology

Junya Honda HONDA@I.KYOTO-U.AC.JP
Kyoto University and RIKEN AIP

Francesco Orabona FRANCESCO@ORABONA.COM
King Abdullah University of Science and Technology

Shinji Ito SHINJI@MIST.I.U-TOKYO.AC.JP
The University of Tokyo and RIKEN AIP

Debabrota Basu DEBABROTA.BASU@INRIA.FR

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189-CRIStAL

Abstract
As sequential learning algorithms are increasingly applied to real life, ensuring data privacy while
maintaining their utilities emerges as a timely question. In this context, regret minimisation in
stochastic bandits under ϵ-global Differential Privacy (DP) has been widely studied. The present
literature poses a gap between the regret lower and upper bounds in this setting. Unlike bandits
without DP, no algorithm in this setting matches the lower bound with the same constants. There
is a significant gap between the best-known regret lower and upper bound, though they “match”
in the order. Thus, we revisit the regret lower and upper bounds of ϵ-global DP algorithms for
Bernoulli bandits and improve both. First, we prove a tighter regret lower bound involving a novel
information-theoretic quantity characterising the hardness of ϵ-global DP in stochastic bandits. This
quantity smoothly interpolates between Kullback–Leibler divergence and Total Variation distance,
depending on the privacy budget ϵ. Our lower bound strictly improves on the existing ones across all
ϵ values. Then, we choose two asymptotically optimal bandit algorithms, i.e., KL-UCB and IMED,
and propose their DP versions using a unified blueprint, i.e., (a) running in arm-dependent phases,
and (b) adding Laplace noise to achieve privacy. For Bernoulli bandits, we analyse the regrets of
these algorithms and show that their regrets asymptotically match our lower bound up to a constant
arbitrary close to 1. This refutes the conjecture that forgetting past rewards is necessary to design
optimal bandit algorithms under global DP. At the core of our algorithms lies a new concentration
inequality for sums of Bernoulli variables under Laplace mechanism, which is a new DP version
of the Chernoff bound. This result is universally useful as the DP literature commonly treats the
concentrations of Laplace noise and random variables separately, while we couple them to yield a
tighter bound. Finally, our numerical experiments validate that DP-KLUCB and DP-IMED achieve
lower regret than the existing ϵ-global DP bandit algorithms.
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1. Introduction

Multi-armed bandit is a classical setup of sequential decision-making under partial information,
where the agent collects more information about an environment by interacting with it. To under-
stand the setting, let us consider a clinical trial, where a doctor has K candidate medicines to choose
from and wants to recommend “effective” medicines to their patients. At each step t of the trial, a
new patient pt arrives, the doctor prescribes at ∈ [K] ≜ {1, . . . ,K} one of the K medicines, and
observes the reaction of the patient to the medicine. The observations are quantified as rewards,
such that rt = 1 if the patient pt is cured and 0 otherwise. To design an algorithm recommending
“effective” medicines, the doctor can use a regret-minimising bandit algorithm (Thompson, 1933),
i.e., a bandit algorithm that aims to maximise the expected number of cured patients during the trial.

Following the trial, the doctor wants to release the trial results to the public, i.e., the sequence
of medicines (a1, . . . , aT ), in order to communicate the findings. However, the doctor fears that
publishing the results may compromise the privacy of the patients who participated in the trial.
Specifically, the rewards (r1, . . . , rT ) constitute the private information that needs to be protected,
since rewards in clinical trials may reveal sensitive information about the health condition of the
patients. In addition to clinical trials, many applications of bandits, such as recommendation sys-
tems (Silva et al., 2022), online advertisement (Chen et al., 2014), crowd-sourcing (Zhou et al.,
2014), user studies (Losada et al., 2022), hyper-parameter tuning (Li et al., 2017), communication
networks (Lindståhl et al., 2022), and pandemic mitigation (Libin et al., 2019)), involve sensitive
user data, and thus invokes the data privacy concerns. Motivated by the privacy concerns in bandits,
we study the privacy-utility trade-off in stochastic multi-armed bandits.

We adhere to Differential Privacy (DP) (Dwork and Roth, 2014) as the privacy framework, and
regret minimisation (Auer et al., 2002) in stochastic bandits as the utility measure. DP has been
studied for multi-armed bandits under different bandit settings: finite-armed stochastic (Mishra
and Thakurta, 2015; Sajed and Sheffet, 2019; Zheng et al., 2020a; Hu et al., 2021; Azize and Basu,
2022; Hu and Hegde, 2022; Azize and Basu, 2024; Wang and Zhu, 2024), adversarial (Thakurta and
Smith, 2013; Agarwal and Singh, 2017; Tossou and Dimitrakakis, 2017), linear (Hanna et al., 2022;
Li et al., 2022; Azize and Basu, 2024), contextual linear (Shariff and Sheffet, 2018; Neel and Roth,
2018; Zheng et al., 2020b; Azize and Basu, 2024), and kernel bandits (Pavlovic et al., 2025), among
others. Most of these works were for regret minimisation, but the problem has also been explored
for best-arm identification, with fixed confidence (Azize et al., 2023, 2024) and fixed budget (Chen
et al., 2024). The problem has also been studied under three different DP trust models: (a) global
DP where the users trust the centralised decision maker (Mishra and Thakurta, 2015; Shariff and
Sheffet, 2018; Sajed and Sheffet, 2019; Azize and Basu, 2022; Hu and Hegde, 2022), (b) local DP
where each user deploys a local perturbation mechanism to send a “noisy” version of the rewards to
the policy (Basu et al., 2019; Zheng et al., 2020a,b; Han et al., 2021), and (c) shuffle DP where users
still feed their data to a local perturbation, but now they trust an intermediary to apply a uniformly
random permutation on all users’ data before sending to the central servers (Tenenbaum et al., 2021;
Garcelon et al., 2022; Chowdhury and Zhou, 2022).

In this paper, we focus on ϵ-pure DP, under a global trust model, in stochastic finite-armed
bandits, with the aim of regret minimisation.

Related Works. This problem setting has been studied by Mishra and Thakurta (2015); Sajed and
Sheffet (2019); Hu et al. (2021); Azize and Basu (2022); Hu and Hegde (2022). DP-UCB (Mishra
and Thakurta, 2015) was the first DP version of the Upper Confidence Bound (UCB) algorithm (Auer
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et al., 2002) that achieved logarithmic regret. DP-UCB uses the tree-based mechanism (Dwork et al.,
2010; Chan et al., 2011) to compute privately the sum of rewards. For each arm, the tree mechanism
maintains a binary tree of depth log(T ) over the T streaming reward observations. As a result, the
noise added to the sum of rewards has a scale of O

(
log2.5(T )/ϵ

)
for rewards in [0, 1]. DP-UCB

builds a high probability upper bound on the means using the noisy sum of rewards to design a
private UCB index and yields a regret bound of O

(∑
a

log(T )
∆a

+K log2.5(T )/ϵ
)

, where ∆a is the
difference between the mean reward of an optimal arm and arm a. This upper bound has an addi-
tional log1.5(T ) factor compared to the Ω(K log(T )/ϵ) regret lower bound, first proved by Shariff
and Sheffet (2018).

DP-SE (Sajed and Sheffet, 2019) was the first DP bandit algorithm to eliminate the additional
multiplicative factor log1.5(T ) in the regret. DP-SE is a DP version of the Successive Elimination
algorithm (Even-Dar et al., 2002). DP-SE runs in independent episodes. At each episode, the
algorithm explores a set of active arms uniformly. At the end of an episode, DP-SE eliminates
provably sub-optimal arms, but only uses the samples collected at the current episode to decide the
arms to eliminate. Due to the addition of the Laplace noise to the sum of rewards, each arm is
explored longer, resulting in the additional O (K log(T )/ϵ) in the regret.

A careful reading of DP-SE suggests that running the algorithm in independent episodes while
forgetting the previous samples shreds the extra log1.5(T ) in the regret. These ingredients, i.e.,
running in independent phases with forgetting and adding Laplace noise, have been further adapted
to UCB in Hu et al. (2021); Azize and Basu (2022) and to Thompson Sampling in Hu and Hegde
(2022). The state-of-the art regret upper bound is thusO (

∑
a log(T )/min{∆a, ϵ}). Similarly, Az-

ize and Basu (2022) use the same three components of doubling, forgetting, and Laplace mechanism
to propose AdaP-KLUCB that achieves O

(
C1(τ)∆a

min{kl(µa,µ∗),C2ϵ∆a} log(T )
)

regret for τ > 3. Though
the regret of AdaP-KLUCB is order-optimal, we observe that C1(τ) and C2 are not universal con-
stants, i.e., may depend on the environment.

On the other hand, Azize and Basu (2022) improve the problem-dependent regret lower bound
of Shariff and Sheffet (2018) to Ω

(∑
a log(T )

∆a
min(da,6ϵta)

)
. Here, da is the Kullback-Leibler (KL)

indistinguishability gap for arm a characterising the hardness of non-private bandits (Lai and Rob-
bins, 1985), and ta is a “Total Variation” (TV) version of da characterising the hardness of private
bandits. For Bernoulli bandits, ta = ∆a and da ≈ ∆2

a. Under these approximations, the lower
bound of Azize and Basu (2022) recovers that of Shariff and Sheffet (2018), and the regret upper
bounds of Sajed and Sheffet (2019); Azize and Basu (2022); Hu and Hegde (2022) match approx-
imately the lower bound. However, the approximation da ≈ ∆2

a can be arbitrarily bad, exposing a
gap between the state-of-the-art upper and lower bounds in DP bandits. This motivates us to ask:

Q1. Can we derive matching regret upper and lower bounds up to the same constant for ϵ-global
DP Bernoulli bandits?

Additionally, following the triumph of doubling and forgetting as an algorithmic blueprint in
DP bandits, Hu et al. (2021) conjectured that forgetting is necessary for designing any ϵ-global DP
bandit algorithm with an optimal regret upper bound matching the lower bound. Thus, we wonder:

Q2. Is it possible to design an optimal ϵ-global DP bandit algorithm without applying forgetting?

Aim and Contributions. To address these questions, we revisit regret minimisation for Bernoulli
bandits under ϵ-global DP. Our main goal is to provide matching regret upper and lower bounds up
to the same constant. Answering this question leads to the following contributions:

3
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1. Tighter regret lower bound: In Theorem 5, we provide a new asymptotic regret lower bound
for any consistent ϵ-global DP policy. This result is a strict improvement over the lower bound
of Azize and Basu (2022) for all ϵ. This lower bound depends on a new information-theoretic
quantity dϵ (Eq. (6)) interpolating smoothly between KL and TV depending on ϵ. This quantity also
indicates a smooth transition between high and low privacy regimes, where the impact of DP does
and does not appear, respectively. In addition to the existing techniques, our proof applies a new
“double change” of environment idea to couple the impacts of DP and bandit feedback (Lemma 15).

2. Tighter concentration inequality: In Proposition 7, we provide a DP version of Chernoff-style
concentration bound for sum of Bernoullis with added Laplace noise. dϵ naturally appears in this
bound. Also, the bound suggests that as long as the number of summed Laplace noise is negligible
compared to the number of summed Bernoullis, the effect of the noise is comparable to having
one Laplace noise in the dominant term of the bound. This bound is universally interesting for
DP literature as the concentrations of random variables and Laplace noises are commonly treated
separately unlike the coupled treatment in Proposition 7.

3. Algorithm design and tighter regret upper bounds: Based on the concentration bound of
Proposition 7, we modify the generic blueprint used by Sajed and Sheffet (2019); Azize and Basu
(2022); Hu and Hegde (2022). We (a) get rid of “reward-forgetting” and thus summing all rewards
at each phase, and (b) develop new private indexes using dϵ. We also run the algorithms in geo-
metrically increasing arm-dependent batches, with ratio α > 1. We instantiate these modifications
for two algorithms that achieve constant optimal regrets withour privacy, i.e., KL-UCB and IMED,
to propose DP-KLUCB and DP-IMED (Algorithm 1). We analyse the regret of both algorithms
(Theorem 9) and show that their regret upper bounds match asymptotically the regret lower bound
of Theorem 5 up to the constant α, which can be set arbitrarily close to 1.

We also validate experimentally that our algorithms DP-IMED and DP-KLUCB achieve the
lowest regret among DP bandit algorithms in the literature. Finally, in Appendix B, we extend
the adaptive continual release model of Jain et al. (2023) to bandits and show that this definition
is equivalent to the classic ϵ-global DP notion adopted in the DP bandit literature (Mishra and
Thakurta, 2015; Azize and Basu, 2022, 2024). This result can be of independent interest.

2. Background

In this section, we formalise the essential components of our work, i.e., the stochastic bandit prob-
lem, regret minimisation as a utility measure, and Differential Privacy (DP) as the privacy constraint.

Stochastic Bandits. A stochastic bandit problem is a sequential game between a policy π and a
stochastic environment ν (Thompson, 1933; Lai and Robbins, 1985). The game is played over T
rounds, where T ∈ {1, 2, . . . } is a natural number called the horizon. At each step t ∈ {1, . . . , T},
the policy π chooses an action at ∈ [K]. The stochastic environment, which is a collection of
distributions ν ≜ (Pa : a ∈ [K]), samples a reward rt ∼ Pat and reveals it to the policy π.
The interaction between the policy π and environment ν ≜ (Pa : a ∈ [K]) over T steps induces
a probability measure on the sequence of outcomes HT ≜ (a1, r1, a2, r2, . . . , aT , rT ). Let each
Pa be a probability measure on (R,B(R)) with B being the Borel set. For each t ∈ [T ], let
Ωt = ([K]× R)t ⊂ R2t and Ft = B(Ωt). First, we formalise the definition of a policy.

4
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Definition 1 (Policy) A policy π is a sequence (πt)
T
t=1 , where πt is a probability kernel from

(Ωt,Ft) to ([K], 2[K]). Since [K] is discrete, we adopt the convention that for a ∈ [K], πt(a |
a1, r1, . . . , at−1, rt−1) = πt({a} | a1, r1, . . . , at−1, rt−1) .

The interaction probability measure on (ΩT ,FT ) depends on the environment and the policy:
(a) the conditional distribution of action at given a1, r1, . . . , at−1, rt−1 is π(at | Ht−1), and (b)
the conditional distribution of reward rt given a1, r1, . . . , at−1, rt−1, at is Pat . To construct the
probability measure, let λ be a σ-finite measure on (R,B(R)) for which Pa is absolutely continuous
with respect to λ for all a ∈ [K]. Let pa = dPa/dλ be the Radon–Nikodym derivative of Pa with
respect to λ. Letting ρ be the counting measure with ρ(B) = |B|, the density pνπ : ΩT → R can
now be defined with respect to the product measure (ρ× λ)T by

pνπ(a1, r1, . . . , aT , rT ) ≜
T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)pat(rt) (1)

and Pνπ(B) ≜
∫
B pνπ(ω)(ρ × λ)T ( dω) for all B ∈ FT . So (ΩT ,FT ,Pνπ) is a probability space

over histories induced by the interaction between π and ν.

Regret minimisation. We study regret minimisation as the utility measure (Lai and Robbins,
1985). Informally, the regret of a policy is the deficit suffered by the learner relative to the optimal
policy which knows the environment and always plays the optimal arm. Let ν = (Pa : a ∈ [K])
a bandit instance and define µa(ν) =

∫∞
−∞ x dPa(x) the mean of arm a’s reward distribution. We

assume throughout that µa(ν) exists and is finite for all actions. Let µ⋆(ν) = maxa∈[K] µa(ν) the
largest mean among all the arms. The regret of policy π on bandit instance ν is

RegT (π, ν) ≜ Tµ⋆(ν)− Eνπ

[
T∑
t=1

rt

]
=

K∑
a=1

∆a(ν)Eνπ [Na(T )] . (2)

where Na(T ) ≜
∑T

t=1 1 {at = a} and ∆a(ν) ≜ µ⋆(ν) − µa(ν). The expectation is taken with
respect to the probability measure Pνπ on action-reward sequences induced by the interaction of π
and ν. Hereafter, we drop the dependence on ν when the context is clear.

For many classes of bandits, it is possible to define a notion of instance-dependent optimality
that characterises the hardness of regret minimisation. Specifically, for any consistent policy π over
a class of bandits E ≜M1×· · ·×MK , i.e., a policy π ∈ Πcons(E) verifies limT→∞

RegT (π,ν)
T p = 0

for all ν ∈ E and all p > 0, then the regret of π on any environment ν ∈ E is lower bounded by

lim inf
T→∞

RegT (π, ν)

log(T )
≥

∑
a:∆a(ν)>0

∆a(ν)

KLinf(Pa, µ⋆,Ma)
, (3)

where KLinf(P, µ
⋆,M) ≜ infP ′∈M {KL(P, P ′) : µ(P ′) > µ⋆}, and KL is the Kullback-Leibler

divergence, i.e., for two probability distributions P,Q on (Ω,F), the KL divergence is KL(P,Q) ≜∫
log
(

dP
dQ(ω)

)
dP (ω) when P ≪ Q, and +∞ otherwise. The lower bound of Equation (3) is

tight for many classes of bandits, and the “KL-inf” is a fundamental quantity that characterises the
complexity of regret minimisation in bandits.

5
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Bernoulli bandits. A Bernoulli bandit is a stochastic environment where the distribution of each
arm follows a Bernoulli distribution. Let µ ∈ [0, 1]K , then νBµ = (Bernoulli(µa) : a ∈ [K]) is
a Bernoulli environment. For Bernoulli bandits, KLinf(Pa, µ

⋆,Ma) = kl(µa, µ
⋆), where kl is the

relative entropy between Bernoullis, i.e., kl(p, q) ≜ p log(p/q) + (1 − p) log((1 − p)/(1 − q))
for p, q ∈ [0, 1] and singularities are defined by taking limits. Using the “optimism in the face
of uncertainty” principle, it is possible to design algorithms tailored for Bernoulli bandits, such as
KL-UCB (Cappé et al., 2013) or IMED (Honda and Takemura, 2015), that achieve the lower bound
of Equation (3) asymptotically, up to the same constant.

Differential Privacy (DP). DP (Dwork and Roth, 2014) guarantees that any sequence of algo-
rithm outputs is “essentially” equally likely to occur, regardless of the presence or absence of any in-
dividual. The probabilities are taken over random choices made by the algorithm, and “essentially”
is captured by closeness parameters that we call privacy budgets. Formally, DP is a constraint on the
class of mechanisms, where a mechanismM is a randomised algorithm that takes as input a dataset
D ≜ {x1, . . . , xT } ∈ X T and outputs o ∼ MD. The probability space is over the coin flips of the
mechanismM. Given some event E in the output space (O,F), we noteMD(E) ≜M(E|D) the
probability of observing the event E given that the input of the mechanism is D.

Definition 2 (ϵ-DP (Dwork et al., 2006)) A mechanismM satisfies ϵ-DP for a given ϵ ≥ 0, if

∀D ∼ D′, ∀E ∈ O, MD(E) ≤ eϵMD′(E), (4)

where D ∼ D′ if and only if dHam(D,D′) ≜
∑T

t=1 1 {Dt ̸= D′
t} ≤ 1, i.e., D and D′ differ by at

most one record, and are said to be neighbouring datasets.

DP is widely adopted as a privacy framework since the definition enjoys different interesting
properties, and can be achieved by combining simple basic mechanisms. Hereafter, we mainly use
two important DP properties: post-processing (Proposition 27) and group privacy (Proposition 28),
and we use the Laplace mechanism (Theorem 31) to achieve DP.

Bandits under DP. We extend DP to bandits by reducing a policy π = (π1, . . . , πT ) to a “batch”
mechanismMπ (Azize and Basu, 2024). Different ways of reducing a policy to a batch mechanism
differ on the input representation and the nature of the mechanism.

(a) In Table DP, we represent each user ut by the vector xt ≜ (xt,1, . . . , xt,K) ∈ RK of all its K
“potential rewards.” This is the vector of potential rewards since the policy only observes rt ≜ xt,at
when it recommends action at. In Table DP, the induced “batch” mechanismMπ from the policy π
takes as input a table of rewards x ≜ {(xt,i)i∈[K]}t∈[T ] ∈ (RK)T , and outputs a sequence of actions
a ≜ (a1, . . . , aT ) ∈ [K]T with probability Mπ

x (a) ≜
∏T

t=1 πt
(
at|a1, x1,a1 , . . . at−1, xt−1,at−1

)
.

This is the probability of observing (a1, . . . , aT ) when π interacts with the table of rewards x. Mπ
x

is a distribution over sequences of actions since
∑

a∈[K]T Mπ
x (a) = 1.

(b) In View DP, the induced “batch” mechanism from the policy π takes as input a list of
rewards and outputs a sequence of actions. The difference is in the representation of the in-
put dataset. Since in bandits, the policy only observes the reward corresponding to the action
chosen, another natural choice for the input is a list of rewards, i.e., r ≜ {r1, . . . , rT } ∈ RT .
Thus, now the induced “batch” mechanism Vπ from the policy π takes as input a list of rewards
r ≜ {r1, . . . , rT } ∈ RT , and outputs a sequence of actions a ≜ (a1, . . . , aT ) ∈ [K]T , with prob-
ability Vπr (a) ≜

∏T
t=1 πt(at|a1, r1, . . . at−1, rt−1). This is the probability of observing a when π

interacts with r. Vπr is a distribution over sequences of actions, since
∑

a∈[K]T Vπr (a) = 1.

6
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Definition 3 (Table DP and View DP (Azize and Basu, 2024)) (a) A policy π satisfies ϵ-Table
DP if and only ifMπ is ϵ-DP. (b) A policy π satisfies ϵ-View DP if and only if Vπ is ϵ-DP.

Table DP and View DP have been formalised in Azize and Basu (2024), but have been used
interchangeably in the private bandit literature, e.g. Table DP in Thakurta and Smith (2013); Mishra
and Thakurta (2015); Neel and Roth (2018) and View DP in Sajed and Sheffet (2019); Hu et al.
(2021); Azize and Basu (2022). For ϵ-pure, these two definitions are equivalent.

Proposition 4 (ϵ-global DP, Proposition 1 in Azize and Basu (2024)) For any policy π, we have
that: π is ϵ-Table DP⇔ π is ϵ-View DP.

Thus, we refer to any policy that verifies ϵ-Table DP or ϵ-View DP as an ϵ-global DP policy. In
Appendix B, we also extend the interactive DP definition of Jain et al. (2023) to bandits and show
that ϵ-global DP is equivalent to it. In the following, our main goal is to design an ϵ-global DP
policy that minimises the regret RegT (π, ν) on any Bernoulli environment ν.

3. Regret Lower Bound under ϵ-global DP

In this section, we present a new regret lower bound for Bernoulli bandits under ϵ-global DP. We
compare this result to the lower bound of Azize and Basu (2022), and provide a proof.

Theorem 5 (Regret lower bound under ϵ-global DP) For every ϵ-global DP consistent policy
over the class of Bernoulli bandits, we have

lim inf
T→∞

RegT (π, ν)

log(T )
≥

∑
a:∆a>0

∆a

dϵ (µa, µ⋆)
, (5)

where
dϵ(x, y) ≜ inf

z∈[x∧y,x∨y]
{ϵ |z − x|+ kl(z, y)} , x ∈ R, y ∈ [0, 1]. (6)

For any suboptimal arm a, µ⋆ > µa and dϵ(µa, µ
⋆) = infµ∈[µa,µ⋆] {ϵ(µ− µa) + kl(µ, µ⋆)}.

Implications of Theorem 5.
(a) Theorem 5 improves the lower bound of Azize and Basu (2022). Specifically, Theorem 3

in Azize and Basu (2022), adapted to Bernoulli bandits, gives a lower bound of

lim inf
T→∞

RegT (π, ν)

log(T )
≥

∑
a:∆a>0

∆a

min{kl(µa, µ⋆), 6ϵ∆a}
. (7)

Theorem 5 is a strict improvement on the lower bound of Azize and Basu (2022) since dϵ (µa, µ
⋆) ≤

min{kl(µa, µ
⋆), ϵ∆a} ≤ min{kl(µa, µ

⋆), 6ϵ∆a}, for any ϵ, µa and µ⋆.
(b) Solving the constrained optimisation problem defining dϵ for Bernoulli variables gives

dϵ(µa, µ
⋆) =


kl (µa, µ

⋆) if ϵ ≥ log
µ⋆

µa
+ log

1− µa

1− µ⋆

kl

(
µ⋆

µ⋆ + (1− µ⋆)eϵ
, µ⋆

)
+ ϵ

(
µ⋆

µ⋆ + (1− µ⋆)eϵ
− µa

)
if not

(8)

7
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This suggests the existence of two privacy regimes: a low privacy regime when ϵ ≥ log µ⋆

µa
+

log 1−µa

1−µ⋆ , and a high privacy regime when ϵ ≤ log µ⋆

µa
+ log 1−µa

1−µ⋆ . In the low privacy regime,
dϵ(µa, µ

⋆) just reduces to the non-private kl (µa, µ
⋆), and privacy can be achieved for free. In

the high privacy regime, dϵ(µa, µ
⋆) can be written as the sum of two terms, i.e., a KL term be-

tween Bernoullis with means µ⋆

µ⋆+(1−µ⋆)eϵ and µ⋆, and TV distance between Bernoullis with means
µ⋆

µ⋆+(1−µ⋆)eϵ and µa. At the limit, we have that dϵ(µa, µ
⋆) ∼ϵ→0 ϵ×∆a.

(c) Theorem 5 can be generalised beyond Bernoulli bandits: for a class E of unstructured
stochastic bandits, i.e., E ≜M1 × · · · ×MK , the lower bound becomes

lim inf
T→∞

RegT (π, ν)

log(T )
≥

∑
a:∆a>0

∆a

dinf (Pa, µ⋆,Ma, ϵ)
, (9)

where dinf (Pa, µ
⋆,Ma, ϵ) ≜ infP ′∈Ma

{
dMa
ϵ (Pa, P

′) : µ(P ′) > µ⋆
}
, and

dMa
ϵ (Pa, P

′) ≜ inf
Q∈Ma

{ϵTV(Pa, Q) + KL(Q,P ′) : µ(Pa) ≤ µ(Q) ≤ µ(P ′)},

for Pa, P
′ ∈Ma such that µ(Pa) ≤ µ(P ′).

Before providing the proof, we introduce maximal couplings.

Definition 6 (Maximal Couplings) Let P and Q be two probability distributions that share the
same σ-algebra and Π(P,Q) be the set of all couplings between P and Q. We denote by c∞(P,Q)
the maximal coupling between P and Q, i.e., the coupling that verifies for any measurable A,

P(X,Y )∼c∞(P,Q)[X ∈ A] = PX∼P[X ∈ A],P(X,Y )∼c∞(P,Q)[Y ∈ A] = PY∼Q[Y ∈ A],

P(X,Y )∼c∞(P,Q)[X ̸= Y ] = inf
c∈Π(P,Q)

P(X,Y )∼c[X ̸= Y ] = TV(P,Q) .

Proof [Proof of Theorem 5] Without loss of generality, suppose that we have a 2-armed Bernoulli
bandit instance ν = (P1, P2) with means (µ1, µ2) where µ1 ≥ µ2. Let π be an ϵ-global DP
consistent policy. We also introduce two other environments ν ′ = (P1, P

′
2) and ν ′′ = (P1, P

′′
2 ) that

only differ at the distribution of the second arm, where µ2 ≤ µ′
2 ≤ µ1 ≤ µ′′

2 , i.e., arm 1 is still
optimal in environment ν ′ but is not optimal in environment ν ′′.

The main idea is to control the probability of the event Ω ≜ {N2(T ) ≤ n2} in an augmented
coupled history space, for some n2 to be fine-tuned later (that may depend on the horizon T ).
Step 1: Building the coupled bandit environment γ. We build a coupled bandit environment γ of
ν and ν ′. The policy π interacts with the coupled environment γ up to a given time horizon
T to produce an augmented history {(at, rt, r′t)}Tt=1. The steps of this interaction process are:
(a) The probability of choosing an action at = a at time t is dictated only by the policy πt
and a1, r1, a2, r2, . . . , at−1, rt−1, i.e., the policy ignores {r′s}t−1

s=1. (b) The distribution of pair
of rewards (rt, r

′
t) is cat ≜ c∞(Pat , P

′
at) the maximal coupling of (Pat , P

′
at) and is condition-

ally independent of the previous observed history {(as, rs, r′s)}t−1
t=1. The distribution of the aug-

mented history induced by the interaction of π and the coupled environment can be defined as
pγπ(a1, r1, r

′
1 . . . , aT , rT , r

′
T ) ≜

∏T
t=1 πt(at | a1, r1, . . . , at−1, rt−1)cat(rt, r

′
t).

Again, we introduce the notation a ≜ (a1, . . . , aT ), r ≜ (r1, . . . , rT ), and r’ ≜ (r′1, . . . , r
′
T ).

Step 2: Probability decomposition. We introduce L ≜ {dham(r, r’) ≤ (1 + α)n2TV(P2, P
′
2)},

and A ≜
{∑T

t=1 log
dP ′

at
(r′t)

dP ′′
at
(r′t)
≤ (1 + α)kl(µ′

2, µ
′′
2)n2

}
for some α > 0, where dham(r, r’) ≜∑T

t=1 1rt ̸=r′t
. Also, here for Bernoullis, we have TV(P2, P

′
2) = µ′

2 − µ2.

8
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Event L will be used to do a change of measure from environment ν to ν ′ using the group
privacy property of π, then event A will be used to do a classic “Lai-Robbins” change of measure
using the KL from environment ν ′ to ν ′′.

First, we start with the decomposition

Pνπ(N2(T ) ≤ n2) = Pγπ(Ω ∩ L ∩A) + Pγπ(Ω ∩ L ∩Ac) + Pγπ(Ω ∩ Lc) . (10)

Step 3: Controlling each probability. Using Lemma 15, which formalises the “double” change of
environment idea, we get

Pγπ (Ω ∩ L ∩A) ≤ e(1+α)n2(ϵTV(P2,P ′
2)+kl(µ′

2,µ
′′
2 )) O(T a)

T − n2
, (11)

for any a > 0. Using Lemma 16 and Lemma 17, we control the probabilities Pγπ(Ω ∩ L ∩ Ac) =
oT (1) and Pγπ (Ω ∩ Lc) = oT (1), for any choice of n2 = n2(T ) as a function of T such that
n2(T )→∞ when T →∞.
Step 4: Putting everything together and choosing n2. First, we chose n2 = (1−α) log(T )

ϵTV(P2,P ′
2)+kl(µ′

2,µ
′′
2 )
,

and a = α2

2 , to get exp ((1 + α)n2 (ϵTV(P2, P
′
2) + kl(µ′

2, µ
′′
2)))

O(Ta)
T−n2

= oT (1).
With this choice of n2, we have now that Pνπ(N2(T ) ≤ n2) = oT (1), and thus, using Markov

inequality, we get, for any α > 0, and all µ2 ≤ µ′
2 ≤ µ1 ≤ µ′′

2 .

Eνπ [N2(T )] ≥ n2Pνπ (N2(T ) > n2) =
(1− α) log(T )

ϵTV(P2, P ′
2) + kl(µ′

2, µ
′′
2)
(1− o(1)) .

Finally, taking α→ 0, and the supremum over all µ′
2 ∈ [µ2, µ1] and µ′′

2 → µ1, we get the result.

Key Changes in Proof. The proof improves the lower bound of Azize and Basu (2022) by doing
a “double” change of environment. (a) The first change of environment uses the privacy property of
the policy, and thus the TV transport. (b) The second change uses the classic “Lai-Robbins” change
of measure and thus the KL transport. By optimising for the “in-between” environment, the double
change always has smaller transport than any route led by purely KL or TV transport.

4. Algorithm Design and Regret Analysis

In this section, we propose two algorithms, DP-KLUCB and DP-IMED, presented in Algorithm 1.
At the core of our algorithm design lies a new concentration bound for ϵ-DP means of Bernoulli
variables (Proposition 7). We analyse both the privacy and regret of our proposed algorithms, and
show that their regret upper bound matches the lower bound up to a constant arbitrary close to 1.

First, we start with the concentration inequality for the private mean of IID Bernoullis.

Proposition 7 (Concentration Bound of Private Mean) For µ ∈ (0, 1) and ϵ > 0, let S̃n,m =∑n
i=1Xi +

∑m
j=1 Yj , where Xi ∼ Ber(µ) and Yj ∼ Lap(1/ϵ), be the sum of n independent

Bernoulli random variables with mean µ and m independent Laplace variables with scale 1/ϵ. Let
x ∈ [0, 1] and {nm}m∈N be a sequence such that m/nm = o(1). Then, for any a > 0 there exists a
constant Aa > 0 such that for all m ∈ N,

Pr

[
S̃nm,m

nm
≤ x

]
≤ Aae

−nm(dϵ(x,µ)−a), for x ≤ µ; Pr

[
S̃nm,m

nm
≥ x

]
≤ Aae

−nm(dϵ(x,µ)−a), for x ≥ µ .

We recall that dϵ(x, y) ≜ infz∈[x∧y,x∨y] kl(z, y) + ϵ|z − x|.

9
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Algorithm 1 DP-KLUCB and DP-IMED

Input: ϵ: privacy parameter, K: number of arms, T : horizon, {Bm}∞m=0: batch sizes
1 Pull each arm B0 times and receive rewards {{Xi,n}B0

n=1}Ki=1

2 Compute private reward sum S̃i,0 =
∑B0

n=1Xi,n + Yi,0 for Yi,0 ∼ Lap(1/ϵ)

3 Compute private mean µ̃i,0 = S̃i,0/B0

4 Set arm-dependent epoch mi := 0 for each arm i ∈ [K]
5 Set cumulative pull number nmi := B0 for each arm i ∈ [K]
6 Set t← KB0 + 1
7 while t ≤ T do
8 (DP-KLUCB): compute i(t) ∈ argmaxi µ̄i(t) maximising the DP-KLUCB index given by

µ̄i(t) = max

{
µ : dϵ

(
[µ̃i,mi ]

1
0, µ
)
≤ log t

nmi

}
(12)

(DP-IMED): compute i(t) ∈ argmini Ii(t) minimising the DP-IMED index given by

Ii(t) = nmidϵ
(
[µ̃i,mi ]

1
0, [µ̃

∗(t)]10
)
+ log nmi , (13)

where µ̃∗(t) = maxj µ̃j,mj and [x]10 = max{0,min{x, 1}} is the clipping of x onto [0, 1]

9 Pull arm i(t) for Bmi(t)+1 times and receive rewards {Xi(t),n}
nmi(t)+Bmi(t)+1

n=nmi(t)
+1

10 Update the noisy sum S̃i(t),mi(t)+1 ← S̃i(t),mi(t)
+
∑nmi(t)+Bmi(t)+1

n=nmi(t)
+1 Xi(t),n+Yi(t),mi(t)+1 where

Yi(t),mi(t)+1 ∼ Lap(1/ϵ)

11 Compute private mean µ̃i(t),mi(t)+1 = S̃i(t),mi(t)+1/nmi(t)+1

12 Update mi(t) ← mi(t) + 1, nmi(t)
← nmi(t)

+Bmi(t)
, t← t+Bmi(t)

13 end

Discussions. (a) This concentration bound can be seen as a private version of the Chernoff bound
(Lemma 32), where dϵ replaces the kl in the exponent. (b) As soon as the number of summed
Laplace noises m is negligible with respect to the number of summed Bernoulli variables n, then
the effect of m on the dominant term is similar to when m = 1. (c) This concentration bound is a
tighter version of Lemma 4 in (Azize and Basu, 2022) with m = 1. Lemma 4 of Azize and Basu
(2022) and other works in bandits under DP (Mishra and Thakurta, 2015; Sajed and Sheffet, 2019;
Hu et al., 2021; Hu and Hegde, 2022) deal with the concentration of the noise and random variables
separately– they use an inequality Pr(X + Y ≥ a) ≤ Pr(X ≥ a) + Pr(Y ≥ 0), followed by a
classic non-private concentration bound for the first term and concentration bound of Laplace noise
for the second term. We improve this loose analysis by a coupled treatment of noise and variables.

Proof Sketch. Proposition 7 is a corollary of the general Lemma 19 that holds for any n and m. To
prove Lemma 19, we express Pr

[
S̃n,m ≥ x

]
in the form of a convolution of the sums of Bernoulli

rewards and Laplace noises. Even though we still resort to the Chernoff bound for each of the sums,
considering the convolution of sums significantly improves the bound compared with the naı̈ve use
of the Chernoff bounds for noise and variables in S̃n,m. The complete proof is in Appendix D.

10
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Algorithm Design. Based on Proposition 7, we propose DP-KLUCB and DP-IMED in Algo-
rithm 1. Both algorithms run in arm-dependent phases (Line 9 in Algorithm 1), and add Laplace
noise to achieve ϵ-global DP (Line 10 in Algorithm 1). This is similar to the algorithm design
in Sajed and Sheffet (2019); Azize and Basu (2022); Hu and Hegde (2022), with two modifications.

(a) Our algorithms do not forget rewards from previous phases. In contrast, the algorithms in
(Sajed and Sheffet, 2019; Azize and Basu, 2022; Hu and Hegde, 2022) run in adaptive and “non-
overlapping” phases. The sums of rewards are computed over non-overlapping sequences, which
means that rewards collected in the first phases are “thrown away” in future phases. By running non-
overlapping phases, these algorithms avoid the use of sequential composition (Proposition 29), and
use instead the “parallel composition” property (Lemma 30) of DP to add less noise. Specifically, if
the rewards are in [0, 1], with forgetting, it is enough to add one Lap (1/ϵ) to each sum of rewards
to make the simultaneous release of all the partial sums achieving DP. In our algorithms, we do
not forget previous private sums (Line 10 in Algorithm 1). The price of not forgetting is adding
multiple Laplace noises with scale 1/ϵ to the non-private sum. Here, we use the insights from the
concentration inequality of Proposition 7, i.e., as long as the number of added Laplace noises is
negligible with respect to the number of added Bernoulli variables, the effect of the added noise
on the dominant term is similar to having one Laplace noise. This refined analysis allows us to
completely remove forgetting.

(b) Our algorithms use new indexes, i.e. Eq. (12) and Eq. (13), inspired by Proposition 7, and
are based on the dϵ quantity appearing in the lower bound. In addition, the index of DP-KLUCB is
instantiated with an exploration bonus of log(t)/nmi . This contrasts AdaP-KLUCB and Lazy-DP-
TS, which need an exploration bonus of roughly 3 log(t)/nmi for their regret analysis.

Now, we present the privacy guarantee of our algorithms.

Proposition 8 (Privacy analysis) DP-KLUCB and DP-IMED are ϵ-global DP for rewards in [0, 1].

Proof Sketch. First, given a sequence of rewards {r1, . . . , rT } ∈ [0, 1]T and some time steps

1 = t1 < t2 < · · · < tℓ = T + 1, releasing the partial sums
{(∑tk+1−1

s=tk
rs

)
+ Yk

}ℓ−1

k=1
is ϵ-

DP, where Yk ∼ Lap(1/ϵ). This is the main privacy lemma used to design algorithms of Sajed and
Sheffet (2019); Azize and Basu (2022); Hu and Hegde (2022). Now, by the post-processing property

of DP, we also have that releasing the sums
{(∑tk+1−1

s=1 rs

)
+
∑k

p=1 Yp

}ℓ−1

k=1
is ϵ-DP, by summing

the outputs of the previous DP mechanism. Finally, DP-IMED and DP-KLUCB are ϵ-global DP by
adaptive post-processing of the sum of rewards. The detailed proof is presented in Appendix E.

To have a “good” regret bound, Proposition 7 suggests using a batching strategy where the
number of batches is sublinear in T . For simplicity, we chose the batch sizes Bm in Algorithm 1
such that Bm ≈ n0α

m, i.e., a geometric sequence with initialisation n0 ∈ N and ratio α > 1. More
formally, we choose

Bm =

⌈
n0

αm+1 − 1

α− 1

⌉
−
⌈
n0

αm − 1

α− 1

⌉
, (14)

where ⌈x⌉ is the smallest integer no less than x. When α is an integer, Bm = n0α
m.

Theorem 9 (Regret upper bound of DP-IMED and DP-KLUCB) Assume µ⋆ < 1. Under the
batch sizes given in (14) with α > 1, and for any Bernoulli bandit ν, we have

RegT (DP-IMED, ν) ≤
∑
i ̸=i∗

α∆i log T

dϵ(µi, µ⋆)
+ o(log T ), RegT (DP-KLUCB, ν) ≤

∑
i̸=i∗

α∆i log T

dϵ(µi, µ⋆)
+ o(log T ) .

11
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Figure 1: Evolution of the regret over time for DP-SE, AdaP-KLUCB, Lazy-DP-TS, DP-KLUCB,
and DP-IMED for ϵ = 0.25, and Bernoulli bandits µ1 (left) and µ2 (right).

Comments. (a) The regret upper bounds of DP-IMED and DP-KLUCB match asymptotically the
lower bound of Theorem 5 up to the constant α > 1, where α is the ratio of the georemetrically
increasing batch sizes Bm. This parameter α > 1 can be set arbitrarily close to 1 to match the
dominant term in the asymptotic regret lower bound. (b) Our algorithms strictly improve over the
regret upper bounds of Azize and Basu (2022); Hu and Hegde (2022). Also, our upper bounds are
the first to show a dependence in the tighter quantity dϵ, compared to having min{∆2

a, ϵ∆a} in the
regrets for Azize and Basu (2022); Hu and Hegde (2022). We provide additional comments that
compare our regret upper bound to AdaP-KLUCB in Appendix F.
Proof Sketch. The proof uses similar steps as Honda and Takemura (2015) for the IMED algorithm
and the reduction technique for the KL-UCB algorithm by Honda (2019) with the new concentration
inequality involving dϵ (Proposition 7). The main technical challenge is dealing with the adaptive
batching strategy when the optimal arm has not yet converged well. While it was sufficient to count
the number of such rounds in (Honda and Takemura, 2015), a suboptimal arm i might be pulled
Bmi ≈ n0α

mi times under our batched algorithm once such an event occurs. We control this effect
by a regret decomposition that is tailored for batched pulls of arms while the property of IMED/KL-
UCB index can still be naturally incorporated. The full proof is presented in Appendix F.

5. Experimental Analysis

In this section, we numerically compare the performance of our algorithms, i.e., DP-KLUCB and
DP-IMED, to ϵ-global DP algorithms from the literature: DP-SE (Sajed and Sheffet, 2019), AdaP-
KLUCB (Azize and Basu, 2022) and Lazy-DP-TS (Hu and Hegde, 2022). As a non-private bench-
mark, we include the IMED algorithm (Honda and Takemura, 2015). Since both AdaP-KLUCB and
Lazy-DP-TS explore each arm once, and use arm-dependent doubling, we chose n0 = 1 and α = 2
for DP-KLUCB and DP-IMED. Also, to comply with the regret analysis in (Azize and Basu, 2022;
Sajed and Sheffet, 2019), we chose α = 3.1 in AdaP-KLUCB, and β = 1/T in DP-SE.

As in Sajed and Sheffet (2019); Azize and Basu (2022); Hu and Hegde (2022), we consider
4 different 5-arm Bernoulli environments, with specific arm-means choices. We run each algo-
rithm 20 times for T = 106. For ϵ = 0.25, we plot the mean regret in Figure 1 for µ1 ≜
[0.75, 0.7, 0.7, 0.7, 0.7] in the left and µ2 ≜ [0.75, 0.625, 0.5, 0.375, 0.25] in the right. In Ap-
pendix G, we present additional results for the other environments under different budgets.

12
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Results. DP-KLUCB and DP-IMED achieve lower regret in all Bernoulli environments and
privacy budgets under study (up to 10 times less on an average). This is explained by the fact that
DP-KLUCB and DP-IMED do not forget half of the samples, and also thanks to the tighter indexes,
where the optimism corresponds to a bound of log(t)

Na
than the 3 log(t)

Na
needed by Azize and Basu

(2022); Hu and Hegde (2022).

6. Discussions and Future Works

We improve both regret lower bound (Theorem 5) and upper bounds (Theorem 9) for Bernoulli
bandits under ϵ-global DP. We introduce a new information-theoretic quantity dϵ (Equation (6)) that
tightly characterises the hardness of minimising regret under DP, and smoothly interpolates between
the KL and the TV. Our proposed algorithms share ingredients with algorithms from the literature
while alleviating the need to forget rewards as a design technique. This is thanks to a new tighter
concentration inequality for private means of Bernoullis (Proposition 7). Our results solve the open
problem of having matching upper and lower bound up to the same constant posed by Azize and
Basu (2022) and refute that forgetting is necessary for designing optimal DP bandit algorithms. An
interesting future work would be to generalise our concentration inequality and, in turn, the regret
upper bounds to general distribution families (e.g. sub-Gaussians, exponential families).
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Appendix A. Outline

The appendices are organised as follows:

• In Appendix B, we extend the adaptive continual release model of Jain et al. (2023) to bandits,
and link it to ϵ-global DP

• In Appendix C, we provide the proof of the three lemmas used to prove the regret lower bound
of Theorem 5

• In Appendix D, we provide the complete proof of the concentration inequality of Proposi-
tion 7

• In Appendix E, we provide the complete proof of the privacy guarantee of Proposition 8

• In Appendix F, we provide the complete proof of the regret upper bounds of Theorem 9

• In Appendix G, we provide additional experimental results

• In Appendix H, we recall useful lemmas used throughout the paper

Appendix B. Adaptive Continual Release Model for Bandits

In this section, we extend the adaptive continual release model of Jain et al. (2023) to bandits. In
this model, the policy interacts with an adversary that chooses adaptively rewards based on previous
outputs of the policy.

In the following, we formalise the notion of an adaptive adversary from Jain et al. (2023) and
call it a “reward-feeding” adversary.

Definition 10 (Reward-Feeding Adversary) A reward-feeding adversaryA is a sequence of func-
tions (At)

T
t=1 such that, for t ∈ {1, . . . , T},

At : a1, . . . , at → (rLt , r
R
t ) .

A “reward-feeding” adversary A is a sequence of “reward” functions that take as input the
action-history and outputs a pair of rewards (rLt , r

R
t ). The reward-feeding adversary A has two

channels: a left “standard” channel L and a right channel R. These channels are used to simulate
“neighbouring” rewards.

Precisely, to simulate “neighbouring” rewards, the interactive protocol between the policy π
and the reward-feeding adversary A has two hyper-parameters: (a) a specific “challenge” time
t⋆ ∈ {1, T}, and (b) a binary b ∈ {L,R}. For steps t ̸= t⋆, the policy observes a reward coming
from the adversary’s left “standard” channel, i.e. rt = rLt . Otherwise, when t = t⋆, the policy
observes a reward from the channel corresponding to the secret binary b.

In other words, if b = L, the policy π always observes a reward from the left channel. When
b = R, the policy observes the left channel reward for all steps, except at t⋆ where the policy
observes a right channel reward. Thus, for any sequence of actions (a1, . . . , aT ) chosen by the
policy π, and for any t⋆, the sequence of rewards observed by π when b = L is neighbouring to
the sequence of rewards observed when b = R. In addition, these two sequences only differ at
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the reward observed at the challenge time t⋆, and the rewards have been adaptively chosen by the
adversary.

Thus, we formalise the adaptive continual release interaction as follows:
Let b ∈ {L,R} and t⋆ ∈ {1, . . . , T}
For t = 1, . . . , T

1. The policy π selects an action

at ∼ πt(· | a1, r1, . . . , at−1, rt−1), at ∈ [K]

2. The adversary A selects an adaptively chosen pair of rewards:

(rLt , r
R
t ) = At(a1, . . . , at)

• If t ̸= t⋆:
rt = rLt

• If t = t⋆:
rt⋆ = rbt⋆

3. The policy π observes the reward rt

When this interaction is run with parameters t⋆ and b, we represent the interaction by π
b,t⋆⇔ A, and

illustrate it in Figure 2. The view of the adversary A in the interaction π
b,t⋆⇔ A is the sequence of

actions chosen by the policy π, i.e.,

Viewb,t⋆

A,π ≜ ViewA(π
b,t⋆⇔ A) ≜ (a1, . . . , aT ) .

A policy is DP in the adaptive continual release model if the view of the adversary is indistin-
guishable when the interaction is run on b = L and b = R for any challenge step t⋆.

Definition 11 (DP in the Adaptive Continual Release Model)

• A policy π is (ϵ, δ)-DP in the adaptive continual release model for a given ϵ ≥ 0 and δ ∈
[0, 1), if for all reward-feeding adversaries A, all subset of views S ⊆ [K]T ,

sup
t⋆∈{1,...,T}

Pr[ViewL,t⋆

A,π ∈ S]− eϵ Pr[ViewR,t⋆

A,π ∈ S] ≤ δ .

• A policy π is ρ-zCDP in the adaptive continual release model for a given ρ ≥ 0, if for every
α > 1, and every reward-feeding adversary A,

sup
t⋆∈{1,...,T}

Dα(View
L,t⋆

A,π ∥View
R,t⋆

A,π ) ≤ ρα .

Remark 12 [Expanding the View of the Reward-feeding Adversary A] For any reward-feeding
adversary A, any policy π and any t⋆ ∈ {1, . . . , T}, and any (a1, . . . , aT ) ∈ [K]T , we have for the
left view:

Pr[ViewL,t⋆

A,π = (a1, . . . , aT )] = π1(a1)π2(a2 | a1,AL
1 (a1)) · · · ×
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Figure 2: Interactive protocol in the adaptive continual release model between a policy π and a
reward-feeding adversary A. The protocol in Figure (a) is run with b = L, while the protocol in
Figure (b) is run with b = L. The framed part corresponds to the reward observed by the policy.

πT (aT | a1,AL
1 (a1), . . . , aT−1,AL

T−1(a1, . . . , aT−1)) .

On the other hand, for the right view:

Pr[ViewR,t⋆

A,π = (a1, . . . , aT )] = π1(a1)π2(a2 | a1,AL
1 (a1)) · · · ×

πt⋆+1(at⋆+1 | a1,AL
1 (a1), . . . , at⋆ ,AR

t⋆(a1, . . . , at⋆)) · · · ×
πT (aT | a1,AL

t (a1), . . . , aT−1,AL
T−1(a1, . . . , at−1)) .

Let us define

AL,t⋆(a1, . . . , aT ) ≜ (AL
1 (a1),AL

2 (a1, a2), . . . ,AL
T (a1, . . . , aT ))

19



AZIZE WU HONDA ORABONA ITO BASU

to be the list of rewards that the policy observes when the protocol is run on the left channel. Also,

AR,t⋆(a1, . . . , aT ) ≜ (AL
1 (a1), . . . ,AR

t⋆(a1, . . . , at⋆) . . .AL
T (a1, . . . , aT ))

is the list of rewards that the policy observes when the protocol is run on the right channel and t⋆.
We observe that, for any (a1, . . . , aT ) ∈ [K]T ,

(a) Pr[ViewL,t⋆

A,π = (a1, . . . , aT )] = Vπ((a1, . . . , aT ) | AL,t⋆(a1, . . . , aT )).

(b) Pr[ViewR,t⋆

A,π = (a1, . . . , aT )] = Vπ((a1, . . . , aT ) | AR,t⋆(a1, . . . , aT )).

(c) AL,t⋆(a1, . . . , aT ) and AR,t⋆(a1, . . . , aT ) are neighbouring lists of rewards, and only differ
at the t⋆-th element.

This remark will help connect the adaptive continual release model with View DP later.

Remark 13 [Reward-feeding Adversary as a Tree Reward Input] A reward-feeding adversary can
be represented by a tree of rewards. Each node in the tree corresponds to a reward input. The tree
has a depth of size T . At depth t ∈ [T ] of the tree reside all possible rewards the policy can observe
at step t. Going from depth t to depth t + 1 depends on the action at+1. Finally, the policy only
observes the reward corresponding to its trajectory in the tree. An example of the tree is presented
in Figure 3.c for T = 3 and K = 2.

A policy π is DP in the adaptive continual release model if and only if π is DP when interacting
with two neighbouring trees of rewards. Two trees of rewards are neighbouring if they only differ in
rewards at one depth t⋆ ∈ [T ].

Now, we relate DP in the adaptive continual release model with View DP and Table DP.

Proposition 14 (Link between the Adaptive Continual Release Model, View DP, and Table DP)
For any policy π, we have that

(a) π is DP in the adaptive continual release model⇒ π is Table DP.

(b) π is ϵ-DP in the adaptive continual release model⇔ π is ϵ-Table DP⇔ π is ϵ-View DP.

Proposition 14 shows that the adaptive continual release model is stronger than Table DP. For
pure ϵ-DP, the adaptive continual release model, Table DP and View DP are all equivalent.

To prove this proposition, we use the following reduction.

Reduction 1 (From table of rewards to “reward-feeding” adversaries) For a pair of reward ta-
bles x, x’ ∈ (RK)T , we define A(x, x’) to be the “reward-feeding” adversary defined by

A(x, x’)t : a1, . . . , at → (xt,at , x
′
t,at) .

In other words, at step t, the adversaryA(x, x’) only uses the last action at and returns the at-th
column from xt on the left channel, and the at-th column from x′t on the right channel.

For neighbouring tables x and x’ which only differ at some step t⋆, it is possible to show that,
for every S ∈ RT , we have

20



PRIVATE BERNOULLI BANDITS

(a) List of rewards
(b) Table of rewards

(c) Tree of rewards

Figure 3: Different reward representations for T = 3 and K = 2. The highlighted rewards are the
rewards observed by the policy for the trajectory (a1, a2, a3) = (1, 2, 1)

• Pr[ViewL,t⋆

A(x,x’),π ∈ S] =M
π
x (S).

• Pr[ViewR,t⋆

A(x,x’),π ∈ S] =M
π
x’(S).

In other words, the batch mechanism Mπ combined with neighbouring tables can be “simu-
lated” using a specific type of “reward-feeding” adversaries that only care about the last action
from the history.

Proof (a) Suppose that π is DP in the adaptive continual release model.
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Let t⋆ ∈ [T ], and x ∼ x′ be two tables of rewards in (RK)T that only differ at step t⋆. Using
Reduction 1, we build A(x, x′).

For this construction, we have thatMπ
x = ViewL,t⋆

A(x,x’),π andMπ
x′ = ViewR,t⋆

A(x,x’),π.

Since π is DP in the adaptive continual release model, ViewL,t⋆

A(x,x’),π and ViewL,t⋆

A(x,x’),π are in-
distinguishable. Thus,Mπ

x andMπ
x′ are indistinguishable, i.e.,Mπ is DP and π is Table DP.

(b) To prove this part, it is enough to show that ϵ-View DP implies ϵ-DP in the adaptive continual
release model.

Suppose that π is ϵ-View DP, i.e.Vπ is ϵ-DP. Let A be a “reward-feeding” adversary, and
(a1, . . . , aT ) ∈ [K]T a sequence of arms.

Using Remark 12 and the notation defined there, we have

Pr[ViewL,t⋆

A,π = (a1, . . . , aT )] = Vπ((a1, . . . , aT ) | AL,t⋆(a1, . . . , aT ))

≤ eϵVπ((a1, . . . , aT ) | AR,t⋆(a1, . . . , aT ))

= eϵ Pr[ViewL,t⋆

A,π = (a1, . . . , aT )],

where the inequality holds because Vπ is DP, and AL,t⋆(a1, . . . , aT ) and AR,t⋆(a1, . . . , aT ) are
neighbouring lists of rewards.

Finally, this means that π is ϵ-DP in the adaptive continual release model, since for pure DP, it
is enough to check the atomic events (a1, . . . , aT ).

Note that the proof breaks if we consider composite events, which are necessary for approximate
DP proofs.

Summary of the relationship between definitions. We introduced three increasingly stronger
input representations and their corresponding DP definitions: list of rewards with View DP, table
of rewards with Table DP, and tree of rewards with DP in the adaptive continual release. These
representations are summarised in Figure 3 for T = 3 and K = 2.

In general, DP in the adaptive continual release is stronger than Table DP, which is stronger
than View DP. For ϵ-pure DP, these three definitions are equivalent, with the same privacy budget ϵ.
More care is needed for other variants of DP, where going from one definition to another happens
with a loss in the privacy budgets (Proposition 1 in Azize and Basu (2022)).

Appendix C. Lower Bound Proof

In this section, we present the proof of the three main lemma used to prove Theorem 5. We adopt
the same notation introduced in the proof of Theorem 5.

Lemma 15 (Controlling Pγπ(Ω ∩ L ∩A), aka Double change of environment) We show that

Pγπ (Ω ∩ L ∩A) ≤ e(1+α)n2(ϵTV(P2,P ′
2)+kl(µ′

2,µ
′′
2 )) O(T a)

T − n2
, (15)

for any a > 0.

Proof We have

Pγπ (Ω ∩ L ∩A)
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=
∑

a

∫
r

∫
r’
1(Ω ∩ L ∩A)

T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)cat(rt, r
′
t) drt dr

′
t

(a)

≤
∑

a

∫
r

∫
r’
1(Ω ∩ L ∩A)eϵdham(r,r′)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)cat(rt, r

′
t) drt dr

′
t

(b)

≤ eϵ(1+α)n2TV(P2,P ′
2)
∑

a

∫
r

∫
r’
1(Ω ∩ L ∩A)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)cat(rt, r

′
t) drt dr

′
t

(c)

≤ eϵ(1+α)n2TV(P2,P ′
2)
∑

a

∫
r

∫
r’
1(Ω ∩A)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)cat(rt, r

′
t) drt dr

′
t

(d)
= eϵ(1+α)n2TV(P2,P ′

2)
∑

a

∫
r’
1(Ω ∩A)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)p

′
at(r

′
t) dr

′
t

= eϵ(1+α)n2TV(P2,P ′
2)
∑

a

∫
r’
1(Ω ∩A)e

∑T
t=1 log

dP ′
at

(r′t)
dP ′′

at
(r′t)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)p

′′
at(r

′
t) dr

′
t

(e)

≤ eϵ(1+α)n2TV(P2,P ′
2)e(1+α)kl(µ′

2,µ
′′
2 )n2

∑
a

∫
r’
1(Ω)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)p

′′
at(r

′
t) dr

′
t

= e(1+α)n2(ϵTV(P2,P ′
2)+kl(µ′

2,µ
′′
2 ))Pν′′π (N2(T ) ≤ n2) ,

where:
(a) is because π is ϵ-DP;
(b) is by definition of L;
(c) is because 1(Ω ∩ L ∩A) ≤ 1(Ω ∩A);
(d) by definition of the coupling, and because Ω ∩A doesn’t depend on (rt)

T
t=1;

(e) by definition of A.
Then, using Markov inequality and the consistency of π, we get

Pν′′π (N2(T ) ≤ n2) = Pν′′π (T −N2(T ) ≥ T − n2)

= Pν′′π (N1(T ) ≥ T − n2)

≤ Eν′′π(N1(T ))

T − n2
=

O(Tα)

T − n2
,

for any a > 0, since arm 1 is sub-optimal in environment ν ′′ and π is consistent.
All in all, we have that, for any a > 0,

Pγπ (Ω ∩ L ∩A) ≤ e(1+α)n2(ϵTV(P2,P ′
2)+kl(µ′

2,µ
′′
2 )) O(T a)

T − n2
.

Lemma 16 (Controlling Pγπ(Ω ∩ L ∩Ac)) Choosing n2 = n2(T ) a function such that n2(T )→
∞ when T →∞, then

Pγπ(Ω ∩ L ∩Ac) = oT (1),

asymptotically in T .
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Proof First, we have

Pγπ (Ω ∩ L ∩Ac) ≤ Pγπ (Ω ∩Ac) .

Let us introduce the notation r′a,s ≜ r′τa,s where τa,s ≜ min{t ∈ N : Na(t) = s}. Then,

T∑
t=1

log
dP ′

at(r
′
t)

dP ′′
at(r

′
t)

=

N2(T )∑
s=1

log
dP ′

2(r
′
2,s)

dP ′′
2 (r

′
2,s)

=

N2(T )∑
s=1

Ws,

where Ws ≜ log
dP ′

2(r
′
2,s)

dP ′′
2 (r′2,s)

are i.i.d bounded random variables, with positive mean Eγπ[Ws] =

kl(µ′
2, µ

′′
2). This is true since under the coupling γ, the marginal of r′2,s is P ′

2.
Then, we get

Pγπ (Ω ∩Ac) ≤ Pγπ

(
∃m ≤ n2 :

m∑
s=1

Ws > (1 + α)kl(µ′
2, µ

′′
2)n2

)

≤ Pγπ

(
maxm≤n2

∑m
s=1Ws

n2
> (1 + α)kl(µ′

2, µ
′′
2)

)
.

Using Asymptotic maximal Hoeffding inequality (Lemma 33), we have that

lim
n→∞

Pγπ

(
maxm≤n

∑m
s=1Ws

n
> (1 + α)kl(µ′

2, µ
′′
2)

)
= 0 .

Thus, by choosing n2 = n2(T ) a function such that n2(T )→∞ when T →∞, then

Pγπ(Ω ∩ L ∩Ac) = oT (1),

asymptotically in T .

Lemma 17 (Controlling Pγπ (Ω ∩ Lc)) choosing n2 = n2(T ) a function such that n2(T ) → ∞
when T →∞, then

Pγπ (Ω ∩ Lc) = oT (1),

asymptotically in T .

Proof First, by the construction of the couplings, only rewards coming from arm 2 are different, i.e.,

dham(r, r′) ≜
T∑
t=1

1(rt ̸= r′t) =

T∑
t=1

1(At = 2)1(rt ̸= r′t) .

Let us introduce the notation ra,s ≜ rτa,s where τa,s ≜ min{t ∈ N : Na(t) = s}. Then,

dham(r, r′) =

N2(T )∑
s=1

1(r2,s ̸= r′2,s) =

N2(T )∑
s=1

Zs,
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where Zs ≜ 1(r2,s ̸= r′2,s) are i.i.d Bernoulli random variables with positive mean Eγπ[Zs] =
Pγπ(r2,s ̸= r′2,s) = TV(P2, P

′
2).

Pγπ (Ω ∩ Lc) ≤ Pγπ

(
∃m ≤ n2 :

m∑
s=1

Zs > (1 + α)n2TV(P2, P
′
2)

)

≤ Pγπ

(
maxm≤n2

∑m
s=1 Zs

n2
> (1 + α)TV(P2, P

′
2)

)
.

Using Asymptotic maximal Hoeffding inequality (Lemma 33), we have that

lim
n→∞

Pγπ

(
maxm≤n

∑m
s=1 Zs

n
> (1 + α)TV(P2, P

′
2)

)
= 0 .

Thus, by choosing n2 = n2(T ) a function such that n2(T )→∞ when T →∞, then

Pγπ (Ω ∩ Lc) = oT (1), (16)

asymptotically in T .

Appendix D. Concentration Inequality Proof

Lemma 18 (Tail Bound of Cumulative Laplacian Noise) Let Zm =
∑m

l=1 Yl where Yl ∼ Lap(1/ϵ)
are i.i.d. Laplace random variables with parameter 1/ϵ. Then, for z > 0, we have

P[Zm ≥ z] ≤ exp (−f(z)) ,

where f(z) = ϵz − 1−m log(1 +mϵz).

Proof For a random variable Y ∼ Lap(1/ϵ), the probability density function is

fY (y) =
ϵ

2
exp(−ϵ|y|) .

The moment-generating function (MGF) is given by

MY (t) = E[exp(tY )] =
ϵ2

ϵ2 − t2
, |t| < ϵ .

The random variable Zm =
∑m

l=1 Yl is the sum of m i.i.d. Laplace random variables. The MGF of
Zm is the product of the MGFs of the individual Yl:

MZm(t) = (MY (t))
m .

Thus, we have

MZm(t) =

(
ϵ2

ϵ2 − t2

)m

, |t| < ϵ .
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To bound P[Zm ≥ z], we use the Chernoff bound:

P[Zm ≥ z] ≤ inf
0<t<ϵ

E[exp(tZm − tz)]

= inf
0<t<ϵ

exp (−tz)MZm(t)

= inf
0<t<ϵ

exp

(
−tz +m log

(
ϵ2

ϵ2 − t2

))
= inf

0<t<ϵ
exp

(
−tz −m log

(
1− t2

ϵ2

))
.

Consider

ft(z) = tz +m log

(
1− t2

ϵ2

)
.

Letting t = ϵ
√
1− c ∈ (0, ϵ) for c = 1 ∧ 1/(mϵz) we have

ft(z) = ϵz
√
1− c+m log c

≥ ϵz − ϵzc+m log(1 ∧ 1/(mϵz))
(
by
√
1− c ≥ 1− c for c ≤ 1

)
= ϵz − (ϵz ∧ 1/m) +m log(1 ∧ 1/(mϵz))

≥ ϵz − 1−m log(1 ∨mϵz)

≥ ϵz − 1−m log(1 +mϵz) .

Then, we have
ft(z) ≥ ϵz − 1−m log(1 +mϵz) = f(z),

for z ≥ 0. Thus, we obtain
P[Zm ≥ z] ≤ exp (−f(z)) .

Lemma 19 (Concentration bound of private summation) For µ ∈ (0, 1) and ϵ > 0, let

S̃n,m =
n∑

i=1

Xi +
m∑
j=1

Yj , Xi ∼ Ber(µ), Yj ∼ Lap(1/ϵ)

be the sum of independent n Bernoulli random variables (RVs) with mean µ and m Laplace RVs
with scale 1/ϵ. Then, for x ≥ nµ

Pr
[
S̃n,m ≥ x

]
≤ Aϵ(n,m, x, µ)e−ndϵ(x/n,µ),

where

Aϵ(m,n, x, µ)

= (x− nµ) max
y∈[µ,x/n]

{
e(1 +mϵ(x− yn))m log

1

µ

}
+ e(1 +mϵ(x− nµ))m + 1 .
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Similarly, for x ≤ nµ,

Pr
[
S̃n,m ≤ x

]
≤ Aϵ(m,n, x, µ)e−ndϵ(x/n,µ),

where

Aϵ(m,n, x, µ)

= (nµ− x) max
y∈[x/n,µ]

{
e(1 +mϵ(yn− x))m log

1

1− µ

}
+ e(1 +mϵ(nµ− x))m + 1 .

Proof [Proof of Lemma 19] For µ ∈ (0, 1) and ϵ > 0, the private summation can be written as

S̃n,m =

n∑
i=1

Xi +

m∑
j=1

Yj , Xi ∼ Ber(µ), Yj ∼ Lap(1/ϵ) . (17)

Re-define the non-private summation and the sum of the noise by

Sn =
n∑

i=1

Xi, Zm =
m∑
j=1

Yj (18)

and denote density of Zm by fm(z). Then, we can upper bound the probability by

Pr
[
S̃n,m ≥ x

]
= Pr [Sn + Zm ≥ x]

=

∫ ∞

−∞
fm(z) Pr[Sn ≥ x− z]dz

=

∫ 0

−∞
fm(z) Pr[Sn ≥ x− z]dz +

∫ ∞

0
fm(z) Pr[Sn ≥ x− z]dz

≤
∫ 0

−∞
fm(z) Pr[Sn ≥ x]dz +

∫ ∞

0
fm(z) Pr[Sn ≥ x− z]dz

=
1

2
Pr[Sn ≥ x]︸ ︷︷ ︸

(I)

+

∫ ∞

0
fm(z) Pr[Sn ≥ x− z]dz︸ ︷︷ ︸

(II)

. (19)

Here, Pr[Sn ≥ x − z] can be upper bounded by Chernoff bound. Let P̄ (x − z) be such an upper
bound. Then, from Lemma 32, we have

P̄ (x− z) = e−n·kl((x−z)/n,µ), for x− z ≥ nµ . (20)

Based on this upper bound, we can bound the second term in (19):

(II) =
∫ ∞

0
fm(z) Pr[Sn ≥ x− z]dz

≤
∫ ∞

0
fm(z)P̄ (x− z)dz

= [−Fm(z)P̄ (x− z)]∞0 +

∫ ∞

0
Fm(z)(−P̄ ′(x− z))dz (integration by parts)
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= Fm(0)P̄ (x) +

∫ ∞

0
Fm(z)(−P̄ ′(x− z))dz

=
1

2
P̄ (x) +

∫ ∞

0
Fm(z)(−P̄ ′(x− z))dz, (21)

where Fm(z) =
∫∞
z fm(z)dz = Pr[Zm ≥ z] is the (complement) cumulative distribution. From

Lemma 18, we have
Fm(z) = Pr[Zm ≥ z] ≤ exp (−f(z)) ,

where f(z) = ϵz − 1−m log(1 +mϵz). Thus, we can bound the second term in (21):∫ ∞

0
Fm(z)(−P̄ ′(x− z))dz

=

∫ x−nµ

0
Fm(z)(−P̄ ′(x− z))dz +

∫ ∞

x−nµ
Fm(z)(−P̄ ′(x− z))dz (Fm(z) is decreasing)

≤
∫ x−nµ

0
Fm(z)(−P̄ ′(x− z))dz + Fm(x− nµ)

∫ ∞

x−nµ
(−P̄ ′(x− z))dz

=

∫ x−nµ

0
Fm(z)(−P̄ ′(x− z))dz + Fm(x− nµ)P̄ (nµ)

≤
∫ x−nµ

0
e−f(z)(−P̄ ′(x− z))dz + e−f(x−nµ) · 1 . (22)

We now focus on bounding the first term in RHS of the last inequality. Observe that

−P̄ ′(z) = kl′(z/n, µ)e−n·kl(z/n,µ), (23)

where kl′(x, y) = ∂kl(x,y)
∂x is the derivative with respect to the first argument. Then, for x− z ≥ nµ,

we have∫ x−nµ

0
e−f(z)(−P̄ ′(x− z))dz

=

∫ x−nµ

0
e(1 +mϵz)mkl′((x− z)/n, µ)e−ϵze−n·kl((x−z)/n,µ)dz

=

∫ x/n

µ
ne(1 +mϵ(x− yn))mkl′(y, µ)e−ϵ(x−yn)e−n·kl(y,µ)dy ( let y := (x− z)/n)

≤e− infy∈[µ,x/n]{ϵ(x−yn)+n·kl(y,µ)}
∫ x/n

µ
ne(1 +mϵ(x− yn))mkl′(y, µ)dy

≤e−n·dϵ(x/n,µ)
∫ x/n

µ
ne(1 +mϵ(x− µn))mkl′(y, µ)dy

=e−n·dϵ(x/n,µ)ne(1 +mϵ(x− µn))mkl(x/n, µ)

≤e−n·dϵ(x/n,µ)ne(1 +mϵ(x− µn))mkl(1, µ)

=e−n·dϵ(x/n,µ)ne(1 +mϵ(x− µn))m log
1

µ
(24)
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where dϵ(x/n, µ) is defined in (6). Now, we bound the second term in (22):

e−f(x−nµ) =e(1 +mϵ(x− nµ))me−nϵ(x/n−µ)

≤e(1 +mϵ(x− nµ))me−ndϵ(x/n,µ) . (25)

Note that we have for x ≥ nµ

Pr[Sn ≥ x] ≤ P̄ (x) ≤ e−nkl(x/n,µ) (by Lemma 32)

≤ e−ndϵ(x/n,µ) . (26)

Putting (24), (25), and (26) together we have for x/n ≥ µ

Pr
[
S̃n,m ≥ x

]
≤ Aϵ(m,n, x, µ)e−n·dϵ(x/n,µ)

where

Aϵ(m,n, x, µ) = (x− nµ) max
y∈[µ,x/n]

{
e(1 +mϵ(x− yn))m log

1

µ

}
+ e(1 +mϵ(x− nµ))m + 1 .

Similarly, we can get for x/n ≤ µ

Pr
[
S̃n,m ≤ x

]
≤ Aϵ(m,n, x, µ)e−ndϵ(x/n,µ),

where

Aϵ(m,n, x, µ)

= (x− nµ) max
y∈[µ,x/n]

{
e(1 +mϵ(x− yn))m log

1

1− µ

}
+ e(1 +mϵ(x− nµ))m + 1 .

Corollary 20 (Concentration bound of private mean) Consider S̃n,m given in Lemma 19. Let
x ∈ [0, 1]. Let {nm}m∈N be a sequence such that m/nm = o(1). Then, for any a > 0 there exists
a constant Aa > 0 such that for all m ∈ N

Pr

[
S̃nm,m

nm
≥ x

]
≤ Aae

−nm(dϵ(x,µ)−a), x ≥ µ .

Pr

[
S̃nm,m

nm
≤ x

]
≤ Aae

−nm(dϵ(x,µ)−a), x ≤ µ.

Proof [Proof of Corollary 20] From Lemma 19, we have for x ≥ µ

Aϵ(m,nm, x, µ)

=nm(x− µ) max
y∈[µ,x]

{
e(1 + (m+ 1)ϵnm(x− y))m+1 log

1

µ

}
+ e(1 + (m+ 1)ϵnm(x− µ))m+1 + 1 .

(27)
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For y ∈ [µ, x],

Aϵ(m,nm, x, µ) ≤ A(nm) = nme(1 + (m+ 1)ϵnm)m+1 log
1

µ
+ e(1 + (m+ 1)ϵnm)m+1 + 1 .

Since existing b to make 1 + x ≤ bex hold, we have the result. The proof for the case of x ≤ µ is
completely analogous.

Appendix E. Privacy Analysis

First, we provide a simple lemma to motivate the intuition behind the algorithm design. Then, we
provide a complete proof of Proposition 8.

Lemma 21 (Continual release of noisy rewards) Let rewards {r1, . . . , rT } ∈ [0, 1]T . Let 1 =
t1 < t2 · · · < tℓ = T + 1 be ℓ time-step, with ℓ ≤ T . Then, the mechanism

r1
r2
...
rT

 C→


r1 + · · ·+ rt2−1 + Y1

r1 + · · ·+ rt3−1 + Y1 + Y2
...

r1 + · · ·+ rT + Y1 + Y2 + · · ·+ Yℓ−1


is ϵ-DP, where (Y1, . . . , Yℓ) ∼iid Lap(1/ϵ).

Proof [Proof of Lemma 21] First, consider trying to release the following partial sums
r1
r2
...
rT

→


r1 + · · ·+ rt2−1

rt2 + · · ·+ rt3−1
...

rtℓ−1
+ · · ·+ rT

 .

Because the rewards are in [0, 1], the sensitivity of each partial sum is 1. Since each partial sum
is computed on non-overlapping sequences, combining the Laplace mechanism (Theorem 31) with
the parallel composition property of DP (Lemma 30) gives that


r1
r2
...
rT

 P→


r1 + · · ·+ rt2−1 + Y1
rt2 + · · ·+ rt3−1 + Y2

...
rtℓ−1

+ · · ·+ rT + Yℓ−1


is ϵ-DP, where (Y1, . . . , Yℓ−1) ∼iid Lap(1/ϵ).

Consider the post-processing function f : (x1, . . . xℓ−1) → (x1, x1 + x2, . . . , x1 + x2 + · · ·+
xℓ−1). Then, we have that that C = f ◦ P . So, by the post-processing property of DP, C is ϵ-DP.
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Proof [Proof of Proposition 8] Let π be either DP-IMED or DP-KLUCB. Let r ≜ {r1, . . . , rT }
and r’ ≜ {r′1, . . . , r′T } be two neighbouring reward lists, that only differ at t⋆ ∈ {1, . . . , T}. Fix
a ≜ (a1, . . . , aT ) ∈ [K]T . We want to show that

Vπr (a) ≤ eϵVπr’(a) .

Step 1: Probability decomposition and time-steps before t⋆:

Vπr (a)
Vπr’(a)

=
T∏
t=1

πt(at|a1, r1, . . . at−1, rt−1)

πt(at|a1, r′1, . . . at−1, r′t−1)

=
T∏

t=t⋆+1

πt(at|a1, r1, . . . at−1, rt−1)

πt(at|a1, r′1, . . . at−1, r′t−1)
,

since for t < t⋆, rt = r′t. Let us denote by Pr(a>t⋆ | a≤t⋆ , r) ≜
∏T

t=t⋆+1 πt(at|a1, r1, . . . at−1, rt−1)
the probability of the policy recommending the sequence (at⋆+1, . . . , aT ), when interacting with
r = {r1, . . . , rT } and already recommending a1, . . . , at⋆ in the first steps.

Let us denote by t1, . . . , tℓ the time-steps of the beginning of the phases when π interacts with
r, and t′1, . . . , t

′
ℓ′ the time-steps of the beginning of the phases when π interacts with r’. Also, let

tk⋆ be the beginning of the phase for which t⋆ belongs in list r phases. Similarly, let t′k′⋆ be the
beginning of the phase for which t⋆ belongs in list r’ phases.

Since (a1, . . . , aT ) is fixed, and rt = r′t for t < t⋆, then tk⋆ = t′k′⋆ and k⋆ = k′⋆, i.e., t⋆ falls at
the same phase in r and r’.

Step 2: Considering the noisy sum of rewards at phase k⋆:

Let S̃p
k⋆ =

∑tk⋆+1−1
s=tk⋆

rs + Yk⋆ be the noisy partial sum of rewards collected at phase k⋆ for

r, where Yk⋆ ∼ Lap(1/ϵ). Similarly, tet S̃′p
k⋆ =

∑tk⋆+1−1
s=tk⋆

r′s + Y ′
k⋆

be the noisy partial sum of
rewards collected at phase k⋆ for r’, where Y ′

k⋆ ∼ Lap(1/ϵ). We make two main observations:
(a) If the value of the noisy partial sum at phase k⋆ is exactly the same between the neighbouring

r and r’, then the policy π will recommend the sequence of actions a>t⋆ with the same probability
under r and r’:

Pr(a>t⋆ | a≤t⋆ , r, S̃p
k⋆ = s) = Pr(a>t⋆ | a≤t⋆ , r’, S̃′p

k⋆ = s) . (28)

This is due to the structure of the algorithm π, where the reward at step t⋆ only affects the statistic
S̃p
k⋆ , and nothing else.

(b) Since rewards are [0, 1], using the Laplace mechanism, we have that

Pr(S̃p
k⋆ = s | a≤t⋆ , r) ≤ eϵPr(S̃′p

k⋆ = s | a≤t⋆ , r’) . (29)

Step 3: Combining Eq. 28 and Eq. 29, aka post-processing:
We have

Pr(a>t⋆ | a≤t⋆ , r) =
∫
s∈R

Pr(S̃p
k⋆ = s | a≤t⋆ , r)Pr(a>t⋆ | a≤t⋆ , r, S̃p

k⋆ = s)

≤
∫
s∈R

eϵPr(S̃′p
k⋆ = s | a≤t⋆ , r’)Pr(a>t⋆ | a≤t⋆ , r’, S̃′p

k⋆ = s)
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= eϵPr(a>t⋆ | a≤t⋆ , r’) .

This concludes the proof:

Vπr (a)
Vπr’(a)

=
Pr(a>t⋆ | a≤t⋆ , r)
Pr(a>t⋆ | a≤t⋆ , r’)

≤ eϵ .

Appendix F. Regret Analysis Proof

Lemma 22 (Explicit solution of dϵ) If µ, µ′ ∈ (0, 1) and µ ≤ µ′, we have

dϵ(µ, µ
′) ≜ inf

z∈[µ,µ′]

{
kl(z, µ′) + ϵ(z − µ)

}
, (30)

under Bernoulli cases, then

z∗ = max

(
µ,

µ′

µ′ + (1− µ′)eϵ

)
.

solves the optimization problem. Thus, we have

dϵ(µ, µ
′) =


kl
(
µ, µ′) , if µ ≥ µ′

µ′ + (1− µ′)eϵ
,

kl

(
µ′

µ′ + (1− µ′)eϵ
, µ′
)
+ ϵ

(
µ′

µ′ + (1− µ′)eϵ
− µ

)
, if µ ≤ µ′

µ′ + (1− µ′)eϵ
.

(31)
For µ ≥ µ′,

z∗ = min

(
µ′eϵ

µ′eϵ + (1− µ′)
, µ

)
.

and

dϵ(µ, µ
′) =


kl
(
µ, µ′) , if µ ≤ µ′eϵ

µ′eϵ + (1− µ′)
,

kl

(
µ′eϵ

µ′eϵ + (1− µ′)
, µ′
)
+ ϵ

(
µ− µ′eϵ

µ′eϵ + (1− µ′)

)
, if µ ≥ µ′eϵ

µ′eϵ + (1− µ′)
.

(32)

Proof The Kullback-Leibler divergence between two Bernoulli random variables with means z and
µ′ is given by

kl(z, µ′) = z log
z

µ′ + (1− z) log
1− z

1− µ′ .

The optimization problem is

dϵ(µ, µ
′) = inf

z∈[µ,µ′]

{
z log

z

µ′ + (1− z) log
1− z

1− µ′ + ϵ(z − µ)

}
.
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To find the optimal z∗, take the derivative of the objective function with respect to z and let it equal
to 0:

∂

∂z

[
z log

z

µ′ + (1− z) log
1− z

1− µ′ + ϵ(z − µ)

]
= 0 .

By calculation, we have

log
z(1− µ′)

µ′(1− z)
+ ϵ = 0 .

Rearrange for z, to obtain

z =
µ′

µ′ + (1− µ′)eϵ
.

The optimal z∗ must lie within the interval [µ, µ′], hence we have

z∗ = max

(
µ,min

(
µ′,

µ′

µ′ + (1− µ′)eϵ

))
.

We always have µ′

µ′+(1−µ′)eϵ ≤ µ′, so we can remove the min part:

z∗ = max

(
µ,

µ′

µ′ + (1− µ′)eϵ

)
.

Thus, we obtain

dϵ(µ, µ
′) =


kl
(
µ, µ′) if µ ≥ µ′

µ′ + (1− µ′)eϵ

kl

(
µ′

µ′ + (1− µ′)eϵ
, µ′
)
+ ϵ

(
µ′

µ′ + (1− µ′)eϵ
− µ

)
if µ ≤ µ′

µ′ + (1− µ′)eϵ

Now, we consider µ ≥ µ′,

dϵ(µ, µ
′) = inf

z∈[µ′,µ]

{
kl(z, µ′) + ϵ(µ− z)

}
.

So, we need to minimise

dϵ(µ, µ
′) = inf

z∈[µ′,µ]

{
z log

z

µ′ + (1− z) log
1− z

1− µ′ + ϵ(µ− z)

}
over z ∈ [µ′, µ]. Differentiating the objective function with respect to z and setting it equal to 0, we
have

log
z

µ′ − log
1− z

1− µ′ − ϵ = 0.

Solving for z, we get

z∗ =
µ′eϵ

µ′eϵ + (1− µ′)
≥ µ′ .

Projecting the solution to [µ′, µ], then we have that the optimal solution is

z∗ = min

(
µ′eϵ

µ′eϵ + (1− µ′)
, µ

)
.

33



AZIZE WU HONDA ORABONA ITO BASU

Thus, the explicit solution is

dϵ(µ, µ
′) =


kl
(
µ, µ′) , if µ ≤ µ′eϵ

µ′eϵ + (1− µ′)
,

kl

(
µ′eϵ

µ′eϵ + (1− µ′)
, µ′
)
+ ϵ

(
µ− µ′eϵ

µ′eϵ + (1− µ′)

)
, if µ ≥ µ′eϵ

µ′eϵ + (1− µ′)
.

Lemma 23 For any µ, µ′ ∈ [0, 1], ∣∣∣∣ d{dϵ (µ, µ′)}
dµ

∣∣∣∣ ≤ ϵ.

Proof For µ ≤ µ′, from (31), we have the explicit solution. If µ ≥ µ′

µ′+(1−µ′)eϵ ,

dϵ
(
µ, µ′) = kl(µ, µ′) = µ log

µ

µ′ + (1− µ) log
1− µ

1− µ′

Its derivative with respect to µ is

d{dϵ (µ, µ′)}
dµ

=
d

dµ
kl(µ, µ′) = log

µ(1− µ′)

µ′(1− µ)
.

We have the condition

µ′ ≥ µ ≥ µ′

µ′ + (1− µ′)eϵ
.

Since µ′ ≥ µ, we note that
d{dϵ (µ, µ′)}

dµ
≤ 0 .

Similarly, since µ ≥ µ′

µ′+(1−µ′)eϵ , we substitute this into the derivative

µ(1− µ′)

µ′(1− µ)
≥

(
µ′

µ′+(1−µ′)eϵ

)
(1− µ′)

µ′
(
1− µ′

µ′+(1−µ′)eϵ

) =
1

eϵ
.

Thus,

−ϵ ≤ log
µ(1− µ′)

µ′(1− µ)
≤ 0 .

If µ ≤ µ′

µ′+(1−µ′)eϵ , then
d{dϵ (µ, µ′)}

dµ
= −ϵ .

Therefore, for µ ≤ µ′,

−ϵ ≤ d{dϵ (µ, µ′)}
dµ

≤ 0 .
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Now, we consider the case of µ ≥ µ′. From the explicit solution (32), when µ ≥ µ′eϵ

µ′eϵ+(1−µ′) ,
d{dϵ(µ,µ′)}

dµ = ϵ and the result holds. Let’s consider µ ≤ µ′eϵ

µ′eϵ+(1−µ′) , similar to the above argument,
we have

d{dϵ (µ, µ′)}
dµ

=
d

dµ
kl(µ, µ′) = log

µ(1− µ′)

µ′(1− µ)
∈ [0, ϵ].

Thus, we have the result in the lemma.

Lemma 24 For any 0 ≤ µ ≤ µ′ < 1,

d{dϵ (µ, µ′)}
dµ′ ≤ 1

1− µ′ .

Proof Considering the definition of dϵ in (6), we have for 0 ≤ µ ≤ µ′ < 1

dϵ(µ, µ
′) = inf

z∈[µ,µ′]
kl(z, µ′) + ϵ(z − µ) .

We first show

d{dϵ (µ, µ′)}
dµ′ ≤ d{kl (µ, µ′)}

dµ′ . (33)

From the explicit solution in (31), we have if µ ≥ µ′

µ′+(1−µ′)eϵ , then dϵ(µ, µ
′) = kl (µ, µ′). So the

inequality holds. If µ ≤ µ′

µ′+(1−µ′)eϵ , let f(µ′) = µ′

µ′+(1−µ′)eϵ , then f ′(µ′) = eϵ

(µ′+(1−µ′)eϵ)2 . In this
case, dϵ(µ, µ′) = kl (f(µ′), µ′) + ϵ (f(µ′)− µ) where µ ≤ f(µ′) ≤ µ′. By calculation, we have
for this case,

d{dϵ (µ, µ′)}
dµ′ = f ′(µ′)

(
log

f(µ′)

µ′ − log
1− f(µ′)

1− µ′ + ϵ

)
+

µ′ − f(µ′)

µ′(1− µ′)
.

Note that log f(µ′)
µ′ − log 1−f(µ′)

1−µ′ + ϵ = 0 and µ ≤ f(µ′). And we bound

d{kl (µ, µ′)}
dµ′ =

1− µ

1− µ′ −
µ

µ′

=
1

1− µ′
µ′ − µ

µ′

≤ 1

1− µ′ .

Thus, we have the result.

Theorem 25 (Regret upper bound of DP-IMED) Assume µ⋆ < 1. Under the batch sizes given in
(14) with α > 1, the regret bound of DP-IMED for a Bernoulli bandit ν is

RegT (DP-IMED, ν) ≤
∑
i ̸=i∗

α∆i log T

dϵ(µi, µ⋆)
+ o(log T ) .
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Proof [Proof of Theorem 25] Let T be the set of rounds t such that Lines 7–12 are run, that is, the
rounds such that the arm selection occurred. For t ∈ T , we define µ̃i(t) as µ̃i,nm when Ni(t− 1) =
nm. Let j be any optimal arm, that is, j such that ∆j = 0. By the batched structure of the algorithm,
we have

Regret(T ) =
∑
i ̸=i∗

T∑
t=1

(µ⋆ − µi)1 [i(t) = i]

≤ n0

∑
i ̸=i∗

(µ⋆ − µi) +
∑
i ̸=i∗

(µ⋆ − µi)

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T ]

≤ n0

∑
i ̸=i∗

(µ⋆ − µi)

+
∑
i ̸=i∗

(µ⋆ − µi)
T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) < µ⋆ − δ]︸ ︷︷ ︸
(A)

+
∑
i ̸=i∗

(µ⋆ − µi)
T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) ≥ µ⋆ − δ]︸ ︷︷ ︸
(B)

,

(34)

where δ > 0 is a small constant. (A) and (B) correspond to the regret before and after the conver-
gence, respectively.

Note that we have

nm =

⌈
n0

αm+1 − 1

α− 1

⌉
≤ n0

αm+1 − 1

α− 1
+ 1, (35)

and

Bm = nm − nm−1 ≤ n0
αm+1 − 1

α− 1
− n0

αm − 1

α− 1
+ 1 ≤ 2n0α

m . (36)

Pre-convergence Term. First consider (A). Define

Īj = max
m:µ̃j,m<µ⋆−δ

{
nmdϵ([µ̃j,m]10, µ

⋆ − δ) + log nm

}
, (37)

where we define Īj = −∞ if µ̃j,m ≥ µ⋆−δ for all m ∈ Z+. Then, {i(t) = i, t ∈ T , µ̃j(t) < µ⋆ − δ}
implies that

Ii(t) = I∗(t) ≤ Ij(t) ≤ Nj(t− 1)dϵ([µ̃j(t)]
1
0, µ

⋆ − δ) + logNj(t) ≤ Īj ,

where I∗(t) = maxi′ Ii(t) is the optimal arm obtained by Line 8 in Algorithm 1. By this fact we
have

(A) ≤
T∑
t=1

∞∑
m=0

Bm+11
[
i(t) = i, Ni(t− 1) = nm, t ∈ T , Ii(t) ≤ Īj

]
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≤
T∑
t=1

∞∑
m=0

Bm+11
[
i(t) = i, Ni(t− 1) = nm, t ∈ T , logNi(t− 1) ≤ Īj

]
≤

T∑
t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, t ∈ T , nm ≤ eĪj

]
≤

∞∑
m=0

Bm+1

T∑
t=1

1

[
i(t) = i, Ni(t− 1) = nm, t ∈ T , n0

αm − 1

α− 1
≤ eĪj

]

=

⌊
logα((α−1)eĪj /n0+1)

⌋∑
m=0

Bm+1

T∑
t=1

1 [i(t) = i, Ni(t− 1) = nm, t ∈ T ] .

Since {i(t) = i, Ni(t− 1) = nm} can occur at most once for each m, we have

(A) ≤

⌊
logα((α−1)eĪj /n0+1)

⌋∑
m=0

Bm+1

= n⌊logα((α−1)eĪj /n0+1)⌋+1
− n0

=

n0
α

⌊
logα((α−1)eĪj /n0+1)

⌋
+2 − 1

α− 1

− n0

≤ n0
α2((α− 1)eĪj/n0 + 1)− 1

α− 1
− n0 + 1

= α2eĪj + αn0 + 1

= α2 max
m:µ̃j,m<µ⋆−δ

{
nmenmdϵ([µ̃j,m]10,µ

⋆−δ)
}
+ αn0 + 1

≤ α2
∞∑

m=0

1 [µ̃j,m < µ⋆ − δ]nmenmdϵ([µ̃j,m]10,µ
⋆−δ) + αn0 + 1 . (38)

Now, let us consider the expectation of (38). When µ̃j,m < µ⋆ − δ we have

dϵ([µ̃j,mj ]
1
0, µ

⋆ − δ) = dϵ([µ̃j,mj ]
1
0, µ

⋆)−
∫ µ⋆

µ⋆−δ

d{dϵ
(
[µ̃j,mj ]

1
0, µ
)
}

dµ

∣∣∣∣∣
µ=u

du

≥ dϵ([µ̃j,mj ]
1
0, µ

⋆)− δ

1− µ⋆
(by Lemma 24)

= dϵ([µ̃j,mj ]
1
0, µ

⋆)− δ′,

where we set δ′ = δ/(1− µ⋆).
Let P (x) = Pr[dϵ([µ̃j,mj ]

1
0, µ

⋆) ≥ x, µ̃j,m < µ⋆−δ]. If µ̃j,m < µ⋆−δ, then 0 ≤ dϵ([µ̃j,mj ]
1
0, µ

⋆) ≤
d1 := dϵ(0, µ

⋆). Hence, we have

E
[
1 [µ̃j,m < µ⋆ − δ]nmenmdϵ([µ̃j,m]10,µ

⋆−δ)
]

≤ E
[
1 [µ̃j,m < µ⋆ − δ]nmenm(dϵ([µ̃j,m]10,µ

⋆)−δ′)
]
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=

∫ d1

0
nmenm(x−δ′) d(−P (x))

= [nmenm(x−δ′)(−P (x))]d1x=0 +

∫ d1

0
n2
menm(x−δ′)P (x) dx

≤ nme−nmδ′ +

∫ d1

0
n2
menm(x−δ′)P (x) dx .

Let cx ∈ [0, µ⋆] be such that dϵ(cx, µ⋆) = x. Then{
dϵ([µ̃j,mj ]

1
0, µ

⋆) ≥ x, µ̃j,m < µ⋆ − δ
}
⇔
{
µ̃j,mj < cx, µ̃j,m < µ⋆ − δ

}
.

Therefore,

P (x) = Pr[µ̃j,mj < cx, µ̃j,m < µ⋆ − δ] ≤ Aae
nmae−nmdϵ(cx,µ⋆) = Aae

nmae−nmx, (39)

for any a > 0 by Corollary 20. Thus, we have

E
[
1 [µ̃j,m < µ⋆ − δ]nmenmdϵ([µ̃j,m]10,µ

⋆−δ)
]

≤ nme−nmδ′ +

∫ d1

0
n2
menm(x−δ′)Aae

nmae−nmx dx

= nme−nmδ′ + d1n
2
mAae

−nm(δ′−a) . (40)

By letting a < δ′ and combining (38) with (40), we obtain

E[(A)] ≤ α2
∞∑

m=0

(
nme−nmδ′ + d1n

2
mAae

−nm(δ′−a)
)
+ αn0 + 1

≤ α2
∞∑
n=0

(
ne−nδ′ + d1n

2Aae
−n(δ′−a)

)
+ αn0 + 1

= α2

(
e−(δ′−a)

(1− e−(δ′−a))2
+ d1Aa

e−(δ′−a)(e−(δ′−a) + 1)

(1− e−(δ′−a))3

)
+ αn0 + 1

= α2

(
e−(δ′−a)

(1− e−(δ′−a))2
+ d1Aa

e−(δ′−a)(e−(δ′−a) + 1)

(1− e−(δ′−a))3

)
+ αn0 + 1

= O(1) . (41)

Post-convergence Term Next we consider (B). Since dϵ(µ, µ) = 0 for any µ ∈ [0, 1], we have

I∗(t) ≤ max
i′:µ̃i′ (t)=µ̃∗(t)

Ii′(t) = max
i′:µ̃i′ (t)=µ̃∗(t)

logNi′(T ) ≤ log T .

On the other hand, i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) ≥ µ⋆ − δ implies that

I∗(t) = Ii(t) ≥ nmdϵ
(
[µ̃i(t)]

1
0, [µ̃

∗(t)]10
)
= nmdϵ

(
[µ̃i(t)]

1
0, µ

⋆ − δ
)
,

from which we have

{i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) ≥ µ⋆ − δ} ⊂
{
nmdϵ

(
[µ̃i(t)]

1
0, µ

⋆ − δ
)
≤ log T

}
.
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So, we have

(B) =
T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) ≥ µ⋆ − δ]

≤
T∑
t=1

∞∑
m=0

Bm+11
[
i(t) = i, Ni(t− 1) = nm, nmdϵ

(
[µ̃i(t)]

1
0, µ

⋆ − δ
)
≤ log T

]
=

∞∑
m=0

Bm+11
[
nmdϵ

(
[µ̃i,nm ]

1
0, µ

⋆ − δ
)
≤ log T

] T∑
t=1

1 [i(t) = i, Ni(t− 1) = nm]

≤
∞∑

m=0

Bm+11
[
nmdϵ

(
[µ̃i,nm ]

1
0, µ

⋆ − δ
)
≤ log T

]
(42)

≤
∞∑

m=0

Bm+11
[
nm(dϵ([µ̃i,nm ]

1
0, µ

⋆)− δ′) ≤ log T
]
,

where recall that δ′ = δ/(1− µ⋆) and the last inequality follows from Lemma 24.
Let

H =
log T

dϵ(µi, µ⋆)− 2δ′
(43)

and

m∗ = inf{m ∈ N : nm ≥ H} .

Then, by nm∗−1 < H and (35) we have

H > nm∗−1 =

⌈
n0

αm∗ − 1

α− 1

⌉
≥ n0

αm∗ − 1

α− 1
,

which implies

m∗ ≤ logα

(
(α− 1)H

n0
+ 1

)
. (44)

Now, the post-convergence term can be bounded as follows:

E[(B)] ≤
∞∑

m=0

Bm+1 Pr
[
nm(dϵ([µ̃i,nm ]

1
0, µ

⋆)− δ′) ≤ log T
]

≤
m∗−1∑
m=0

Bm+1 +
∞∑

m=m∗

Bm+1 Pr
[
nm(dϵ([µ̃i,nm ]

1
0, µ

⋆)− δ′) ≤ log T
]

≤ nm∗ − n0 +

∞∑
m=m∗

Bm+1 Pr
[
H
(
dϵ([µ̃i,m]10, µ

⋆)− δ′
)
≤ log T

]
< n0

αm∗+1 − 1

α− 1
+ 1− n0 +

∞∑
m=m∗

Bm+1 Pr
[
H
(
dϵ([µ̃i,m]10, µ

⋆)− δ′
)
≤ log T

]
39



AZIZE WU HONDA ORABONA ITO BASU

≤ n0

α
(
(α−1)H

n0
+ 1
)
− 1

α− 1
+ 1− n0 +

∞∑
m=m∗

Bm+1 Pr
[
dϵ([µ̃i,m]10, µ

⋆) ≤ dϵ(µi, µ
⋆)− δ′

]
(by (43) and (44))

≤ αH + 1− n0α

α− 1
+

∞∑
m=m∗

Bm+1 Pr
[
µ̃i,m ≥ µi + δ′/ϵ

]
(by Lemma 23)

≤ αH +
∞∑

m=m∗

Bm+1Aa′e
a′nme−nm(dϵ(µi+δ′/ϵ,µ⋆)) (by Corollary 20)

≤ αH +

∞∑
m=m∗

2n0α
m+1Aa′e

−n0
αm+1−1

α−1
(dϵ(µi+δ′/ϵ,µ⋆)−a′) (by (36)) (45)

= αH +Aa′e
Λ

∞∑
m=m∗

2n0α
m+1e−αm+1Λ (46)

≤ αH + 2n0Aa′e
Λ

∫ ∞

m∗
αx+1e−αxΛ dx

= αH +
2αn0Aa′e

Λ

ln(α)Λ
e−αm∗

Λ

=
α log T

dϵ(µi, µ⋆)− 2δ′
+ o(1) . (47)

Here, in (45) we took a′ < dϵ(µi + δ′/ϵ, µ⋆) and in (46) we defined

Λ =
n0(dϵ(µi + δ′/ϵ, µ⋆)− a′)

α− 1
.

We complete the proof by combining (34), (41), and (47), and letting δ′ = δ
1−µ⋆ ↓ 0.

Theorem 26 (Regret upper bound of DP-KLUCB) Assume µ⋆ < 1. Under the batch sizes given
in (14) with α > 1, the regret bound of DP-KLUCB for a Bernoulli bandit ν is

RegT (DP-KLUCB, ν) ≤
∑
i ̸=i∗

α∆i log T

dϵ(µi, µ⋆)
+ o(log T ) .

Proof [Proof of Theorem 26] By the same argument as the analysis for DP-IMED we have

Regret(T ) ≤ n0

∑
i ̸=i∗

(µ⋆ − µi)

+
∑
i ̸=i∗

(µ⋆ − µi)
T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄⋆(t) < µ⋆ − δ]︸ ︷︷ ︸
(A)

+
∑
i ̸=i∗

(µ⋆ − µi)

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄⋆(t) ≥ µ⋆ − δ]︸ ︷︷ ︸
(B)

,

(48)
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where µ̄⋆(t) = maxi µ̄i(t).
We use a transformation of these terms that is similar to Honda (2019) but more suitable for the

batched algorithm. First, we have

(A) =

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄⋆(t) < µ⋆ − δ]

≤
T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄j(t) < µ⋆ − δ] .

Let

Ī ′j = max
m:µ̃j,m<µ⋆−δ

{
nmdϵ([µ̃j,m]10, µ

⋆ − δ)
}
.

Since

{µ̄j(t) < µ⋆ − δ} ⇔
{
sup

{
µ : dϵ([µ̃j(t)]

1
0, µ) ≤

log t

Nj(t− 1)

}
< µ⋆ − δ

}
⇒
{
dϵ([µ̃j(t)]

1
0, µ

⋆ − δ) >
log t

Nj(t− 1)
, µ̃j(t) < µ⋆ − δ

}
⇔
{
t < eNj(t−1)dϵ([µ̃j(t)]

1
0,µ

⋆−δ), µ̃j(t) < µ⋆ − δ
}
,

we see that

(A) ≤
T∑
t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, t ∈ T , t < eNj(t−1)dϵ([µ̃j,m]10,µ

⋆−δ), µ̃j,m < µ⋆ − δ
]

≤
T∑
t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, t < eĪ

′
j

]
≤

T∑
t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, nm < eĪ

′
j − 1

]
(by Ni(t− 1) ≤ t− 1)

=

∞∑
m=0

Bm+11

[
nm < eĪ

′
j − 1

] T∑
t=1

1 [i(t) = i, Ni(t− 1) = nm]

≤
∞∑

m=0

Bm+11

[
nm < eĪ

′
j − 1

]
≤ (α+ 1)eĪ

′
j (by nm =

∑m
i=0Bm and Bm+1 ≤ αnm)

≤ (α+ 1)eĪj ,

where Īj is defined in (37). The evaluation of this expectation is the one same as (38), which results
in E[(A)] = O(1).
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Now, we consider the second term. Note that i(t) = i implies µ̄⋆(t) = µ̄i(t) and we also have

{µ̄i(t) ≥ µ⋆ − δ} ⇔
{
sup

{
µ : dϵ([µ̃j(t)]

1
0, µ) ≤

log t

Nj(t)

}
≥ µ⋆ − δ

}
⇒
{
dϵ([µ̃i(t)]

1
0, µ

⋆ − δ) ≤ log t

Ni(t)

}
.

Then, we have

(B) =

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄⋆(t) ≥ µ⋆ − δ]

=

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄i(t) ≥ µ⋆ − δ]

≤
T∑
t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, t ∈ T , dϵ([µ̃i,nm ]

1
0, µ

⋆ − δ) ≤ log t

nm

]

≤
∞∑

m=0

Bm+11

[
dϵ([µ̃i,nm ]

1
0, µ

⋆ − δ) ≤ log t

nm

] T∑
t=1

1 [i(t) = i, Ni(t− 1) = nm]

≤
∞∑

m=0

Bm+11

[
dϵ([µ̃i,nm ]

1
0, µ

⋆ − δ) ≤ log t

nm

]
,

whose expectation is analysed in (42).

Comparison to the regret bound of AdaP-KLUCB in Azize and Basu (2022) Theorem 8 in Az-
ize and Basu (2022) shows that for τ > 3, AdaP-KLUCB yields a regret

RegT (AdaP-KLUCB, ν) ≤
∑

a:∆a>0

(
C1(τ)∆a

min{kl(µa, µ∗), C2ϵ∆a}
log(T ) +

3τ

τ − 3

)
, (49)

where C1(τ) and C2 > 0 are defined as

inf
β∈B

max

{
(1 + β)α

kl(µa, µ∗)
,

(1 + τ)

(c(β)− γℓ,T )ϵ∆a

}
log(T ) ≜

1
4C1(τ)

min{kl(µa, µ∗), C2ϵ∆a}
log(T ),

such that τ is a constant that controls the optimism in AdaP-KLUCB, B ≜ {β > 0 : c(β) > γℓ,T },
for β > 0, c(β) ∈ [0, 1] is defined such that: kl(µa + c(β)∆a, µ

∗) = d(µa,µ∗)
1+β , and γℓ,T such that

kl(µa + γℓ,T∆a, µa) =
log(T )
2ℓ

for T the horizon and ℓ the phase.
In general, C1 and C2 may depend on µa and µ⋆, and thus are not “constants”. In contrast, our

bound in Theorem 9 matches the asymptotic lower bound of Theorem 5 up to the exact constant
α > 1 that controls the geometrically increasing batches and which can be chosen arbitrarily close
to 1. In addition, our analysis only requires that the number of batches is sublinear in T as can be
seen from Proposition 7. As a result, we can also use a polynomially increasing batch size instead
of Bm ≈ αm, which fully makes the regret asymptotically optimal. We used a geometrically
increasing batch size here just for simplicity.
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Appendix G. Extended Experiments

In this section, we present additional experiments comparing the algorithms in four bandit environ-
ments with Bernoulli distributions, as defined by Sajed and Sheffet (2019), namely

µ1 = {0.75, 0.70, 0.70, 0.70, 0.70}, µ2 = {0.75, 0.625, 0.5, 0.375, 0.25},
µ3 = {0.75, 0.53125, 0.375, 0.28125, 0.25}, µ4 = {0.75, 0.71875, 0.625, 0.46875, 0.25}.

and four budgets ϵ ∈ {0.01, 0.1, 0.5, 1}. The results are presented in Figure 4 for µ1, Figure 5 for
µ2, Figure 6 for µ3 and Figure 7 for µ4.

For all the environments and privacy budgets tested, DP-IMED and DP-KLUCB achieve the
lowest regret.

We also plot the regret as a function of the privacy budget ϵ in Figure 8. The algorithm chosen
is DP-IMED with α = 1.1, T = 107 and for bandit environment µ = [0.8, 0.1, 0.1, 0.1, 0.1]. We
discretise the [0, 1] interval into 100 values of ϵ. For each ϵ, we run the algorithm 20 times and plot
the mean and standard deviation of the regret in [0, 1]. We also plot the asymptotic regret lower
bound in Figure 8 for T = 107 and µ as a function of ϵ.

The performance of our algorithm DP-IMED matches the regret lower bound. We also remark
that the change between the high and the low privacy regimes happens smoothly.

Appendix H. Existing technical results and Definitions

Proposition 27 (Post-processing (Dwork and Roth, 2014)) LetM be a mechanism and f be an
arbitrary randomised function defined onM’s output. IfM is ϵ-DP, then f ◦M is ϵ-DP.

The post-processing property ensures that any quantity constructed only from a private output is
still private, with the same privacy budget. This is a consequence of the data processing inequality.

Proposition 28 (Group Privacy (Dwork and Roth, 2014)) Let D and D′ be two datasets in X n.
IfM is (ϵ, δ)-DP, then for any event E ∈ F

MD(A) ≤ eϵdHam(D,D′)MD′(A) . (50)

Group privacy translates the closeness of output distributions on neighbouring input datasets to a
closeness of output distributions on any two datasets D and D′ that depend on the Hamming distance
dHam(D,D′). This property will be the basis for proving lower bounds in Section 3.

Proposition 29 (Simple Composition) LetM1, . . . ,Mk be k mechanisms. We define the mecha-
nism

G : D →
k⊗

i=1

Mi
D

as the k composition of the mechanismsM1, . . . ,Mk.

• If eachMi is (ϵi, δi)-DP, then G is (
∑k

i=1 ϵi,
∑k

i=1 δi)-DP.

• If eachMi is ρi-zCDP, then G is
∑k

i=1 ρi-zCDP.
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Figure 4: Evolution of regret over time for µ1 for different budgets ϵ.

Composition is a fundamental property of DP. Composition helps to analyse the privacy of
sophisticated algorithms, by understanding the privacy of each building block, and summing di-
rectly the privacy budgets. Proposition 29 can be improved in two directions. (a) It is possible to
show that the result is still true if the mechanisms are chosen adaptively, and that the mechanism
at step i takes as auxiliary input the outputs of the last i − 1 mechanisms. (b) Advanced com-
position theorems Kairouz et al. (2015) for (ϵ, δ)-DP improve the dependence on k the number
of composed mechanisms. Specifically, if the same mechanism is composed k times, Proposi-
tion 29 concludes that the composed mechanism is (kϵ, kδ)-DP. Advanced composition Kairouz
et al. (2015) shows that the k-fold adaptively composed mechanism is (ϵ′, δ′ + kδ)-DP for any δ′

where ϵ′ ≜
√
2k log(1/δ′)ϵ + kϵ(eϵ − 1). Roughly speaking, advanced composition provides a

(
√
kϵ, δ)-DP guarantee, improving by

√
k the (kϵ, kδ)-DP guarantee of simple composition.

In addition to the classic composition theorems, we provide here an additional property of in-
terest: parallel composition.

Lemma 30 (Parallel Composition) LetM1, . . . ,Mk be k mechanisms, such that k < n, where
n is the size of the input dataset. Let t1, . . . tk, tk+1 be indexes in [1, n] such that 1 = t1 < · · · <
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Figure 5: Evolution of regret over time for µ2 for different budgets ϵ.

tk < tk+1 − 1 = n.
Let’s define the following mechanism

G : {x1, . . . , xn} →
k⊗

i=1

Mi
{xti ,...,xti+1−1}

G is the mechanism that we get by applying eachMi to the i-th partition of the input dataset
{x1, . . . , xn} according to the indexes t1 < · · · < tk < tk+1.

• If eachMi is (ϵ, δ)-DP, then G is (ϵ, δ)-DP

• If eachMi is ρi-zCDP, then G is ρ-zCDP

In parallel composition, the k mechanisms are applied to different “non-overlapping” parts of
the input dataset. If each mechanism is DP, then the parallel composition of the k mechanisms
is DP, with the same privacy budget. This property will be the basis for designing private bandit
algorithms in Section 4.
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Figure 6: Evolution of regret over time for µ3 for different budgets ϵ.

Theorem 31 (The Laplace Mechanism (Dwork and Roth, 2014)) Let f : X → Rk be a deter-
ministic algorithm with ℓ1 sensitivity s1(f) ≜ max

D∼D′
∥f(D)− f(D′)∥1. Let

ML(f, ϵ) ≜ f + (Y1, . . . , Yk),

where Yi are i.i.d from Lap
(
s1(f)

ϵ

)
, where the Laplace distribution centred at 0 with scale b,

denoted Lap(b), is the distribution with probability density function

Lap(x|b) ≜ 1

2b
exp

(
−|x|

b

)
,

for any x ∈ R.
The mechanismML(f, ϵ) is called the Laplace mechanism and satisfies ϵ-DP.

Lemma 32 (Chernoff Tail Bound via KL Divergence (Boucheron et al., 2003)) Let X1, X2, . . . , Xn

be independent Bernoulli random variables with success probabilities p1, p2, . . . , pn. Define Sn =∑n
i=1Xi, and let µ = E[Sn] =

∑n
i=1 pi. Then the following bounds hold:
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Figure 7: Evolution of regret over time for µ4 for different budgets ϵ.

• Upper Tail Bound: for any a > µ

P (Sn ≥ a) ≤ exp
(
−n · kl

(a
n
,
µ

n

))
,

where kl(p, q) is defined as

kl(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
.

• Lower Tail Bound: for any a < µ

P (Sn ≤ a) ≤ exp
(
−n · kl

(a
n
,
µ

n

))
.

Lemma 33 (Asymptotic Maximal Hoeffding Inequality) Assume that Xi has positive mean µ
and that Xi − µ is σ-sub-Gaussian. Then,

∀ϵ > 0, lim
n→∞

P
(
maxs≤n

∑s
i=1Xi

n
≤ (1 + ϵ)µ

)
= 1 .
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Figure 8: Evolution of the regret for T = 107 with respect to ϵ for DP-IMED on µ ≜
[0.8, 0.1, 0.1, 0.1, 0.1], compared to the asymptotic regret lower bound of Theorem 5.
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