
1

A Weighted Byzantine Fault Tolerance Consensus
Driven Trusted Multiple Large Language Models

Network
Haoxiang Luo, Gang Sun, Senior Member, IEEE, Yinqiu Liu, Dongcheng Zhao,

Dusit Niyato, Fellow, IEEE, Hongfang Yu, Senior Member, IEEE, Schahram Dustdar, Fellow, IEEE

Abstract—Large Language Models (LLMs) have achieved
remarkable success across a wide range of applications. However,
individual LLMs often produce inconsistent, biased, or halluci-
nated outputs due to limitations in their training corpora and
model architectures. Recently, collaborative frameworks such as
the Multi-LLM Network (MultiLLMN) have been introduced,
enabling multiple LLMs to interact and jointly respond to user
queries. Nevertheless, MultiLLMN architectures raise critical
concerns regarding the reliability and security of the generated
content, particularly in open environments where malicious or
compromised LLMs may be present. Moreover, reliance on
centralized coordination undermines system efficiency and intro-
duces single points of failure. In this paper, we propose a novel
Trusted MultiLLMN framework, driven by a Weighted Byzantine
Fault Tolerance (WBFT) blockchain consensus mechanism, to
ensure the reliability, security, and efficiency of multi-LLM
collaboration. In WBFT, voting weights are adaptively assigned
to each LLM based on its response quality and trustworthiness,
incentivizing reliable behavior, and reducing the impact of
malicious nodes. Extensive simulations demonstrate that WBFT
significantly improves both consensus security and efficiency
compared to classical and modern consensus mechanisms, par-
ticularly under wireless network conditions. Furthermore, our
evaluations reveal that Trusted MultiLLMN supported by WBFT
can deliver higher-quality and more credible responses than both
single LLMs and conventional MultiLLMNs, thereby providing
a promising path toward building robust, decentralized AI
collaboration networks.

Index Terms—Large language model (LLM), LLM networks,
blockchain consensus, trusted LLM, wireless large AI model.

I. INTRODUCTION

LARGE language models (LLMs) have become a cor-
nerstone of AI, showing great capabilities in natural

language understanding and generation [1], [2]. These LLMs,
represented by ChatGPT, Deepseek, and Claude, have been

This work was supported by the Major Key Project of PCL under Grant
PCL2024A05.

H. Luo, G. Sun, and H. Yu are with the School of Information and Com-
munication Engineering, University of Electronic Science and Technology
of China, Chengdu 611731, China (e-mail: lhx991115@163.com; {gangsun,
yuhf} @uestc.edu.cn).

Y. Liu and D. Niyato are with the College of Computing and Data
Science, Nanyang Technological University, Singapore 639798 (e-mail: yin-
qiu001@e.ntu.edu.sg; dniyato@ntu.edu.sg).

D. Zhao is with the Pengcheng Laboratory, Shenzhen 518055, China (e-
mail:zhaodc11@gmail.com).

S. Dustdar is with the Distributed Systems Group, TU Wien, Vienna 1040,
Austria, and also with the ICREA, Universitat Pompeu Fabra, Barcelona
08002, Spain (e-mail: dustdar@dsg.tuwien.ac.at).

The corresponding author: Gang Sun.

widely adopted in all aspects of society, such as education,
healthcare, and information technology [3], [4], [5].

With the deepening of LLM applications, a large number
of LLMs developed by different commercial, academic, or
educational organizations have emerged. However, considering
the diverse learning corpus, model architectures, and training
goals, the answers of different LLMs to the same query will
naturally differ [6], [7]. Additionally, a single LLM is difficult
to adapt to various application scenarios with heterogeneous
contexts and requirements [8], [9]. Some LLMs even suffer
from limitations and obsolescence in the training data, result-
ing in biased content generation and the ability to produce
low-confidence outputs or hallucinations [10], [11], [12]. To
address such challenges, the collaboration of multiple LLMs is
on the agenda. For instance, Wang et al. [13] leveraged GPT-
3, GPT-4o, Llama3-8B, Llama3-Chinese, Doubao, SparkDesk,
Qwen, and Kimi to jointly provide care programs for the el-
derly. To accelerate collaboration and communication between
multiple LLMs, Marro et al. [14] designed and developed a
versatile, efficient, and portable communication protocol for
them. This kind of collaborative LLM network is named as
Multi-LLMs Network (MultiLLMN).

A. Research Motivations

Despite realizing inter-LLM collaborations, MultiLLMN
causes several security concerns. First, any User Equipment
(UE) can access historical queries and answers. Consequently,
privacy disclosure [15] and security attacks can frequently
occur, especially in applications with private data such as
medical and health information. In addition, malicious LLMs
in MultiLLMN, such as WormGPT [16], can not only mislead
UEs, but also escalate cybersecurity threats. Even ostensibly
honest LLMs may run on compromised devices, resulting
in tampered or dishonest responses. Furthermore, in the
MultiLLMN architecture, we typically need to employ an
authoritative third party to determine the most reliable answer
from the responses of multiple LLMs. The introduction of
centralized authorities undermines the response efficiency of
MultiLLMN and can cause single-point failures, hindering
the deployment of MultiLLMN in latency-sensitive scenarios,
such as autonomous driving. These concerns pose a significant
challenge to the efficient collaboration of MultiLLMN and
prevent UE from obtaining credible answers. Consequently,
we present the following research questions.

ar
X

iv
:2

50
5.

05
10

3v
1

 [
cs

.C
R

]
 8

 M
ay

 2
02

5

2

• Q1: How can users ensure that they receive the best and
trusted response from MultiLLMN in an open network
environment and with potentially malicious LLMs?

• Q2: How can MultiLLMN eliminate single points of
failure and achieve efficient response aggregation through
multi-LLM collaboration?

To answer these questions, we leverage blockchain to ensure
the reliability and security of information transmission in Mul-
tiLLMNs. Specifically, blockchain consensus mechanisms en-
able each LLM to make decisions independently of third-party
authorities through a decentralized voting process [17], [18].
Existing research on blockchain-enabled LLMs has focused
mainly on distributed training processes and the traceability
of generated content, such as [19], [20], and [21]. However,
the design of a consensus-driven MultiLLMN remains largely
unexplored. Most of the existing consensus, such as Practical
Byzantine Fault Tolerance (PBFT) [22] and HotStuff [23],
assign uniform trust values and equal voting weights to partici-
pants. We notice that this assumption deviates from real-world
scenarios, where LLMs vary significantly in their response
quality, generation capabilities, and susceptibility to malicious
behavior. Consequently, applying equal voting rights across all
LLMs often undermines the ability of MultiLLMN to produce
the highest-quality and most trustworthy responses for UEs.
Hence, the following research question is raised.

• Q3: How to assign a fair and reasonable consensus voting
weight to each LLM by evaluating its trustworthiness and
generation ability comprehensively, to assist MultiLLMN
to generate the best quality response?

As a result, it is necessary to design a Weighted Byzantine
Fault Tolerance (WBFT) consensus for MultiLLMNs to reduce
the voting weight of LLMs with poor response quality, weak
generation ability, and possibly malicious behavior, to obtain
LLM answers more accurately.

B. Our Contributions

To the best of our knowledge, this is the first work to
present a blockchain consensus for MultiLLMNs. Specifically,
the contributions of this paper can be summarized as follows:

• To avoid the limitations of a single LLM, we propose the
innovative concept of MultiLLMN. Through inter-LLM
collaborations, MultiLLMN mitigates biased responses
and hallucinations arising from the deficiencies of indi-
vidual models.

• To prevent malicious LLM behaviors and enhance the
efficiency of MultiLLMNs in serving UEs, we introduce a
blockchain consensus mechanism to securely drive inter-
LLM collaboration. Additionally, we design an improved
clustering-based optimization method that dynamically
adapts the MultiLLMN network structure, facilitating the
formation of a Trusted MultiLLMN and further strength-
ening its reliability and effectiveness.

• To facilitate reliable response selection in MultiLLMN,
we develop the WBFT consensus mechanism, which
assigns fair and adaptive voting weights to each LLM
based on their response quality and trustworthiness. This

weighting strategy improves the reliability and robustness
of the consensus process.

• Through extensive simulations, we demonstrate that
WBFT outperforms traditional consensus mechanisms
in both security and efficiency. Furthermore, Trusted
MultiLLMN generates responses of higher quality and
credibility compared to those from a single LLM or a
MultiLLMN without consensus participation.

C. Structure of This Paper

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III describes how
blockchain drives Trusted MultiLLMN to work. Then, we
present the workflow of Trusted MultiLLMN enabled by
blockchain in Section III. In Section IV, we demonstrate
the design of WBFT. Then, we analyze the security and
complexity of WBFT in Section V. Furthermore, we conduct
extensive performance simulations of this framework in VI,
which have validated its effectiveness and superiority in serv-
ing UE. Finally, we summarize this work in VII.

II. RELATED WORKS

In this section, we investigate the relevant work on inter-
LLM collaboration and blockchain-enabled LLMs. Particu-
larly, we compare existing research with our proposal in
TABLE I to illustrate our contributions.

A. Collaboration among Multiple LLMs

A single LLM often struggles to comprehensively address
real-world requirements, suffering from issues such as biased
outputs, low-confidence generations, and hallucinations due to
limitations in its training data. To overcome these inherent
weaknesses, the inter-LLM collaboration has emerged as a
promising direction and attracted great research attention.

For instance, Feng et al. [11] designed a collaboration
framework involving three LLMs to mitigate the knowledge
gaps of a single LLM caused by outdated or insufficient train-
ing data. Their framework achieved a 19.3% performance im-
provement across four tasks in different domains. Similarly, in
[24], the authors argued that a single LLM cannot adequately
represent the real-world data distribution or the diversity of
human perspectives, and that this limitation cannot be resolved
merely by training more powerful models. Therefore, they
proposed a hierarchical multi-LLM collaboration structure
spanning API, text, and logical levels. In addition, Owens
et al. [10] also investigated persistent bias in LLM outputs,
originating from limited training data. Despite advances in
bias mitigation techniques, such as data augmentation and
fine-tuning, biased output remains a challenge. Consequently,
they developed a multi-LLM communication model to reduce
output bias. Moreover, Shen et al. [25] introduced Co-LLM, a
joint system where a general-purpose LLM invokes domain-
specific expert models, achieving superior performance in
instruction following, question answering, and reasoning tasks
compared to standalone LLMs. Furthermore, knowledge distil-
lation techniques have been employed to continuously transfer

3

TABLE I: Scheme comparison

Ref. Contributions Possible limitations

[10]
Design a decentralized and centralized multi-LLM network to
avoid the biased generated content by a single LLM

Lack of security and efficiency issues in the multi-LLM interaction

[11]
Propose a competitive approach to determine highly reliable
responses among multi-LLM in addition to cooperation

Lack of security and efficiency issues in the multi-LLM interaction

[13] Utilize multi-LLM to jointly provide services for elderly care Lack of security and efficiency issues in the multi-LLM interaction

[19]
Explore the technical routes for credibility of LLM learning
corpora, training processes, and generated content by applying
blockchain

Do not overcome the single LLM limitations, such as generated
content bias and hallucinations

[24]
Organize multi-LLM into a hierarchical structure based on levels
of access and information exchange for efficient collaboration.

Lack of security issues in the multi-LLM interaction

[25]
Construct a collaboration method between the general basic model
and the dedicated LLM

Lack of security and efficiency issues in the multi-LLM interaction

[26]
Enhance the reasoning ability of a single LLM through the
knowledge fusion from multi-LLM

Lack of security issues in the multi-LLM interaction

[27]
Empower the security of the LLM distributed training process
with blockchain

Do not overcome the capacity limitations of a single LLM

[28]
Utilize blockchain to achieve unified and secure collaboration
among multiple agents in LLM

Do not overcome the capacity limitations of a single LLM

[29]
Empower the traceability and immutability of AIGC content with
blockchain

Do not overcome the capacity limitations of a single LLM

[30]
Develop a reputation system based on blockchain to evaluate the
generated content credibility from LLM

Do not overcome the capacity limitations of a single LLM

[31]
Utilize blockchain to achieve efficient and trustworthy AIGC
services in Metaverse

Do not overcome the capacity limitations of a single LLM

Our
work

Design the WBFT blockchain consensus-driven Multi-LLM col-
laboration to provide high-quality responses for UE

Add additional blockchain costs and interaction delays between
LLMs

and consolidate knowledge from multiple LLMs into a target
model, enhancing its generative capacity [26]. A recent practi-
cal application of multi-LLM collaboration appears in elderly
care [13]. The authors employed eight mainstream LLMs to
collectively provide seniors with services such as electronic
payments, daily living assistance, recreational support, security
alerts, and emotional companionship. This work highlights
the strong potential of multi-LLM collaboration in real-world
service scenarios.

However, existing work only considers the cooperation of
multiple LLMs and cannot guarantee the trustworthiness of
LLM-generated content. Moreover, how multiple LLMs can
work together to provide the best response needs to be studied.

B. Blockchain-enabled LLM

Due to the existence of malicious LLMs and attackers in
MultiLLMN, the research on trustworthy LLMs has been put
on the agenda. This vision often relies on blockchain technol-
ogy that integrates security features such as decentralization,
traceability, and immutability.

For example, to enrich LLM training datasets, Zuo et al. [27]
developed a blockchain-based federated learning framework
that enables various private databases to securely contribute
training data. To protect LLM training processes from Byzan-
tine behaviors, Chen et al. [28] proposed BlockAgents, which
integrates blockchain into LLM training to resist adversarial
threats. Their framework reduces the impact of poisoning
attacks on model accuracy to less than 3% and the success
rate of backdoor attacks to below 5%, demonstrating strong ro-
bustness. Additionally, Liu et al. [29] leveraged blockchain to
provide trusted endorsement and protection for AI-Generated

Content (AIGC) products, offering traceable verification of
ownership changes through smart contracts and incentive
mechanisms to promote free circulation. Furthermore, Bouch-
iha et al. [30] developed LLMChain, a blockchain-based repu-
tation system designed to evaluate and monitor LLM behavior,
addressing vulnerabilities such as hallucinations, unreliable
reasoning, and harmful content generation. Similarly, Lin et al.
[31] designed a blockchain smart contract-based verification
mechanism to prevent random outcomes in AIGC services,
thus improving service reliability in the Metaverse. Luo et
al. [19] systematically analyzed LLM trustworthiness from
three key perspectives (i.e., learning corpus, training processes,
and generated content) and emphasized the critical role of
blockchain technologies across these dimensions.

Existing work has focused primarily on ensuring the trust-
worthiness of individual LLMs. However, research on the
trustworthiness of multi-LLM collaboration remains limited.
Ensuring trust in a collaborative environment is inherently
more challenging, as it should account not only for the open
network environment but also for malicious behaviors induced
by compromised or adversarial LLMs.

III. BLOCKCHAIN-DRIVEN MULTIPLE-LLM NETWORK

In this section, we introduce the architecture of Trusted Mul-
tiLLMN driven by blockchains. The commonly used notations
are summarized in TABLE II.

A. Workflow of Trusted MultiLLMN

Regardless of their specific architectures, all LLMs possess
the ability to generate content and assess the rationality of

4

TABLE II: Key Notations

Notations Definitions

Ar
i,j

The response quality weight assigned by the i-th LLM
to the j-th LLM in the r-th round consensus

Br
i,j

The trust weight assigned by the i-th LLM to the j-th
LLM in the r-th round consensus

Dr
i,h

The encrypted data of the h-th response initiated by
the i-th LLM in the r-th round consensus

Lr
i,j

The communication latency for the j-th LLM to the
i-th LLM in the r-th round consensus

P r
i,h The proof of Dr

i,h

Qr
i,j

The response quality score of the i-th LLM to the j-th
LLM in the r-th round consensus

T r
i,j

The trust score of the i-th LLM to the j-th LLM in
the r-th round consensus

V r
i,j

The feature vectors of the j-th LLM for the i-th LLM
in the r-th round consensus

W r
i,j

The weight assigned by the i-th LLM to the j-th LLM
in the r-th round consensus

bri,h
The block added to the chain for the h-th response
initiated by the i-th LLM in the r-th round consensus

crj,h
The confirmation message of the j-th LLM for the
leader in the commit phase

vrj,h The voting value of the j-th LLM for Dr
i,h

generated outputs. Therefore, we regard each LLM as one
full node within the blockchain-driven network, participating
directly in consensus processes and contributing to the valida-
tion of information exchanges. However, malicious LLMs may
produce misleading content and provide dishonest evaluations
of other LLMs’ outputs, introducing vulnerabilities into the
MultiLLMN. This challenge will be addressed through the
implementation of our proposed consensus mechanism, which
is detailed in the subsequent sections.

Building upon mainstream LLMs, including Llama, Wiz-
ardLM, GPT, and Gemini, we develop a blockchain-driven
MultiLLMN, as illustrated in Fig. 1. This network architecture
not only enables collaborative interactions among heteroge-
neous LLMs but also inherently enhances credibility and trust-
worthiness through blockchain integration. The operational
workflow is outlined as follows.

1) UE Requests: The UE submits a response request to
Trusted MultiLLMN.

2) LLM Answer Generation: Each LLM generates a re-
sponse to UE requests. These responses are subsequently
disseminated among LLMs via broadcast protocols within the
blockchain’s Peer-to-Peer (P2P) network infrastructure.

3) Blockchain Consensus: Consensus serves as a key tech-
nique in identifying the optimal response among multiple
LLMs. In the proposed framework, a voting consensus mech-
anism is employed to evaluate and select the final proposal,
which is then relayed back to the UE requirements by
designated consensus leaders. The proposal is automatically
determined by the WBFT consensus, which will be described
in the next section.

4) Block Package: The optimal response, as determined
by WBFT, is encapsulated within a block, which undergoes
confirmation by each LLM. To guarantee the security, im-
mutability, and traceability of the consensus outcomes, the
block is meticulously designed to incorporate the hash value

Parallel chain
structure

WBFT consensus-driven MultiLLMN

Building Trusted MultiLLMN by the blockchain P2P network;
Reaching consistency to the best response by WBFT consensus.

Fig. 1: The blockchain-driven Trusted MultiLLMN. This net-
work is built on a blockchain P2P network and has a decen-
tralized architecture. The best response for UE is derived from
the WBFT consensus. The consensus results are packaged
into blocks and linked to the chains maintained by distributed
LLMs.

of the optimal solution alongside its precise timestamp.
5) Blockchain Extension: Blocks are correlated with respec-

tive parallel chains and stored in a distributed manner across
smart devices. Specifically, each LLM extends and maintains
the chain that incorporates its own responses, thereby enhanc-
ing the processing efficacy of the Trusted MultiLLMN. Note
that each chain is documented by the host device of every
LLM to preserve the decentralized character of the blockchain
system.

Through the above five steps, the Trusted MultiLLMN
can be established, which delivers responses with blockchain-
guaranteed security and reliability.

B. Dynamic Optimization of Trusted MultiLLMN

While the workflow of Trusted MultiLLMN ensures ba-
sic functionality, further optimization is needed to enhance
response quality for UEs and improve the efficiency of
blockchain consensus. To this end, we introduce a dynamic
networking mechanism for Trusted MultiLLMN based on a
clustering algorithm, named Hierarchical Secure Clustering
(HSC). This approach not only adapts to variations in the
network environment and LLM states but also significantly
improves the scalability of Trusted MultiLLMN, enabling it
to accommodate a larger number of LLMs.

HSC strategically categorizes all LLM nodes into two types:
Core Cluster Nodes (CCNs) and Edge Cluster Nodes (ECNs).
Only CCNs actively participate in the WBFT consensus
mechanism, while ECNs receive consensus results through
broadcast messages from their cluster’s designated CCN. This
hierarchical structure significantly reduces consensus latency

5

and enhances the parallel distribution of consensus outcomes,
thereby optimizing the Trusted MultiLLMN’s response effi-
ciency to UEs’ requests.

For effective deployment in wireless networks, our Trusted
MultiLLMN framework requires optimization to accommodate
diverse operational conditions. The HSC algorithm therefore
incorporates two critical parameters in the LLM feature vec-
tors: trust value and communication latency. This approach
effectively mitigates Byzantine LLMs’ interference, ensuring
consistency within the Trusted MultiLLMN, as represented by

V r
i,j = [ωT r

i,j , (1− ω)Lr
i,j]. (1)

V r
i,j represents the feature vectors of the j-th LLM from the

view of the i-th LLM in the r-th round of consensus. T r
i,j

denotes the trust value assigned by i-th LLM to j-th LLM.
Lr
i,j denotes communication latency from j-th to i-th LLM.

Finally, ω serves as the proportional regulator.
Then, the K-means++ algorithm [32] is applied to determine

the number of clusters K. Specifically, we add a penalty term
λ for dynamically controlling the number of clusters based on
minimizing the sum of squares of the distance between the
feature vectors of the nodes and the cluster center µk (i.e., the
tightness of the cluster), i.e.,

min

K∑
k=1

∑
V r
i,j∈Ck

∥V r
i,j − µk∥2 + λ. (2)

Ck represents the k-th cluster divided by HSC. This equation
can be solved using the Elbow method [33]. Next, we itera-
tively update the cluster centers until we identify exactly K
CCNs, with each CCN responsible for maintaining one distinct
cluster, as expressed by:

µ
(t+1)
k =

∑
j∈Ck

(
T r
i,j

Lr
i,j

)γ
· V r

i,j∑
j∈Ck

(
T r
i,j

Lr
i,j

)γ , (3)

where γ is a nonlinear regulatory factor. This equation allows
HSC to select LLM nodes with high reputation and low latency
as CCNs to optimize the cluster structure of MultiLLMN. Fur-
thermore, HSC can dynamically adapt to changing conditions
in each consensus round for two key reasons. First, Byzantine
LLMs exhibit inconsistent malicious behaviors, causing their
trust values T r

i,j to fluctuate between rounds. Second, the
inherent instability of wireless environments leads to temporal
variations in communication latency Lr

i,j . These dynamic
factors require HSC to continuously adjust cluster formations
to maintain optimal performance and security throughout the
consensus process.

IV. WEIGHTED BYZANTINE FAULT TOLERANCE
CONSENSUS

In this section, we illustrate the design of WBFT, including
the weight allocation scheme and the consensus process.

A. Weight Allocation Scheme
In WBFT, the weight assigned to each LLM comprises two

components: response quality, which reflects content genera-
tion capability, and trustworthiness, which indicates whether

the LLM and its associated device exhibit malicious behavior.
Any LLM can serve as a consensus initiator and thus assign
variable weights to peer LLMs. Formally, we denote the
weight assigned by the i-th LLM to the j-th LLM during
the r-th round of consensus by W r

i,j , which is defined as

W r
i,j = αAr

i,j + βBr
i,j ,

α+ β = 1,
n∑

j=1

W r
i,j =

n∑
j=1

Ar
i,j =

n∑
j=1

Br
i,j = 1,

(4)

where Ar
i,j and Br

i,j denote the response quality and trust
weights assigned by the i-th LLM to the j-th LLM in the
r-th round consensus, respectively. The parameters α and β
determine the relative importance of these two weight compo-
nents and can be adjusted according to specific requirements. n
denotes the total number of LLMs participating in the Trusted
MultiLLMN.

In each round of consensus, the LLM receives both re-
sponses to UE queries and voting information from other
LLMs. Consequently, at the beginning of each consensus
round, the consensus initiator has the prerogative to dynam-
ically re-calibrate the response quality and trust weights of
other LLMs according to their performance in the last round.
Furthermore, weights Ar

i,j and Br
i,j can be determined by the

dual criteria of response quality and trustworthiness exhibited
by all other LLMs, namely

Ar
i,j =

Qr
i,j∑n

j=1 Q
r
i,j

,

Br
i,j =

T r
i,j∑n

j=1 T
r
i,j

,

(5)

where Qr
i,j and T r

i,j represent the answer quality and trust-
worthiness of the i-th LLM to the j-th LLM in the r-th round
consensus, respectively.

B. Consensus Design

In a MultiLLMN, UEs can access the LLM functionality
through any participant. We suppose that the LLM receiving
UE’s requests serves as the consensus leader, while other
LLMs act as followers. Notably, due to the design of HSC,
only K CCNs participate in the consensus process, meaning
all participating follower LLMs are CCNs.

To ensure secure query-response transmission within the
MultiLLMN, we pre-assign two public and private key pairs
to each LLM since each can function as either a consensus
leader or follower. Specifically, these pairs are (PKL

i , SK
L
i)

and (PKF
i , SKF

i). The first pair is used exclusively when
LLM i serves as a leader, while the second pair is employed
when it acts as a follower. Each LLM’s public keys are shared
network-wide for encrypting query-response data, while pri-
vate keys remain secured for decryption operations.

As illustrated in Fig. 2, WBFT consensus comprises two
voting rounds, namely the prepare phase (as shown in Algo-
rithm 1) and the commit phase (as shown in Algorithm 2).
Below, we elaborate on the process of each phase.

6

LLM 1

LLM 2

LLM 3

LLM 4

Fig. 2: The consensus process of Weighted Byzantine Fault Tolerance (WBFT) with the pipeline mechanism. It allows the
prepare phase of the (r + 1)-th round consensus to be initiated during the commit phase of the r-th round consensus.

Algorithm 1: Prepare Phase
Leader Operations:
1. Generate response: RL ← generate response(Q)
2. Encrypt data: Dr

i,h ← encrypt(Q ∥ RL, PKF
j) ;

// h = current block height
3. Broadcast Dr

i,h to all followers

Follower Operations:
1. Decrypt data: (Q,RL)← decrypt(Dr

i,h, SK
F
j)

2. Verify authenticity of (Q,RL)
3. if verification passes then

Generate response: RF ← generate response(Q)
4. if quality(RF) > quality(RL) then

vrj,h ← 0 ; // Follower’s response is
better

else
vrj,h ← 1 ; // Leader’s response is
better

5. Send encrypt(vrj,h ∥ RF , PKL
i) to leader

else
Discard Dr

i,h ; // Invalid data detected

Leader Operations:
1. Receive encrypted votes from followers
2. if

∑
weight(vrj,h = 1) + leader self weight > 2/3

then
Generate proof: P r

i,h ← generate proof(Dr
i,h)

else
Consensus termination.

• Prepare Phase: The consensus leader initially encrypts
the UE’s query Q and its own generated response RL

using the public key PKF
j , subsequently broadcasting

this encrypted data, denoted as Dr
i,h, to n − 1 follower

LLMs. Here, h denotes the total number of responses
initiated by the leader and concurrently represents the

Algorithm 2: Commit Phase
Leader Operations:
1. Broadcast P r

i,h to all followers

Follower Operations:
1. Decrypt P r

i,h by threshold signature
2. Verify the Byzantine character of the leader
3. if verification passes then

expungeP (r−1)
i,h

Transmit their confirmation messages back to the
leader

else
Discard P r

i,h ; // Invalid data detected

Leader Operations:
1. Receive confirmation messages from followers
2. if

∑
weight(crj,h = 1) + leader self weight > 2/3

then
Reach consistency: RL with its hash value and
timestamp packaged as bri,h is appended to the
chain.

else
Consensus termination.

block height within the chain maintained by said leader.
Each follower then employs their pre-assigned private
key SKF

j to decrypt the received data and validate its
authenticity. Subsequently, each follower transmits a vote,
vrj,h, back to the leader. Each vote comprises the vote
outcome and the follower’s own response RF to the
UE’s query Q and is encrypted by the leader’s public
key PKL

i . The voting mechanism dictates that a follower
assigns a vote value of 0 if its generated response exceeds
the leader’s in terms of quality, and 1 otherwise.
The leader decrypts the voting information using the
follower’s public key PKF

j and tallies the voting values.
When the cumulative weight of votes with value 1 ex-

7

ceeds two-thirds (including the leader’s own vote weight),
the leader generates a proof P r

i,h attesting that Dr
i,h has

been successfully verified. This proof is implemented as
a threshold signature [23] of the aggregated votes.

• Commit Phase: The consensus leader broadcasts proof
P r
i,h to all followers, signaling that the response has

been verified as optimal. Each follower authenticates
this proof using threshold signature techniques to verify
both the proof itself and the leader’s non-Byzantine
status. Upon successful validation, followers remove the
previous proof P r

i,h−1 to reduce storage requirements,
then transmit confirmation messages crj,h to the leader.
Once the leader receives confirmations representing at
least a two-thirds weighted majority, the response RL

with its hash value and timestamp is encapsulated in a
block bri,h and appended to the corresponding chain. In
contrast, if the leader is detected exhibiting malicious
behavior, the MultiLLMN system recommends that the
UE obtain responses from LLMs on different devices
to avoid potential misinformation from the compromised
leader.

Fig. 2 illustrates the overall consensus process. Moreover,
Fig. 3 provides deeper insight into the dual voting stages.
After completing these two rounds, the leader can evaluate
the followers’ response quality and trustworthiness based on
the analysis of generated answers and voting feedback. This
evaluation enables dynamic recalibration of voting weights for
subsequent consensus rounds, highlighting a key advantage
of LLMs, i.e., their ability to exercise independent judgment
within the consensus mechanism.

Observing that our dual-round voting consensus mecha-
nism naturally segments into distinct phases, we leverage
this structural feature to implement a pipelined processing
framework [34], [35] to further improve efficiency. As shown
in Fig. 2, while the commit phase for block bri,h is being
executed, the prepare phase for the subsequent block bri,h′

can be initiated concurrently, where h′ denotes the next block
height in the blockchain managed by the j-th LLM. This
pipeline architecture significantly reduces the waiting time
between consecutive requests.

The optimal responses from independent consensus pro-
cesses initiated by different leaders are assembled into separate
blocks and added to chains maintained by their respective
leaders, creating a parallel chain architecture. Although each
LLM primarily manages its own chain, it also maintains
copies of all other chains to ensure system-wide consistency
and enable distributed storage of query-response across the
MultiLLMN.

V. PERFORMANCE ANALYSIS

In this section, we analyze the consensus security, efficiency,
and complexity of WBFT.

A. Consensus Security

Without loss of generality, we measure consensus security
by the consensus success rate, as discussed in [36] and [37].
Specifically, we define vrj,h = 1 to indicate that a follower

The leader
selects

another LLM
as the new
leader and
restarts the
consensus

Yes

Yes

The LLM generates an answer and
broadcasts it to other LLMs as the

leader

Other LLMs feedback to the leader
on their evaluation of this answer

and their generated answers

The leader receives
more than 2/3 weights of
the LLM feedback that its
answer quality is better

No

The leader generates proof to
prove that the answer is verified

and broadcasts that proof to other
LLMs

The follower LLMs use the
threshold signature to verify the

proof to determine if the leader is a
Byzantine node

The leader receives
more than 2/3 weights of
the LLM to approve this

proof

No

The leader
has malicious
behavior, and
the MultiLLMN
recommends
that UE use

another LLM

P
re
pa

re
C
om

m
it

The UE initiates a
question to an LLM

MultiLLMN outputs
the leader’s answer

Fig. 3: The prepare and commit phases of WBFT consensus.

believes it cannot generate a response superior to that of the
leader, whereas vrj,h = 0 implies the follower considers its own
response to be of higher quality. Thus, successful consensus
requires the following condition, denoted as Event Y :

Y =

K∑
j=1

W r
i,jv

r
j,h >

2

3
. (6)

Event Y involves the summation of multiple products
of random variables, making its direct computation highly
complex. To address this challenge, we adopt two approaches
to approximate the probability of Event Y . First, the Monte
Carlo method provides a heuristic estimation based on random
sampling. Second, when the number of LLMs, denoted by
n, is sufficiently large, the Law of Large Numbers [38]
implies that the distribution of assigned LLM weights can
be approximated by a normal distribution over the bounded
interval (0, 1). Consequently, the weights W r

i,j are assumed
to follow a distribution N1

(
µ, σ2

)
. Meanwhile, the voting

outcomes vrj,h adhere to a Bernoulli distribution. Since the
assigned weights and the voting outcomes are independent,
W r

i,j and vrj,h are mutually independent random variables. By
invoking the properties of linear combinations of independent
random variables, the expected value and variance of Event Y

8

can be expressed as:

E(Y) = E

 n∑
j=1

W r
i,jv

r
j,h

 =

n∑
j=1

E
(
W r

i,jv
r
j,h

)
=

n∑
j=1

E
(
W r

i,j

)
E
(
vrj,h
)
=

n∑
j=1

µp = p,

(7)

D(Y) = D

 n∑
j=1

W r
i,jv

r
j,h

 =

n∑
j=1

D
(
W r

i,jv
r
j,h

)
=

n∑
j=1

[
E
(
W 2

i,j

)
D
(
vrj,h
)
+ E2

(
W r

i,j

)
D
(
vrj,h
)]

=

n∑
j=1

[
pσ2 + µ2p(1− p)

]
= npσ2 +

1

n
p(1− p),

(8)

where p represents the probability of vrj,h = 1.
Following the Central Limit Theorem [39], when the num-

ber of LLMs n becomes sufficiently large, linear combinations
of independent and identically distributed random variables ap-
proach a normal distribution. Consequently, the probability of
Event Y approximates a normal distribution with parameters
N2

(
p, npσ2 + 1

np(1− p)
)
. Therefore, the consensus security

of WBFT, i.e., P (Y > 2/3) can be expressed as

pWBFT = 1− P (Y ≤ 2/3)

= 1− Φ

 2/3− p√
npσ2 + 1

np(1− p)

 ,
(9)

where Φ denotes the normal distribution N(0, 1). By restrict-
ing the voting rights of LLMs with low credibility and weak
generation capabilities, WBFT will achieve higher consensus
security.

B. Consensus Efficiency

We consider two metrics to reflect consensus efficiency,
namely throughput and latency.

To facilitate the adaptable deployment and utilization of
MultiLLMN, thereby augmenting its scope of application, we
implement the proposed WBFT-driven Trusted MultiLLMN
within wireless network contexts. According to [40], [41],
[42], and [43], we can conclude that in wireless networks,
the consensus latency is intrinsically linked to the consensus
success rate, namely

1− Pl = fQ

(
NTBC −NTBR+ logNTB

2

(log e)
√
NTB

)
, (10)

where Pl denotes the channel transmission success rate. Con-
sequently, 1−Pl means the transmission failure rate associated
with this channel. This failure probability can be generalized
to the scenario where vrj,k = 0, as it also implies that the leader
has not received the follower’s endorsement of its response.
Furthermore, fQ denotes the Q-function. In this context, T
and N represent the latency of a channel and the number
of subcarriers, respectively, with N set to 1 in this paper.

Additionally, B, R, and C represent bandwidth, transmission
rate, and channel capacity, respectively.

Both the prepare and commit phases of the WBFT con-
sensus involve two communication directions: downlink trans-
missions, where the leader broadcasts messages, and uplink
transmissions, where followers send feedback. The communi-
cation structure of each phase is consistent with that of the Raft
consensus algorithm [44], [45], [46]. Accordingly, the latency
associated with the WBFT consensus can be expressed as

tc = 2nT. (11)

For consensus throughput, it can be expressed as the number
of UE requests processed by MultiLLMN per unit of time,
whose unit is Transactions per Second (TPS). It can be said
that, benefiting from the parallel pipeline processing of UE
responses, WBFT has a higher throughput than traditional
consensus.

C. Correctness Analysis

WBFT adopts a structure similar to PBFT, ensuring that
as long as the number of faulty nodes does not exceed one-
third of the total, the consensus satisfies three core properties:
non-forking, consistency, and liveness. Assuming a total of
n = 3f + 1 nodes, with at most f Byzantine nodes, the
corresponding proofs are presented as follows.

Property 1 (Nonforking). For any two valid committed blocks
br1i1,h1

and br2i2,h2
, if i1 = i2 then h1 = h2, where bri,h denotes

the h-th block generated by i-th LLM in the r-th consensus
round.

Proof. Suppose contradictory blocks bri1,h1
and bri2,h2

(h1 ̸=
h2) both receive (2f + 1)/n vote weights. With n = 3f + 1,
we can acquire

2 · (2f + 1)/n− (3f + 1)/n = (f + 1)/n. (12)

It implies (f + 1)/n vote weights for both blocks, violating
the protocol rules. Hence, h1 should equal h2. ■

Property 2 (Consistency). If the block bri,h is committed by
any honest node, all honest nodes will eventually commit it.

Proof. Commitment requires proof P r
i,h+1 to obtain (2f+1)/n

vote weights. Let VWreceived denote the received affirmative
vote weights (VWreceived ≥ (2f+1)/n). At least (2f+1)/n−
f/n = (f +1)/n votes come from VWreceived. Since weights
of Byzantine nodes ≤ f , majority voting can ensure eventual
global consistency. ■

Theorem 1. For any response RL submitted by the honest
nodes, there exists a finite time Tfinite such that RL will be
included in block bri,j generated by an honest leader.

Proof. The liveness proof requires analyzing two mutually
exclusive scenarios:

Case 1. Transaction Recovery Protocol: Suppose that leader
Lr
i proposes block bri,h containing RL with the following

conditions:
1) The follower node F r

j receives bri,b but lacks RL.
2) F r

j extracts the RL hash value h(.) from bri,h.

9

3) By broadcasting h(RL), F r
j requests RL from neighbors

via GetData(h(RL)) messages.
4) The honest nodes that receive RL respond with

TxResponse(RL), validated through:

VerifyTx(h(RL), sigtx) = True. (13)

5) After receiving RL, F r
j executes:

Vote(bri,h) ⇐⇒ ValidateBlock(bri,h) = True. (14)

This process guarantees that all honest nodes can reconstruct
bri,h in a bounded time ∆1.

Case 2. Voting Retry Protocol: If leader Lr
i fails to receive

more than 2/3 of the vote weights in favor within the time
window Tinit due to network delays:

1) When the network jitter, VWreceived < (2f + 1)/n.
2) Leader triggers timeout event:

Tretry = Tinit + δbackoff , (15)

where δbackoff follows exponential increasing sequence.
3) At Tfinite = Tretry, leader reinitializes voting with new

timestamp:

bri,h′ ← Repropose(bri,h, tsnew). (16)

4) The process repeats until:

∃Tfinite ≤ Tmax, V Wcommitted ≥ (2f + 1)/n, (17)

where VWcommitted represents the affirmative vote
weights of commit phase.

Therefore, the probability of success after k times of attempts
can be expressed as

psuccess(k) = 1−
(

f

3f + 1

)k
k→∞−−−−→ 1. (18)

■
Corollary 1. The proposed WBFT achieves liveness with
probability 1 under partial synchrony assumptions, where
message delays are bounded by known time ∆network.

D. Consensus Complexity
Compared to the communication complexity of O(n2) ex-

hibited by PBFT [22], the proposed WBFT significantly re-
duces the communication complexity to O(K). This improve-
ment is achieved by restricting communication to interactions
solely between the leader and the followers, thereby avoiding
the extensive inter-follower consultations required during the
two-round voting process [47]. In PBFT, follower-to-follower
negotiations typically involve repeated flooding broadcasts,
which substantially increase communication overhead.

Furthermore, WBFT maintains an advantage even over
the O(n) complexity of other parallel multi-chain consen-
sus mechanisms, such as Vote as Proof (VaaP) [48], [49].
Specifically, WBFT not only narrows the scope of consensus
participation through the HSC algorithm but also restricts
the voting influence of malicious LLMs. By reducing the
likelihood of leader re-elections, caused by difficulties in
securing the required two-thirds voting weight, WBFT further
lowers the overall consensus complexity.

VI. PERFORMANCE EVALUATION

In this section, we validate the efficiency of the proposed
blockchain-driven Trusted MultiLLMN and WBFT.

A. Parameter Acquisition and Setting

In the first round of consensus in MultiLLMN, individual
LLMs lack prior knowledge of the response quality and
trustworthiness of their peers. As a result, it is difficult for
LLMs to assign appropriate voting weights to one another.

To address this initial challenge of response quality as-
sessment, we design a comprehensive evaluation framework.
Specifically, we construct question sets spanning five distinct
scenarios and engage a panel of 15 volunteers, carefully se-
lected to ensure geographical diversity, to evaluate the content
generation capabilities (i.e., response quality) of ten widely
recognized LLMs. The volunteer distribution includes China
(4 people), the United States (4 people), the United Kingdom
(2 people), Singapore (2 people), Australia (1 person), the
Netherlands (1 person), and Saudi Arabia (1 person).

The ten LLMs evaluated in our experiments: Llama 3.3,
WizardLM 2, GPT-4o, Gemini 2 Flash, ERNIE Bot 4.0,
SparkDesk V4.0, Qwen 2.5, Doubao Pro 4k, Hunyuan-Large,
and Kimi. All LLMs are deployed on a high-performance
server equipped with a 96-core Intel(R) Xeon(R) Gold 5220R
CPU @ 2.20GHz and 1 TB of memory. The experimental sce-
narios are designed to cover a broad range of LLM competen-
cies, including memory retention, everyday task performance,
artistic creativity, logical reasoning, and code generation. The
final category is specifically designed to support ongoing
optimization in wireless network domains. The evaluation
questions are as follows.

1) Memory Ability: After 20 rounds of interaction, each
LLM is prompted to recall and restate the initial questions and
data presented in the first round. This test evaluates the model’s
ability to retain and recall historical information accurately,
which is essential to maintain contextual consistency over
extended dialogues.

2) Daily Life Ability: A set of practical, real-world tasks
is designed, including weather forecasting, fraud detection,
cooking advice, and other everyday scenarios. This evaluation
assesses each LLM’s grasp of common-sense knowledge and
its capacity to assist users in routine daily activities.

3) Artistic Ability: LLMs are prompted to engage in creative
tasks such as composing poetry, generating aesthetic com-
mentary, producing musical pieces, and simulating traditional
forms of art like Chinese ink painting. The goal is to assess
the models’ expressive and creative capabilities in supporting
human artistic endeavors.

4) Logical Reasoning Ability: This dimension involves
mathematical problem-solving, optimization tasks relevant to
network systems, and performance analysis in wireless com-
munication. It is designed to measure the logical reasoning
and analytical capabilities of each LLM in handling structured,
domain-specific challenges.

5) Code Generation Ability: Building on the logical rea-
soning tasks, each LLM is asked to generate implementation
code in various programming languages, including MATLAB,

10

TABLE III: LLMs Generation Capability Scores

Volunteers
order

Llama
3.3

WizardLM
2

GPT-
4o

Geimini
2 Flash

ERNIE
Bot 4.0

SparkDesk
V4.0

Qwen
2.5

Doubao
pro 4k

Hunyuan
Large Kimi

1 82 80 77 75 79 81 82 80 79 82
2 85 83 84 84 82 83 84 83 83 84
3 75 78 85 76 78 72 90 85 80 93
4 70 75 80 73 75 70 86 82 78 90
5 78 77 83 75 77 73 88 84 82 82
6 72 76 81 82 76 81 85 83 79 81
7 76 79 84 84 79 74 87 75 81 83
8 73 78 82 73 77 72 86 84 78 90
9 82 74 89 78 85 79 93 78 86 86

10 80 82 87 86 83 77 91 86 84 79
11 81 83 88 77 84 78 92 77 85 85
12 83 84 89 78 86 83 93 78 86 76
13 80 82 87 76 83 82 91 86 84 84
14 82 83 88 77 85 78 92 75 85 80
15 80 82 87 86 83 82 91 76 84 74

Average 78.6 79.7 84.7 78.6 80.8 77.6 88.7 80.8 82.3 83.3
Standardization 0.19 0.31 0.83 0.19 0.42 0.13 0.98 0.42 0.59 0.70
Weight of Ar

i,j 0.04 0.065 0.175 0.04 0.088 0.027 0.206 0.088 0.124 0.147

Python, and C++. The results are compared to evaluate the
LLM’s effectiveness in translating abstract problem-solving
into executable solutions, demonstrating their potential in
software development contexts.

Table III presents the average scores assigned by 15 volun-
teers to 10 representative LLMs across five distinct evaluation
dimensions. Each dimension is scored on a scale from 0 to
100. Following score aggregation, a standardization process is
applied to prepare the data for subsequent analysis. Specifi-
cally: a) the raw scores are transformed into a standard normal
distribution with a mean of 0 and a standard deviation of 1 (i.e.,
Z-distribution); and b) a cumulative distribution function is
used to map the standardized values into a uniform distribution
over the interval [0, 1]. Based on these normalized values,
the quality weights of the LLM responses are calculated by
Eq. (5).

It is important to note that we do not focus on modeling
the trustworthiness of LLMs, as extensive previous work has
addressed trust and reputation assessment schemes for network
nodes [50], [51]. In our framework, trust is characterized as the
probability of malicious behavior exhibited by an LLM. We
assume that trust weights follow a normal distribution, such
as N(0.1, 0.2), or another suitable distribution, with values
constrained to the interval (0, 1).

B. Consensus Performance

In this part, we compare the security, latency, and through-
put of WBFT against three established consensus mechanisms,
i.e., PBFT [22], Vote as Proof (VaaP) [48], and Artificial Bee
Colony-PBFT (ABC-PBFT) [52], under varying proportions
of response quality and trust weights. Specifically, we evaluate
three configurations: α = 0.4, β = 0.6; α = 0.5, β = 0.5;
and α = 0.6, β = 0.4. These comparison baselines are widely
adopted as effective defenses against Byzantine attacks and
represent three distinct categories of Byzantine Fault Tolerance
(BFT): classical BFT (PBFT), parallel BFT (VaaP), and BFT
with selected reliable nodes (ABC-PBFT).

In the WBFT and ABC-PBFT schemes, five LLMs are se-
lected as consensus nodes using the HSC and ABC algorithms,
respectively. Consensus security reflects the robustness of
MultiLLMN in the presence of malicious LLMs, while latency
and throughput capture the system’s efficiency in responding
to UE requests. To evaluate performance under different trust
conditions, we construct three trust weight distributions for
the 10 LLMs, i.e., N(0.1, 0.6), N(0.1, 0.4), and N(0.1, 0.2).
The mean is kept constant at 0.1 to ensure that the total trust
weight across all LLMs remains normalized to 1.

1) Consensus Security: Figs. 4 (a)-(c) show that WBFT has
significantly better consensus security than other consensus.
This is because WBFT effectively reduces the impact of
Byzantine attacks by suppressing the voting power of mali-
cious nodes. PBFT and VaaP result in the same performance
due to a fixed fault tolerance threshold 2/3. Although ABC-
PBFT benefits from selecting some reliable LLMs as consen-
sus nodes, it has higher consensus security than these two.
However, the consensus nodes it selects are static and cannot
be dynamically adjusted according to the network conditions
and LLM trust, compared to WBFT. Therefore, its consensus
security is lower than that of WBFT.

Additionally, in various combinations of weight ratios, the
trust weight is of greater importance to consensus security than
the response quality weight. The reason for this is that when
the value β is high, the WBFT consensus is better able to
exert the voting power of a trusted LLM.

Furthermore, we observe that as the variance σ2 of the initial
trust weight distribution Br

i,j decreases, the consensus security
of WBFT also drops. This phenomenon can be attributed to
the fact that variance reflects the dispersion of trust weights
across LLMs. A higher variance implies that some LLMs
may receive significantly higher trust weights, increasing their
influence in the consensus process and thereby enhancing
the likelihood of achieving consistency. Mathematically, as
shown in Eq. (9), the mean trust value remains fixed at 0.1,
which is below the Byzantine fault tolerance threshold of

11

(a) The initial trust weights ~ N(0.1, 0.6) (b) The initial trust weights ~ N(0.1, 0.4) (c) The initial trust weights ~ N(0.1, 0.2)

Fig. 4: Consensus security. (a) The initial trust weights of LLMs follow a N(0.1, 0.6) distribution. (b) The initial trust weights
of LLMs follow a N(0.1, 0.4) distribution. (c) The initial trust weights of LLMs follow a N(0.1, 0.2) distribution.

(a) The initial trust weights ~ N(0.1, 0.6) (b) The initial trust weights ~ N(0.1, 0.4) (c) The initial trust weights ~ N(0.1, 0.2)

Fig. 5: Consensus latency. (a) The initial trust weights of LLMs follow a N(0.1, 0.6) distribution. (b) The initial trust weights
of LLMs follow a N(0.1, 0.4) distribution. (c) The initial trust weights of LLMs follow a N(0.1, 0.2) distribution.

2/3. Taking the derivative of the consensus probability with
respect to the variance yields a positive value, indicating that
an increase in variance shifts the distribution rightward and
raises the probability of surpassing the consensus threshold.
Additionally, we can observe that WBFT exhibits greater
improvements in consensus security compared to the other
two baselines when the trust weight variance is high. This
suggests that the influence of highly trusted LLMs is more
effectively leveraged in WBFT under conditions of greater
trust dispersion.

2) Consensus Latency: To evaluate consensus latency, we
set the bandwidth B to 15 kHz, the channel capacity C to 15
kbps, and the transmission rate R to 10 kbps, respectively. We
suppose that the MultiLLMN has 4 clusters. Then, we use the
probability Pl as a horizontal coordinate to study and compare
the latency of each consensus and its influence parameters.

Figs. 5 (a)-(c) respectively illustrate the latency of WBFT
and other baselines under different initial trust weight distri-
butions. In either case, WBFT achieves lower latency than
other consensus, showing that it can efficiently respond to UE
needs and provide trusted answers. This is because the two-
round voting consensus and our pipeline mechanism improve
consensus efficiency. Meanwhile, compared with VaaP, WBFT
has a higher consensus security, thus avoiding as much as
possible the delay of leader re-election. Importantly, clustering

also shrinks the scope of consensus voting, thereby further
reducing consensus latency.

Additionally, the ratio of response quality and trust weights
also affects consensus latency by affecting consensus security.
Specifically, the experimental results demonstrate that latency
is further reduced with increasing β value, primarily due to
the positive correlation between increased trust weight and
increased probability of consensus success. It effectively mit-
igates the occurrence of re-election scenarios where a leader
struggles to secure the required 2/3 vote weight threshold.
Moreover, the variance σ2 of the initial trust weight distribu-
tion Br

i,j impacts consensus latency as well. Specifically, as
the variance decreases, the latency increases. This is because
lower variance reduces consensus security, leading to a higher
likelihood of leader re-elections and consequently prolonging
the consensus process. We further observe that under high-
variance conditions, WBFT achieves significantly lower la-
tency compared to the other consensus mechanisms, which can
be attributed to its stronger consensus security, as previously
discussed.

An additional observation concerns the performance of
ABC-PBFT and VaaP under varying trust weight variances.
When σ2 is large, ABC-PBFT benefits from its ability to
pre-select reliable LLMs, enabling faster consensus and out-
performing VaaP in terms of efficiency. However, when σ2

12

(a) The initial trust weights ~ N(0.1, 0.6) (b) The initial trust weights ~ N(0.1, 0.4) (c) The initial trust weights ~ N(0.1, 0.2)

Fig. 6: Consensus throughput. (a) The initial trust weights of LLMs follow a N(0.1, 0.6) distribution. (b) The initial trust
weights of LLMs follow a N(0.1, 0.4) distribution. (c) The initial trust weights of LLMs follow a N(0.1, 0.2) distribution.

(a) Consensus security (b) Consensus latency (c) Consensus throughput

Fig. 7: Ablation test of WBFT when the initial trust weights follow a N(0.1, 0.6) with α = β = 0.5. (a) Consensus security.
(b) Consensus latency. (c) Consensus throughput.

is small and trust differences among LLMs become less
pronounced, ABC-PBFT loses its advantage, and its latency
performance converges with or falls behind that of VaaP.
This further highlights the effectiveness of the HSC algorithm
used in WBFT, which demonstrates superior capability in
identifying trusted, low-latency consensus nodes compared to
the ABC-based approach.

3) Consensus Throughput: Consensus throughput is evalu-
ated under the same simulation environment and configuration
settings as those used for consensus latency, with results
presented in Figs. 6(a)–(c).

In general, throughput exhibits an inverse relationship to
latency. Nevertheless, consistent with latency results, WBFT
consistently demonstrates the highest throughput performance
among all baselines. The reasons are twofold. First, WBFT
employs a multi-chain and pipelined architecture, enabling
it to handle multiple UE requests concurrently. Second, its
high consensus security reduces the likelihood of disruptions
caused by malicious LLMs. Furthermore, the proposed HSC
algorithm effectively narrows the consensus scope, further
contributing to improved throughput.

Additionally, the ratio of response quality to trust weights,
as well as the initial trust weight distribution variance σ2 of
LLMs, exhibit effects on throughput that are consistent with
their impacts on consensus security and latency. For VaaP

and ABC-PBFT, variations in trust weight variance σ2 do
not alter the relative throughput performance between the two
schemes, unlike their impact on latency. VaaP consistently
achieves higher throughput than ABC-PBFT, primarily due to
its parallel block processing mechanism.

4) Ablation Study: Through comparative experiments, we
have demonstrated that WBFT achieves superior consensus
security and efficiency compared to existing consensus mech-
anisms. To further validate the contribution of individual
modules within WBFT, we conduct ablation tests focusing
on two key components: the HSC algorithm and the weight-
allocation scheme. The simulation parameters for these tests
are consistent with those used in earlier consensus perfor-
mance evaluations.

The results of the ablation study in terms of consensus se-
curity, latency, and throughput are illustrated in Figs. 7(a)–(c).
Note that the configuration without the HSC algorithm is
denoted as w/o HSC, and the configuration without the weight-
allocation scheme is denoted as w/o Weighted. These results
are obtained under the conditions where the initial trust
weights follow N(0.1, 0.6) and α = β = 0.5. From Fig. 7, we
can observe that the absence of either the HSC algorithm or the
weight allocation mechanism leads to degraded consensus per-
formance. Specifically, the HSC algorithm enhances consensus
by excluding LLMs with low trust values or high commu-

13

0

10

20

30

40

50

60

70

80

90

100

U
E

sa
ti

sf
ac

ti
o

n

Response ability comparison

Single LLM MultiLLMN

Trusted MultiLLMN with α=0.4,β=0.6 Trusted MultiLLMN with α=0.5,β=0.5

Trusted MultiLLMN with α=0.6,β=0.4

Fig. 8: UE satisfaction comparison.

nication latency, thereby reducing the influence of malicious
LLMs and improving overall consensus efficiency. Meanwhile,
the weight-allocation scheme decreases the voting influence of
less reputable LLMs, further strengthening consensus security.
It also increases the consensus success rate and reduces latency
by minimizing leader reselection events caused by consensus
failures. In conclusion, these findings underscore the indis-
pensable role of the HSC algorithm and weight allocation
scheme in achieving the performance improvements observed
with WBFT.

C. UE Satisfaction

In this part, we evaluate UE satisfaction with three different
architectures: a single LLM, a MultiLLMN without blockchain
consensus, and the Trusted MultiLLMN proposed in this
work. The evaluation is carried out using the set of questions
described in Section VI-A. UE satisfaction is synthesized
by surveying the same group of 15 volunteers, each scoring
responses on a 100-point scale. Specifically, the single LLM
scenario involves volunteers randomly using one of the LLMs
evaluated in Section VI-A. The MultiLLMN configuration
refers to a centralized architecture without blockchain consen-
sus participation, leaving the system vulnerable to the influ-
ence of malicious LLMs. In contrast, the Trusted MultiLLMN
represents the WBFT consensus-driven decentralized system
we have designed. The comparison among these three archi-
tectures essentially serves as an ablation study to assess the
individual and combined contributions of LLM collaboration
and WBFT consensus to overall generation quality.

Fig. 8 illustrates the UE satisfaction of three architectures
across five evaluation dimensions. Notably, the single LLM
setup yields the lowest satisfaction scores and the highest
standard deviation, highlighting its limited ability to generalize
across diverse tasks and the inherent variability among differ-
ent LLMs. In comparison, WBFT-driven Trusted MultiLLMN
achieves higher average satisfaction and reduced variability
compared to baseline MultiLLMN. This improvement is at-
tributed to the consensus mechanism, which mitigates the
risk of misinformation from Byzantine LLMs and strengthens
overall system reliability. Furthermore, increasing the weight

assigned to response quality in the WBFT consensus process
is found to correlate with higher UE satisfaction. However,
this improvement in perceived quality comes at the expense
of reduced consensus efficiency, suggesting a trade-off be-
tween optimizing consensus performance and maximizing user
satisfaction. This observation highlights an important design
consideration for deploying Trusted MultiLLMN architectures
in future applications.

VII. CONCLUSION

In this paper, we have proposed a MultiLLMN framework
to address the inherent limitations of individual LLMs, such
as hallucinations, biased outputs, and limited generalization
caused by static or incomplete training data. To ensure that
collaboration among multiple LLMs produces reliable and
trustworthy responses, we have presented the Trusted Mul-
tiLLMN driven by blockchain. Moreover, we have proposed
the WBFT consensus mechanism. Unlike traditional consensus
methods that assign equal voting rights or rely on fixed trust
assumptions, WBFT dynamically integrates both response
quality and trust levels to guide consensus decisions. Our
simulation results have demonstrated that WBFT not only
enhances consensus security in the presence of potentially
malicious LLMs but also significantly reduces latency and in-
creases throughput compared to PBFT, VaaP, and ABC-PBFT.
Furthermore, the Trusted MultiLLMN built on WBFT exhibits
stronger responsiveness and reliability than both standalone
LLMs and collaborative LLM structures that lack consensus
coordination.

REFERENCES

[1] J. Hu et al., “Federated large language model: Solutions, challenges and
future directions,” IEEE Wireless Communications, 2024.

[2] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,
C. Wang, Y. Wang et al., “A survey on evaluation of large language
models,” ACM Transactions on Intelligent Systems and Technology,
vol. 15, no. 3, pp. 1–45, 2024.

[3] P. P. Ray, “Chatgpt: A comprehensive review on background, applica-
tions, key challenges, bias, ethics, limitations and future scope,” Internet
of Things and Cyber-Physical Systems, vol. 3, pp. 121–154, 2023.

[4] F. Jiang, L. Dong, Y. Peng, K. Wang, K. Yang, C. Pan, and X. You,
“Large ai model empowered multimodal semantic communications,”
IEEE Communications Magazine, vol. 63, no. 1, pp. 76–82, 2025.

[5] J. Wang, C. Zhao, H. Du, G. Sun, J. Kang, S. Mao, D. Niyato, and
D. I. Kim, “Generative ai enabled robust data augmentation for wireless
sensing in isac networks,” arXiv preprint arXiv:2502.12622, 2025.

[6] L. Zhou, W. Schellaert, F. Martı́nez-Plumed, Y. Moros-Daval, C. Ferri,
and J. Hernández-Orallo, “Larger and more instructable language models
become less reliable,” Nature, vol. 634, no. 8032, pp. 61–68, 2024.

[7] E. Gibney, “What are the best ai tools for research? nature’s guide,”
Nature, 2025.

[8] M. Ding, C. Deng, J. Choo, Z. Wu, A. Agrawal, A. Schwarzschild,
T. Zhou, T. Goldstein, J. Langford, A. Anandkumar et al., “Easy2hard-
bench: Standardized difficulty labels for profiling llm performance and
generalization,” Advances in Neural Information Processing Systems,
vol. 37, pp. 44 323–44 365, 2024.

[9] J. Lu, Z. Pang, M. Xiao, Y. Zhu, R. Xia, and J. Zhang, “Merge, ensemble,
and cooperate! a survey on collaborative strategies in the era of large
language models,” arXiv preprint arXiv:2407.06089, 2024.

[10] D. M. Owens, R. A. Rossi, S. Kim, T. Yu, F. Dernoncourt, X. Chen,
R. Zhang, J. Gu, H. Deilamsalehy, and N. Lipka, “A multi-llm debiasing
framework,” arXiv preprint arXiv:2409.13884, 2024.

[11] S. Feng, W. Shi, Y. Wang, W. Ding, V. Balachandran, and Y. Tsvetkov,
“Don’t hallucinate, abstain: Identifying llm knowledge gaps via multi-
llm collaboration,” arXiv preprint arXiv:2402.00367, 2024.

14

[12] X. Wang, J. Wang, L. Feng, D. Niyato, R. Zhang, J. Kang, Z. Xiong,
H. Du, and S. Mao, “Wireless hallucination in generative ai-enabled
communications: Concepts, issues, and solutions,” arXiv preprint
arXiv:2503.06149, 2025.

[13] S. Wang et al., “Performance analysis on the applications of large
language models: A case for elderly care,” in 2024 IEEE International
Conference on High Performance Computing and Communications
(HPCC). IEEE, 2024, pp. 145–151.

[14] S. Marro et al., “A scalable communication protocol for networks of
large language models,” arXiv preprint arXiv:2410.11905, 2024.

[15] H. Luo, Y. Wu, G. Sun, H. Yu, and M. Guizani, “Escm: An efficient and
secure communication mechanism for uav networks,” IEEE Transactions
on Network and Service Management, vol. 21, no. 3, pp. 3124–3139,
2024.

[16] M. F. M. Firdhous et al., “WormGPT: A large language model chatbot
for criminals,” in 2023 24th International Arab Conference on Informa-
tion Technology (ACIT). IEEE, 2023, pp. 1–6.

[17] H. Luo, G. Sun, C. Chi, H. Yu, and M. Guizani, “Convergence of sym-
biotic communications and blockchain for sustainable and trustworthy
6g wireless networks,” IEEE Wireless Communications, 2025.

[18] H. Luo, G. Sun, J. Wang, H. Yu, D. Niyato, S. Dustdar, and Z. Han,
“Wireless blockchain meets 6g: The future trustworthy and ubiquitous
connectivity,” Authorea Preprints.

[19] H. Luo, J. Luo, and A. V. Vasilakos, “BC4LLM: A perspective of trusted
artificial intelligence when blockchain meets large language models,”
Neurocomputing, vol. 599, p. 128089, 2024.

[20] X. Zuo, M. Wang, T. Zhu, S. Yu, and W. Zhou, “Large language
model federated learning with blockchain and unlearning for cross-
organizational collaboration,” arXiv preprint arXiv:2412.13551, 2024.

[21] C. Geren, A. Board, G. G. Dagher, T. Andersen, and J. Zhuang,
“Blockchain for large language model security and safety: A holistic
survey,” ACM SIGKDD Explorations Newsletter, vol. 26, no. 2, pp. 1–
20, 2025.

[22] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, 1999, pp. 173–186.

[23] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[24] S. Feng, W. Ding, A. Liu, Z. Wang, W. Shi, Y. Wang, Z. Shen, X. Han,
H. Lang, C.-Y. Lee et al., “When one llm drools, multi-llm collaboration
rules,” arXiv preprint arXiv:2502.04506, 2025.

[25] S. Z. Shen, H. Lang, B. Wang, Y. Kim, and D. Sontag, “Learning to
decode collaboratively with multiple language models,” arXiv preprint
arXiv:2403.03870, 2024.

[26] F. Wan, X. Huang, D. Cai, X. Quan, W. Bi, and S. Shi, “Knowledge
fusion of large language models,” arXiv preprint arXiv:2401.10491,
2024.

[27] X. Zuo, M. Wang, T. Zhu, L. Zhang, D. Ye, S. Yu, and W. Zhou, “Feder-
ated trustchain: Blockchain-enhanced llm training and unlearning,” arXiv
preprint arXiv:2406.04076, 2024.

[28] B. Chen, G. Li, X. Lin, Z. Wang, and J. Li, “Blockagents: Towards
byzantine-robust llm-based multi-agent coordination via blockchain,” in
Proceedings of the ACM Turing Award Celebration Conference-China
2024, 2024, pp. 187–192.

[29] Y. Liu et al., “Blockchain-empowered lifecycle management for AI-
generated content products in edge networks,” IEEE Wireless Commu-
nications, vol. 31, no. 3, pp. 286–294, 2024.

[30] M. A. Bouchiha, Q. Telnoff, S. Bakkali, R. Champagnat, M. Rabah,
M. Coustaty, and Y. Ghamri-Doudane, “Llmchain: Blockchain-based
reputation system for sharing and evaluating large language models,”
in 2024 IEEE 48th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE, 2024, pp. 439–448.

[31] Y. Lin, Z. Gao, H. Du, D. Niyato, J. Kang, Z. Xiong, and Z. Zheng,
“Blockchain-based efficient and trustworthy aigc services in metaverse,”
IEEE Transactions on Services Computing, vol. 17, no. 5, pp. 2067–
2079, 2024.

[32] H. Li and J. Wang, “Collaborative annealing power k-means++ cluster-
ing,” Knowledge-Based Systems, vol. 255, p. 109593, 2022.

[33] F. Liu and Y. Deng, “Determine the number of unknown targets in open
world based on elbow method,” IEEE Transactions on Fuzzy Systems,
vol. 29, no. 5, pp. 986–995, 2020.

[34] Y. Yu, J. He, X. Xu, Q. Zhang, W. Qiu, H. Zheng, B. Guo, and J. Dong,
“Tierflow: A pipelined layered bft consensus protocol for large-scale
blockchain,” in 2024 IEEE 23rd International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).
IEEE, 2024, pp. 624–635.

[35] D. Luo, G. Sun, H. Yu, and M. Guizani, “Blockchain-based cross-
domain authentication with dynamic domain participation in iot,” IEEE
Internet of Things Journal, vol. 12, no. 5, pp. 5385–5395, 2025.

[36] H. Luo, J. Zhang, X. Li, Z. Li, H. Yu, G. Sun, and D. Niyato, “Esia: An
efficient and stable identity authentication for internet of vehicles,” IEEE
Transactions on Vehicular Technology, vol. 73, no. 4, pp. 5602–5615,
2023.

[37] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, “A
scalable multi-layer pbft consensus for blockchain,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1146–1160,
2020.

[38] P. Révész, The laws of large numbers. Academic Press, 2014, vol. 4.
[39] R. M. Dudley, Uniform central limit theorems. Cambridge university

press, 2014, vol. 142.
[40] B. Chang, L. Zhang, L. Li, G. Zhao, and Z. Chen, “Optimizing

resource allocation in urllc for real-time wireless control systems,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 9, pp. 8916–8927,
2019.

[41] D. Yu, W. Li, H. Xu, and L. Zhang, “Low reliable and low latency
communications for mission critical distributed industrial internet of
things,” IEEE Communications Letters, vol. 25, no. 1, pp. 313–317,
2020.

[42] H. Luo, Q. Zhang, H. Yu, G. Sun, and S. Xu, “Symbiotic pbft consensus:
Cognitive backscatter communications-enabled wireless pbft consensus,”
in GLOBECOM 2023-2023 IEEE Global Communications Conference.
IEEE, 2023, pp. 910–915.

[43] J. Cao, S. Leng, L. Zhang, M. Imran, and H. Chai, “A v2v empowered
consensus framework for cooperative autonomous driving,” in GLOBE-
COM 2022-2022 IEEE Global Communications Conference. IEEE,
2022, pp. 5729–5734.

[44] H. Luo, G. Sun, H. Yu, B. Lei, and M. Guizani, “An energy-efficient
wireless blockchain sharding scheme for pbft consensus,” IEEE Trans-
actions on Network Science and Engineering, vol. 11, no. 3, pp. 3015–
3027, 2024.

[45] H. Luo et al., “Symbiotic blockchain consensus: Cognitive backscatter
communications-enabled wireless blockchain consensus,” IEEE/ACM
Transactions on Networking, vol. 32, no. 6, pp. 5372–5387, 2024.

[46] H. Luo, X. Yang, H. Yu, G. Sun, B. Lei, and M. Guizani, “Performance
analysis and comparison of nonideal wireless pbft and raft consensus
networks in 6g communications,” IEEE Internet of Things Journal,
vol. 11, no. 6, pp. 9752–9765, 2023.

[47] H. Luo, K. Yang, G. Sun, H. Yu, Q. Huang, and Y. Zhang, “A multi-
chain consensus for power big data transaction in generation-grid-load-
storage integrated networks,” in GLOBECOM 2024-2024 IEEE Global
Communications Conference. IEEE, 2024, pp. 2455–2460.

[48] X. Fu, H. Wang, and P. Shi, “Votes-as-a-Proof (VaaP): Permissioned
blockchain consensus protocol made simple,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 12, pp. 4964–4973, 2022.

[49] D. Luo, Y. Zhang, G. Sun, H. Yu, and D. Niyato, “An efficient
consensus algorithm for blockchain-based cross-domain authentication
in bandwidth-constrained wide area iot networks,” IEEE Internet of
Things Journal, vol. 11, no. 19, pp. 31 917–31 931, 2024.

[50] H. Guo, X. Chen, X. Zhou, and J. Liu, “Trusted and efficient task
offloading in vehicular edge computing networks,” IEEE Transactions
on Cognitive Communications and Networking, vol. 10, no. 6, pp. 2370–
2382, 2024.

[51] J. Liao, J. Wen, J. Kang, C. Yi, Y. Zhang, Y. Jiao, D. Niyato, D. I.
Kim, and S. Xie, “Graph attention network-based block propagation
with optimal AOB and reputation in Web 3.0,” IEEE Transactions on
Cognitive Communications and Networking, vol. 10, no. 6, pp. 2427–
2441, 2024.

[52] J. Xu, Y. Zhao, H. Chen, and W. Deng, “Abc-gspbft: Pbft with grouping
score mechanism and optimized consensus process for flight operation
data-sharing,” Information Sciences, vol. 624, pp. 110–127, 2023.

	Introduction
	Research Motivations
	Our Contributions
	Structure of This Paper

	Related Works
	Collaboration among Multiple LLMs
	Blockchain-enabled LLM

	Blockchain-Driven Multiple-LLM Network
	Workflow of Trusted MultiLLMN
	Dynamic Optimization of Trusted MultiLLMN

	Weighted Byzantine Fault Tolerance Consensus
	Weight Allocation Scheme
	Consensus Design

	Performance Analysis
	Consensus Security
	Consensus Efficiency
	Correctness Analysis
	Consensus Complexity

	Performance Evaluation
	Parameter Acquisition and Setting
	Consensus Performance
	UE Satisfaction

	Conclusion
	References

