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Abstract 

Continuous authentication systems leveraging free-text keyboard dynamics offer a promising additional layer 

of security in a multifactor authentication setup that can be used in a transparent way with no impact on user 

experience. This study investigates the efficacy of behavioral biometrics by employing an Agent-Based Model 

(ABM) to simulate diverse typing profiles across mechanical and membrane keyboards. Specifically, we 

generated synthetic keystroke data from five unique agents, capturing features related to dwell time, flight time, 

and error rates within sliding 5-second windows updated every second. Two machine learning approaches, One-

Class Support Vector Machine (OC-SVM) and Random Forest (RF), were evaluated for user verification. Results 

revealed a stark contrast in performance: while One-Class SVM failed to differentiate individual users within each 

group, Random Forest achieved robust intra-keyboard user recognition (Accuracy > 0.7) but struggled to 

generalize across keyboards for the same user, highlighting the significant impact of keyboard hardware on typing 

behavior. These findings suggest that: (1) keyboard-specific user profiles may be necessary for reliable 

authentication, and (2) ensemble methods like RF outperform One-Class SVM in capturing fine-grained user-

specific patterns.  

 

Keywords: keyboard dynamics, continuous authentication, agent-based modeling, One-Class SVM, Random 

Forest, behavioral biometrics. 

 

1. Introduction 

As the modern working environment continues to evolve and faces new threats [1], authenticating users 

becomes increasingly critical, yet traditional methods may prove insufficient. While passwordless 

approaches like Passkeys, which merge two-factor authentication by combining biometric verification (i.e. 

"something we are") on a specific device followed by a device-based authentication (i.e. "something we 

have") are gaining traction, passwords (i.e. “something we know”) remain prevalent due to their simplicity 

and scalability. However, as username/password pairs grow vulnerable and standard 2FA risks user friction 

in frequent login scenarios, a transparent secondary authentication layer leveraging behavioral analytics 

emerges as an alternative solution worth exploring. 

Keyboard dynamics refers to the behavioral biometric modality that analyzes unique typing patterns, 

including keystroke rhythm, latency between key presses, and hold durations [2]. Rooted in telegraph 

operators’ ability to recognize colleagues through Morse code rhythms in the 19th century [3], this approach 

can provide a novel computational method for user authentication [4] and even for continuous authentication 

where, unlike static credentials, keyboard dynamics operates in the background by creating a biometric 

profile for a specific user based on habitual typing characteristics [5]. Existing studies predominantly focus 

on fixed-text authentication, where users type predefined phrases (e.g., passwords) while free-text analysis, 
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which is critical for authenticating real-world applications like email composition or document editing, 

remains relatively under-explored [6]. This gap stems partly from the scarcity of public, labeled datasets 

capturing diverse typing behaviors in an unrestricted context that matches the researchers' specific 

approaches [7]. Without such data, developing robust models to distinguish legitimate users from impostors 

to identify possible Business Email Compromise (BEC) attacks, for example, proves challenging.  

To address data limitations, this study proposes an agent-based modeling (ABM) framework simulating 

different users’ free-text typing behaviors where agents allow for detailed customization including not only 

an average typing speed and simulated error rate, like in [8], but also a realistic typing frequency dependent 

of language (e.g. American English) that takes into account key distances and a dominant hand (right vs left 

handed typist) as well as a fatigue factor. By training models via simulated agents, it is possible to quickly 

build diverse datasets to experiment with for detecting anomalies indicative of account takeover attempts, 

while also circumventing privacy concerns associated with real-user data. 

2. Agent Based Modeling 

A comprehensive agent-based model (ABM) was developed to simulate realistic typing behaviors across 

diverse user profiles. The typing process involves complex biomechanical interactions between a user's 

typing habits and the physical constraints of keyboard layouts. Our model conceptualizes typing as a 

sequence of discrete keystroke events characterized by two key temporal metrics: dwell time (key press 

duration) and flight time (delay between consecutive keys). We posit that realistic flight times must account 

for the physical keyboard geometry, individual motor patterns, and physiological factors such as fatigue. 

Each typing agent in our model represents a unique user with configurable parameters that determine their 

typing behavior. The agent architecture follows an event-driven paradigm where keystroke timing emerges 

from the interaction of multiple underlying factors. The system, in fact, maintains internal state variables 

including current fatigue level, typing speed, and memory of previously typed characters to inform 

subsequent keystroke timing decisions (e.g. when the agent is simulating the repetition of the same alphabet 

letter, flight time will be drastically reduced). 

The ABM implementation consists of several interconnected components: 

• Text Generation System: Produces English-like character sequences using a probabilistic model 

based on character frequency distribution in English text, where character 𝑐 is sampled according 

to: 𝑃(𝑐) =
𝑓𝑐

∑ 𝑓𝑖𝑖
  where 𝑓𝑐  represents the frequency of character 𝑐  in English text. English letter 

frequency is normalized to sum = 1.0 and was derived from empirical linguistic studies [9]. 

• Keyboard Geometry Model: Maps each key 𝑘  on a QWERTY layout to spatial coordinates 

(𝑥𝑘, 𝑦𝑘), where x and y represent the row and column on a standard keyboard, e.g. ‘`’ is the key at 

position (0,0) in an American keyboard layout, enabling calculation of precise Euclidean distances 

between any key pair.  

• Keyboard Type: Two types of keyboards are possible: laptop (membrane) and mechanical. The 

first is identified by a shorter default dwell time but a longer flight time (50ms vs 60ms and 120ms 

vs 100ms, respectively) as noted in [10].  

• Personal Pattern Generator: Creates unique typing fingerprints for each agent through 

randomized but consistent variations in key-pair transition speeds. Previous simulations like [8] 

typically used uniform random distributions for flight times regardless of key positions. Here, 

instead, our approach calculates flight times between any two keys (𝑘𝑖, 𝑘𝑗) through the following 

mathematical formulation: 

 𝐹𝑖,𝑗 = 𝐵 ⋅ (0.5 +
𝐷𝑖,𝑗

2
) ⋅ 𝑃𝑖,𝑗 ⋅ (1 + 0.4 ⋅ 𝜙2) ⋅ 𝑁       (1) 

Where:  
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o 𝐹𝑖,𝑗 is the flight time between keys 𝑘𝑖 and 𝑘𝑗 (in milliseconds) 

o 𝐵 represents the base flight time determined by keyboard type: laptop or mechanical.  

o 𝐷𝑖,𝑗  is the normalized Euclidean distance between keys, calculated as: 𝐷𝑖,𝑗 =

√(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
  

o 𝑃𝑖,𝑗  captures the user’s individual proficiency with the specific key transition, which is 

affected by whether the simulated user is right or left-handed. 

o  𝜙 is the current fatigue level (0-1 range)  

o 𝑁 represents natural timing noise, where 𝑁 ∼ 𝒩(1,0.05)  

• Fatigue Simulator: Models the non-linear degradation of typing performance over extended 

sessions using quadratic fatigue accumulation functions. 

• Error and Correction Mechanism: Simulates realistic typing errors with probability 𝑒  per 

character and subsequent backspace correction behaviors, with error correction sequences modeled 

as: 𝑡𝑏𝑎𝑐𝑘𝑠𝑝𝑎𝑐𝑒 ∼ 𝒩(40,3) 𝑚𝑠  so that backspaces are simulated with shorter dwell times (μ=40 

ms vs. μ=50–60 ms for regular keys) to reflect rapid corrections [10]. 

Then, to capture the distinctive "signature" of individual typing behaviors, the model implements a 

personal variation matrix. This matrix assigns efficiency multipliers to each possible key transition pair to 

simulate specific digraphs. The personal factor for any key pair (𝑃𝑖,𝑗) is calculated as: 

 𝑃𝑖,𝑗 = 𝑉𝑏𝑎𝑠𝑒 ⋅ 𝑉ℎ𝑎𝑛𝑑 ⋅ 𝑉𝑑𝑖𝑔𝑟𝑎𝑝ℎ     (2) 

Where:  

• 𝑉𝑏𝑎𝑠𝑒 ∼ 𝒩(1.0,0.15) represents random baseline variations, bounded to [0.7,1.3]  

• 𝑉ℎ𝑎𝑛𝑑 is the hand dominance factor equal to 0.9 if the keys are close to the dominant hand side 

(right/left-handed typist), 1.05 if close to the non-dominant hand, and 1.0 otherwise.  

• 𝑉𝑑𝑖𝑔𝑟𝑎𝑝ℎ = 0.85 if the key pair forms a common English digraph, 1.0 otherwise.  

For repeated characters (when 𝑘𝑖 = 𝑘𝑗 ), we use a special case of 𝐷𝑖,𝑗 = 0.2  to reflect the 

significantly reduced movement time. The resulting pattern creates a unique typing fingerprint for each agent 

while maintaining realistic constraints based on keyboard ergonomics and linguistic patterns. Last, a 

distinctive feature of our model is also the incorporation of realistic fatigue effects that accrue during 

extended typing sessions. The fatigue accumulation follows: 

 𝜙𝑡+1 = min(1.0,𝜙𝑡 + 𝛾)        (3) 

Where 𝜙𝑡 is the fatigue level at time 𝑡 and 𝛾 is the user-specific fatigue factor. This accumulated 

fatigue affects the current typing speed through a quadratic relationship to create a more realistic fatigue 

progression, with minimal impact initially but accelerating deterioration as typing continues: 

 𝑊𝑃𝑀𝑡 = 𝑊𝑃𝑀𝑏𝑎𝑠𝑒 ⋅ (1 − 0.3 ⋅ 𝜙𝑡
2)        (4) 

The system was implemented in Python, using NumPy for mathematical operations and random 

sampling. The agent's state is fully encapsulated, allowing for the concurrent simulation of multiple users 

with distinct characteristics. The output consists of time-stamped keystroke events (both press and release 

actions) that record the exact timing of each interaction with millisecond precision. 
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3. Dataset Generation 

A specific user generated by the ABM is identified by the following parameters: 

• agent_id (int),  

• wpm (float,e.g. 45.0),  

• error_rate (float, e.g., 0.5),  

• keyboard_type (str, e.g. "laptop" or “mechanical”),  

• fatigue_factor (float, e.g. 0.001),  

• finger_agility (float, e.g. 1.0)  

• dominant_hand (str, e.g. "right" or “left”).  

Five different users were defined, with different typing characteristics (Table 1): 

 

Table 1. User profiles simulated by ABM. Specific values per user were selected within predefined ranges 

at runtime. Note that User 2 is more prone to fatigue compared to the others while User 1 is the only left-

handed among the group.   

id WPM. 

Range: 

Error rate. 

Range: 

Fatigue factor. 

Range: 

Finger agility. 

Range: 

Dominant 

hand  

1 50.0 - 55.0 0.03 - 0.04 1x10-4 - 3x10-4 0.9 - 1.0 Left 

2 65.0 - 70.0 0.01 - 0.03 1.5x10-3 - 3x10-3 1.0 - 1.1 Right 

3 40.0 - 45.0 0.02 - 0.03 1x10-4 - 3x10-4 0.8 - 0.9 Right 

4 80.0 - 85.0 0.08 - 0.10 1x10-4 - 3x10-4 1.2 - 1.3 Right 

5 30.0 - 35.0 0.01 - 0.02 1x10-4 - 3x10-4 0.7 - 0.8 Right 

 

For each user, two files were generated simulating the typing of 1000 characters each across the two 

possible keyboards (i.e. laptop and mechanical) for a total of four files per user. A sample of the data 

generated is shown in Table 2. 

 

Table 2. Sample data generated by the ABM (User 2 typing on a laptop keyboard) 

Timestamp 

(ms) 

Key Action Keyboard 

type 

Agent 

id 

wpm Error 

rate 

Fatigue 

factor 

Finger 

agility 

Dominant 

hand 

0 o press laptop user2 65.31 0.0293 0.002217 1.05 right 

53.37 o release laptop user2 65.31 0.0293 0.002217 1.05 right 

174 t press laptop user2 65.31 0.0293 0.002217 1.05 right 

220.82 t release laptop user2 65.31 0.0293 0.002217 1.05 right 

 

4. Feature Extraction  

The data generated by the ABM is elaborated to extract the average and standard deviation of both the 

Dwell Time, defined as the time in ms between a key-press event and its following key-release event, and 

the Flight Time, defined as the time between a key-release event and the following key-press event, across 

a sliding time window spanning the last five seconds and updated every second. The Error Rate, defined as 

the ratio between the number of backspaces and the total number of characters times 100 across the time 

window, is also included for a total of five features. Table 3 shows a sample of the extracted features for 

User 4.   
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Table 3. Features extracted from the first 10 seconds of simulated typing for User 4 on a mechanical 

keyboard. 

Window 

start_ms 

Window 

end_ms 

avg_dwell 

time 

std_dwell 

time 

avg_flight 

time 

std_flight 

time 

Error rate 

0 5000 51.57906 10.60823 102.1077 90.92518 37.5 

1000 6000 51.69848 10.45281 101.6424 82.8035 36.36364 

2000 7000 54.18645 9.115519 105.0226 78.87076 22.58065 

3000 8000 53.77207 8.36145 119.0034 83.61521 20.68966 

4000 9000 53.58179 7.938226 116.7275 74.17365 17.85714 

5000 10000 56.3344 4.010859 147.3948 69.19318 0 

 

Kolmogorov-Smirnov tests (KS Tests) performed on each feature for each pair of simulated typing 

sessions show statistically significant differences between users (p < 0.05) and significant similarities among 

sessions by the same agent on the same keyboard (p > 0.05) for most features. On the other hand, comparing 

features extracted from testing the different sessions by the same user across the two different keyboards 

showed extreme differences, with all p values very close to 0.00. See Table 4 for Laptop and Table 5 for 

Mechanical keyboard, respectively. When comparing the same agent across different typing sessions, one 

full session is used for training, and it is then tested with the other one. When comparing with different 

agents, instead, the tables show the average p-values obtained from testing the session from the first agent 

with both available simulations from the other agent.  

 

Table 4. KS Tests performed for each agent pair with the Laptop keyboard setting. p-values for each feature, 

p < 0.05 suggests different distribution. Note: ad = avg_dwell, sd = std_dwell, av = average_flight, sf = 

standard flight, er = error rate. 

User 1 2 3 4 5 

1 ad: 0.2739 

sd: 0.3703 

af:  0.6690 

sf: 0.7539 

er: 0.9677 

ad: 0.0000 

sd: 0.0001 

af: 0.0000 

sf: 0.0000 

er: 0.3435 

ad: 0.0043 

sd: 0.0005 

af: 0.0000 

sf: 0.0000 

er: 0.0011 

ad: 0.0000 

sd: 0.0001 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.2908 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

2 ad: 0.0000 

sd: 0.0034 

af: 0.0000 

sf: 0.0000 

er: 0.0003 

ad: 0.00521 

sd: 0.0032 

af: 0.0052 

sf: 0.3521 

er: 0.0013 

ad: 0.0000 

sd: 0.0019 

af: 0.0635 

sf:0.1038 

er: 0.8346 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0000 

sd: 0.0002 

af: 0.0002 

sf: 0.0005 

er: 0.6263 

3 ad: 0.0250 

sd: 0.0052 

af: 0.0000 

sd: 0.0000 

er: 0.0001 

ad: 0.0000 

sd: 0.0010 

af: 0.0344 

sf: 0.0001 

er: 0.3762 

ad: 0.1153 

sd: 0.2399 

af: 0.6099  

sf: 0.0000 

er: 0.5315 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0182 

sd: 0.0002 

af: 0.0007 

sf: 0.3421 

er: 0.5139 

4 ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.1611 

sd: 0.4153 

af: 0.0000 

sf: 0.0000 

er: 0.2379 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 
er: 0.0000 

5 ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0000 

sd: 0.0002 

af: 0.0000 

sf: 0.0004 

er: 0.1418 

ad: 0.0045 

sd: 0.0008 

af: 0.0000 

sf: 0.2175  

er: 0.2830 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0000 

sd: 0.5415 

af: 0.0441 

sf: 0.1475 

er: 0.7996 



6 

 

Table 5. KS Tests performed for each agent pair with the Mechanical keyboard setting. p-values for each 

feature, p < 0.05 suggests different distribution. Note: ad = avg_dwell, sd = std_dwell, av = average_flight, 

sf = standard flight, er = error rate. 

User 1 2 3 4 5 

1 ad: 0.0227 

sd: 0.1113 

af: 0.3086 

sf: 0.0154 

er: 0.0669 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0013 

ad: 0.5076 

sd: 0.3355 

af: 0.0000 

sf: 0.0000 

er: 0.2483 

ad: 0.0 000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0000  

sd: 0.0000 

af: 0.0000 

sf: 0.0000  

er: 0.0000 

2 ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0297 

ad: 0.0955 

sd: 0.3074 

af: 0.0371 

sf: 0.0015 

er: 0.0226 

ad: 0.0000 

sd: 0.0000 

af: 0.0398 

sf: 0.1866 

er: 0.3713 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf:  0.0000 

er: 0.0000 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0511 

er: 0.0122 

3 av: 0.2678 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er:  0.0477 

ad: 0.0000 

sd: 0.0000 

af: 0.0001 

sf: 0.0602 

er: 0.3679 

ad: 0.1354 

sd: 0.0006 

af: 0.0000 

sf: 0.0000 

er:0.0008 

ad: 0.0000  

sd: 0.0000 

af: 0.0000  

sf: 0.0000   

er: 0.0000 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0177 

er: 0.0000 

4 ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0002 

er: 0.0000 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.7486 

sd: 0.5475 

af: 0.4731 

sf: 0.4871 

er: 0.4887 

ad: 0.0001 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

5 ad: 0.0007 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0000 

sd: 0.0000 

af: 0.0000 

sf: 0.0253   

er: 0.0112 

ad: 0.0017 

sd: 0.0342 

af: 0.0180 

sf: 0.0253 

er: 0.0035 

ad: 0.0001 

sd: 0.0000 

af: 0.0000 

sf: 0.0000 

er: 0.0000 

ad: 0.0001 

sd: 0.3934 

af: 0.0027 

sf: 0.0059 

er: 0.6552 

 

5. Analysis of Results 

Several strategies have been explored in the past showing promising results, from neural networks [6] to 

OneClass-SVM [8]. In [11], different approaches were tested and compared, with Random Forest showing 

the best results. Following that example we decided to analyze the ABM dataset via OneClass-SVM and 

Random Forest to compare the two models that are often reported in literature as being particularly reliable 

for this and similar contexts.   

For both models, one full session per keyboard is used for training, while the remaining sessions served 

as test sets so as to evaluate the consistency of user-specific typing patterns across sessions and the impact 

of keyboard variation on model performance.  

5.1 OneClass-SVM 

To evaluate typing consistency and user distinctiveness, a One-Class Support Vector Machine (OC-SVM) 

was employed as an anomaly detection model. The OC-SVM was trained using the single user’s typing data 

on a specific keyboard (e.g., users 1-5 on simulated laptop keyboard) and evaluated on both the same-user 

and across users, including variations across keyboard types. The training and testing with OC-SVM allowed 

us to assess inter- user consistency and inter-user separability, as well as the effect of hardware variation.  

Data from each feature was normalized and only the first two principal components obtained via PCA 

were used as inputs to the One-Class SVM model in order to reduce dimensionality while preserving the 

majority of the variance in the data. Limiting to two PCA features, besides avoiding overfitting, also enabled 

a visual distribution of inliers vs outliers which is not possible with higher dimensional data.  
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The model's performance varied across users and keyboard combinations. In many cases, testing on the 

same user and same keyboard yielded higher inlier detection rates - for e.g., 78.15% for User 4 and 73.23% 

for User 5 on the laptop keyboard, and 74.04% for User 2 and 81.25% for User 5 on the mechanical keyboard. 

Some cross-keyboard evaluations resulted in a higher inlier percentage as well. For example, when trained 

on laptop and tested on mechanical, the model achieved 72.54% for User 1, 72.31% for User 2, and 79.93% 

for User 5; similarly, when trained on mechanical and tested on laptop, it achieved 77.85% for User 2, 74.24% 

for User 4, and 74.15% for User 5. To further assess user distinctiveness, cross-user evaluations were 

conducted by training one user and testing on others across both keyboards. A summary of inlier detection 

results across these scenarios is provided in Tables 6 to Table 9. The cross-user inlier detection percentages 

were consistently high, ranging from 50% to 81.25%, with most values exceeding 60% as shown in Tables 

7 and 8. This indicates that the One-Class SVM (OC-SVM) was generally unable to distinguish between 

different users during testing, often recognizing unfamiliar typing patterns as similar to the training profile.  

 

Table 6. Cross-User Inlier Detection Rates Using OC-SVM for Laptop Session 1 for training and Laptop 

Session 2 for testing. 

Train/Test User 1 L-2 User 2 L-2 User 3 L-2  User 4 L-2 User 5 L-2 

User 1 L-1 65.66 53.09 71.74 70.38 69.84 

User 2 L-1 60.33 69.70 61.26 67.45 59.69 

User 3 L-1  59.62 71.00 55.23 62.13 60.61 

User 4 L-1  78.86 74.59 82.22 78.15 83.69 

User 5 L-1 69.43 78.50 78.41 71.35 73.23 

 

 

Figure 1 illustrates the OC-SVM decision boundary trained on User 5’s laptop typing data (User 5 L 1) 

and tested on User 4’s typing on the same keyboard type (User 4 L 2). A large set of test samples fall within 

the decision boundary, indicating that the model frequently misclassified User 4's typing similar to User 5’s 

typing. The outcome reflects poor user separability and opens further experimentation with OC-SVM for 

cross-user keystrokes anomaly detection studies. 
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Figure 1. Data points for “User 5 L 1” vs “User 4 L 2”. More than 70% of the testing data falls in the 

same region as the original distribution. 

 

Table 7. Cross-User Inlier Detection Rates Using OC-SVM for Laptop Session 2 for training and Mechanical 

Session 2 for testing. 

Train/Test User 1 M-2 User 2 M-2 User 3 M-2 User 4 M-2 User 5 M-2 

User 1 L-2 72.54 58.82 68.44 56.43 76.31 

User 2 L-2 66.80 72.31 61.69 63.36 64.47 

User 3 L-2 58.60 73.01 55.93 50.49 61.51 

User 4 L-2 74.59 73.35 75.35 68.31 77.96 

User 5 L-2 77.04 82.00 77.96 62.87 79.93 
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Table 8. Cross-User Inlier Detection Rates Using OC-SVM for Mechanical Session 2 for training and Laptop 

Session 1 for testing. 

Train/Test User 1 L-1 User 2 L-1 User 3 L-1  User 4 L-1 User 5 L-1 

User 1 M-2 67.54 64.83 67.30 61.16 73.23 

User 2 M-2 55.47 77.85 67.93 62.13 69.23 

User 3 M-2  63.39 62.54 57.46 59.70 64.61 

User 4 M-2  61.13 57.98 62.85 74.24 74.15 

User 5 M-2 61.50 77.85 65.39 52.91 74.15 

 

 

Table 9. Cross-User Inlier Detection Rates Using OC-SVM for Mechanical Session 1 for training and 

Mechanical Session 2 for testing. 

Train/Test User 1 M-2 User 2 M-2 User 3 M-2  User 4 M-2 User 5 M-2 

User 1 M-1 62.29 62.92 63.05 57.42 81.25 

User 2 M-1 71.31 74.04 67.45 53.46 71.05 

User 3 M-1  59.83 68.85 60.33 60.39 55.26 

User 4 M-1  66.39 60.55 62.37 68.31 75.98 

User 5 M-1 69.67 74.39 71.86 51.98 81.25 

 

Figure 2 shows the decision boundary of OC-SVM trained on User 1's mechanical training keyboard data 

(User 1 M 1) and tested on User 2's testing features on the same keyboard type (User 2 M 2). While some 

test samples are correctly rejected as outliers, a significant portion of User 2's data still falls within the 

training boundary, resulting in false acceptance. This highlights the model’s limited ability to distinguish 

between users in cross-user evaluations. 
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Figure 2. Data points for “User 1 M 1” vs “User 2 M 2”. More than 60% of the testing data is still 

recognized as belonging to the original distribution. 

 

5.2 Random Forest    

The Random Forest (RF) classification algorithm was programmed in Python using the Random Forest 

Classifier and related functions from the ‘scikit-learn’1 libraries and implemented with the parameters listed 

in Table 10. 

Table 10. Random Forest parameters used in the python implementation for analysis 

Parameter Value Comment 

n_estimators 500 Number of trees in the forest 

max_depth 10 Maximum depth of trees 

min_samples_split 5 Minimum samples required to split a node 

min_samples_leaf 2 Minimum samples required at a leaf node 

max_features sqrt Number of features to consider for best split 

bootstrap true Whether to use bootstrap samples 

 

Results in terms of overall Accuracy and F1 scores for simulated typing sessions on laptop and 

mechanical keyboards are summarized in Table 11 and 12 respectively. The Accuracy threshold to decide 

whether the two distributions, i.e. simulated users, are different, was set to 0.7 (A > 0.70). We classify 

sessions with a score A < 0.70 as coming from the same user since the two distributions are too similar to be 

 
1 https://scikit-learn.org/ 
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separated consistently. Same agent pairs are highlighted in bold, while misclassified pairs (e.g. different 

agents recognized as the same agent) are highlighted in bold and italic. 

 

Table 11. Comparison of simulated sessions across laptop keyboards. A = Accuracy. F0 = F1-score for Class 

0, F1 = F1-score for Class 1. A > 0.70 indicates the second file can be classified as typed from a different 

user.  

Laptop U1-1 U1-2 U2-1 U2-2 U3-1 U3-2 U4-1 U4-2 U5-1 U5-2 

User1-

1 

 A:0.66 

F0:0.65 

F1:0.67 

A:0.88 

F0:0.87 

F1:0.88 

A:0.90 

F0:0.89 

F1:0.90 

A:0.71 

F0:0.68 

F1:0.74 

A:0.78 

F0:0.75 

F1:0.80 

A:0.84 

F0:0.86 

F1:0.81 

A:0.76 

F0:0.78 

F1:0.73 

A: 0.77 

F0:0.75 

F1:0.80 

A:0.79 

F0:0.75 

F1:0.82 

User2-

1 

A:0.86 

F0:0.87 

F1:0.85 

A:0.91 

F0:0.91 

F1:0.90 

 A:0.67 

F0:0.64 

F1:0.69 

A:0.86 

F0:0.87 

F1:0.86 

A:0.92 

F0:0.92 

F1:0.92 

A:0.91 

F0:0.93 

F1:0.90 

A:0.92 

F0:0.94 

F1:0.90 

A: 0.93 

F0:0.93 

F1:0.94 

A:0.93 

F0:0.93 

F1:0.94 

User3-

1 

A:0.74 

F0:0.77 

F1:0.72 

A:0.79 

F0:0.81 

F1:0.76 

A:0.89 

F0:0.88 

F1:0.89 

A:0.91 

F0:0.91 

F1:0.91 

 A:0.64 

F0:0.64 

F1:0.63 

A:0.93 

F0:0.94 

F1:0.9 

A:0.87 

F0:0.90 

F1:0.83 

A: 0.63 

F0:0.58 

F1:0.67 

A: 0.56 

F0:0.59 

F1:0.53 

User4-

1 

A:0.79 

F0:0.76 

F1:0.81 

A:0.80 

F0:0.77 

F1:0.82 

A:0.91 

F0:0.92 

F1:0.92 

A:0.93 

F0:0.91 

F1:0.94 

A:0.84 

F0:0.82 

F1:0.86 

A:0.94 

F0:0.92 

F1:0.95 

 A:0.67  

F0:0.68 

F1:0.65 

A:0.91 

F0:0.89 

F1:0.92 

A:0.93 

F0:0.92 

F1:0.95 

User5-

1 

A:0.86 

F0:0.87 

F1:0.84 

A:0.81 

F0:0.84 

F1:0.78 

A:0.94 

F0:0.95 

F1:0.94 

A:0.93 

F0:0.93 

F1:0.93 

A:0.63 

F0:0.64 

F1:0.63 

A:0.69 

F0:0.71 

F1:0.69 

A:0.92 

F0:0.93 

F1:0.89 

A:0.98 

F0:0.98 

F1:0.97 

 A:0.56 

F0:0.60 

F1:0.52 

 

Table 12. Comparison of simulated sessions across mechanical keyboards. A = Accuracy. F0 = F1-score for 

Class 0, F1 = F1-score for Class 1. A > 0.70 indicates the second file can be classified as typed from a different 

user.  

 

Sessions simulating users typing on different keyboards were all recognized as different with A > 0.9, 

including those from the same agent. 

Mech

anical 

U1-1 U1-2 U2-1 U2-2 U3-1 U3-2 U4-1 U4-2 U5-1 U5-2 

User1

-1 

 A:0.68 

F0:0.68 

F1:0.67 

A:0.91 

F0:0.91 

F1:0.92 

A:0.92 

F0:0.92 

F1:0.93 

A:0.72 

F0:0.72 

F1:0.71 

A:0.80 

F0:0.78 

F1:0.82 

A:0.78 

F0:0.81 

F1:0.73 

A:0.83 

F0:0.85 

F1:0.81 

A:0.79 

F0:0.75 

F1:0.82 

A:0.77 

F0:0.72 

F1:0.80 

User2

-1 

A:0.92 

F0:0.92 

F1:0.91 

A:0.87 

F0:0.88 

F1:0.86 

 A:0.67 

F0:0.67 

F1:0.66 

A:0.91 

F0:0.90 

F1:0.91 

A:0.92 

F0:0.92 

F1:0.92 

A:0.95 

F0:0.95 

F1:0.94 

A:0.90 

F0:0.91 

F1:0.88 

A:0.91 

F0:0.90 

F1:0.92 

A:0.90 

F0:0.90 

F1:0.91 

User3

-1 

A:0.84 

F0:0.86 

F1:0.81 

A:0.81 

F0:0.83 

F1:0.78 

A:0.89 

F0:0.90 

F1:0.88 

A:0.90 

F0:0.91 

F1:0.89 

 A:0.66 

F0:0.67 

F1:0.66 

A:0.87 

F0:0.89 

F1:0.84 

A:0.90 

F0:0.92 

F1:0.88 

A:0.71 

F0:0.70 

F1:0.74 

A:0.72 

F0: 0.72 

F1:0.72 

User4

-1 

A:0.79 

F0:0.77 

F1:0.81 

A:0.76 

F0:0.76 

F1:0.75 

A:0.97 

F0:0.97 

F1:0.98 

A:0.95 

F0:0.96 

F1:0.91 

A:0.86 

F0:0.83 

F1: 0.88 

A:0.91 

F0: 0.89 

F1:0.92 

 A:0.62 

F0:0.60 

F1:0.63 

A:0.93 

F0:0.91 

F1:0.94 

A:0.91 

F0:0.90 

F1: 0.93 

User5

-1 

A:0.82 

F0:0.85 

F1:0.79 

A:0.86 

F0:0.87 

F1:0.83 

A:0.91 

F0:0.91 

F1:0.90 

A:0.92 

F0:0.92 

F1:0.91 

A:0.70 

F0:0.73 

F1:0.65 

A:0.63 

F0:0.66 

F1:0.59 

A:0.88 

F0:0.90 

F1:0.84 

A:0.92 

F0:0.93 

F1:0.90 

 A:0.65 

F0:0.67 

F1:0.62 
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In Figure 3, 4 and 5 we have a detailed summary of a few analysis including a graphical representation 

of p values, the relative importance of each feature and a comparison of the distribution for both sessions 

under analysis for the most important feature.  

 

Figure 3. Analysis for User 1-1 vs User 1-2 sessions on a laptop keyboard, which are correctly recognized 

by the Random Forest analysis as belonging to the same user. Average Dwell time was identified as the most 

important feature. 
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Figure 4. Analysis for User 1-1 vs User 3-2 sessions on a laptop keyboard, which are correctly recognized 

by the Random Forest analysis as belonging to the different user. Average Flight time was identified as the 

most important feature. 
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Figure 5. Analysis for User 3-1 vs User 5-2 sessions on a laptop keyboard, which are wrongly identified 

by the Random Forest as belonging to the same user. Standard deviation of the dwell time was identified as 

the most important feature and, despite three features still scoring low p values, the overlapping of error rate 

and standard deviation of the flight time are enough to confuse the recognition system.  

 

6. Discussion 

The OC-SVM model was able to show some promising results with some same-user cases (User 4, User 

5, User 2), same session scenarios, but its performance across different users remained inconsistent. In fact, 

the OC-SVM did not consistently distinguish between different users and, even though the KS tests indicated 

statistical differences across the user typing behaviors, the OC-SVM’s performance in cross-user data 

samples indicated limited differences and separability. In cross-user evaluations, the model yielded relatively 

high inlier detection rates (often exceeding 60%). Distributions like those plotted in Figures 1 and 2 were 

common across the simulations and indicated that test samples from other users frequently fell within the 

learned decision boundary, hence misclassifying a large portion of the test data as inliers and producing false 

negatives. These misclassifications highlight the spread of user distributions across the PCA space, 

suggesting that the first two components may not retain sufficient discriminatory information between users. 

These results highlight a limitation of the OC-SVM approach in its current configuration and suggest the 
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need for either more informative features, additional PCA components, or stricter model hyperparameters 

(e.g., increased) to improve user separability. 

On the other hand, the RF model demonstrated strong performance in differentiating between distinct 

simulated users, with accuracy scores (A) predominantly exceeding 0.7 for comparisons involving different 

users. For instance, comparisons such as U1-1 vs. U2-1 (A=0.88 for laptop, A=0.91 for mechanical) and U3-

1 vs. U4-1 (A=0.93 for laptop, A=0.87 for mechanical) consistently achieved high accuracy and F1 scores. 

This suggests that the model reliably identifies typing sessions from different agents, regardless of the 

keyboard type. The model also successfully recognized typing sessions from the same simulated user, as 

indicated by accuracy scores below the 0.7 threshold (e.g., U1-1 vs. U1-2: A=0.66 for laptop, A=0.68 for 

mechanical). These results align with the expectation that sessions from the same user would exhibit similar 

typing dynamics, making them harder to distinguish. 

Some cases were more challenging, though, and there were a few instances of misclassification where 

sessions from different users were incorrectly identified as coming from the same user instead. “User 3”, in 

particular, was the most difficult profile to analyze. Nonetheless, it is interesting to point out how, on the 

laptop keyboard simulation, all four cross tests between User 3 and User 5 yielded misclassification results 

while, on the mechanical keyboard-based simulation, only one was misclassified (U5-1 vs U3-2) while the 

others still managed to pass the Accuracy threshold. These cases suggest that it can indeed be possible for 

certain users to exhibit overlapping typing patterns, potentially due to similar typing styles or other 

confounding factors underscoring the need for further refinement of the model or additional features to 

improve discrimination in such scenarios and avoid resulting false negatives. 

To assess the model overall performance, it is also important to evaluate the F1 scores for both Class 0 

and Class 1. These were generally balanced, indicating that the model does not exhibit significant bias toward 

either class. This balance is crucial for ensuring reliable performance in real-world applications, such as user 

identification, where both false positives and false negatives carry important consequences. 

While results were consistent across keyboards, with the model showing no significant degradation in 

accuracy or F1 scores between the two types, the model was unable to recognize the same simulated user 

across different keyboards, showing the ABM model was not able to generalize a unique typing style across 

different conditions. Interestingly, this is consistent with the findings reported in [12] affirming that only 

skilled users are consistent across different keyboard types, and only one training profile may be needed for 

them. On the contrary, average or not-so-skilled users may instead showcase significant differences in their 

typing behaviors and individual profiles may be needed depending on the specific equipment used.  

 

7. Conclusion 

The ability to conduct ABM simulations allowed us to test different models quickly and effectively, 

producing results that, while mixed, were very interesting for gaining relevant insights into the design and 

implementation of systems for continuous user authentication. For example, the Random Forest (RF) 

analysis of simulated sessions on laptop and mechanical keyboards confirmed the viability of free-text 

keyboard dynamics as a biometric identifier. The findings highlight the algorithm's effectiveness in 

distinguishing between different users while also revealing some challenges in certain scenarios where the 

misclassification cases highlighted the need for further research, possibly incorporating additional features, 

such as specific error patterns, to enhance the model's discriminatory power. However, the inability to 

recognize users across devices underscores a critical limitation for real-world deployment, where users often 

switch keyboards as they may work across offices and setups, meaning that specific user’s profiles for each 

setup may be needed to possibly reduce the number of false positives.   
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