
ar
X

iv
:2

50
5.

04
84

3v
1

 [
cs

.A
I]

 7
 M

ay
 2

02
5

Large Language Models are
Autonomous Cyber Defenders

Sebastián R. Castro, Roberto Campbell, Nancy Lau, Octavio Villalobos, Jiaqi Duan, Alvaro A. Cardenas
University of California, Santa Cruz

Abstract—Fast and effective incident response is essential to
prevent adversarial cyberattacks. Autonomous Cyber Defense
(ACD) aims to automate incident response through Artificial
Intelligence (AI) agents that plan and execute actions. Most
ACD approaches focus on single-agent scenarios and leverage
Reinforcement Learning (RL). However, ACD RL-trained agents
depend on costly training, and their reasoning is not always
explainable or transferable. Large Language Models (LLMs)
can address these concerns by providing explainable actions
in general security contexts. Researchers have explored LLM
agents for ACD but have not evaluated them on multi-agent
scenarios or interacting with other ACD agents. In this paper, we
show the first study on how LLMs perform in multi-agent ACD
environments by proposing a new integration to the CybORG
CAGE 4 environment. We examine how ACD teams of LLM
and RL agents can interact by proposing a novel communication
protocol. Our results highlight the strengths and weaknesses of
LLMs and RL and help us identify promising research directions
to create, train, and deploy future teams of ACD agents.

Index Terms—Autonomous Cyber Defense, Incident Response,
Large Language Models, Reinforcement Learning, AI Agents.

I. INTRODUCTION

Cyber threats are evolving rapidly, becoming more complex,
frequent, and costly for organizations. A report by Checkpoint
shows that attacks are at all-time highs, with average weekly
cyberattacks per organization at 1800 compared to 800 in Q3
of 2024 [1].

Traditionally, responding to intrusion alerts requires expert
human operators who analyze incidents and recover from
attacks. As the sophistication of cyberattacks increases [2],
manually managing security responses becomes increasingly
challenging. To address this issue, automation is needed not
only to detect but also to respond to attacks in real-time.
Autonomous Cyber Defense (ACD) approaches this using AI
agents to detect and mitigate attacks.

ACD agents have been primarily based on Reinforcement
Learning (RL). Still, their applications to real-world systems
are constrained by (1) limited explainability, (2) limited trans-
ferability to other environments (different attackers or different
networks), and (3) training challenges due to complex realistic
environment creation and RL sample inefficiency [3].

To address the limitations of RL-based approaches, we study
whether advances in LLMs can disrupt them. First, LLMs
can provide explanations for their decisions. Second, they
have been trained with data from diverse threat models and
networks. Third, we can use pre-trained models (without the
need to develop a gym environment).

Proceedings to appear: IEEE CAI 2025 Adaptive CyberDefense Workshop.

Before LLM agents can be used for ACD, we need to
answer several research questions including; How can we train,
design, and deploy teams of ACD agents? How do LLMs
perform as ACD agents compared to RL agents? Can LLMs
address the limitations of RL for ACD by providing a practical,
human-interpretable reasoning of agent strategy? Can LLM
ACD agents make sound decisions and generalize against
different adversaries? What challenges must LLMs address
towards ACD?

To answer these questions, we propose the following con-
tributions:

1) LLM+RL ACD Framework: We develop the first study
on how LLMs perform in multi-agent ACD environ-
ments by creating a framework to integrate LLMs into
CybORG [4], the most prominent simulation environ-
ment for ACD and RL. We make our framework open
source 1.

2) ACD Multi-agent Communication Protocol: We intro-
duce and evaluate the first communication protocol for
diverse ACD agents (RL and LLM) in our experiments.

3) Evaluation: We evaluate RL and LLM agents against a
diverse adversary set, discuss LLM advantages over RL
to improve ACD agents. We identify promising direc-
tions for future research, including model and prompt
tuning, and goal-based planning.

II. BACKGROUND

ACD focuses on creating AI agents that can respond to
incidents fast and accurately [5], [6]. Typically, these agents
are trained in simulated environments called ACD gyms.
These gyms provide a testbed that recreates a simulated
network where agents interact with the environment and learn
to defend against attackers [7]. Well-designed gyms offer a
variety of scenarios to effectively explore state spaces [8],
ensure robustness, and simulate realistic scenarios [7], [9].
Examples of gyms include CyberBattleSim [10], NASimEmu
[11], and FARLAND [12]. However, these frameworks are not
all publicly accessible, actively maintained, or are limited to
to particular adversarial scenarios.

One of the most relevant ACD environments is CybORG
[4], the foundation for the CAGE Challenges [13]. CybORG
offers a high-level abstraction for diverse adversary emu-
lation scenarios (e.g., drone and enterprise networks). The
CAGE Challenge is an annual Technical Cooperation Program

1https://github.com/r4wd3r/llms-are-acd

https://github.com/r4wd3r/llms-are-acd
https://arxiv.org/abs/2505.04843v1

(TTCP) competition to advance the state-of-the-art ACD.
Using the CybORG gym, participants in this challenge submit
defender agents (blue agents) to remove attackers (red agents)
and maximize availability for network users while protecting
critical services.

CAGE challenges evaluate community submissions based
on the highest joint reward obtained in the simulations. Pre-
vious submissions to CAGE challenges use RL agents. Its
latest edition, the CAGE 4 Challenge, includes a multi-agent
environment with limited communication between defensive
agents, partial network observability, and a shared reward
between agents. In a submission for this challenge, Singh et
al. [14] proposed a hierarchical RL approach by decomposing
the action space into a meta-policy and three sub-policies.
Their results show that a strong expert meta-policy can out-
perform a joint Proximal Policy Optimization (PPO) policy
[15]. In another submission, the Cybermonic team proposed
KEEP, a variant of PPO with Graph Convolutional Networks
(GCN) [16]. KEEP structures observations as heterogeneous
graphs of entities (e.g., files, hosts, routers, and ports) where
agent actions alter these graphs. At the time of writing,
Cybermonic’s KEEP is the only open-source solution for the
CAGE 4 competition’s leaderboard. So, we use it as a baseline
for our evaluations.

Recent work has also started exploring LLM agents for
ACD. Rigaki et al. [17] propose an LLM-based ReACT
attacker for the NetSecGame environment, and Yan et al. [18]
proposed a closed-source trained RL agent that provides action
feedback to an LLM implemented for the CAGE 1 challenge.
Yet these approaches have only been implemented in single-
agent simulations and have not explored LLM decision making
compared with RL. In this paper, we introduce the first
integration of both LLM and RL agents on the multi-agent
CAGE 4 challenge and propose approaches to analyze LLM
reasoning for action selection. We think these steps will take us
closer to understanding how generative AI can help us design
future ACD agents for realistic incident response.

A. CybORG CAGE 4

The CAGE 4 Challenge simulates a Multi-Agent Reinforce-
ment Learning (MARL) scenario with a team of defender
agents (blue agents) protecting a network from adversaries
(red agents) while maintaining service availability for users
(green agents). As seen in Fig. 1, the network is divided into
zones that are protected by the blue agents as follows: two
deployed networks (A and B), each containing restricted and
operational zones; a headquarters network with public access,
admin and office zones; and a contractor network where the
red agent starts. Green agents can use all the systems in the
network, but they have a slight probability of giving the red
agent access to a random host by falling victim to a ”phishing
attack”. Each agent has a set of actions defined in Table I.

CAGE 4 progresses through 3 phases (Planning, Mission A,
Mission B), each with different communication constraints
between network zones. Specific operational zones become
isolated in active missions, while restricted zones have limited

HQ Network/Public Services

Deployed Network A

Contractor Network

Blue Agent 0 Network:
Restricted Zone A

Blue Agent 1 Network:
Operational Zone A

Deployed Network B

Blue Agent 2 Network:
Restricted Zone B

Blue Agent 3 Network:
Operational Zone B

Red Agent

Network:
Public Access Zone

Network:
Admin Network

Network:
Office Network

Blue Agent 4

Fig. 1: CAGE 4 Challenge Architecture

Blue Red Green

Monitor Discover LocalWork
Analyse Exploit AccessService
DeployDecoy PrivilegeEscalate
Remove DegradeService
Restore Impact
AllowTrafficZone/BlockTrafficZone Withdraw

TABLE I: List of actions per agent

connectivity. Blue agents must adapt their strategies to chang-
ing policies, such as blocking unauthorized connections while
ensuring that critical services remain available to legitimate
users (green agents).

The reward function for blue agents is designed to receive
penalties if green agents cannot use the resources. This can
happen due to defensive actions such as blocking a network
or restoring a host (which takes the host out of operation for
a while) or when red agents impact their systems.

III. LLM AGENTS FOR AUTONOMOUS CYBER DEFENSE

We created an LLM-based agent for CybORG CAGE 4 [4].
To our knowledge, this is the first multi-agent implementation
of an LLM interacting with other ACD agent types, including
RL ones. In this section, we discuss the challenges and our
design.

A. LLM Adapter Framework

To understand how LLMs perform as ACD agents in sim-
ulated/emulated scenarios, we created an extensible adapter
framework to integrate LLMs into CybORG. Its develop-
ment imposes challenges in terms of performance and cost
optimization. During its test phase, CybORG is designed to
run with offline post-training RL policies. Thus, the action
selection is notably faster than LLMs inference time. In our
experiments, LLM inference for action selection with an online
small model (i.e., GPT-4o-mini [19]) was in average 150 times
slower than action selection through a post-training RL policy.
To overcome this, when developing initial versions of our
adapter, we relied on light offline models (e.g., TinyLLaMA)
and GPU optimizations, removing costs for paid models and
added overhead due to network latency and inference time.

Fig. 2 shows our LLM adapter and its workflow for action
selection using these models. We highlight our LLM adapter
and how it interacts with the agents when the CAGE 4
simulation starts. The figure shows the scenario where one

CAGE4 Simulation

Blue Agent
(LLM Policy)

Blue Agents
(RL Policy)

Backend

OpenAI

DeepSeek

Local ModelsFormatter Agent AdapterRedGreen Blue

Default Policies Default Policies Default Policies

Custom Policies RL Policies
LLM Policy

Communication
Protocol Policy

LLM Agent
Adapter

Model
Hyperparameters

Prompt

2. Send observation

3. Send NL observation

4. Send Prompt + NL Obs

5. Recv LLM Response

6. Send LLM Response

7. Send action

Red agent
(Finite State Policies)

CybORG

Workflow

1. Start CAGE4 simulation with specified policies and network environment
2. Agent sends observation to Formatter to convert to NL
3. Formatter sends NL observation to Agent Adapter
4. Agent Adapter creates message with Prompt and NL Observation
 to the specified model and sends it to the Backend
5. Backend sends message (Prompt + NL observation) to model and
 receives response. Sends LLM Response to Agent Adapter.
6. Agent Adapter receives LLM response and sends it to Formatter
7. Formatter extracts action for LLM blue agent, which executes
 it in the CAGE4 environment.

1. Simulate with policies

Green Agent
(Finite State Policy)

Network Setup
(CAGE4 EnterpriseNetwork)

Blue Agents Communication Protocol Policy

Fig. 2: Overview of our LLM Adapter Framework

blue agent is LLM-driven and the others are RL-driven. As
shown, we add custom policies for both red and blue agents,
we include an RL policy based on KEEP GNN for training
and testing [16], we add a novel communication protocol for
the blue agents, and propose a flexible LLM adapter to interact
with diverse LLMs for action selection.

B. Observation and Response Formatting

The network state must be formatted in natural language to
use an LLM for network defense. Since CybORG is designed
for RL, it uses nonhuman-readable observation vectors. To
overcome this situation, we built a custom wrapper that
adapted CybORG’s step observations by parsing them into
natural language with the relevant information that each agent
sees about their network.

Table II shows our observation format per step, which
includes the name of the Agent, Mission Phase, the Last
Action executed in previous steps and its Status result, the
Communication Vectors broadcasted by blue agents, and a
list of events under Suspicious Activity Detected.

Field Value

Agent <agent_name>

Mission Phase <value>

Last Action <action><host/subnet>

Last Action Status <TRUE/FALSE/UNKNOWN/IN_PROGRESS>

Communication Vectors <list:binary_array>

Suspicious Activity Detected <list:string>

TABLE II: Formatted Observation for LLM agent

To extract the actions of the blue agent, we format the
response of the LLM using a dictionary structure as seen in
Fig. 3. If the LLM responds in an unexpected format that our
action parser does not understand, we log an invalid action,
and the agent will Sleep for that step. This helps us track when
the model is not following the response structure we provided
in the prompt.

C. Communication Protocol between Defender Agents
Since blue agents only have visibility in their assigned

subnetwork (see Fig. 1), they need to exchange messages with
each other to share threat information. CAGE 4 allows each
agent to broadcast a 1-byte vector per step called Communi-
cation Vector, yet its format is undefined. We use this 8-bit
protocol and propose a realistic multi-agent communication
strategy.

Our idea is to summarize the current security level of a
network based on each agent’s observation and its current
state (free or busy). This abstracts the network’s general status
without substantially increasing the observation dimensions.
We propose that each agent should broadcast a message to the
others notifying them of (1) suspicious activity detected from
another agent’s network, (2) the security level of its current
network, and (3) its availability for running actions.

For remote activity detection (1), we assign each agent
with one single bit since each agent can access only its own
observation but can associate the origin of malicious activities
from other networks. For the current security level (2), we
provide more granularity by assigning 2 bits because the
agent’s observation contains more dimensions that describe
the network security status in more detail. We assign only one
bit for availability (3) since the agent can only have free and
busy states.

Considering that defender agents are identified from 0 to 4,
each blue agent i in the network creates their Communication
Vector as follows:

• Bits 0 to 4: Set j bit to one if malicious action has been
detected by i from an agent’s j network. Otherwise, zero.

• Bits 5 and 6: Level of compromise that agent i identified
in its subnetwork: 00 indicates no compromise, 01
netscan/remote exploit detected, 10 user-level compro-
mise in a host, 11 admin-level compromise in a host.

• Bit 7: Set to one if agent i is waiting for an action to
finish the execution. Otherwise 0.

This protocol can be extended to more detailed summaries
depending on capacity and observation features. We believe

this approach provides sufficient information to agents to
improve their action selection process, especially when agents
notify a high-risk security level and other agents detect con-
nections from their network.

D. Prompting
We aim to evaluate how LLMs act and reason in realistic

incident response situations instead of maximizing the CAGE
4 reward function. Therefore, we design prompts that give the
LLM a realistic view of a network and avoid mentioning that
this as a game, a simulation, or having a reward function. In-
stead, we provide the agents the role of a ”cybersecurity expert
defending a network” with formatting rules and examples to
guide the reasoning process. The detailed prompt is in our
repository.

To evaluate the best prompting strategy that is realistic and
minimizes penalties, we use a default CAGE 4 Finite State red
agent, we set only one blue agent as an LLM-driven agent and
the rest with a default CAGE 4 defender strategy. We start with
an initial Instructional Prompting [20] where we only describe
the task and the answer format. Then, we consider the Few-
Shot strategy where, on top of the task description, we add
examples of possible correct answers, which reduces invalid
actions. Finally, we explore Role Prompting [21] by assigning
a ”cybersecurity expert” role to the agent.

Model Role Fewshot Instruct Instruct

GPT-3.5 Turbo -4307 -4349.5 -4620
4o-mini -3810 -3219 -2888
o1-mini -3022 -3243.5 -3890.5

TABLE III: Reward-based prompt tuning with OpenAI Mod-
els. Results are average rewards for blue agent.

As seen in Table III, on average, adding a role to the prompt
with few-shot examples may increase the reward with different
experiments. Therefore, we decide to use a prompt with a role
and few-shot examples.

DESCRIPTION <main task>
You are an expert in cyber security defending an enterprise
network... Respond with ONLY ONE action from `AVAILABLE ACTIONS`
and one reason for your decision

AVAILABLE ACTIONS <List of CAGE4 defender actions>
EXAMPLE RESPONSES <Example responses>
ENVIRONMENT RULES <CAGE4 setup env, network and phases>
COMMVECTOR FORMAT <Commvector Strategy Description>
OBSERVATION STRUCTURE <Observation format description>

System Prompt

OBSERVATION <formatted observation of current episode>
Agent: <agent_name>
Mission Phase: <value>
Last Action/Last Action Status <action:host/subnet><status>
Communication Vectors: <list:binary_array>
Suspicious Activity Detected <list:events>

User Prompt

{"action": "<action host/subnet>", "reason":"<reasoning>"}

LLM Response

Fig. 3: Conversation Workflow for LLM Adapter

Figure 3 shows an overview of the interaction between
the agent and the LLM. We follow the conventions of sys-
tem/developer and user messaging for LLMs [19], [22], [23].

We set the System Prompt to describe the task, response
validation, environment rules, and examples. The User Prompt
contains the formatted observation per step. Note that the
System Prompt remains consistent during all episodes, whereas
the User Prompt might change due to the agent’s observations.

We fine-tuned the prompt to include clear and concise
definitions of each action, including response examples. This
is necessary since action names can have multiple meanings,
which can mislead the reasoning models. For instance, when
we did not define the Remove action in our experiments,
the LLM assumed it disconnected the host instead of erasing
malicious processes.

Our extensible CybORG adapter for LLMs works with
the latest online and offline models. For online versions, our
current adapter supports OpenAI [19] and DeepSeek [22]
through OpenRouter [24]. For offline models, it supports
open-source models from HuggingFace [25], including Meta’s
LLaMA [23] family of models.

IV. EVALUATION

In this section, we describe our experiments and their re-
sults. We first describe the methodology and the considerations
for the environment setup. Then, we discuss in detail our
experiment results and our analysis.

Environment and models: We use the CybORG version
included in the CAGE 4 challenge repository [13] including
our custom LLM adapter. We use the latest OpenAI models
[19] GPT-4o-mini, o1-mini and o3-mini, and the the latest
DeepSeek model: DeepSeek-V3 [22]. When running our ex-
periments, we focus on light models to reduce inference time
and performance overhead. For all our models, we set the
temperature to 1 to avoid limitations of context dependency
from the prompt since it is intentionally not optimized for the
CAGE 4 scenario. To keep track of the experiment variables,
including reward, standard deviation, and action selection, we
use the platform Wandb (Weights and Biases) [26].

LLM Messaging: Since CybORG runs hundreds of steps
per episode, and each agent must select an action per step,
we use a single system/user message to interact with the LLM
to reduce token consumption. As seen in Fig. 3, we use one
system prompt that contains the task to run. We then include
the observation of the current step as a user message. The
LLM-driven agents send a combination of these two messages
per step and receive a response in JSON format containing an
action and a reason justifying its decision.

Scenarios: For all our experiments, we run 2 episodes of
the game with 500 steps each. Each agent (red, blue, and
green) selects an action in each step, and CybORG simulates
its execution. We use the default CybORG green agent policy
EnterpriseGreenAgent while customizing red and blue. In our
experiments, we consider four scenarios for blue agents:

• No blue agents: All blue agents Sleep every turn. Only
red and green agents act. This serves as a baseline for
our evaluation.

• All blue agents as LLM: All blue agents are LLM-
driven. They all use the same LLM and the messaging

strategy with the same system prompt. Their user may
vary for each agent’s observation and include the agent’s
name to avoid confusing the LLM.

• All blue agents as RL: All blue agents are RL-based.
We train them by using our own implementation of the
communication vector and Cybermonic’s KEEP GNN
PPO model [16], which was among the best submissions
for the CAGE 4 competition [13]. This submission did
not implement a Communication Vector.

• 1 LLM and 4 RL blue agents: To balance the RL and
LLM distribution, we protect 3 subnets with 1 LLM agent
(i.e., blue agent 4) and 4 subnets with 4 RL (KEEP)
agents.

Red agent variants: CybORG includes limited, finite-
state red agents. To reduce the reality gap and diversify the
adversary simulation, we implemented the red agent strategies
for multi-agent reinforcement learning by Singh et al. [14]. In
particular, we include the following:

• AggressiveFSMAgent: Employs an aggressive service
discovery action, rapidly scanning the network to identify
potential targets. While this approach can quickly map out
network services, it increases the likelihood of detection
by defensive measures.

• StealthyFSMAgent: Utilizes stealthy service discovery
actions, aiming to remain undetected while gathering
information about the network. This method is slower
but reduces the risk of triggering security alerts.

• ImpactFSMAgent: Prioritizes action that impacts critical
services, focusing on disrupting essential network func-
tions. By targeting high-value assets, the ImpactFSMA-
gent aims to maximize operational disruption.

• DegradeServiceFSMAgent: Prioritizes action that de-
grades services used by the green agents. This can cause
the GreenAccessService action to fail.

A. Experiments

Now we discuss our experiments and analyze our results
in terms of the Performance, Reward, Reasoning for Action
Selection. Then, we compare the reasoning between an RL
and an LLM agent.

Performance: Regarding general LLM performance, our
results show that GPT-4o-mini had the more balanced tradeoff
between running time and reward. In Fig. 4, we show the
results of our 1LLM+4RL experiment with multiple models.
Among the tested models, o3-mini achieved the highest reward
with the slowest execution time, followed by the bigger o1-
mini model, which had a similar execution time. Deepseek-V3
showed the lowest performance in terms of the CAGE 4 reward
function but was faster than o1 and o3. Finally, GPT-4o-mini
had the quickest execution time and but low reward.

Regarding running time, we compared the experiments
where all agents were either RL-driven or all were LLM-
driven. We did not consider the training phase for the RL-
driven agents nor the prompt engineering for task description
and observation formatting for LLM-driven ones. On average,
our experiments were 45.2 seconds long when all blue agents

were RL-driven and 4704.6 seconds when all of them were
LLM-driven with the fastest model we tested (i.e., GPT-
4o-mini). This means that, without considering the time-
consuming training phase for RL agents, RL-driven agents
were approximately 104.1 times faster than the LLM-driven
agents when performing action selection.

Fig. 4: Reward and running-time per model. 1 LLM-driven
blue agent and others RL against default FiniteState red agent.

Reward

R
ed

 A
ge

nt
 S

tr
at

eg
y

FiniteState

AggressiveFSM

StealthyFSM

ImpactFSM

DegradeServiceFSM

Fig. 5: Reward for each red agent strategy against LLM blue
agents and RL blue agents.

Reward: The reward function for CAGE 4 is the cumulative
joint reward for blue agents, based on penalties for service
unavailability. From our experiments with 1LLM+4RL blue
agents (Fig. 4), o3-mini received the least penalties. GPT-4o-
mini had the lowest reward from the OpenAI models, but
its execution time was the fastest of all the tested models.
Since it is the most balanced, we compare GPT-4o-mini against
different network agents and the KEEP RL approach.

For CAGE 4, the KEEP RL approach surpassed the all
LLM-driven approach with GPT-4o-mini. Fig. 5 shows the re-
ward value with different agents when there are no defenders,
when all are LLM-driven (GPT-4o-mini), and when all are RL-
driven (KEEP). Based on the reward average µ and standard
deviation σ, an ALL RL team of defenders performs better
against diverse red agents (µ = −493, σ = 95.9) compared to
an ALL LLM team (µ = −2547.2, σ = 498.8). We see that the
diversity of red agents did not substantially affect the reward
for RL agents, contrary to the LLM-driven team of agents,
which performed marginally better against one adversary (i.e.,
StealthyFSM).

The reward function definition is based on penalties on
availability and assumes the attacker is always trying to
deny the service to users. However, this is unrealistic since

attackers compromise systems without affecting availability
[1]. For instance, with the ImpactFSM red agent, the LLM
Agent performed worse compared to not having any defenders
due to the attacker’s goal (i.e., prioritize privilege escalation
and impact a few compromised hosts). For this scenario,
we believe the reward function did not correctly reflect the
security level of the network since the adversary had high
privileges on the network.

Reasoning for Action Selection: We also want to under-
stand the reasoning behind the LLM agent’s action selection.
In particular, we compare the RL and LLM agents’ action
selection under similar scenarios. We first analyze the experi-
ments involving an LLM with the best reward and performance
(1 LLM + 4 RL agents, o3-mini). We analyze one episode of
500 steps and remove the initialization step sample.

We generate clusters of similar reasons associated with their
action to analyze them systematically. We use OpenAI’s text-
embedding-3-large model to convert textual data into numeri-
cal embeddings, followed by a PCA-enhanced K-Means [27]
clustering strategy. Due to the high dimensionality of our data
(499 samples with 3072 features each), DBSCAN [28] meth-
ods were not optimal for our analysis so we used the Elbow
Method [29] and the Silhouette Score [30] and determined
K = 4 as the optimal number of clusters. The application
of PCA [31] helps us reduce the dimensionality to three
components, facilitating its visualization and interpretability.
Fig. 6 shows the generated clusters.

50
40

30
20

10
0

10
20

30
30

20
10

0
10

20
30

40

20

10

0

10

20

30

40

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Centroids

Fig. 6: Action Selection Clustering by Reason

The clusters and data points (DP) associated with the 499
samples are described in Table IV. We structured the action-
reason pairs within each cluster into a dictionary format, then
used GPT-4o to summarize each cluster and asking the model
to ”Summarize the main theme of the following security-
related cluster in one sentence”. We also manually analyzed
each cluster to provide a custom description for each.

From a security standpoint, the reasoning for each cluster
behind the action selection demonstrates a structured defensive
strategy by the LLM-driven agent. Cluster 0 demonstrates a
proactive defensive approach by executing analysis and de-
ception actions when no suspicious activity has been detected,
and the agent is available. Cluster 1 focuses on actions after

Cluster GPT-4o Summary Manual Summary

Cluster 0 (202 DP) Proactively deploying decoys in
various network zones is recom-
mended as a precautionary mea-
sure to identify and lure poten-
tial red activity early, ensuring
detection without impacting ser-
vice availability amidst ongoing
analysis and absence of current
suspicious activity.

DeployDecoy as a preventative
measure and run Analyse to de-
tect malicious activity when no
alerts are observed.

Cluster 1 (103 DP) The main theme of the security-
related text cluster is the need
for further analysis of repeated
INFO-level suspicious connec-
tions on various hosts and
servers within a network to de-
termine the presence and ex-
tent of potential ’red’ activity or
compromise.

Analyse and DeployDecoy when
perceiving recurrent INFO-level
connections; Remove as a pre-
ventative measure when other
blue agents notify malicious ac-
tivity.

Cluster 2 (93 DP) The main theme of the text is
that multiple failed decoy de-
ployments in the office network
indicate potential configuration
issues or undetected threats, ne-
cessitating further analysis and
reattempts to ensure robust de-
tection and early warning of any
red activity.

Attempts to run DeployDecoy or
Analyse have failed. Run Anal-
yse to detect configuration is-
sues or malicious activity caus-
ing the failure.

Cluster 3 (101 DP) The main theme of the text is
understanding the importance of
continuous monitoring and anal-
ysis of decoy deployments in
progress to ensure their correct
setup and effectiveness in de-
tecting any early red agent activ-
ities while maintaining system
security and integrity.

DeployDecoy action is in
progress; then, run Analyse to
validate the decoy is deployed
correctly and reveal early red
activity.

TABLE IV: Comparison of GPT-4o Summaries with Manual
Summaries

receiving alerts and proactively attempts to remove malicious
processes if another agent notifies of malicious activity. Cluster
2 shows how the agent tries to understand the failure caused
by a previous action by analyzing it. Cluster 3 summarizes
the agent’s attempts to guarantee the correct deployment of
techniques.

Action Count

Fig. 7: Action Count Comparison for RL and LLM Agents

RL and LLM Action Selection Comparison: We compare
the action selection process for an LLM-driven agent with the
best reward (o3-mini) vs. a KEEP RL-driven agent against the
default CAGE 4 attacker. Fig. 7 shows the summary of the
action selection for one episode for each agent with a similar

scenario.
The KEEP RL agent follows a passive decision-making

strategy, relying heavily on Monitor, Sleep, and Remove ac-
tions. It frequently transitions into Sleep, with a high proba-
bility of returning to this state from nearly every other action.
When responding to potential threats, the agent prioritizes
analyzing hosts for suspicious activity before committing to
action. Actions like Restore and BlockZoneTraffic appear to
be last-resort measures, likely due to their significant impact
on availability. By avoiding aggressive interventions unless
necessary, the agent ensures smooth network traffic flow and
prevents disruptions.

On the other hand, the LLM agent follows a deception and
analysis approach, prioritizing the deployment of decoys while
avoiding Restore actions. After analyzing the reasoning log,
we noticed that the LLM-driven agent decided to use Remove
and BlockTrafficZone when other agents notified a possible
compromise through their communication vector. In situations
where a user-level compromise was detected elsewhere in
the network, the agent prioritizes less disruptive actions like
DeployDecoy or Analyse over BlockTrafficZone. The agent
avoids the execution of the Restore action, possibly because it
might cause availability issues for the green users. Our analysis
showed that in some cases, the reason for action selection was
prone to hallucinations; we saw multiple instances in which the
agent misinterpreted the communication vector for an agent
(i.e., assumed it was from agent 4 when it was from agent 3)
or changed the definition of the action.

Here, we describe some of the hypotheses we have that
justify the different action selection results between RL and
LLM agents:

• According to the CAGE 4 documentation [13], the Mon-
itor action is run automatically every turn, and calling
it has no effect. Therefore, even though the RL agents
selected it, we did not define it as an option in our prompt.

• To maintain the agent active, we did not define the Sleep
action on the prompt. Including the Sleep definition and
its use cases when the agent is busy could improve the
performance of the LLM agents when actions are in
progress.

• Our definition of Restore and BlockTraffic zone may have
induced the LLM to avoid them to preserve availability.
We described how these actions could disrupt user ser-
vice. Therefore, adjusting the definitions of actions could
diminish the availability of penalties.

• To evaluate the inherent LLM reasoning capabilities for
ACD, our prompt does not include a strategy with explicit
action decision rules nor situation-specific guidance. We
could improve the performance of the LLM ACD agent
with guidance based on the RL reasoning.

As we see, both strategies reflect security reasoning. Despite
receiving more penalties than the RL agent, we see that the
blue LLM-driven agent could effectively communicate with
other RL agents, parse their observations, and reason with a
security standpoint without any previous training aside from
the provided context in its prompt.

V. DISCUSSION

Now, we discuss some limitations of LLMs interacting
in multi-agent environments with other ACDs and discuss
possible venues to address them.

Environment Compatibility: The CAGE 4 environment is
designed for RL training. In general, it is not fair to ask a
general purpose LLM to select an action without the context
an RL-trained approach will have. We are synthesizing the
high-dimensional observations of an RL defender for an LLM
to reason about it, so an LLM will not observe and interpret
the impact of its decisions as well as an RL-driven agent.
Moreover, we are conditioning the success of the LLM agent
to the reward function designed for the gym.

Hallucinations: Despite describing the simulation rules in
our prompt, the LLM agents were prone to hallucinations,
including misreading the communication vector observations,
compromise levels, and security events. Increasing inference
time and fine-tuning models could address this issue with
an efficiency drop for action selection. LLM reasoning can
improve fast with context-dependent prompting strategies such
as Analogical Reasoning [32]. Still, it can be prone to halluci-
nations when the model has not been trained with contextually
relevant exemplars.

Prompt Definition: Since our goal is to provide the agent
with a realistic context, we design the prompt without spec-
ifying the reward policy or providing reward values to the
LLM. Adjusting the prompt by describing the reward function
used by the simulation and adding context to the simu-
lation constraints (e.g., action execution steps, reward per
step/episode, red agents strategies) will increase the expected
reward. Still, it will impact the realism of the agent’s reasoning
for real security scenarios. The prompt can be improved to
describe each action in more detail to avoid confusion, as the
ones identified with the reason clusters 2 and 3. However,
augmenting the length of the prompt will also increase the
token consumption.

VI. CONCLUSIONS

We integrate a novel approach to integrate LLM reason-
ing for defender agents for CybORG’s CAGE 4, a realistic
ACD multi-agent environment based on RL. We evaluated
them against diverse red agent strategies and compared the
LLM defending reasoning against pre-trained RL in different
scenarios. Our experiments show that LLM ACD agents can
communicate effectively when they share a communication
protocol. Together, they can protect a network with a security
reasoning similar to a team of security operators.

Despite the discussed LLM limitations, we believe ACD
gyms would benefit from LLM reasoning for defenders to
bridge their reality gap for transferability and explainability.
LLMs can also facilitate changing defensive strategies without
retraining by prompt tuning. Defenders can benefit from LLM
integrations to RL ACD gyms to train realistic ACD agents’
security reasoning without the risks of deploying them on real
networks. Our LLM implementation for CybORG facilitates
the transferability of optimal policies to other ACD and real

environments. This could be done through prompt tuning to
reproduce optimal pre-trained RL policies.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the
Air Force Office of Scientific Research under award number
FA9550-24-1-0015, and by the National Center for Trans-
portation Cybersecurity and Resiliency (TraCR) USDOT Grant
#69A3552344812. For this research, we also collaborated with
OpenAI through the Cybergrant program, using their API
credits and funding to advance our research in AI-driven
cybersecurity solutions.

REFERENCES

[1] CheckPoint, “A Closer Look at Q3 2024:
75% Surge in Cyber Attacks Worldwide,”
2024. [Online]. Available: https://blog.checkpoint.com/research/
a-closer-look-at-q3-2024-75-surge-in-cyber-attacks-worldwide/

[2] S. R. Castro and A. A. Cárdenas, “Ghost in the SAM: Stealthy,
robust, and privileged persistence through invisible accounts,” in
Proceedings of the 2024 Workshop on Research on Offensive and
Defensive Techniques in the Context of Man At The End (MATE)
Attacks, ser. CheckMATE ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 59–72. [Online]. Available:
https://doi.org/10.1145/3689934.3690839

[3] M. Wolk, A. Applebaum, C. Dennler, P. Dwyer, M. Moskowitz,
H. Nguyen, N. Nichols, N. Park, P. Rachwalski, F. Rau, and
A. Webster, “Beyond cage: Investigating generalization of learned
autonomous network defense policies,” 2022. [Online]. Available:
https://arxiv.org/abs/2211.15557

[4] M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and D. Marriott,
“CybORG: A Gym for the Development of Autonomous Cyber Agents,”
Aug. 2021.

[5] A. Kott, “Autonomous intelligent cyber-defense agent: Introduction and
overview,” 2023. [Online]. Available: https://arxiv.org/abs/2304.12408

[6] P. Theron, “Alternative architectural approaches,” in Autonomous In-
telligent Cyber Defense Agent (AICA): A Comprehensive Guide, ser.
Advances in Information Security, A. Kott, Ed. Springer International
Publishing, 2023, vol. 87, pp. 17–46.

[7] J. Loevenich, E. Adler, T. Huerten, and R. Rigolin Ferreira Lopes,
“Design and evaluation of an autonomous cyber defence agent
using drl and an augmented llm,” 2024, available at SSRN: https:
//ssrn.com/abstract=5076836 or http://dx.doi.org/10.2139/ssrn.5076836.
[Online]. Available: https://ssrn.com/abstract=5076836

[8] G. Palmer, C. Parry, D. J. B. Harrold, and C. Willis, “Deep
reinforcement learning for autonomous cyber defence: A survey,” 2024.
[Online]. Available: https://arxiv.org/abs/2310.07745

[9] A. Lohn, A. Knack, A. Burke, and K. Jackson, “Autonomous cyber
defence: a roadmap from lab to ops,” Center for Emerging Technology
and Security, 2023.

[10] C. Seifert, M. Betser, W. Blum, J. Bono, K. Farris, E. Goren, J. Grana,
K. Holsheimer, B. Marken, J. Neil, N. Nichols, J. Parikh, and H. Wei,
“Cyberbattlesim,” https://github.com/microsoft/cyberbattlesim, 2021.

[11] J. Janisch, T. Pevný, and V. Lisý, “Nasimemu: Network attack simulator
& emulator for training agents generalizing to novel scenarios,” in
Computer Security. ESORICS 2023 International Workshops: CPS4CIP,
ADIoT, SecAssure, WASP, TAURIN, PriST-AI, and SECAI, The Hague,
The Netherlands, September 25–29, 2023, Revised Selected Papers, Part
II. Berlin, Heidelberg: Springer-Verlag, 2024, p. 589–608. [Online].
Available: https://doi.org/10.1007/978-3-031-54129-2 35

[12] A. Molina-Markham, C. Miniter, B. Powell, and A. Ridley, “Network
environment design for autonomous cyberdefense,” https://arxiv.org/abs/
2103.07583, 2021.

[13] TTCP Working Group, “Ttcp cage challenge 4,” https://github.com/
cage-challenge/cage-challenge-4, 2023.

[14] A. V. Singh, E. Rathbun, E. Graham, L. Oakley, S. Boboila, A. Oprea,
and P. Chin, “Hierarchical Multi-agent Reinforcement Learning for
Cyber Network Defense,” https://arxiv.org/abs/2410.17351, Oct. 2024.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[16] Cybermonic, “KEEP: A GNN-based PPO
Model for MARL,” 2025, available:
https://github.com/cybermonic/cage-4-submission.
[Online]. Available: https://github.com/cybermonic/cage-4-submission

[17] M. Rigaki, O. Lukáš, C. Catania, and S. Garcia, “Out of the cage: How
stochastic parrots win in cyber security environments,” in Proceedings of
the 16th International Conference on Agents and Artificial Intelligence.
SCITEPRESS - Science and Technology Publications, 2024, p. 774–781.
[Online]. Available: http://dx.doi.org/10.5220/0012391800003636

[18] Y. Yan, Y. Zhang, and K. Huang, “Depending on yourself
when you should: Mentoring llm with rl agents to become
the master in cybersecurity games,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.17674

[19] OpenAI, “OpenAI Models and Research,” 2024, available:
https://openai.com. [Online]. Available: https://openai.com

[20] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language Models are Few-Shot Learners,” in Advances
in Neural Information Processing Systems, vol. 33. Curran Associates,
Inc., 2020, pp. 1877–1901.

[21] A. Kong, S. Zhao, H. Chen, Q. Li, Y. Qin, R. Sun, X. Zhou, E. Wang,
and X. Dong, “Better Zero-Shot Reasoning with Role-Play Prompting,”
in Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers). Mexico City, Mexico: Association
for Computational Linguistics, 2024, pp. 4099–4113.

[22] DeepSeek, “DeepSeek: Advanced AI Language Models and Enterprise
Solutions,” 2025, available: https://deepseek.ai. [Online].
Available: https://deepseek.ai

[23] Meta AI, “LLaMA: Open and Efficient Foundation Language Models,”
2023, available: https://ai.meta.com/llama. [Online].
Available: https://ai.meta.com/llama

[24] OpenRouter, Inc., “OpenRouter: A Unified Interface for Large
Language Models,” 2025, available: https://openrouter.ai.
[Online]. Available: https://openrouter.ai

[25] Hugging Face, “Hugging Face: Democratizing Machine Learning,”
2024, available: https://huggingface.co. [Online]. Available:
https://huggingface.co

[26] Weights & Biases, “Weights & Biases: Machine Learning Experiment
Tracking,” 2025, available: https://wandb.ai/site/. [Online].
Available: https://wandb.ai/site/

[27] P. Berkhin, “K-means clustering,” in Encyclopedia of Machine
Learning, C. Sammut and G. I. Webb, Eds. Springer, 2011, pp. 563–
564. [Online]. Available: https://link.springer.com/referenceworkentry/
10.1007/978-0-387-30164-8 425

[28] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based al-
gorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, ser. KDD’96. AAAI Press, 1996, p.
226–231.

[29] H. Humaira and R. Rasyidah, “Determining the appropiate cluster
number using elbow method for k-means algorithm,” in Proceedings of
the 2nd Workshop on Multidisciplinary and Applications (WMA), 2020,
pp. 1–8.

[30] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and
Applied Mathematics, vol. 20, pp. 53–65, 1987. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0377042787901257

[31] W. J. Weber and J. C. Morris, “Kinetic models of sorption processes,”
Journal of the Sanitary Engineering Division, vol. 89, no. 2, pp. 31–
60, 1963. [Online]. Available: https://www.sciencedirect.com/science/
article/abs/pii/009830049390090R

[32] M. Yasunaga, X. Chen, Y. Li, P. Pasupat, J. Leskovec, P. Liang, E. H.
Chi, and D. Zhou, “Large Language Models as Analogical Reasoners,”
https://arxiv.org/abs/2310.01714, Mar. 2024.

https://blog.checkpoint.com/research/a-closer-look-at-q3-2024-75-surge-in-cyber-attacks-worldwide/
https://blog.checkpoint.com/research/a-closer-look-at-q3-2024-75-surge-in-cyber-attacks-worldwide/
https://doi.org/10.1145/3689934.3690839
https://arxiv.org/abs/2211.15557
https://arxiv.org/abs/2304.12408
https://ssrn.com/abstract=5076836
https://ssrn.com/abstract=5076836
http://dx.doi.org/10.2139/ssrn.5076836
https://ssrn.com/abstract=5076836
https://arxiv.org/abs/2310.07745
https://github.com/microsoft/cyberbattlesim
https://doi.org/10.1007/978-3-031-54129-2_35
https://arxiv.org/abs/2103.07583
https://arxiv.org/abs/2103.07583
https://github.com/cage-challenge/cage-challenge-4
https://github.com/cage-challenge/cage-challenge-4
https://arxiv.org/abs/2410.17351
http://arxiv.org/abs/1707.06347
https://github.com/cybermonic/cage-4-submission
http://dx.doi.org/10.5220/0012391800003636
https://arxiv.org/abs/2403.17674
https://openai.com
https://deepseek.ai
https://ai.meta.com/llama
https://openrouter.ai
https://huggingface.co
https://wandb.ai/site/
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_425
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_425
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/abs/pii/009830049390090R
https://www.sciencedirect.com/science/article/abs/pii/009830049390090R
https://arxiv.org/abs/2310.01714

	Introduction
	Background
	CybORG CAGE 4

	LLM Agents for Autonomous Cyber Defense
	LLM Adapter Framework
	Observation and Response Formatting
	Communication Protocol between Defender Agents
	Prompting

	Evaluation
	Experiments

	Discussion
	Conclusions
	References

