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Abstract—Large Language Models (LLMs) are increasingly
integrated into consumer and enterprise applications. Despite
their capabilities, they remain susceptible to adversarial attacks
such as prompt injection and jailbreaks that override alignment
safeguards. This paper provides a systematic investigation of
jailbreak strategies against various state-of-the-art LLMs. We
categorize over 1,400 adversarial prompts, analyze their success
against GPT-4, Claude 2, Mistral 7B, and Vicuna, and examine
their generalizability and construction logic. We further propose
layered mitigation strategies and recommend a hybrid red-
teaming and sandboxing approach for robust LLM security.

Index Terms—Large Language Models, Prompt Injection,
Jailbreak, Adversarial Prompts, AI Security, Red Teaming, LLM
Safety

I. INTRODUCTION

The field of artificial intelligence has experienced a
paradigm shift with the emergence of large language mod-
els (LLMs). These systems have transitioned from research
prototypes to core components of production-grade systems,
shaping industries from finance and law to healthcare and
entertainment. LLMs are praised for their fluency, contextual
reasoning, and ability to generate human-like responses. How-
ever, these capabilities also expose them to a new class of
security threats. As LLMs are increasingly used in decision-
making systems, chatbots, content moderation tools, and vir-
tual agents, the potential for abuse through adversarial inputs
grows exponentially.

Large Language Models (LLMs) have fundamentally trans-
formed the landscape of natural language processing, en-
abling applications in content generation, customer service,
coding assistance, legal analysis, and more. With models like
OpenAI’s GPT-4 [17], Anthropic’s Claude 2 [18], Meta’s
LLaMA [50], and open-source offerings such as Vicuna [51]
and Mistral 7B [52], LLMs now influence millions of users
globally. However, this ubiquity introduces significant security
concerns, particularly surrounding adversarial prompt engi-
neering techniques that manipulate model behavior. These
techniques, often referred to as prompt injection or jailbreaks,
are capable of bypassing built-in safety filters and elicit outputs
that violate platform policies, such as generating hate speech,
misinformation, or malicious code [1] [2] [4].

Prompt injection represents a new class of vulnerabilities
unique to LLMs. Unlike traditional software vulnerabilities

rooted in memory safety or access control flaws, prompt
injection leverages the interpretive nature of natural language
inputs [5] [6]. This paper explores the mechanisms and success
of prompt injection across a range of LLMs, documenting the
systemic weaknesses that attackers exploit [2] [7] [8].
Contributions of this work include:

• A comprehensive taxonomy of jailbreak prompts catego-
rized by attack vector [3] [6]

• Empirical evaluation of prompt effectiveness across
closed and open-source LLMs [4] [10] [11]

• Scenario-specific attack success analysis in domains such
as law, politics, and security [1] [9] [13]

• Discussion of community-based jailbreak dissemination
and its parallels to exploit markets [14] [15] [27]

• Detailed recommendations for mitigating prompt injec-
tion vulnerabilities [7] [12] [16]

II. BACKGROUND

A. Overview of Large Language Models

Large Language Models operate using billions of parameters
and are trained on diverse datasets encompassing text from
books, articles, websites, and code. Notable models such as
GPT-4, Claude 2, and Mistral 7B build on earlier architectures
but have significantly improved reasoning, factual recall, and
stylistic flexibility. The ability of these models to learn from
few examples, a phenomenon called in-context learning, con-
tributes to their versatility but also to their vulnerability. When
exposed to crafted prompts, these models can be misled into
misaligned behavior.

LLMs are built on the transformer architecture introduced
by Vaswani et al. in 2017 [47]. Recent advancements include
autoregressive pretraining on massive corpora followed by
supervised finetuning and alignment through Reinforcement
Learning from Human Feedback (RLHF) [34].

B. Alignment and Safety Mechanisms

To prevent harmful output, LLMs rely on several safety
mechanisms, including instruction tuning [28], reinforcement
from rejection sampling (RLAIF), pre- and post-output mod-
eration filters [16], and system prompts embedding safety
guidelines [12] [33].
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C. Prompt Injection Explained

Prompt injection is the LLM analogue to command in-
jection in traditional computing [1] [3] [6]. Common attack
vectors include role-based conditioning, instruction hijacking,
obfuscated encoding, and multi-turn manipulation [2] [5]
[7]. Studies have shown that these attacks are reproducible,
transferable, and can circumvent various filtering methods [3]
[10] [14].

D. Related Work

Zhang et al. introduced a foundational taxonomy categoriz-
ing prompt injections [3]. Shen et al. aggregated 1,405 jail-
break prompts across 131 forums, revealing a 95% success rate
in some cases [48]. Ding et al. developed ReNeLLM, which
improved jailbreak performance by 40% [49]. Anthropic’s
many-shot prompt conditioning decreased attack success rates
significantly [18]. OWASP’s Top 10 identified prompt injection
as the most critical vulnerability [16].
Other notable contributions include:

• Liu et al. on empirical jailbreak strategies [2]
• Yi et al. on indirect prompt injection detection [4]
• Suo et al. on defense techniques derived from attack

insights [9]
• Chen et al. on preference-aligned defenses [11]
• William on bypass detection and Zhao et al. unified

defenses [15] [13]
• Apurv et al. on threat modeling for red-teaming LLMs

[53]

III. METHODOLOGY

This section outlines our approach to measuring LLM vul-
nerabilities with an emphasis on reproducibility and diversity.
Our methodology integrates qualitative red teaming insights
with quantitative metrics collected through structured prompt
testing. All experiments are governed by ethical red-teaming
principles. In addition to evaluating raw performance, we also
tracked behavioral consistency and model self-awareness to
adversarial stimuli. This dual-pronged framework allows us to
detect subtle failure patterns beyond binary success metrics.

This section builds on emerging adversarial benchmarks
such as JailbreakBench and RedBench, while drawing defense
insights from frameworks like PromptShield [21] and Palisade
[10]. We employed Sentence-BERT embeddings [46], GPT-
based moderation strategies [17], and adversarial annotation
heuristics from prior poisoning literature [22] to validate
prompt behavior and misalignment tendencies.

A. Dataset Construction

We curated a dataset of 1,400+ adversarial prompts from:
• Public jailbreak repositories (e.g., GitHub, JailbreakChat)
• LLM exploit forums on Reddit and Discord
• Prior academic corpora, including JailbreakBench [3] and

PromptBench [6]
Each prompt was manually validated, categorized into attack
types (roleplay, logic traps, encoding, multi-turn), and anno-
tated for content sensitivity (e.g., political, legal, explicit).

B. Target Models

We tested prompts on four models:

• GPT-4 (OpenAI, March 2024 snapshot)
• Claude 2 (Anthropic, July 2023 API version)
• Mistral 7B (open-weight model via Hugging Face Infer-

ence)
• Vicuna-13B (via local HF inference server)

Model versions were frozen to ensure reproducibility. All
inference was performed using controlled prompts, with the
system context initialized per the model’s recommended safety
guidelines.

C. Evaluation Metrics

We used the following primary metrics:

• Attack Success Rate (ASR): Whether the model produced
an output violating its intended guardrails

• Prompt Generalizability: How often a prompt successful
on one model succeeded on another

• Time-to-Bypass: Average minutes taken to successfully
induce misaligned behavior

• Failure Mode Classification: Taxonomy of observed re-
sponse behaviors (e.g., partial refusals, misleading re-
sponses)

D. Automation Pipeline

We developed a semi-automated red-teaming script using
the LangChain framework. Prompts were injected via API
calls (OpenAI, Claude) and local model inference (Mistral,
Vicuna). Output was scored using a hybrid method:

• Keyword spotting (for trigger words)
• GPT-based meta-evaluation of harmfulness [17]
• Sentence-BERT semantic distance from refusal templates

[46]

E. Defense Framework Evaluation

To simulate real-world defenses, we layered external filter-
ing strategies on outputs:

• PromptShield ruleset [21]
• Palisade detection framework [10]
• Signed-Prompt verification logic [41]

We then retested a subset of successful jailbreaks against
these defenses to estimate defense coverage and bypass rate.

IV. RESULTS

The evaluation of prompt injection efficacy was conducted
using a rigorous experimental design.

The figures, included in the appendix or digital supple-
ment, visually illustrate comparative vulnerability trends. For
instance, Figure 1 shows that GPT-4 exhibited the highest
attack success rate. These results highlight not only model-
specific weaknesses but also the effectiveness of specific
prompt engineering tactics.



A. Model Susceptibility Analysis

Among the tested models, GPT-4 demonstrated the highest
vulnerability with an ASR of 87.2%, confirming its powerful
but permissive instruction-following nature. While Claude 2
performed slightly better in filtering, it still succumbed to
82.5% of attacks. Open models such as Mistral 7B (71.3%)
and Vicuna (69.4%) revealed significant weaknesses, likely
due to the absence of robust fine-tuned safety layers.

Interestingly, GPT-4 and Claude 2 shared structural simi-
larities in moderation behavior-exhibiting soft refusals before
ultimately yielding to adversarial logic, especially in legal,
creative, or conditional prompts. These nuances suggest that
model scale and alignment tuning complexity both contribute
to attack surface depth.

In terms of generalizability, jailbreak prompts that suc-
ceeded on GPT-4 transferred effectively to Claude 2 and
Vicuna in 64.1% and 59.7% of cases respectively.

Average time to generate a successful jailbreak was under
17 minutes for GPT-4, while Mistral required approximately
21.7 minutes on average. Our experiments evaluated over
1,400 adversarial prompts across four LLMs: GPT-4, Claude
2, Mistral 7B, and Vicuna. We analyze results along several
dimensions, including model susceptibility, attack technique
efficacy, prompt behavior patterns, and cross-model general-
ization.

Model ASR (%) Generalizability (%) Time-to-Bypass (min)

GPT-4 87.2 64.1 16.2
Claude 2 82.5 59.7 17.4
Mistral 7B 71.3 52.4 21.7
Vicuna 69.4 50.6 20.9

TABLE I: Model-wise Evaluation Metrics

B. Attack Category Performance

Prompt injections exploiting roleplay dynamics (e.g., im-
personation of fictional characters or hypothetical scenarios)
achieved the highest ASR (89.6%). These prompts often
bypass filters by deflecting responsibility away from the model
(e.g., “as an AI in a movie script. . . ”).

Logic trap attacks (ASR: 81.4%) exploit conditional struc-
tures and moral dilemmas to elicit disallowed content. En-
coding tricks (e.g., base64 or zero-width characters) achieved
76.2% ASR by evading keyword-based filtering mechanisms.
While multi-turn dialogues yielded slightly lower effective-
ness (68.7%), they often succeeded in long-form tasks where
context buildup gradually weakened safety enforcement.

Fig. 1: Model-wise Evaluation Metrics

Fig. 2: Attack Category Effectiveness

C. Scenario-Specific Vulnerabilities

Targeted domains revealed non-uniform vulnerabilities:

• Political content: Prompts involving campaign advice or
fake lobbying succeeded 85.5% of the time.



• Legal content: Prompts framed as courtroom hypotheti-
cals or legal simulations yielded 79.4% ASR.

• Explicit content: Erotic roleplay prompts were especially
effective in jailbreak forums, with a 76.1% success rate.

• Malicious code: Although many models blocked direct
malware requests, evasion through obfuscation or “edu-
cational context” resulted in 58.3% success, especially on
Vicuna and Mistral.

Fig. 3: Scenario-specific Success Rates

D. Prompt Transferability
The Prompt Transferability Matrix reveals the high portabil-

ity of successful prompts. GPT-4-derived prompts transferred
with 64.1% success to Claude 2 and over 50% to Mistral and
Vicuna. This finding underscores the systemic nature of these
vulnerabilities across architectures.

Notably, Claude 2 showed higher resistance to Vicuna-
origin prompts, indicating some directional asymmetry in gen-
eralization. This is likely due to the more fine-grained safety
alignment mechanisms employed in commercial models.

Fig. 4: Prompt Transferability Matrix

E. Failure Modes and Detection Gaps
We observed five dominant failure patterns:

• Partial Refusals (34%): Prompts initially triggered refusal
but continued to output harmful content mid-response.

• Hidden Compliance (22%): The model appeared to refuse
but provided veiled or coded information.

• No Output (18%): Complete refusal, often due to prompt
being too direct or malformed.

• Misleading Responses (15%): Factually incorrect or eva-
sive answers.

This taxonomy provides a baseline for future behavioral
alignment benchmarks.

Failure Mode Frequency (%) Common Triggers

Partial Refusal 34% Hypotheticals, satire
Hidden Compliance 22% Roleplay and analogy

No Output 18% Base64, multi-turn traps
Misleading Response 15% Legal/political scenarios

TABLE II: Prompt Failure Modes

F. Prompt Length and Obfuscation

Success rates were highest for prompts in the 101–150
token range (80.3%), suggesting a sweet spot for encoding
deception while maintaining clarity. Prompts exceeding 150
tokens saw a slight dip in success-likely due to verbosity or
token truncation.

Encoded or obfuscated prompts, such as those using zero-
width spaces, emojis, or alternate encodings, had lower de-
tection rates (21.3%) but retained strong ASR (76.2%). These
findings emphasize the need for semantic-level input sanitiza-
tion.

Fig. 5: Prompt Length vs. Average Success Rate



Fig. 6: Stealthiness vs. Detection Likelihood and ASR

V. DISCUSSION

The implications of these findings extend beyond prompt
injection. They expose the fragility of current safety align-
ment mechanisms under realistic threat conditions. Our work
reinforces the need for adversarial testing as a continuous
validation tool in LLM deployment pipelines. Prompt injection
represents not only a technical challenge but a policy and
governance issue as well. Failure to address these risks may
erode trust in AI applications and hinder broader societal
adoption.

These results validate the claim that current LLM safety
mechanisms are insufficiently robust against prompt injection,
especially indirect or obfuscated attacks [1] [4] [5]. The
findings reinforce prior studies that describe alignment filters
as semantically shallow and largely reliant on static refusal
templates [11] [16].

The ease with which these attacks transferred across models
points to shared architectural vulnerabilities or training data
biases [3] [6] [18]. Moreover, roleplay and scenario-based
prompts exploit not only the model’s capacity for creativity
but its inability to judge moral context effectively [2] [9] [14].

Online communities (e.g., Reddit, GitHub, Discord) operate
as informal exploit databases, with prompt variations evolving
similarly to malware strains in the cybersecurity domain.

We echo ethical concerns raised in recent works regarding
open publication of jailbreaks [19] [20] and advocate for
controlled disclosures and bug bounty mechanisms tailored for
LLM developers [15] [24].

VI. MITIGATION STRATEGIES

Effective defenses against prompt injection must evolve
alongside adversarial creativity. Static filtering or keyword-
based systems offer only limited protection. Our defense
recommendations blend technical solutions with operational
safeguards. We emphasize the importance of feedback loops
between model developers and red teams, and call for public
benchmarks that simulate dynamic adversarial scenarios.
Defenses should be evaluated under live attack settings, with
evolving attacker strategies embedded in the test suite.

Our mitigation strategy draws inspiration from work
such as PromptShield [21], Palisade [10], and UniGuardian
[13]. We recommend:

• System prompt hardening using context anchoring [14]
• Behavior-based anomaly detection during multi-turn dia-

logues [8] [11] [18]
• Input sanitization via Signed-Prompt techniques [41]
• Embedding adversarial decoys and rejection-conditioned

training [8] [12] [42]
• Session-level analytics to detect evasion attempts [11]
These methods, when applied in combination, form a

layered defense that significantly reduces the likelihood of
successful jailbreak attempts while preserving usability.

VII. LIMITATIONS AND FUTURE WORK

Despite its comprehensive scope, this study remains limited
by the availability of open model weights and API constraints.
Prompt injection tactics may evolve in ways not covered in our
dataset. Additionally, prompt interpretation may differ across
cultures and languages, warranting multilingual and socio-
contextual extensions. Future work will aim to create shared
evaluation platforms, akin to CVE databases, where new
prompt exploits and defense bypasses can be collaboratively
tracked and neutralized.

While our findings are grounded in robust experimenta-
tion, limitations remain. Our evaluation used static model
checkpoints and may not account for updates or real-time
moderation layers applied in production APIs [3] [17]. Ad-
ditionally, cultural and linguistic diversity in prompts remains
underrepresented [25] [35].

We recommend future work focus on multilingual ad-
versarial prompt corpora [25], evaluation of plug-in-enabled
LLMs [44], and adversarial training using open red-teaming
platforms [21] [8] [13]. The development of explainable safety
filters and real-time flagging systems could greatly aid in
closing the alignment gap [11] [18] [41].

VIII. CONCLUSION

This research affirms the growing consensus that prompt
injection is not an edge-case anomaly but a fundamental issue
in current-generation LLMs. The findings not only highlight
the technical inadequacies of present alignment systems but
also illuminate the adversarial creativity of the prompt engi-
neering community. Addressing these challenges will require
collaborative frameworks that blend secure NLP research,
adversarial testing, and governance. We envision a future
where LLMs are audited as rigorously as software, with red
teaming treated as a core development practice.

Prompt injection remains an open frontier in LLM safety.
Through comprehensive evaluation and a synthesis of recent
research, we provide compelling evidence that jailbreak tech-
niques are both transferable and evolving. Our work aligns
with the concerns raised in recent surveys [1] [2] [13] [31],
and supports the call for stronger multi-layered defenses,
proactive red teaming, and coordinated disclosure practices in
AI development [19] [23] [24].
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