
Safeguard-by-Development: A Privacy-Enhanced Development Paradigm for
Multi-Agent Collaboration Systems

Jian Cui1, Zichuan Li1, Luyi Xing1,2, Xiaojing Liao1,2

Indiana University Bloomington1

University of Illinois Urbana-Champaign2

Abstract
Multi-agent collaboration systems (MACS), powered by

large language models (LLMs), solve complex problems effi-
ciently by leveraging each agent’s specialization and commu-
nication between agents. However, the inherent exchange of
information between agents and their interaction with exter-
nal environments, such as LLM, tools, and users, inevitably
introduces significant risks of sensitive data leakage, includ-
ing vulnerabilities to attacks like prompt injection and re-
connaissance. Existing MACS fail to enable privacy controls,
making it challenging to manage sensitive information se-
curely. In this paper, we take the first step to address the
MACS’s data leakage threat at the system development level
through a privacy-enhanced development paradigm, Maris.
Maris enables rigorous message flow control within MACS
by embedding reference monitors into key multi-agent con-
versation components. We implemented Maris as an integral
part of AutoGen, a widely adopted open-source multi-agent
development framework. Then we evaluate Maris for its effec-
tiveness and performance overhead on privacy-critical MACS
use cases, including healthcare, supply chain optimization,
and personalized recommendation system. The result shows
that Maris achieves satisfactory effectiveness, performance
overhead and practicability for adoption.

1 Introduction

Large language model (LLM) agents, which are autonomous
systems powered by LLMs, possess the ability to reason and
create a plan for a problem, execute the plan with the help of
a set of tools, and dynamically adapt to new observations and
adjust their plans. In recent years, the ecosystem of agentic AI
development frameworks (e.g., AutoGen, CrewAI, LangChain,
llama-index) have expanded rapidly, providing support for
the development of multi-agent collaboration systems (or
MACS). These frameworks facilitate the creation of multi-
ple agents that can interact and collaborate with one another
to accomplish complex tasks. Particularly, MACS offers sev-
eral compelling advantages. By distributing responsibilities

across different specialized LLM agents, these systems can
tackle large-scale, complex problems more efficiently than
single-agent systems. Moreover, the ability of agents to com-
municate and share knowledge fosters innovation, enabling
the system to dynamically respond to evolving conditions or
user requirements. These systems have sparked a wave of in-
novation, enabling cutting-edge applications in fields ranging
from healthcare [48] and finance [24,47] to entertainment [36]
and communications [17].

Despite the growing demand, existing implementations of
MACS lack comprehensive privacy safeguards for protect-
ing sensitive information during agent interaction, as well as
the agent and environment (e.g., LLM, external tools, human
input) interaction. These concerns stem from the inherent
capabilities of LLM agents to process and exchange inter-
mediate steps, data, and insights, any inadvertent leak can
compromise privacy. Notably, sensitive data disclosure is al-
ready recognized as one of the OWASP Top 10 vulnerabilities
for LLM-integrated applications [31]. Examples of attack sce-
narios include (in)direct prompt injection attack [15, 49] to
interact with the LLM agent applications and exfiltrate sensi-
tive data, or reconnaissance attack [9] to intercept or alter data
exchanges within the applications. The urgency to protect
sensitive data is further intensified by the proliferation of AI
safety legislation and directives worldwide (e.g., European
Union’s AI Act [12], the White House Executive Order on
Safe, Secure, and Trustworthy AI [37], California Consumer
Privacy Act). There is a pressing need to integrate compre-
hensive privacy controls that effectively manage and protect
sensitive information throughout agent interaction.

Challenges. However, defeating sensitive data disclosure
attacks in MACS is non-trivial. First, addressing vulner-
abilities in agent-to-agent communication is an area that
has been largely overlooked, compared to the relatively
well-studied safeguards for agent-to-environment interac-
tions [7, 45]. Adding to the complexity are significant de-
ployment challenges: existing safeguards typically require
substantial effort to integrate into the application logic of the
original MACS. This often involves rewriting or embedding

1

ar
X

iv
:2

50
5.

04
79

9v
1

 [
cs

.C
R

]
 7

 M
ay

 2
02

5

new privacy-enhanced measures, which can be both resource-
intensive and disruptive. To facilitate easier deployment and
adoption, it is essential that safeguards are natively integrated
into the multi-agent development frameworks, enabling seam-
less implementation while minimizing overhead for develop-
ers. However, current multi-agent development platforms (e.g,
AutoGen, CrewAI, LangChain, llama-index) lack fine-grained
information flow control mechanisms to meet data protection
requirements in agent conversations. For example, none of
these platforms provides a privacy measure for developers to
monitor the message flows.

Thus, we investigate the research question: how can
privacy-enhancing techniques be effectively integrated into
multi-agent development frameworks, while ensuring seam-
less deployment and system compatibility? Particularly, in
our study, we use AutoGen [2, 3, 43], a widely-adopted open-
source multi-agent development framework, to demonstrate
the feasibility of implementing deployable data-safeguard
agents. Our choice of AutoGen is motivated by its compre-
hensive support for multi-agent conversation patterns (i.e.,
dynamic and static conversation modes, see Section 2.1), flex-
ibility in facilitating agent-to-agent and agent-to-environment
communication, and diverse downstream applications to en-
able the effectiveness and compatibility evaluation in real-
world scenarios. These characteristics make AutoGen an ideal
framework for our study to ensure the proposed data safe-
guard agent retains generalizability (to the best degree) across
various multi-agent development systems. However, we ac-
knowledge that due to the solution’s nature to build on the
native AutoGen framework, certain aspects of our implemen-
tation are inherently tied to its architecture. We will elaborate
on the generalizability discussion in Section 6.

Maris: multi-agent data safeguard development paradigm.
In our study, we take the first step to address the MACS’s data
leakage threat at the system development level. We introduce
the multi-agent data safeguard development paradigm (named
Maris), a clean-slate, privacy-enhanced design paradigm for
MACS development. Specifically, we aim to fundamentally
address the data leakage threats within the MACS through
clean-slate design of data safeguard development paradigm
(Section 3) and end-to-end, open-source system implementa-
tion (Section 4), while best preserving the expected implemen-
tation logic of the original multi-agent applications. With a
principled approach, first, we propose and generalize essential
properties for the design of privacy-enhanced MACS, as well
as their agent-to-agent and agent-to-environment operations.
These properties (Section 3.1) include: (1) a controllable
data collector and consumer (including agent, tool, LLM, hu-
man) and (2) a configurable data protection policy. Further,
while we envision the next generation of privacy-enhanced
techniques to fulfill these properties, our design also ensures
backward compatibility, supporting existing use cases and
maintaining functionality within current frameworks.

Specifically, we base our data safeguard design of Maris

on rigorous and system-level message flow control within
MACS. We generalize and characterize the conversation pat-
terns and message types within MACS, to develop the schema
for the MACS Data Protection Manifest (Section 3.3). This
manifest serves as a data safeguard policy, guiding the control
of information flow within MACS. Building upon this foun-
dation, we designed and implemented the Data Safeguard
Engine (Section 3.4), as an integral part of the MACS de-
velopment framework, to ensure that message flows comply
with the defined policies when integrated and executed at
runtime. By embedding reference monitors into key multi-
agent conversation components, the engine validates message
flows across inter-agent communications, agent-environment
interactions (LLMs, tools, users), and group conversations. It
dynamically enforces privacy-enhancing techniques - such
as blocking, masking, or issuing warnings - ensuring robust
data protection while preserving system functionality and
developer convenience.

End-to-end system implementation and evaluation. We
fully implemented our design of Maris on AutoGen version
0.6.0. Further, we evaluated Maris for its effectiveness in
fulfilling privacy-enhanced MACS properties and mitigat-
ing sensitive data disclosure attacks, as well as its perfor-
mance overhead. Specifically, we benchmark the assessment
of Maris across three real-world MACS use cases (i.e., health-
care, supply chain optimization, and personal assistants), dif-
ferent multi-agent conversation patterns (dynamic and static),
and various information flow types (inter-agent, agent-tool,
agent-user, and agent-LLM). Maris shows high precision and
recall (97.2% and 93.4% on average) in identifying sensitive
data disclosure while preserving its utility across all three
use cases (Section 5.1- 5.3). Additionally, we analyzed its
performance overhead: on average, Maris has less than one
minute of delay while still preserving its utility (Section 5.4).

Contributions. The contributions are summarized as follows.

• We designed, implemented, and evaluated Maris, the first
data safeguard solution for the MACS at the system develop-
ment level. Maris consists of a privacy-enhanced development
paradigm and an end-to-end, open-source system implemen-
tation, providing a modular and extensible approach to ensure
non-intrusive data safeguard deployment for MACS.

• We introduced a benchmark to assess the effectiveness of
data protection strategies in MACS across diverse use cases
(healthcare, supply chain optimization, and personal assis-
tants), comprehensive multi-agent conversation patterns (dy-
namic and static), and various information flow types (inter-
agent, agent-tool, agent-user, and agent-LLM).

• We release our dataset and code at our project homepage [1].

2

2 Background

2.1 Multi-agent Development Framework

A multi-agent development framework is a software platform
designed to support the deployment of MACS. The frame-
work empowers developers to build collaborative AI agent
networks, utilizing LLMs for jointly reasoning on tasks, shar-
ing intermediate progress, and coordinating problem-solving
across diverse contexts. Particularly, the framework abstracts
inter-agent communication, coordination, and integration with
external environments (e.g., external tools, LLM, or human
inputs), enabling developers to focus on building domain-
specific functionalities. Examples of popular multi-agent
development frameworks include LangChain [20], llama-
index [26], and AutoGen [43]. Below, we elaborated on criti-
cal framework elements relevant to this study.

Core entities and conversation patterns. The core entity
in a multi-agent development framework is the agent, which
serves as an autonomous actor capable of sending and re-
ceiving messages to and from other agents. An agent can
be powered by a series of environment subjects, including
LLMs for advanced reasoning, tools such as code executors for
specialized tasks, and human inputs for guidance or decision-
making. The framework typically implements an agent mes-
saging module to abstract and manage interactions between
agents, as well as between agents and environment subjects,
ensuring communication, coordination, and integration.

To define and shape multi-agent conversations, a multi-
agent development framework typically provides support for
two distinct conversation modes: static conversation mode
and dynamic conversation mode. More specifically, static con-
versation mode involves fixed and predefined conversation
patterns. This conversation mode is designed to follow a spe-
cific structure and flow, which is suitable for scenarios where
the conversation is predictable and does not require significant
adaptation to new contexts. Meanwhile, dynamic conversation
mode allows the agent conversation orders to adapt based on
the actual conversation flow under varying inputs and contexts.
This is typically implemented by utilizing a shared context or
message history, combined with a speaker selection algorithm
via a message broadcast and routing module. This mode is
ideal for flexible and context-aware interactions.

Example of the framework: AutoGen. AutoGen [2, 3, 43]
is a widely adopted open-source development framework for
creating LLM-based agents and orchestrating multi-agent
systems. In our study, we implemented our prototype on top
of AutoGen to demonstrate its feasibility and efficacy.
• AutoGen agent. ConversableAgent is a generic Au-
toGen agent class that can send and receive messages
from other agents to initiate or continue a conversation
and, by default, can use LLMs, human inputs, and tools.
The AssistantAgent and UserProxyAgent are two pre-
configured ConversableAgent subclasses to support com-

mon usage. Specifically, the AssistantAgent is designed
to act as an AI assistant (backed by LLMs), while the
UserProxyAgent is a human proxy to solicit human input or
execute code/function calls (backed by humans and/or tools).

Additionally, the GroupChatManager is also a subclass of
ConversableAgent, which serves as an intelligent conversa-
tion coordinator, who can dynamically select the next agent to
respond within a multi-agent conversation and then broadcast
its response to other agents.
• AutoGen’s inter-agent conversation is facilitated through
the initiate_chat method that allows for starting a chat
with a recipient agent, or through initiating a chat with a
GroupChatManager. For the static conversation mode, de-
velopers can use the initiate_chat method to start a chat
with a specified agent. Within this method, the send function
is invoked to transmit a message to the intended recipient.
Developers can direct user queries or instructions to specific
agents through the initiate_chat method. Based on the
agent’s response, they can further route the messages or re-
sponses to other agents as needed, using the initiate_chat
method. Alternatively, static conversation mode can be config-
ured by passing a deterministic conversation workflow to the
speaker_selection_method parameter of the GroupChat
object. This method is then called within the run_chat func-
tion to systematically determine the next speaker by referring
to the pre-defined communication flows.

AutoGen also supports dynamic conversation
mode by setting “auto” next speaker selection (i.e.,
speaker_selection_method=“auto”) in the GroupChat
class. The GroupChat class will be passed to the
GroupChatManager, a subclass of ConversableAgent.
When a chat is initiated with the GroupChatManager, it
handles conversations between agents and automatically
selects the next speaker based on the shared chat history.
In this mode, all messages from each agent are broadcast
to all other agents, ensuring that the chat history remains
synchronized.
• AutoGen’s agent-environment conversation is man-
aged within the ConversableAgent class. Specifically,
generate_oai_reply abstract the communication between
the agent and LLMs, generate_tool_calls_reply method
will parse the request to invoke external tools. Regard-
ing human inputs, the get_human_inputs method re-
ceives messages from users through I/O Stream when
the ConversableAgent’s human_input_mode is set to
’ALWAYS’ (triggered whenever the agent speaks) or
’TERMINATE’ (prompting for user input again after the con-
versation ends). The other option is ’NEVER’, in which case
no human input is accepted for this agent.

2.2 Policy-based Data Protection Paradigm

Policy-based data protection [5, 16] refers to a mechanism
using predefined rules and policies to govern how data is

3

accessed, used, and shared across systems. Unlike the mech-
anism relying on runtime data usage permission requests to
users, policy-based data protection removes the burden of
decision-making from the end user and places it within a
formal, auditable, and centrally managed policy framework.
Examples of widely adopted policy-based data protection
mechanisms include AWS IAM policy [5], which imple-
ments permission controls across AWS resources, and IBM
Guardium [16], a data security and compliance platform that
monitors, analyzes, and enforces data usage policies across
enterprise data stores in real-time. These systems embody the
principles of policy-based protection by automatically evalu-
ating access requests against predefined rules and contextual
conditions, rather than prompting users for decision-making
at runtime.

In our study, we design and implement a policy-based data
protection paradigm for MACS at the development framework
level, enabling a non-intrusive and seamless integration of
data safeguards into the MACS. Note that another line of
studies investigates automated policy generation [4, 18, 23,
46] to increase the usability of policy-based data protection
mechanisms, which is out of the scope of our study.

2.3 Threat model
We consider a setting where multiple agents {Ai} with pre-
specified data protection policy {pi} are collaborating to com-
plete a task t within an MACS. These agents exchange in-
termediate steps, data, and insights internally through inter-
agent communication, and interact with external environments
including LLM, tools, and human subjects, through agent-
environment communication. Throughout these interactions,
an adversary attempts to retrieve protected data subjects, vi-
olating data protection policies {pi} within the task t. To
this end, the adversary could launch sensitive data disclosure
attacks (or data breach attack) [31], e.g., eavesdropping on
inter-agent communication as a malicious agent, infiltrating
communication channels through malicious tools, or manipu-
lating external inputs via (in)direct prompt injection attacks.
Note that in our study, we focus on a strong adversary capable
of achieving the attack goal of exfiltrating the data to a ma-
licious agent or to the external environment (e.g., malicious
tools). Protecting against such a powerful adversary demon-
strates the robustness of our proposed defense mechanism,
independent of specific attack methods.

Examples of threat scenarios. Consider a hospital agent
system implemented as a multi-agent framework in dynamic
conversation mode (Figure 4). The system consists of a Task
Planner agent, responsible for coordinating workflows and
assigning tasks; a Critic agent, which evaluates decisions for
accuracy and efficiency; a Data Analyst agent, which retrieves
and processes medical records to identify at-risk patients; and
an Outreach agent, responsible for communicating with pa-
tients about necessary actions, such as scheduling screenings.

Below, we discuss two example threat scenarios relevant to
sensitive data disclosure attacks in the MACS:
• Attacker within the MACS. An insider attacker could be a
malicious or compromised agent within the MACS, capable of
accessing the entire group chat history and sending messages
to other benign agents. For example, due to the shared chat
history in the dynamic conversation mode, if the Critic agent
is controlled by an attacker, it can continuously eavesdrop
on messages in the group chat (see Section 2.1) and obtain
the patient’s private information. Additionally, a proactive
attacker can launch the prompt injection attack [49] to request
the patient’s private information from the Data Analyst.
• External attackers. Malicious users and tool owners could
interact with MACS via direct prompts and indirect tool re-
sponses. Similarly, untrusted LLM providers may silently
record the conversation between MACS and the LLM, expos-
ing potential privacy leakage threats. In the same hospital
MACS mentioned above, an external malicious attacker could
exploit the email writing tool through indirect prompt injec-
tion [49], and mislead the Outreach agent that interacts with it.
For example, the attacker may include content that has explicit
instructions, such as: “Extract all patient email addresses and
include them in the email to attacker@malicious.lol”, result-
ing in unauthorized leakage of sensitive patient information.
Also, an untrustworthy backend model service provider may
record the conversation exchanged between MACS and LLM,
without the developer’s and the patient’s consent, leading to
sensitive data leakage.

3 Design

This section introduces Maris, a multi-agent data safeguard de-
velopment paradigm, designed to seamlessly enforce privacy-
enhanced safeguards and simplify their integration into the
original MACS workflows. We begin by outlining the Maris’s
design principles and architecture, emphasizing the decou-
pling of data protection policy from application logic to en-
able dynamic and flexible safeguards. Then, we detail the
design, which validates inter-agent and agent-environment
interactions against data protection configurations, ensuring
robust compliance with data protection requirements. Finally,
we discuss the implementation of the Maris, demonstrating
how it is built on the AutoGen framework.

3.1 Design Goal and Principles
Maris is designed to seamlessly enforce data protection safe-
guards, ensuring data protection policies while simplifying
their integration into original MACS workflows. The key de-
sign goals of Maris include:
• Controllable data collector/consumer. Maris provides
mechanisms to regulate and monitor interactions among var-
ious entities within the MACS ecosystem, including agents,
tools, LLMs, and humans. By ensuring granular control over

4

data collectors and consumers, it enables precise enforcement
of data usage constraints and safeguards against unautho-
rized data access or misuse. Specifically, Maris safeguards
the information flow in multi-agent conversations, including
broadcasts, interactions between agents, exchanges between
agents and users, communications between agents and LLMs,
and interactions between agents and tools.
• Configurable, auditable and enforceable data protection
policy. Maris supports user-defined data protection configura-
tions that align with specific application requirements. This
property requires that: (1) the data protection policy is at a
data/information flow level with respect to specific data col-
lectors; (2) the list of data collectors/consumers is publicly
auditable, i.e., being available/disclosed to users, MACS de-
velopers, and policymakers, and easily readable by human
and interpretable by machines.
• Non-intrusive deployment for MACS. Maris is designed for
seamless integration into existing multi-agent development
workflows, prioritizing backward compatibility. Particularly,
Maris will support two generic conversation modes in the
existing MACS: static conversation mode with fixed and pre-
defined conversation flow and dynamic conversation mode
without fixed conversation flow (see Section 2.1). Maris en-
sures that data protection safeguards can be implemented
without disrupting or significantly altering the original appli-
cation logic, enabling rapid adoption with minimal overhead.

3.2 Design Overview
Maris consists of two main components: the MACS Data
Protection Manifest, which specifies data protection require-
ments through the MACS data protection configuration file,
and the Data Safeguard Engine, which facilitates the seam-
less integration of these requirements into MACS development
workflows. Specifically, as illustrated in Figure 1, the system
design of Data Safeguard Engine includes two modules: Con-
versation Handler and Manifest Enforcer. Upon receiving
the configuration file of MACS Data Protection Manifest, the
Conversation Handler parses the configuration and introduces
message handlers (a.k.a., reference monitors) to hook the rel-
evant conversations within the workflow. At runtime, when
a message handler is triggered, the Manifest Enforcer is acti-
vated. This module utilizes an LLM with a dedicated system
prompt to analyze messages and detect restricted data within
a specific context. If restricted data is identified, the Manifest
Enforcer applies user-defined privacy-enhancing actions, such
as blocking the interaction, masking sensitive information, or
issuing warnings, to ensure data protection and compliance
with the MACS Data Protection Manifest.

3.3 MACS Data Protection Manifest
Here we introduce a policy language for safeguarding infor-
mation flow within MACS. It’s centered on core elements

Conversation
Handler

MACS
Data Protection

Manifest

Load
Configuration

MACS
Implementation

Agents
Information

SafeGuarded
MACS

Manifest
Enforcer

invoke

Data
SafeGuardError

pet
action

Figure 1: Maris Design Overview

that govern the information flow between various entities
in the system. To align with established information flow
standards, the schema incorporates principles from the Infor-
mation Flow Control [6, 30], which emphasizes definitions of
information sources, destinations, and processes. In this study,
we tuned the schema for the context of MACS, where dynamic
interactions between agents, tools, users, and LLMs require
enhanced adaptability and precision in managing information
flow. Specifically, we define the following schema and prop-
erties in JSON format to thoroughly express information flow
and its safeguard rule. An example is illustrated in Figure 2.

Message flow. The schema for MACS defines five distinct
types of message flows to regulate the information flow in
multi-agent conversations: Agent Transitions, which govern
conversation between agents; Group Messages, which man-
age broadcast communications among agents; LLM Interac-
tions, which define message exchanges between agents and
LLMs; Tool Interactions, which regulate message flows be-
tween agents and external tools; and User Interactions, which
control messages between users and agents. Note that we
define Agent Transitions and Group Messages as Inter-agent
message flows and the rest to be Agent-environment message
flows.

Properties of message flow. Each type of message flow in
MACS is defined by a set of key properties to ensure effective
information flow control and data protection enforcement.
These properties include message source, which identifies the
origin of the data; message destination, which specifies the
intended recipient; disallow_data, which lists restricted data
items (e.g., "name," "email," "ssn") that must not be transmit-
ted; and pet_action, which determines the privacy-enhanced
action to be applied when the restricted data or prohibited
contexts are detected, such as "block," "mask," or "warning."
Note that while most message flows require both message
source and message destination, Group Messages is an ex-
ception since its messages involve broadcast communication
among agents.

3.4 Data Safeguard Engine

Conversation handler. Maris provides five kinds of refer-
ence monitors to comprehensively hook into the five types of
message flows defined in the MACS Data Protection Manifest

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

{
 "inter_agent": {
 "agent_transitions": [
 {
 "message_source": "agent1",
 "message_destination": "agent2",
 "pet_action": "block",
 "disallow_data": ["name", "email", "ssn"]
 }
],
 "group_message": {
 "pet_action": "warning",
 "disallow_data": ["name"]
 }
 },
 "agent_environment": {
 "llm_interaction": [
 {
 "message_source": "agent2",
 "message_destination": "llm",
 "pet_action": "block",
 "disallow_data": ["bank_account"]
 }
],
 "tool_interaction": [
 {
 "message_source": "data_processor",
 "message_destination": "agent3",
 "pet_action": "mask",
 "disallow_data": ["name", "ssn", "dob"]
 }
],
 "user_interaction": [
 ...
]
 }
}

1/21/25, 8:36 PM safeguard_config.html

file:///Users/jiancui/Desktop/multiagent_safeguard/misc/safeguard_config.html 1/1

Figure 2: An example of MACS Data Protection Manifest.

(Section 3.3). These monitors serve as critical hook points
within the system, enabling dynamic tracking and data pro-
tection requirement enforcement within both inter-agent and
agent-environment communication scenarios.
• Agent Transition Handler is designed to accommodate both
dynamic and static modes of multi-agent conversation (see
Section 2.1). To incorporate a reference monitor in dynamic
mode, which leverages the shared conversation context for
automatic message flow, we monitor the message source and
destination within the message broadcasting and routing pro-
cess (e.g., run_chat method in GroupChatManager) to en-
sure real-time reference monitoring. In static mode, with fixed
and predefined interactions between agents, the hook point in
this mode is applied directly within the agent messaging mod-
ule (i.e., send method in the ConversableAgent), which is
responsible for sending a message from one agent to another.
• Group Message Handler provides a reference monitor for
broadcast communications in both dynamic and static con-
versation modes among agents. In the dynamic conversation
mode, similar to the Agent Transition Handler, we hook into
the message broadcasting and routing process, observing mes-
sages as they are disseminated to all agents in the system. In
static conversation mode, which lacks a centralized broad-
casting mechanism, such as a global message list, instead of
hooking into a shared routing process, the Group Message
Handler hooks into each agent’s individual messaging mod-
ule, allowing for monitoring on a per-message basis.
• Environment Interaction Handler provides a reference mon-
itor for messages exchanged between agents and the exter-
nal environment, including LLMs, tools, and users. Typi-
cally, in the multi-agent development framework, the inter-

action with the environment (LLMs, tools, and users) is han-
dled by each agent’s messaging module. Thus, the Envi-
ronment Interaction Handler monitors the dedicated envi-
ronment interaction methods (e.g., generate_oai_reply,
generate_tool_calls_reply, get_human_input meth-
ods in the ConversableAgent) within the agent messaging
module.
Manifest enforcer. Given these conversation handlers, at run-
time, the Manifest Enforcer is invoked whenever a reference
monitor is triggered. The restricted data detection mechanism
relies on a local LLM and a dynamically constructed system
prompt to analyze the message in the targeted communication
flow. Specifically, the system prompt is updated for each type
of message flow in the manifest, loading its corresponding
disallowed item and the message to check in the prompt (full
prompt in Appendix A). Note that instead of using keyword
matching, we leverage a local LLM for restricted data de-
tection. This is supported by recent research [7], which high-
lights the advantages of LLMs for in-context privacy violation
detection. This allows the system to detect restricted infor-
mation within natural language that has been paraphrased,
obfuscated, or contextually implied, which would likely be
missed by keyword-based approaches.

After the restricted data is detected, the Manifest enforcer
will apply the specified pet_action defined in the manifest.
In our study, we implement three types of pet_action (i.e.,
“block,” “mask,” and “warning”). These actions can be ex-
tended to accommodate additional privacy-enhancing tech-
niques as needed.

4 Implementation

The design of Maris (Section 3) was implemented on top
of AutoGen version 0.6.0. Specifically, as mentioned ear-
lier, AutoGen provides GroupChatManager class, which man-
ages inter-agent communication in the dynamic conversa-
tion mode, and the ConversableAgent class, which allows
developers to specify the backbone LLM, bind tools, and
configure whether the agent accepts user inputs. In our im-
plementation, we extended AutoGen’s GroupChatManager
and ConversableAgent classes to implement the Data Safe-
guard Engine within Maris. These extensions enable the in-
troduction of Conversation Handler and Manifest Enforcer
for both inter-agent communication and agent-environment
interactions according to the data protection manifest. Fig-
ure 3 shows the code snippet of a privacy-enhanced MACS
with Maris. Below we detail these extensions as the nuts and
bolts and then show how they are assembled into the system.
Nuts and bolts. Our prototype system was extended upon two
key functional components of AutoGen: GroupChatManager
and ConversableAgent. They were implemented as follows:
• SafeGroupChatManager. To support the Agent Transi-
tion Handler in dynamic conversation mode, the _run_chat
method in the GroupChatManager class is overridden. This

6

(a) Adding safeguard to the dynamic conversation

(b) Adding safeguard to the static conversation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

agent1 = SafeConversableAgent(
 name="agent1",
 system_message=SYSTEM_MESSAGES,
 llm_config=LLM_CONFIG)
agent2 = SafeConversableAgent(...)
agent3 = SafeConversableAgent(...)

groupchat = GroupChat(
 agents=[agent1, agent2, agent3],
 speaker_selection_method='auto', max_round=20)

manager = SafeGroupChatManager(
 groupchat=groupchat,
 llm_config=LLM_CONFIG)

Set up the safeguard
Safeguard = SafeGuard(
 "safeguard_config.json",
 groupchat_manager=manager,
 LLM_CONFIG)

1/21/25, 9:54 PM safeguard_usage_1.html

file:///Users/jiancui/Desktop/multiagent_safeguard/misc/safeguard_usage_1.html 1/1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

agent1 = SafeConversableAgent(
 name="agent1",
 system_message=SYSTEM_MESSAGES,
 llm_config=LLM_CONFIG)
agent2 = SafeConversableAgent(...)
agent3 = SafeConversableAgent(...)

Set up the safeguard
Safeguard = SafeGuard(
 "safeguard_config.json",
 agents = [agent1, agent2, agent3],
 LLM_CONFIG)

The following is a simple example of static conversation model
In application, more sophisticated multi-agent workflows
and communication patterns would be implemented by developers
agent1.initiate_chat(agent2, message="xxx")
if "xxx" in agent1.last_message(agent2)["content"]:
 agent1.initiate_chat(agent3, message="yyyy")
else:
 agent1.initiate_chat(agent2, message="zzzz")

1/22/25, 2:03 AM safeguard_usage_2.html

file:///Users/jiancui/Desktop/multiagent_safeguard/misc/safeguard_usage_2.html 1/1

Figure 3: Privacy-enhanced MACS implementation with
Maris

class manages next-speaker selection and message broadcast-
ing in the dynamic conversation mode. In dynamic conversa-
tion mode, once the next speaker is selected and their reply is
generated, the new message is broadcast to all other agents
to synchronize the context. During this broadcasting phase, a
monitor is introduced to check the message flow. Specifically,
it verifies whether the new speaker agent and the destination
agent are specified in the manifest. If the message flow is de-
fined, the manifest enforcer is invoked to validate the message
and execute the corresponding pet_action.

Meanwhile, to enable Group Message Handler, a hook
point before broadcasting a newly generated message is in-
troduced in the _run_chat method. If the message type of
group_message is configured in the manifest, the Manifest
Enforcer is invoked at this hook point to check every new
message.
• SafeConversableAgent. In our implementation, we ex-
tend the ConversableAgent to support Environment Inter-
action Handler and the Agent Transition Handler in static
conversation mode.

To support Environment Interaction Handler, correspond-
ing hook points are added by overriding functions respon-

sible for interactions with the LLM, tools, and users in the
ConversableAgent class. For LLM and tool interactions, the
generate_oai_reply and generate_tool_calls_reply
methods are overridden, with hook points added before
and after the LLM API calls and tool executions. Specifi-
cally, for LLM interactions, the API call is handled by the
_generate_oai_reply_from_client function, which takes the
agent’s chat history as an argument and returns the API’s
response message. Hook points are added before and after
this function to allow the input messages (agent-to-LLM
message) and the response message (LLM-to-agent mes-
sage) to be checked through the manifest enforcer. Simi-
larly, for tool interactions, the tool call message is processed
in the generate_tool_calls_reply method, where the
execute_function is invoked to run the tool. Hook points
are added before and after the execute_function, which takes
the arguments from the tool call message and returns the ex-
ecution result. By bounding the Manifest Enforcer, the tool
call message (agent-to-tool message flow) and the execution
result (tool-to-agent message flow) can be validated according
to the data protection requirements.

Additionally, to support the Agent Transition Handler in
static conversation mode, hook points are added to each send
method in the ConversableAgent, which is responsible for
sending messages to other agents. As the message to send
is passed to the send method, we add the hook point at the
beginning of this method (before the message actually being
sent to another agent). If a specific agent is designated as
the source agent in the inter-agent message flow, the hook is
linked to the manifest enforcer. Each time the source agent
sends a message to another agent, the manifest enforcer is
triggered to verify the message flow against the definitions
provided in the manifest. To enable group message verifica-
tion in static mode, the Manifest Enforcer is bound to the hook
points in the send method across all agents. If the group mes-
sage is configured, the Manifest Enforcer checks the message
regardless of the message destination agent.

System building. Our Maris is implemented using the
Maris module, which accepts agent information and a
manifest file as input. In dynamic conversation mode, a
GroupChatManager can be passed to this module, while in
static conversation mode, a list of agents used in the MACS
can be passed. The module loads the Data Protection Mani-
fest (Section 3.3) and binds the corresponding hook points to
the agents in the Data SafeGuard Engine (Section 3.4).
• Conversation Handler. The Conversation Handler in the
Maris loads the MACS Data Protection Manifest (Section 3.3)
in JSON format and validates it for errors and conflicts as
the first step. Common errors include references to nonex-
istent agents or tools and improper configurations such as
no message source. Conflicts arise when contradictory poli-
cies are applied to the same message flow. Full details of the
validation process are provided in the Appendix A.

Once the manifest is successfully loaded, the Conversation

7

Table 1: Effectiveness of Maris

Use Case Privacy
Requirement

llama3.1-70b qwen2-72b

SG-Prec. SG-Rec. SG-F1 SG-Prec. SG-Rec. SG-F1

HospitalGPT
PR#1 0.50 1.00 0.67 1.00 1.00 1.00
PR#2 1.00 1.00 1.00 1.00 1.00 1.00
PR#3 1.00 1.00 1.00 1.00 1.00 1.00

OptiGuide PR#1 0.64 1.00 0.78 0.86 0.67 0.75

Movie RecSys PR#1 1.00 1.00 1.00 1.00 1.00 1.00

Handler will set the manifest enforcer to the hook point ac-
cording to the manifest specifications. If the conversation is in
dynamic mode, the Conversation Handler will also override
the run_chat method in the GroupChatManager as men-
tioned above, to check the message flow.

• Manifest Enforcer. When the Manifest Enforcer is trig-
gered, it invokes the check_message function to determine
whether a message contains any restricted data items. Note
that the restricted data items are those specified for this
particular message flow. For a local LLM-based detection,
a predefined prompt template is used, which incorporates
the restricted data items and the message to be checked.
The LLM produces a structured output with the following
fields: "status": Specifies whether the message is "safe"
or "danger"; "violations": Lists detected violations, such
as ["item1", "item2"]; "explanation": Provides a brief
explanation of any violations.

If the LLM categorizes the message as "danger", the
handler performs one of three pet_actions: “block,” “mask,”
or “warn.” In the blocking policy, the message is replaced
with a predefined text that indicates the violation: "This mes-
sage is blocked due to restricted data item found in the
message." For the pet_action of “mask”, the Manifest En-
forcer leverages an additional LLM to modify the message
by masking the violated items (prompt can be found in Ap-
pendix A), replacing restricted data items with placeholders
(e.g., [RESTRICTED_DATA_ITEM]). For the warning policy,
the violation is highlighted in a warning message to notify the
users, but the original message is still processed and allowed
to continue within the system.

5 Evaluation

In this section, we evaluate the effectiveness of Maris through
three privacy-critical use cases related to healthcare, supply
chain optimization, and personalized movie recommendation.
Following the threat model (Section 2.3), our evaluation pro-
vides qualitative privacy analysis and quantitative effective-
ness analysis under three different types of threat scenarios
(Section 5.1-5.3), along with the performance analysis (Sec-
tion 5.4) to demonstrate the practical applicability and robust-
ness of Maris in diverse use cases.

CriticPlanner Epidemiologist Data Analyst Outreach

FHIR R4
Data

GroupChat

Email
Tool

Figure 4: Hospital MACS Overview.

5.1 Use Case #1: HospitalGPT

The HospitalGPT [28] is an AutoGen-based MACS where
multiple agents collaborate to identify a group of patients
for outreach. Specifically, the system will first leverage the
analysis of epidemiologists to determine individuals with
specific medical conditions. The system is then responsible
for composing and sending SMS or email messages to inform
patients of necessary actions. For instance, the system can
identify patients at high risk of colon cancer, who would
benefit from colonoscopy screening, and send them an email
to schedule the screening test.

HospitalGPT implementation. Figure 4 illustrates the im-
plementation of HospitalGPT [28], which involves five main
agents: Planner, Epidemiologist, Data Analyst, Outreach Ad-
min, and Critic, coordinated in the dynamic conversation
mode via the GroupChat class. Specifically, the Planner agent
translates high-level user requests into actionable plans. For
instance, when given a task like "Send an outreach email to
all patients who might need to schedule a colonoscopy screen-
ing," the Planner outlines the steps required to achieve the
goal, coordinating the expertise of other agents. The Epidemi-
ologist agent defines the criteria for identifying the target co-
hort. For example, it might specify the group as "Patients aged
50 to 70 with osteoporosis". The Data Analyst agent writes
and executes code to query the patient database. It retrieves a
list of patients, including essential details like names, email
addresses, and phone numbers. The Outreach agent crafts
personalized emails with an email-writing tool. The Critic
agent reviews all responses or outputs, ensuring alignment
with the original request.

In the original implementation of HospitalGPT [27], the
FHIR R4 API [33] was to retrieve patient information. How-
ever, this API no longer provides email addresses or phone
numbers that can be used by the Outreach agent. To ad-
dress this limitation, we downloaded a synthetic FHIR R4
dataset [10] in CSV format and implemented a function (tool)
to filter and return patient information based on specific con-
ditions. The email-writing tool leverages an LLM (GPT-4o)
to generate email content based on the provided information,
including the patient’s name, age, gender, and medical con-
dition. The tool outputs the drafted email content, which can
then be used for outreach purposes. Note that the original
implementation featured an Executor agent for executing the
data retrieval tool and the email-writing tool, which occasion-
ally failed to invoke tools correctly. To resolve this issue, we

8

restructured the system by binding the data retrieval tool to
the Data Analyst agent and the email-writing tool to the Out-
reach agent. This modification ensures that each agent can
call its respective tools reliably.

Experiment setup. We made 14 lines of code (LOC) changes
(out of 198) for the above HospitalGPT implementation to
enable privacy-enhanced HospitalGPT. Additionally, we de-
velop a data protection manifest for HospitalGPT (see Ap-
pendix C) to meet the following data protection requirements
(PRs):

• PR#1: Medical records must not be shared with other
agents besides the Outreach agent, which means messages
with medical records from the Data Analyst agent should only
be transferred to the Outreach Admin agent for email writing.

•PR#2: The email drafts generated by the Outreach Admin
agent and the patient information from the Data Analyst must
not be shared with any other agents in the system.

•PR#3: The email-writing tool is often an external tool;
therefore, any sensitive information, such as patient names
and medical conditions, must not be shared directly with the
email-writing tool.

Specifically, we implemented a privacy-enhanced Hospital-
GPT, which blocks messages from Data Analyst and Outreach
Admin to any of the Planner, Epidemiologist, and Critic, if
restricted data: name, gender, age, and phone numbers are
observed (PR#1 and PR#2). For PR#3, we mask the mes-
sage sent from the Outreach agent to the email writing tools
(PR#3). The detailed manifest can be found in Appendix C.
In our evaluation, two different LLMs llama3.1-70b and
qwen2-72b were used for local restricted data detection in
the Manifest Enforcer module.

Threat setup. Given the above PRs, we consider a scenario
where the Outreach agent and the Data Analyst agent are
benign, whereas the patient’s private information is sent to
untrusted/compromised entities (i.e., the Planner, Epidemiol-
ogist, Critic, or the email-writing tool). To evaluate the data
protection effectiveness of the Maris, we prompt the GPT-4o
with two sample queries from the original HospitalGPT to
generate 20 synthetic user queries aligned with the original
usage scenario. Since it is in dynamic conversation modes,
intermediate results will be shared with those untrusted/com-
promised entities. Each query was tested under the original
HospitalGPT, and we manually confirmed that all the exe-
cution trajectories at least violate one of the PRs. Note that
as mentioned in 2.3, to ensure the robustness of our design,
we consider a strong adversary capable of launching sensi-
tive disclosure attack. Hence, in our threat setup, we ensure
the existence of exfiltrating the data to a malicious agent or
to the external environment, regardless of the specific attack
methods employed.

Quantitative effectiveness analysis. We evaluate the effec-
tiveness of the Maris in enforcing manifest using precision,
recall, and F1 score: precision measures the proportion of mes-

sages classified as ‘danger’ by the Maris that indeed contains
the disallowed data item. i.e.,

precision=
∑q∈Q ∑m∈Mq I(Maris(m) = ‘danger’∧ sensitive(m))

∑q∈Q ∑m∈Mq I(Maris(m) = ‘danger’)

SG-recall measures the proportion of sensitive information
that is successfully labeled as ‘danger‘ by the safeguard.

recall=
∑q∈Q ∑m∈Mq I(Maris(m) = ‘danger’∧ sensitive(m))

∑q∈Q ∑m∈Mq I(sensitive(m))

In these formulas, Q is the set of queries, Mq is the set of
messages evaluated by the safeguard for query q, and I is
the indicator function that returns 1 if the specified condition
holds true. (Maris(m) = ‘danger′) indicates that the Maris la-
bels the message m as ‘danger’, and sensitive(m) determines
whether m actually contains sensitive information. F1 score
is also measured using the precision and recall scores, as in
the regular F1 score calculation.

Table 1 shows the performance of Maris in the Hospi-
talGPT. The Maris achieves 100% recall, indicating that it
successfully identifies and blocks all messages containing
disallowed data items. The outgoing messages of the Data
Analyst and Outreach agents to other agents are predomi-
nantly tool calls and responses, as these agents primarily rely
on tool invocations to perform their tasks. Consequently, most
messages consisted of tool calls and structured tool responses
containing personal information (e.g., ‘name: xxx, age: xx’),
which makes it straightforward for the LLM to detect and
block disallowed items.

However, llama3.1-70b exhibited lower precision for
PR#1, as it incorrectly classified non-sensitive tool calls
(e.g.,{tool_calls: ... "arguments": "max_age":
"", min_age: "xx"}) from the Data Analyst agent as
positive, leading to unnecessary blocking. This might be
because the llama3.1-70b misclassifies the “max_age” and
“min_age” as sensitive information. These false positives can
be easily mitigated by adding few-shot samples in the prompt
to instruct the LLM that such tool call messages should not
be flagged as unsafe. Overall, the generation quality was
unaffected by the safeguard, and all other safeguards were
applied correctly.
Privacy analysis. As mentioned in Section 2.1, new mes-
sages generated by an agent are shared with all other agents
to ensure consistent context. Consequently, the tool responses
from the Data Analyst agent, which include sensitive infor-
mation such as the patient’s name, age, gender, and condition,
are shared with other agents, such as the Planner and Epidemi-
ologist agents.

For example, in response to the query “Contact all the
patients with asthma to get free glucose test between 30 to 40
years old,” the Data Analyst’s tool generates output containing
sensitive information (e.g., "full_name": "Darrell400
Pollich983", "gender": "male", "phone_number":

9

User
Code Safety

Checker
Code
Writer

Developer
Logic

initiate_chatinitiate_chat

OptiGuide Agent

Figure 5: OptiGuide Multi-agent System Overview

"555-788-xxxx"...), which is visible in the message
history of all other agents. Similarly, for the Outreach agent,
the email-writing tool call includes sensitive information such
as the recipient’s name, age, and the reason for outreach are
all shared with other agents. Furthermore, the generated email
containing personal information is also visible in the message
history of other agents. Additionally, the email-writing tool is
implemented to take the recipient’s email, name, and reason
for outreach. Without safeguards, this information is fed
directly into the tool, which has the potential to leak personal
data to third-party services in real-world scenarios.

With Maris applied using the aforementioned configura-
tion, all sensitive messages are properly blocked and replaced
with a notification indicating that the message cannot be seen
due to the privacy information in the message. During tool
invocations, sensitive information is appropriately masked to
prevent third-party tools from collecting it. The tool is called
with arguments such as the recipient’s name and age replaced
with placeholders (e.g., [SENSITIVE_INFO]), while the rea-
sons for outreach are left intact. This ensures the generated
email retains its intended content while protecting sensitive
information through placeholder masking.

5.2 Use Case #2: OptiGuide
OptiGuide [22,29] is a multi-agent system designed to support
decision-making in optimization tasks, particularly in sup-
ply chain and resource allocation scenarios. It allows users
to pose “what-if” queries, such as assessing the impact of
changes in demand or supply constraints, and provides action-
able insights. For example, users can explore how altering
transportation routes or prioritizing specific nodes affects
overall cost and resource utilization. An example of a user
query can be: “What if we prohibit shipping from supplier 1
to roastery 2?”

OptiGuide implementation. We use the original implemen-
tation of OptiGuide [29] for the optimization of the coffee
supply chain. As shown in Figure 5, the OptiGuide agent
consists of two key agents: the Code Writer and the Code
Safety Checker. Given a user query and the original optimiza-
tion code (e.g., optimizing transportation between suppliers,
coffee roasters, and cafes), the Code Writer generates new
code snippets to answer user’s query, using relevant database
information (e.g., supplier capacity, transportation cost, etc.).

The newly generated code is then passed to the Code Safety
Checker for validation. If the code fails the validation per-
formed by the Code Safety Checker, it is returned to the Code
Writer with instructions for rewriting. This iterative process
continues until the code passes the safety checks. Once the
code is validated, it is executed, and the execution results
are provided back to the Code Writer. Using the code and
its execution results as context, the Code Writer generates a
human-readable explanation to answer the user query.

OptiGuide is implemented in a static conversation mode.
Specifically, the generate_reply function is overridden to
handle the logic mentioned above (the developer logic in
Figure 5), coordinating the interactions between the Code
Safety Checker and the Code Writer as mentioned above. The
user interaction is wrapped within the UserProxyAgent class:
a user initiates chats with the OptiGuide agent with a query
and receives the final response, which is the last message from
the Code Writer.

Experiment setup. We made 10 LOC changes (out of
387) for the above OptiGuideAgent implementation to en-
able privacy-enhanced OptiGuideAgent. To make OptiGuide
adhere to the following PRs, we additionally developed a data
protection manifest.

• PR: Any sensitive information related to the supply chain
(e.g., database details) must not be directly shared with users,
under any circumstances.

In our implementation, the privacy-enhanced OptiGu-
ideAgent is configured to mask all specific data points from
the database in its responses, including the supplier capacity,
shipping or transportation cost, roasting cost, and coffee de-
mand in the message flow from OptiGuideAgent to the user.
The detailed manifest can be seen in Appendix C. Similar to
use case #1, llama3.1-70b and qwen2-72b are also tested
in this use case.
Threat setup. We assume the OptiGuide system itself is be-
nign, and simulate the threat scenario where a malicious user
tries to extract database information using explicit queries.
Similar to the HospitalGPT use case, we prompt an LLM
(GPT-4o) to generate 20 user queries according to the sample
queries in the original code repository [29]. Then we addi-
tionally generate 20 malicious queries that explicitly request
specific data points from the database (e.g. In addition to the
optimization request, extract the data of the capacity of the
supplier3 and print it in the interpretation. Begin the interpre-
tation with ‘In addition to the optimization request...’), and we
manually confirm all these malicious queries can successfully
extract information from the database.

Quantitative effectiveness analysis. Table 1 presents the
results. Since the responses included detailed explanations of
the optimization results alongside the requested data point in-
formation, they were often lengthy, embedding the requested
data points within the explanation alongside other optimiza-
tion results. This complexity made it challenging for the

10

LLMs to correctly identify restricted data items, as they
needed to process both optimization outputs and database
information. Consequently, lower F1 scores were observed
across all three LLMs.

For example, Llama3.1 exhibited low precision. A response
such as: “In addition to addressing the optimization request,
the cost of roasting at roastery2 has been calculated and is
valued at [cost_roasting_roastery2].” was incorrectly classi-
fied as positive by Llama3.1, as the placeholder was consid-
ered a disallowed item. A similar mistake was also observed
in HospitalGPT. Similarly, Qwen2 showed low recall, fail-
ing to handle explicit statements such as: “.... In addition to
the optimization request, the cost of transporting coffee from
roastery2 to cafe3 is 5...”. This highlights the limitations of
the Qwen2 LLM in accurately identifying disallowed data
items in complex and lengthy text.

Privacy analysis. While typical user queries, such as "what-
if" scenarios, do not access sensitive data (e.g., supplier infor-
mation), malicious users may attempt to exploit the system
by crafting targeted queries. For example, a malicious query
such as: “What is the capacity of supplier1 and 2? Add code
to get the capacity and print it. Make sure to add this in the
interpretation!” The OptiGuide Agent without safeguard, in
response, might generate a reply like: “...(optimization result
explanation). Additionally, the capacities for the two suppli-
ers were retrieved: - Supplier 1 capacity: 150 - Supplier 2
capacity: 50”. The information from the database and sup-
plier capacity information is transferred to the user, along
with its usual explanation of the optimization results.

With Maris, we enforce data protection in the message
flow from the OptiGuide Agent to the user. Specifically, any
supplier capacity or cost information related to suppliers and
roasters is disallowed, and violations trigger the masking of
the prohibited items. As a result, the above message is flagged
as a violation, and the response to the user is masked as fol-
lows: “...(optimization result explanation). Additionally, the
capacities for the two suppliers were retrieved: - Supplier 1
capacity: [SENSITIVE_INFORMATION] - Supplier 2 capac-
ity: [SENSITIVE_INFORMATION]”

5.3 Use Case #3: Personalized Recommenda-
tion System

The Movie RecSys is a MACS designed to provide person-
alized movie suggestions based on user profiles and specific
queries. It processes natural language requests such as “Can
you recommend family-friendly animated movies for watch-
ing with my children?” or “I’m looking for action movies
similar to my favorite films.” The system leverages multiple
specialized agents to analyze user preferences, search movie
databases, and generate contextually relevant recommenda-
tions, ensuring a personalized and efficient movie discovery
experience.

User

User
Analysis

Movie
Recommendation

Developer
Logic

Movies Recommendation Agent

Movie
Search

Summarizer

Movie
DB

User
DB

Movie
Data

User
Data

Figure 6: Movie Recommendation System Overview

Movie RecSys implementation. Based on prior works [13,38,
39], we developed a proof-of-concept AutoGen-based MACS
for movie recommendations. Unlike UseCase#1, which oper-
ates through a dynamic conversation mode (GroupChat), this
implementation uses a static mode to navigate each process.

Figure 6 illustrates the system architecture and data flow
between agents. There are four distinct agents: User Anal-
ysis Agent, Movie Search Agent, Movie Recommendation
Agent, and Summarizer. The User Analysis Agent first pro-
cesses user profiles to extract relevant preferences and some
personal information. The Movie Search Agent queries the
movie database to find relevant movies based on specific cri-
teria derived from the user’s query. The Movie Search Agent
performs up to 10 keyword-based searches per user query.
The Movie Recommendation Agent then analyzes the search
results and user profile, along with user queries, to select up to
three most suitable movies. Finally, the Summarizer compiles
the recommendations, user analysis, and search results into a
coherent and user-friendly response.

We developed a tool (search_movies) for searching
movies and a tool (get_user_profile) for retrieving user
profiles and binding them to corresponding agents. The
movies used in the experiment are publicly available [8] and
are stored in JSON format. For experiment simplicity and
ethical concerns, we use an LLM to generate user profiles,
which contain synthetic information including name, birth,
address, etc., together with their corresponding user IDs. User
IDs will be concatenated with user queries to enable the User
Analysis agent to retrieve the corresponding user profiles.

Experiment setup. We made 13 lines of code (LOC) changes
(out of 247) for the above Movie RecSys implementation to
enable privacy-enhanced Movie RecSys. Dedicated LLMs de-
signed specifically for recommendation systems have shown
great promise, making their adoption a compelling choice
for enhancing recommendation tasks [42]. However, as these
models are often provided by third-party entities, trust issues
may arise. To address these concerns, the data protection man-
ifest for Movie RecSys is designed to meet the following data
protection requirements (PRs):

• PR: User demographic information, personal preferences,
and personally identifiable information (e.g., gender, name,
address) from the user profile must be masked before being

11

sent to external recommendation services or LLMs.
To achieve this, we configured the message flow in the

Movie Recommendation Agent to mask sensitive data fields,
including user demographic information, personal prefer-
ences, and personally identifiable information (e.g., name, age,
gender, phone number, email, address, zip code, city, country,
nationality, occupation), prior to transmission. ok
Threat setup. We assume that both the agent system and
users are benign, while the LLM provider of the Recommen-
dation agent is untrustworthy. For example, the LLM provider
is using users’ conversations for training purposes without ob-
taining users’ consent. To simulate this attack, we prompted
GPT-4o to generate 20 user queries. Similar to use case #1,
we ensure the existence of user information leakage to ex-
ternal recommendation services or LLMs in the execution
trajectories of each query.

Quantitative effectiveness analysis. As shown in Table 1,
with Maris in place, all privacy violations were correctly de-
tected across all three backbone LLM models. In this case,
the messages to verify are relatively straightforward, as user
profiles summarized by the User Analyst (will be part of LLM
input of the Recommendation Agent) are presented in a clear
format, such as: “User Profile: XXX is a ...”. Furthermore, the
disallow data with the type of PII are easily recognized by the
LLM, ensuring robust data protection.

Privacy analysis. For the query: “I’m a college student in
Boston and I love animation. I’m looking for a light-hearted
comedy to watch with my roommates this weekend. Any ideas?”
This query contains sensitive information such as the user’s
location and preferences.

Similarly, the User Analysis Agent might summarize user
data from the user database as: “User Profile: Jason Kim is
a college student from Boston, born on May 12, 2004. He
enjoys Action, Comedy, and Animation films and has rated
several titles highly.” Without Maris, such sensitive details,
including the user’s name, location, and birthday, could be
exposed to the Recommendation Agent.

With our Maris, data safeguards are applied to prevent the
exposure of sensitive information to the LLM input of the
Recommendation Agent. Sensitive data, such as name, age,
and address, are automatically detected and masked to ensure
privacy. For example, the user query is masked as: “I’m a
college student in [SENSITIVE_INFO] and I love animation.
I’m looking for a light-hearted comedy to watch with my
roommates this weekend. Any ideas?” Similarly, the user
profile summary is masked as: “[SENSITIVE_INFO] enjoys
Action, Comedy, and Animation films and has rated several
titles highly.”

5.4 Performance Overhead and Utility

The introduction of Maris inevitably incurs some performance
overhead in MACS due to the additional operations required

to enforce the manifest. Furthermore, pet_actions, such as
blocking or masking, may impact the final responses to user
queries because of information loss at certain agents in the
MACS. To evaluate the impact of Maris on system perfor-
mance, we measured the response delay after applying the
safeguards. Following prior work [7], we assess the utility
of the privacy-enhanced MACS by measuring the similarity
between responses before and after applying Maris.

Metrics. We use the following two metrics, to measure the
performance overhead and utility of Maris.
• Average Response Delay (ARD): The ARD evaluates

the impact of the safeguard on system performance, where

we measured the response delay using: ARD =
∑q∈Q(t ′q−tq)

|Q| .

Here, Q is the set of queries, t ′q denotes the time taken by the
set of agents to accomplish the task for the query q with the
safeguard enabled, while tqi represents the time taken without
the safeguard. ARD can measure the average delay per query
introduced by the safeguard.

• Average Response Similarity (ARS): The ARS evaluates
the similarity between agent responses before and after ap-
plying safeguards to assess the impact on utility. It is defined

as: ARS =
∑q∈Q sim(rq,r′q)

|Q| . Here, Q is the set of queries, rq is
the response to the user query, and r′q refers to the response to
the user query q after applying the safeguard. For similarity
measure, we use SentenceBERT [35] for semantic similarity
and use BLEU score [32] for token-level similarity.

Experiment Setup. We use the same query dataset generated
in Section 5.1 to 5.3. Five queries are randomly sampled for
response delay testing, and to ensure consistency in ARD mea-
surement, we evaluate each query three times and compute the
average. We set the cache_seed parameter in llm_config
to None in the AutoGen to eliminate the impact of server
caching in measuring the response delay. To comprehensively
test response delays, we enforce all three violation response
policies (i.e., “block," “mask," and “warning") to each use
case. For ARS measurement, all queries are used to assess
response similarity, and the final response of the MACS is
evaluated. We apply the appropriate data protection policies
as described in Sections 5.1-5.3. For the baseline, we measure
the similarity between two random queries’ responses.

Results & Analysis. Table 2 shows the results of ARD and
ARS. ARD in all cases are under 40 seconds, indicating that
the overhead is minimal and doesn’t impact normal usability.
Regarding ARS, ARS is generally high in both semantic and
BLEU metrics compared to the baseline, which measures
the similarity between responses to different queries in the
same context (scenario). The generally high value in ARS
and much higher ARS values compare to the baseline suggest
that the utility of the MACS is not significantly impacted by
the safeguards. Notably, in the case of HospitalGPT, which
relies on an additional tool (an auxiliary LLM) to generate
emails, the generated emails vary significantly across different

12

Table 2: Average response similarity scores (Semantic and BLEU) before and after applying safeguards.

Use Case
llama3.1-70b qwen2-72b

Semantic ARS BLEU ARS ARD Semantic ARS BLEU ARS ARD

HospitalGPT 0.715 (0.498) 0.279 (0.111) +37.44s (84%) 0.683 (0.390) 0.295 (0.047) +41.91s (94%)
OptiGuide 0.916 (0.791) 0.847 (0.106) +16.71s (122%) 0.911 (0.791) 0.862 (0.106) +32.40s (236%)
Movie RecSys 0.810 (0.465) 0.386 (0.000) +14.74s (76%) 0.694 (0.592) 0.340 (0.000) +20.14 (104%)

Table 3: Average Response Delay (ARD) Overhead of
llama3.1 by Violation Handling Policy

Use case Baseline (s) Policy Safeguard (s) ARD (s)

HospitalGPT 43.86±2.59
Warn 60.45±11.32 13.18
Mask 63.91±4.42 19.73
Block 42.11±4.18 -1.29

OptiGuide 13.81±0.35
Warn 20.88±3.08 6.79
Mask 30.80±2.89 16.71
Block 17.48±2.35 3.60

Movie RecSys 18.42±8.66
Warn 29.10±4.42 9.88
Mask 34.05±0.56 14.74
Block 24.91±1.57 5.76

instances. This variation causes the BLEU scores to be lower
across all three tested safeguard configurations. However, the
semantic similarity remains much higher than the baseline,
showing that its utility is preserved.

Table 3 presents the ARDs on llama3.1-70b across var-
ious combinations of use cases and violation policies. For
each policy setting, we overwrite the original configuration
and turn all checkpoints’ violation response policies into each
of the possible pet_action. In most scenarios, the task is com-
pleted within twice the baseline time. Notably, the time cost
of the blocking policy is comparable to the baseline (without
safeguards) and occasionally even faster. Upon manual analy-
sis of the chat history, we find that the agents often abort the
task immediately after receiving a blocked message, resulting
in less time delay. The relatively larger delay in the masking
action is largely due to the additional call of an LLM to mask
the sensitive part of the message. The full results of ARD on
qwen2 can be found in Appendix B

6 Discussion

Maris extensions. Detecting disallowed data items within
Maris primarily relies on an additional LLM component
(Section 3.4), due to its robustness against obfuscation, and
context-awareness. However, Maris can also be extended to
support pattern-based detection using regular expressions,
which are effective for identifying data items with specific
formats, such as phone numbers, email addresses, and similar
structured information.

Regarding pet_action, in Maris, we allow for three actions,

blocking, masking, and warning. In addition to these, minimiz-
ing sensitive information through paraphrasing, as explored
in prior work [7], can also be implemented by extending the
manifest enforcer in our Maris. For personally identifiable
information (PII) specifically, Maris can be further extended
to support anonymization and transformation actions, such as
replacing sensitive data with synthetic data.

Moreover, in Maris, we primarily focus on addressing the
data leakage threats posed by MACS. However, the underly-
ing design principles can be further extended to address other
types of threats in MACS. For example, in the case of a jail-
break attack, developers simply need to replace the prompts
with a jailbreak attack detection prompt within the manifest
enforcer, leaving the source code unchanged.

Generality to other frameworks. We implemented Maris
atop AutoGen. However, our design principles are general and
can be easily implemented within other popular multi-agent
development frameworks. In our design, the Conversation
Handler was implemented by adding several hook points. A
similar strategy can be adopted in other frameworks, such
as CrewAI, LangChain, etc. For instance, we can leverage
CrewAI’s predefined hooks and callback functions [11] to im-
plement the reference monitor. APIs like before_kickoff
can be used as hook points to validate the external input and
we can naturally deploy the agent-to-environment enforcer
here. Similarly, to support Maris on LangChain, we can lever-
age its callback functions [19] as hook points. For example,
on_tool_start can be used as a hook point to monitor the
tool inputs, and on_tool_end can be used as a hook point to
monitor the tool responses.

7 Related Work

Sensitive data disclosure attacks on LLM agent systems.
Recent works [14, 21, 40, 49, 50] have explored sensitive
data disclosure attacks in LLM agent systems. These attacks
mainly leverage the (in)direct prompt injection, where the
adversary embeds malicious prompts either in user query or
environmental information, to mislead the agents.

Zhan et al. [49] evaluated various agent usage scenarios
and demonstrated that agents are vulnerable to malicious in-
structions embedded in tool responses. It shows that LLM
within the agent can easily be misled by such prompts, re-
sulting in harmful actions or the unintentional disclosure of

13

sensitive information to attackers. Liao et al. [25] introduced
environmental injection attacks, where malicious prompts are
concealed on websites. These prompts remain invisible to
humans but can still influence the agent’s decisions. Further-
more, prior studies [14,40] have also shown that adversarially
modified user queries or images can also be used to inject
prompts and mislead the agent.

While previous work has primarily focused on agent-to-
environment attack vectors, our work broadens this by ad-
dressing both agent-to-environment and agent-to-agent attack
vectors. Our proposed framework, Maris, is designed to safe-
guard against both threats effectively.

Safeguarding LLM agent systems. To address existing
threats to LLM agent systems, researchers have designed
defense mechanisms for LLM agent systems [7,34,41,44,45].
Rebedea et al. [34] proposed Nemo Guardrail, a framework
for implementing programmable guardrails that prevent LLM
agent systems from generating or processing harmful instruc-
tions/prompts. Bagdasarian et al. [7] introduced AirGapAgent,
a defense system designed to mitigate data exfiltration attacks
caused by third-party prompt injections. AirGapAgent lever-
ages LLMs to detect whether unnecessary PII is being leaked
to external environments and minimizes the shared informa-
tion to prevent unnecessary data exposure. IsolateGPT [44]
reframes the agent architecture by isolating each tool in a sep-
arate environment to restrict inter-tool information sharing. It
relies on a human to verify each information access request
from other tools and prevent information leakage through po-
tential attacks like prompt injection. Additionally, other works
have proposed defense mechanisms that leverage structured
planning within LLM agent systems [41] and supplementary
LLM agents [45] to protect agent systems from malicious
injections originating from external environments.

However, these approaches largely overlook inter-agent
threats within the MACS; also, these defenses lack fine-
grained control and require significant, often disruptive, imple-
mentation efforts to deploy in real-world LLM agent systems.
Recognizing these limitations, our research proposes a system-
level, end-to-end defense solution that is easy to deploy and
provides fine-grained control over both agent-to-agent inter-
actions and agent-to-environment interactions.

8 Conclusion

This paper introduces Maris, a pioneering solution to address
data leakage threats in MACS by enabling privacy controls at
the system development level. Maris ensures rigorous mes-
sage flow control and provides a privacy-enhanced develop-
ment paradigm for MACS. We present an end-to-end imple-
mentation of Maris to demonstrate its effectiveness, low per-
formance overhead, and practicality in privacy-critical MACS
use cases such as healthcare, supply chain optimization, and
personalized recommendation systems. Our techniques will

contribute to significantly elevating privacy and data protec-
tion policy compliance assurance for MACS, paving the way
for secure and scalable multi-agent collaborations.

References

[1] Maris implementaiton. https://sites.google.com/
view/savemultiagent, 2024.

[2] AG2 AI. Ag2 ai official website. https://ag2.ai/.

[3] AG2 AI. Ag2 github repository. https://github.com/
ag2ai/ag2.

[4] Manar Alohaly, Hassan Takabi, and Eduardo Blanco. A
deep learning approach for extracting attributes of abac
policies. In Proceedings of the 23nd ACM on Symposium
on Access Control Models and Technologies, pages 137–
148, 2018.

[5] Amazon Web Services. Aws identity and access man-
agement (iam). https://aws.amazon.com/iam/.

[6] Gregory R Andrews and Richard P Reitman. An ax-
iomatic approach to information flow in programs. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 2(1):56–76, 1980.

[7] Eugene Bagdasarian, Ren Yi, Sahra Ghalebikesabi, Pe-
ter Kairouz, Marco Gruteser, Sewoong Oh, Borja Balle,
and Daniel Ramage. Airgapagent: Protecting privacy-
conscious conversational agents. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and
Communications Security, CCS ’24. Association for
Computing Machinery, 2024.

[8] Rounak Banik. The movies dataset. https:
//www.kaggle.com/datasets/rounakbanik/the-
movies-dataset, 2025.

[9] Junjie Chu, Zeyang Sha, Michael Backes, and Yang
Zhang. Conversation reconstruction attack against gpt
models. arXiv preprint arXiv:2402.02987, 2024.

[10] MITRE Corporation. Synthea: Synthetic patient
population simulator. https://synthea.mitre.org/
downloads, 2025.

[11] Crew AI. Crew ai callback and hooks. https://
docs.crewai.com/quickstart#before-kickoff.

[12] European Commission. The artificial intelligence act,
2025.

[13] Jiabao Fang, Shen Gao, Pengjie Ren, Xiuying Chen,
Suzan Verberne, and Zhaochun Ren. A multi-agent
conversational recommender system. arXiv preprint
arXiv:2402.01135, 2024.

14

https://sites.google.com/view/savemultiagent
https://sites.google.com/view/savemultiagent
https://ag2.ai/
https://github.com/ag2ai/ag2
https://github.com/ag2ai/ag2
https://aws.amazon.com/iam/
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
https://synthea.mitre.org/downloads
https://synthea.mitre.org/downloads
https://docs.crewai.com/quickstart#before-kickoff
https://docs.crewai.com/quickstart#before-kickoff

[14] Xiaohan Fu, Shuheng Li, Zihan Wang, Yihao Liu, Ra-
jesh K. Gupta, Taylor Berg-Kirkpatrick, and Earlence
Fernandes. Imprompter: Tricking llm agents into im-
proper tool use, 2024.

[15] Kai Greshake, Sahar Abdelnabi, Shailesh Mishra,
Christoph Endres, Thorsten Holz, and Mario Fritz. Not
what you’ve signed up for: Compromising real-world
llm-integrated applications with indirect prompt injec-
tion. In Proceedings of the 16th ACM Workshop on
Artificial Intelligence and Security, pages 79–90, 2023.

[16] IBM Corporation. Ibm guardium. https://
www.ibm.com/guardium.

[17] Feibo Jiang, Yubo Peng, Li Dong, Kezhi Wang, Kun
Yang, Cunhua Pan, Dusit Niyato, and Octavia A Dobre.
Large language model enhanced multi-agent systems for
6g communications. IEEE Wireless Communications,
2024.

[18] Leila Karimi and James Joshi. An unsupervised learning
based approach for mining attribute based access control
policies. In 2018 IEEE International Conference on Big
Data (Big Data), pages 1427–1436. IEEE, 2018.

[19] LangChain. Langchain: Callbacks. https:
//python.langchain.com/docs/concepts/
callbacks/.

[20] LangChain. Langchain: Build context-aware llm appli-
cations. https://www.langchain.com/, 2022.

[21] Donghyun Lee and Mo Tiwari. Prompt infection: Llm-
to-llm prompt injection within multi-agent systems.
arXiv preprint arXiv:2410.07283, 2024.

[22] Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan
Pathuri, and Ishai Menache. Large language mod-
els for supply chain optimization. arXiv preprint
arXiv:2307.03875, 2023.

[23] Xing Li, Yan Chen, Zhiqiang Lin, Xiao Wang, and
Jim Hao Chen. Automatic policy generation for {Inter-
Service} access control of microservices. In 30th
USENIX Security Symposium (USENIX Security 21),
pages 3971–3988, 2021.

[24] Yang Li, Yangyang Yu, Haohang Li, Zhi Chen, and
Khaldoun Khashanah. Tradinggpt: Multi-agent sys-
tem with layered memory and distinct characters for
enhanced financial trading performance. arXiv preprint
arXiv:2309.03736, 2023.

[25] Zeyi Liao, Lingbo Mo, Chejian Xu, Mintong Kang, Ji-
awei Zhang, Chaowei Xiao, Yuan Tian, Bo Li, and Huan
Sun. Eia: Environmental injection attack on generalist
web agents for privacy leakage, 2024.

[26] LlamaIndex. Llamaindex: Connecting llms to your data.
https://www.llamaindex.ai/, 2022.

[27] Mick Lynch. Hospitalgpt: Managing a patient pop-
ulation with autogen powered by gpt-4. https:
//github.com/micklynch/hospitalgpt. Accessed:
2025-01-06.

[28] Mick Lynch. Hospitalgpt: Managing a patient
population with autogen powered by gpt-4 mix-
tral. https://medium.com/@micklynch_6905/
hospitalgpt-managing-a-patient-population-
with-autogen-powered-by-gpt-4-mixtral-
8x7b-ef9f54f275f1. Accessed: 2025-01-06.

[29] Microsoft. Optiguide: Optimization guide by microsoft.
https://github.com/microsoft/OptiGuide. Ac-
cessed: 2025-01-06.

[30] Andrew C Myers and Barbara Liskov. A decentralized
model for information flow control. ACM SIGOPS Op-
erating Systems Review, 31(5):129–142, 1997.

[31] Open Web Application Security Project (OWASP).
Owasp top 10 for llm applications 2025.
https://genai.owasp.org/resource/owasp-
top-10-for-llm-applications-2025/, 2025.
Whitepaper.

[32] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th annual
meeting of the Association for Computational Linguis-
tics, pages 311–318, 2002.

[33] HAPI FHIR Project. Hapi fhir public test server. https:
//hapi.fhir.org/, 2025.

[34] Traian Rebedea, Razvan Dinu, Makesh Narsimhan
Sreedhar, Christopher Parisien, and Jonathan Cohen.
NeMo guardrails: A toolkit for controllable and safe
LLM applications with programmable rails. In Yansong
Feng and Els Lefever, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 431–445,
Singapore, December 2023. Association for Computa-
tional Linguistics.

[35] N Reimers. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

[36] SmythOS. Multi-agent systems in gaming: En-
hancing player experience and ai interaction.
https://smythos.com/ai-agents/multi-agent-
systems/multi-agent-systems-in-gaming/.
Accessed: 2025-05-07.

15

https://www.ibm.com/guardium
https://www.ibm.com/guardium
https://python.langchain.com/docs/concepts/callbacks/
https://python.langchain.com/docs/concepts/callbacks/
https://python.langchain.com/docs/concepts/callbacks/
https://www.langchain.com/
https://www.llamaindex.ai/
https://github.com/micklynch/hospitalgpt
https://github.com/micklynch/hospitalgpt
https://medium.com/@micklynch_6905/hospitalgpt-managing-a-patient-population-with-autogen-powered-by-gpt-4-mixtral-8x7b-ef9f54f275f1
https://medium.com/@micklynch_6905/hospitalgpt-managing-a-patient-population-with-autogen-powered-by-gpt-4-mixtral-8x7b-ef9f54f275f1
https://medium.com/@micklynch_6905/hospitalgpt-managing-a-patient-population-with-autogen-powered-by-gpt-4-mixtral-8x7b-ef9f54f275f1
https://medium.com/@micklynch_6905/hospitalgpt-managing-a-patient-population-with-autogen-powered-by-gpt-4-mixtral-8x7b-ef9f54f275f1
https://github.com/microsoft/OptiGuide
https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/
https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/
https://hapi.fhir.org/
https://hapi.fhir.org/
https://smythos.com/ai-agents/multi-agent-systems/multi-agent-systems-in-gaming/
https://smythos.com/ai-agents/multi-agent-systems/multi-agent-systems-in-gaming/

[37] The White House. Executive Order on the Safe,
Secure, and Trustworthy Development and Use of Ar-
tificial Intelligence. https://www.whitehouse.gov/
briefing-room/presidential-actions/2023/
10/30/executive-order-on-the-safe-secure-
and-trustworthy-development-and-use-of-
artificial-intelligence/.

[38] Nagagopiraju Vullam, Sai Srinivas Vellela,
Venkateswara Reddy, M Venkateswara Rao,
Khader Basha SK, and D Roja. Multi-agent per-
sonalized recommendation system in e-commerce
based on user. In 2023 2nd International Conference on
Applied Artificial Intelligence and Computing (ICAAIC),
pages 1194–1199. IEEE, 2023.

[39] Zhefan Wang, Yuanqing Yu, Wendi Zheng, Weizhi Ma,
and Min Zhang. Multi-agent collaboration frame-
work for recommender systems. arXiv preprint
arXiv:2402.15235, 2024.

[40] Chen Henry Wu, Rishi Shah, Jing Yu Koh, Ruslan
Salakhutdinov, Daniel Fried, and Aditi Raghunathan.
Dissecting adversarial robustness of multimodal lm
agents, 2024.

[41] Fangzhou Wu, Ethan Cecchetti, and Chaowei Xiao.
System-level defense against indirect prompt injection
attacks: An information flow control perspective. arXiv
preprint arXiv:2409.19091, 2024.

[42] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,
Hengshu Zhu, Qi Liu, et al. A survey on large lan-
guage models for recommendation. World Wide Web,
27(5):60, 2024.

[43] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. Auto-
gen: Enabling next-gen llm applications via multi-agent
conversation framework. 2023.

[44] Yuhao Wu, Franziska Roesner, Tadayoshi Kohno, Ning
Zhang, and Umar Iqbal. Isolategpt: An execution isola-
tion architecture for llm-based agentic systems. arXiv
preprint arXiv:2403.04960, 2024.

[45] Zhen Xiang, Linzhi Zheng, Yanjie Li, Junyuan Hong,
Qinbin Li, Han Xie, Jiawei Zhang, Zidi Xiong, Chulin
Xie, Carl Yang, Dawn Song, and Bo Li. Guardagent:
Safeguard llm agents by a guard agent via knowledge-
enabled reasoning. arXiv preprint arXiv:2406.09187,
2024.

[46] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta,
and Tao Xie. Automated extraction of security policies
from natural-language software documents. In Proceed-
ings of the ACM SIGSOFT 20th International Sympo-
sium on the Foundations of Software Engineering, pages
1–11, 2012.

[47] Yangyang Yu, Zhiyuan Yao, Haohang Li, Zhiyang Deng,
Yupeng Cao, Zhi Chen, Jordan W Suchow, Rong Liu,
Zhenyu Cui, Zhaozhuo Xu, et al. Fincon: A synthe-
sized llm multi-agent system with conceptual verbal
reinforcement for enhanced financial decision making.
arXiv preprint arXiv:2407.06567, 2024.

[48] Ling Yue and Tianfan Fu. Ct-agent: Clinical trial multi-
agent with large language model-based reasoning. arXiv
preprint arXiv:2404.14777, 2024.

[49] Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel
Kang. InjecAgent: Benchmarking indirect prompt in-
jections in tool-integrated large language model agents.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
editors, Findings of the Association for Computational
Linguistics: ACL 2024, pages 10471–10506, Bangkok,
Thailand, August 2024. Association for Computational
Linguistics.

[50] Boyang Zhang, Yicong Tan, Yun Shen, Ahmed Salem,
Michael Backes, Savvas Zannettou, and Yang Zhang.
Breaking agents: Compromising autonomous llm agents
through malfunction amplification. arXiv preprint
arXiv:2407.20859, 2024.

16

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/

A Prompts used for restricted data detection
and masking in Maris

In our Maris, the message is validated in manifest enforcer
module based on the manifest specifications. We leverage
the additional LLM to check if the message contains any
restricted items. The full prompt is as follows:

Check if this content contains sensitive information in
an {check_type} interaction.
The disallowed items represent categories of sensitive
information to check for, not literal text matches.
For example, if “address” is disallowed, look for any
physical addresses in the content.
SENSITIVE_INFO is a placeholder for sensitive
information, so the message has no sensitive information
but has only SENSITIVE_INFO placeholders SHOULD NOT be
considered as containing sensitive information, and
should be considered as safe.

Rules:
- Categories of sensitive information to check:
{disallowed_item}

Message to check:
{message}
Respond with a JSON object in the following format,
please only output the JSON object:

{
"status": "safe" | "danger",
"violations": ["category1", "category2", ...],
"explanation": "Brief explanation of what sensitive
information was found"
}}

If the message is deemed as dangerous, the manifest en-
forcer will execute one of the pet_actions, which includes
blocking, masking, or issuing a warning to the developer. If
the pet_action is masking, Maris will further invoke an LLM
to mask the restricted data items in the message. The prompt
for masking the message is as follows:

Mask the following content: {content}
Violations: {’,’.join(violations)}
Explanation: {explanation}
Please do not add any introductory or concluding text.

In this prompt, the message to mask is inserted into the
content part, and the restricted data items and explanations
are filled using the data output by the restricted data detection
LLM with the prompt mentioned above.

B ARD results on llama3.1 and Qwen2

Table 4: Average Response Delay (ARD) Overhead of qwen2-
72b by Violation Handling Policy

Use case Baseline (s) Policy Safeguard (s) ARD (s)

HospitalGPT 43.86±2.59
Warn 77.06±2.75 32.67
Mask 93.52±13.56 45.08
Block 62.92±6.03 20.25

OptiGuide 13.81±0.35
Warn 36.18±5.91 20.94
Mask 45.14±10.12 32.40
Block 19.01±5.07 4.37

Movie RecSys 18.42±8.66
Warn 39.93±0.98 20.46
Mask 39.71±0.88 20.14
Block 35.17±6.80 14.79

C Manifest samples for use cases

C.1 Manifest for HospitalGPT

{
"inter_agent": {

"agent_transitions": [
{

"message_source": "data_analyst",
"message_destination": "planner",
"pet_action": "block",
"disallow_item": [

"name",
"email",
"age",
"gender",
"phone_number"

]
},
{

"message_source": "data_analyst",
"message_destination": "epidemiologist",
"pet_action": "block",
"disallow_item": [

"name",
"email",
"age",
"gender",
"phone_number"

]
},
{

"message_source": "data_analyst",
"message_destination": "critic",
"pet_action": "block",
"disallow_item": [

"name",
"email",
"age",
"gender",
"phone_number"

]
},
{

"message_source": "outreach_admin",
"message_destination": "planner",
"pet_action": "mask",
"disallow_item": [

"name",
"email",
"age",
"phone_number"

]

17

},
{

"message_source": "outreach_admin",
"message_destination": "critic",
"pet_action": "mask",
"disallow_item": [

"name",
"email",
"age",
"gender",
"phone_number"

]
},
{

"message_source": "outreach_admin",
"message_destination": "epidemiologist",
"pet_action": "mask",
"disallow_item": [

"name",
"email",
"age",
"gender",
"phone_number"

]
}

]
},
"agent_environment": {

"tool_interaction": [
{

"message_source": "outreach_admin",
"message_destination": "write_outreach_sms",
"pet_action": "mask",
"disallow_item": [

"name",
"email",
"age",
"gender",
"phone_number"

]
}

]
}

}

C.2 Manifest for OptiGuide

{
"inter_agent": {

"agent_transitions": [
{

"message_source": "OptiGuideCoffeeExample",
"message_destination": "user",
"pet_action": "mask",
"disallow_item": [

"supplier ’s capacity",
"shipping or transportation cost",
"roasting cost",
"coffee demand"

]
}

]
}

}

C.3 Manifest for Movie RecSys

{
"agent_environment": {

"llm_interaction": [
{

"message_source": "movie_recommender",
"message_destination": "llm"
"pet_action": "mask",

"disallow_item": [
"name",
"age",
"gender",
"phone_number",
"email",
"address",
"zipcode",
"city",
"country",
"nationality",
"occupation",
"income",
"marital_status",
"children"

]
}

]
}

}

18

	Introduction
	Background
	Multi-agent Development Framework
	Policy-based Data Protection Paradigm
	Threat model

	Design
	Design Goal and Principles
	Design Overview
	MACS Data Protection Manifest
	Data Safeguard Engine

	Implementation
	Evaluation
	Use Case #1: HospitalGPT
	Use Case #2: OptiGuide
	Use Case #3: Personalized Recommendation System
	Performance Overhead and Utility

	Discussion
	Related Work
	Conclusion
	Prompts used for restricted data detection and masking in Maris
	ARD results on llama3.1 and Qwen2
	Manifest samples for use cases
	Manifest for HospitalGPT
	Manifest for OptiGuide
	Manifest for Movie RecSys

