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Abstract—Doubtlessly, the immersive technologies have po-
tential to ease people’s life and uplift economy, however the
obvious data privacy risks cannot be ignored. For example, a
participant wears a 3D headset device which detects participant’s
head motion to track the pose of participant’s head to match the
orientation of camera with participant’s eyes positions in the
real-world. In a preliminary study, researchers have proved that
the voice command features on such headsets could lead to major
privacy leakages. By analyzing the facial dynamics captured with
the motion sensors, the headsets suffer security vulnerabilities
revealing a user’s sensitive speech without user’s consent. The
psychography data (such as voice command features, facial
dynamics, etc.) is sensitive data and it should not be leaked
out of the device without users consent else it is a privacy
breach. To the best of our literature review, the work done in this
particular research problem is very limited. Motivated from this,
we develop a simple technical framework to mitigate sensitive
data (or biometric data) privacy leaks in immersive technology
domain. The performance evaluation is conducted in a robust
way using six data sets, to show that the proposed solution is
effective and feasible to prevent this issue.

Index Terms—Immersive Technologies, VR/XR technologies,
cognitive ability, human rights, biometric data privacy

I. INTRODUCTION

HE use of immersive technologies (Augmented Reality

(AR), Virtual Reality (VR) or Metaverse) has been in
existence since 1990’s but the use was limited to defence
sector [1]. Recently, the technology has shown its potential
to revolutionize many sectors. For example, in the education
sector, for example digital humanities, scholars use diverse
digital tools ranges from a small mobile phone to as large
as a virtual reality lab. In medical sciences, students interact
with realistic representations of anatomy without using real
patients [2]. According to Statista the Australian revenue
in the immersive technology market is projected to reach
out US$1,053 million in 2023[1_1 Further, it has a potential
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to strengthen global economy by US$1.5 trillion by 2030.
Doubtlessly, the technology has potential to ease people’s life
and uplift economy, however the obvious data privacy risks
cannot be ignored. The immersive technologies are currently
poorly developed (in privacy context) and there is a significant
gap in the technology which hinders its use in secure ways [J3]].

The immersiveness rely on participants data, but the data
harvesting technologies often violates the user privacy rights.
Particularly, in immersive technologies, a participant wears a
3D headset device which detects participant’s head motion
to track the pose of participant’s head to match the orien-
tation of camera with participant’s eyes positions in the real-
world [4], [5]. This device also has an eye tracking sensor
which detects both pupil dilation in response to visual stimuli
and cognitive responses leading to increased levels of emo-
tional activation— revealing behavioural sensitive information
that a user never intended to reveal [[6]. By analysing the facial
dynamics captured with the motion sensors, the headsets suffer
security vulnerabilities revealing a user’s sensitive speech
without user’s consent. This leaked behavioural (psychog-
raphy) data can feed into misinformation drivers including
social, political, and electoral interference campaigns poses
threats to national security which costs organisations millions
of dollars.

Let alone the privacy, the collection of biometric data
enables profiling of participant(s) without their consent and
consequently could adversely impact the psychography of
participant, eventually violates human rights. This is the
disregard for humanity by such technologies. Researchers
emphasized that “the immersive nature of AR/VR makes it
difficult to mitigate risks by applying existing privacy policies
and practices from other digital media. It requires innovative
new approaches to transparency, choice, and security.” [7].
Note that the immersive technologies essentially need the
collection of the biometric data which acts as a baseline to
create immersive experience, however, this ongoing feedback
information (includes biometrics) creates novel issues for user
privacy. Although the data collection is the core functions of
immersive technologies which distinguish these technologies
from other consumer devices and applications, however we
argue that we must consider the scale and sensitivity of the
data and should develop approaches to balance the secure use
and the innovation of this technology [8].

The urgency of this research is underscored by the
widespread adoption of AR/VR technologies across vari-
ous domains, including entertainment, healthcare, education,
and industrial applications. As these technologies continue
to permeate our daily lives, the collection and analysis of
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biometric signals have the potential to unlock unprecedented
insights into user behavior and physiological responses [9].
However, this newfound potential comes hand-in-hand with
concerns surrounding user consent, data misuse, and the risk
of biometric data breaches. More importantly, the tracking
of data without user’s consent is illegal and violates human
rights (individual’s rights to privacy) [[10]. Australia’s esafety
Commissioner raised the concern that immersive technologies
can be used for harms cyberbullying, grooming children for
online sexual abuse, and image-based abuse (sharing intimate
content of someone without their consent, including sexual
extortion). By Gartner’s report, it is predicted that by 2026,
25% of people will spend at least one hour a day in the
immersive technologies for work, shopping, education, social
and/or entertainment However, to establish the sense of
community that is central to its mass adoption; safety and
ethical aspects (balancing data privacy issues) are significantly
important now than ever [11]. If the problem is not addressed
timely will pose big risks to businesses, damage a brand’s
reputation, impact economy, and user’s privacy, eventually a
threat to national security and economy. We emphasize that
this is a very novel research issue, and we are among the
early ones to investigate this sensitive problem (i.e., fo mitigate
the sensitive and biomertic data leakage from the immersive
technologies devices without the participant’s consent.)

Overall, the promise of immersive experiences is coupled
with the risks of harvesting sensitive information, specific to
the psychological and sensory interactivity of the participant.
Further it could adversely impact the psychography of user,
eventually violates data privacy and human rights laws [12].
Motivated from this, our work in this paper dives deep into
the critical realm of safeguarding user privacy within the
ecosystems of immersive technologies. Specifically, our work
addresses the formidable challenge of increasing the privacy of
biometric data (or signals) collected through AR/VR devices.
We propose a simple and effective methodology to extract
biometric signals from raw data, devoid of any associated
metadata, and subsequently, implement robust blocking mech-
anisms in order to avoid the leakage of biometric or sensitive
data. The overall goal is to empower users with greater control
over their biometric data, ensuring that sensitive information
remains confidential and secure.

We reiterate that we propose a framework for the extraction
of biometric signals from a spectrum of unconventional data
sources received from the AR/XR devices. We aim to extract
these biometric signals from diverse data modalities, such as
audio signals and other non-standard sources, without reliance
on accompanying metadata. This process intends to render
the traceability of specific biometric data to individual users
exceedingly challenging for unauthorized entities.

The contributions of this paper are as follows:

1) Particularly, we pointed out that the psychography data
leakage issue is not well investigated in the state-of-the-
art works. Most of the existing works focus on the design

Zhttps://www.gartner.com/en/newsroom/press-releases/2022-02-07-gartner-
predicts-25-percent-of-people-will-spend-at-least-one-hour-per-day-in-the-
metaverse-by-2026 assessed on 07/09/2023.

of biometric data-based authentication approaches to
authenticate user, however, the issue of preventing bio-
metric data leakage is largely ignored. We are the early
ones to exploring and evaluating this critical research
problem in immersive technologies context. This is our
major contribution which aspires to make a substantial
impact onto the ongoing discourse on biometric data
privacy within AR/VR realms.

2) By pioneering a simple and effective two-stage method-
ology for biometric signal extraction from unconven-
tional data sources and fortifying their security, we aim
to establish a foundation for a future where privacy
and innovation coexist harmoniously in augmented and
virtual reality.

3) We propose a framework to mitigate sensitive data pri-
vacy leaks in immersive technology domain. The robust
performance evaluation of the proposal, using six data
sets, is conducted to show that the proposed solution is
applicable, feasible and effective in this problem domain.

The rest of the paper is organized as follows. We first review
the related work in Section II. Then, in Section III, we present
the proposed approach. In Section IV, we present the results of
our experiments and some discussions on the performance of
the proposed approach. Section V highlights the open issues
within the scope of the problem context. Finally, in Section
VI, we summarize the paper and provide some future work
directions.

II. RELATED WORK

In this section, we review the very recent literature related
to avoid the biometric data leakage of participants from
immersive technology devices [13]].

In Metaverse, “the sensory information and actuator-related
information are exchanged between virtual and real worlds
via IEEE 2888.1 and IEEE 2888.2 standards, respectively.
Besides, the definition, synchronization, and mission control
data are defined by the IEEE 2888.3 standard for digital things
(i.e., virtual objects)” [14]]. Given these standards and the other
enabling technologies researchers are using in Metaverse, we
note that most of the existing works focus on some typical
issues such as Identity Theft ’, Impersonation Attack, Avatar
Authentication Issue, Trusted and Interoperable Authentica-
tion, Unauthorized Data Access, Misuse of User/Avatar Data,
etc. [14]-[20]. To the best of our literature review, we note
that very little has been explored to mitigate the issue of
Biometrically inferred data [14], [[17], [18], [20].

To better comprehend this, we further elaborate this is-
sue. We understand that the, immersive technologies such as
VR/XR or Metaverse rely on tracking, processing, adapting to
the participant(s) sensory experience. Failure to accommodate
for the expected visual, auditory, locomotive effect of the
system disrupts the participant(s) vestibular system and causes
simulator sickness [11]. Thus, the hardware must monitor
the user in deeply intimate and pervasive ways [12]]. Whilst

3https://threatpost.com/nft-investors-lose- 1-7m-in-opensea-phishing-
attack/178558/, accessed on 06/11/2023
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Fig. 1: The high level view of the proposed approach. The approach comprises two primary modules: a feature extractor and
classifiers. The feature extractor processes raw signal data, extracting a range of features. Subsequently, these extracted features
serve as input for the classifiers, which employ algorithms like random forest, XGBoost, and LightBGM. The classifiers classify
the signals or data into its correct category, and the output is routed through a filter. The filter selectively allows the passage

of non-biometric signals, screening out any biometric signals.

immersive technologies rely on tracking and tracing of the par-
ticipant(s) senses, to experience verisimilitude and presence,
there is the substantial risk of private and sensitive biometric
data being collected, sold and/or hacked/ and/or harvested by
multiple third parties for further use, misuse, and/or abuse.
Biometrically inferred data is a collection of datasets resulting
from information inferred from behavioural, physical, and
psychological biometric identification technique [21]].

Interestingly, it is important to note that many definitions
of biometrics rely on narrow physiological categories of data
that may not cover data captured in immersive systems, and
biometric identifiers and information is only covered if it
is for authentication purposes [22]. As we have mentioned
above that very little has been explored or investigated in this
direction, we are among the early ones sketching this problem
and the state-of-the-art in detail. The authors [23]] proposed
zero-trust user authentication scheme fundamentally based on
biometrics-based authentication that is suitable for continu-
ously authenticating VR users. Further, in [24] the authors
design an avatar’s two-factor identity model to ensure the ver-
ifiability of avatar’s virtual identity and physical identity. They
used biometric features in their design, which in our opinion
is violation of the privacy of users, i.e, if the headset or device
collects the biometric features without users consent is a clear
violation of human rights or privacy of individual. Many
other existing works such as [25]-[30] proposed biometric-
based authentication approaches to authenticate users, these
approaches are divided into two sub-categories, physiological
biometric-based and behavioral biometric-based.

We extensively read the recent works [[14], [17], [18], [20]
and note that much of the existing works is around the policy
design, proposing novel regulatory framework, etc. [31[]—[34]]
but none has been explored significantly from the technical
side of this problem.

III. THE PROPOSED APPROACH

The high level view of the proposed framework is shown in
Fig. 1. Note that the VR devices rely on numerous sensors to

measure the motions made by the user/participant, for example
infrared cameras to track eye movement, etc. Particularly, the
Oculus Rift headset features an accelerometer, a gyroscope,
and a magnetometer, all of them work together to track the
rotation of the headset. The Oculus Rift also uses an infrared
camera, which is used to track the position of the headset
in relation to the room [ In the recent studies researchers
have collected various signals from the VR devices such
as Electroencephalography (EEG) signals, continuous blood
pressure monitoring using low-cost motion sensors on AR/VR
headsets, etc. We reiterate that there is clear threat of volition
of user data privacy by capturing these biometric signals
without user’s consent.

For example, eye tracking biometric data can cause pupil
dilation in response to visual stimuli, brain activity related
physiological data can cause increased levels of emotional ac-
tivation, etc. The predictive behavioural analysis of biometric
data, known as Biometric Psychography, is used to determine
the emotional state of the participants upon viewing or inter-
acting with products in immersive technologies. Psychography
data feeds into misinformation, social, political, and electoral
interference, etc. Additionally, psychographic biometric data
can be sold on the dark web and can pose threats to national
security. Therefore, in our proposed framework we apply a
simple two-stage approach (feature extraction and classifica-
tion stage, filter stage, see Fig. 1) to stop the leakage of
biomertic data. Note that our aim is to prevent the leakage
of biomertic data from VR devices.

Firstly, as seen in Fig. 1, the framework comprises two
primary modules or stages: stage 1 is a feature extractor
and classifiers, and stage 2 is the filter. The feature extractor
processes raw signal data, extracting a range of features.
Subsequently, these extracted features serve as input for the
classifiers which predict the signal’s category (biomertic or
non-biomertic), and the output is routed through a filter. The
filter selectively allows the passage of non-biometric signals,

“https://www.meta.com/en-gb/blog/quest/building-a-sensor-for-low-
latency-vr/, accessed on 05/11/2023
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screening out any biometric signals. In our study, individual
signals are collected separately from various datasets adjusting
the number of samples for the varying sample rates of the
datasets.

The work-flow is presented in Algorithm 1. The proposed
approach consists of three main components. Note that the
proposed algorithms (or the overall approach) can be a part
of the VR device’s software. This can be a separate module
or be an integral part of the device to mitigate the issue. In
the following literature we elaborate the working of the three
components of the proposal.

Note that all the biometric signals (ECG, EEG, Body Move-
ment) were obtained from the PhysioNet datatset repository El
The audio signals (GTZAN dataset) is claimed to be used
widely for music genre classification task and we have used
this audio corresponding to non-biometric signal. Our work is
aligned with [35] and [36].

Stage 1A:- Feature Extraction module - In the existing
literature, various features have been systematically collected
to characterize different types of signals. For instance, in the
context of a universal and privacy-preserving EEG-based au-
thentication system, proposed methods include autoregressive
models, power spectral density analysis, and the utilization
of wavelet transform for EEG signal [37]. Similarly, in the
case of stable EEG Biometrics using convolutional neural
networks and functional connectivity, models incorporating
power spectral density functions and fuzzy entropy mea-
sures are employed. Furthermore, affective EEG-Based person
identification, utilizing deep learning techniques, relies on
power spectral density estimation through Welch methods for
individual identification based on EEG data [38]. Entropy-
based methodologies have gained substantial recognition in
characterizing physiological signals, spanning EEG, ECG,
and blood pressure recordings. Notably, various studies have
applied fuzzy entropy metrics for signal analysis and compar-
ison purposes [39]]. In addition, some research papers have
incorporated distinctive features like PR and RR intervals
for authentication objectives. In another context, studies has
predominantly utilized spectral features, including spectral
entropy, roll-off, and spread, alongside time-domain features
such as energy metrics to authenticate individuals using head
movements [40].

In our work, we adopted features that are common to
ECG, EEG, and body movement signals, encompassing fuzzy
entropy calculations spanning dimensions from 1 to 10, as well
as statistical attributes of power spectral density such as mean
and standard deviation. These feature selections are consistent
with the existing works in immersive technologies context
to authenticate a participant. Further the selection of these
features were made with a focus on robustness and universality
across signal types. The extracted features are passed onto the
classifier module.

Stage 1B:- Classifier module- The extracted features served
as the basis for training various machine learning models,
encompassing Random Forest [41], XGBoost [42]], and Light-
GBM [43]]. Given the notable performance achieved by these

Shttps:/physionet.org/about/database/

Algorithm 1: The Proposed algorithm for the overall approach

Input: s(t) (Heterogeneous signals from VR headset/device)

class < Classifier(s(t))
allowed_to_pass < Filter(class)

Outcome: allowed_to_pass

Algorithm 2: The proposed approach of classifier algorithm

Input: ¢* (Minimum time length of a signal)
s(t) (Input signal)
Dy, (k = { ECG, EEG, B-MOV, NON-BIO })
gk (t) (Signals for t > t*, where k € Dy,)
3f : g(t) — 6 (feature extractor function)
Variables: max_probability = 0
class

if t > t*:
05 — f(s(t))
0c « 1(g(t)
for k € Dy: do
if Pr(0s|0g) > max_prob:
max_probability «— Pr(S|Gy)
class « k
end for
end if

if class == NON — BIO:
allowed_to_pass = TRUE
else
allowed_to_pass = FALSE
end if

Outcome: allowed_to_pass

individual models on the test data, there was no imperative
need to pursue an ensemble of models. It is noteworthy that
both XGBoost and LightGBM inherently exhibit ensemble
characteristics, making the pursuit of additional ensemble
strategies redundant in this particular context. To assess the
robustness of the models under real-world conditions, various
signal distortions were introduced. It is essential to add noise
in the data as researchers have mentioned that the collected
data can be very noisy due to various psychological ef-
fects [44]]. In our work, the introduced distortions encompassed
horizontal and vertical scaling, additive white Gaussian noise,
and the use of smaller signal segments compared to the seg-
ments used for model training.Subsequently, the classification
accuracy and F1 score was used to evaluate the performance
of these models.

Stage 2: Filter module- Signal passage is determined by
the classifier’s probability prediction. If the classifier identifies
the signals as ECG, EEG, or body movement data, they are
barred from progression. The work-flow of the classifier and
the filter is presented under Algorithm 2. Note that the NON-
BIO denotes the non-biomertic signal category.

IV. PERFORMANCE EVALUATION

In this section, we have evaluated the performance of our
scheme in the detection of signals into ECG, EEG, Body
Movement, and NON-BIO class. We have firstly presented
the setups of our experiments and discussed the dataset we
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have used in our work. Following this, we have presented the
results of our experiments.

We employ open-source tools and the real datasets to show
the Proof of Concept (PoC) and the effectiveness of the
proposed framework. We use six datasets comprising biometric
signals, including 1) A large scale 12-lead electrocardiogram
database for arrhythmia study, 2) Apnea-ECG Database, 3)
Auditory evoked potential EEG-Biometric dataset, 4) Body
Sway When Standing and Listening to Music Modified to
Reinforce Virtual Reality Environment Motion, 5) GTZAN
Dataset for Music Genre Classification and 6) Norwegian En-
durance Athlete ECG Database, consisted of multiple channels
of data for each individual. These multichannel data were
systematically segmented into non-overlapping segments of 8
seconds each, a process employed for training and analysis
purposes. Below we provide the detailed description of each
dataset we used in our work.

A. Data-set description

1. Large Scale 12-Lead Electrocardiogram Database for
Arrhythmia Study [45]]- This extensive research database
offers a wealth of 12-lead electrocardiogram (ECG) signals
sampled at a rate of 500Hz. With a primary goal of advanc-
ing studies on arrhythmia and cardiovascular conditions, it
comprises data from 45,152 patients. Collaboratively created
by Chapman University, Shaoxing People’s Hospital, and
Ningbo First Hospital, the dataset focuses on atrial fibrillation,
a cardiac condition of significant public health concern. It
encompasses various common rhythms and cardiovascular
conditions, meticulously labeled by expert professionals.

2. Auditory Evoked Potential EEG-Biometric Dataset [46]-
This dataset, recorded at a sampling rate of 200Hz, includes
over 240 two-minute EEG recordings from 20 volunteers. It
encompasses resting-state EEG signals with both eyes open
and eyes closed, as well as experiments involving auditory
stimuli. The primary objective is to facilitate the development
of an EEG-based biometric system. EEG signals, which reflect
brain activity, have diverse applications, including biometric
authentication. This dataset serves for a range of purposes,
from simple analysis to comparisons between resting states
with varying eye conditions and studying the effects of
auditory stimuli. During data collection, subjects underwent
EEG recording sessions with specific electrode placements
according to the 10/10 international EEG system, participating
in experiments that included resting-state conditions, auditory
stimuli with different songs, and sessions with noise isolation.

In our experiment, EEG recordings were selected from in-
dividuals as they listened to songs through in-ear headphones,
as this scenario closely relates to VR/AR experiences. EEG
recordings obtained during individuals’ auditory experiences
through in-ear headphones were employed for the training of
the classifiers. Additionally, the EEG recordings during the
auditory experiences through bone-conducting earphones were
subjected to various intentional distortions. These perturbed
signals were subsequently utilized to evaluate the classifiers’
resilience and performance under adverse conditions.

3. Apnea-ECG Database [47)-This database comprises 70
records, divided into a learning set of 35 records and a test set

of 35 records. The recordings, sampled at a rate of 100Hz, vary
in length, but non-overlapping segments of 8 seconds were
created from them. Each record includes a continuous digitized
ECG signal, apnea annotations, and machine-generated QRS
annotations.

4. Body Sway When Standing and Listening to Music
Modified to Reinforce Virtual Reality Environment Mo-
tion [48]]- This dataset, recorded at a sampling rate of 1000Hz,
was meticulously collected to investigate the influence of
music integrated into a VR environment on body sway. It
comprises measurements of body sway obtained from sub-
jects standing on a balance platform under various visual
and auditory conditions within the VR setup. The dataset’s
relevance lies in its exploration of the impact of music on
body sway, particularly within the context of a VR envi-
ronment. Increased body sway is often associated with falls,
especially in aging and patient populations. Therefore, this
dataset provides valuable insights into the complex interplay
between sensory inputs and postural stability during VR
experiences. Researchers can utilize the high-resolution data
to gain a deeper understanding of how music affects body
sway in VR scenarios and its potential implications for various
applications.

5. GTZAN Dataset for Music Genre Classification [49]-
It stands as a renowned resource in the field of music
genre classification, celebrated for its diverse assortment of
audio clips representing a wide spectrum of music genres,
encompassing rock, jazz, pop, classical, blues, and more. Each
audio clip, typically spanning a few seconds, is meticulously
labeled with its corresponding genre. Researchers and prac-
titioners frequently turn to this dataset for developing and
assessing machine learning models and algorithms designed
to automatically categorize music into various genres based
on audio content. Notably, the original audio clips within
the GTZAN Dataset are sampled at a standardized rate of
44.1kHz. However, to enhance computational efficiency, we
have opted to down-sample the audio data to 1000Hz, striking
a balance between maintaining audio quality and optimizing
processing speed. This dataset has been used corresponding to
the ‘NON-BIO’ class. This helped us to evaluate the ability
of the model to differentiate ECG, EEG, and Body movement
signals apart from the non-bimoetric signals.

6. Norwegian Endurance Athlete ECG Database [50]-
This dataset features 12-lead ECG recordings obtained from a
cohort of 28 elite athletes across diverse sporting disciplines in
Norway, offers meticulously recorded data sets with an impres-
sive standard of precision. These ECG recordings, acquired at
a consistent and typically high sample frequency of 500Hz,
ensure a comprehensive and finely detailed portrayal of the
athletes’ cardiac electrical activity, especially during periods
of resting conditions. Moreover, this dataset has been instru-
mental in rigorously evaluating the robustness and reliability
of predictive models when subjected to various forms of data
distortion and alteration, advancing the field’s understanding
of model performance under challenging conditions.
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Fig. 2: Feature importance was compared across Random Forest, XGBoost, and LightGBM classifiers using the MultiModalBioAudio dataset, SHAP values
were computed following the execution of a forward feature selection algorithm aimed at identifying the most influential features for each model. The analysis
focused exclusively on the impact of features selected through the forward feature selection process.

B. Experimental Setup

The experiments were carried out on a computing system
having 64-bit operating system with an x64-based processor,
8.00GB of RAM (7.71GB usable), and Intel(R) Core(TM)
i7 — 11800H processor running at a base clock speed of
2.30GHz, all under normal operational conditions. We initiated
our research by first developing a binary classifier to distin-
guish between ECG [45]] and non-ECG signals [46]|. Following
the successful implementation of this binary classification
model, we expanded our investigation to create a multi-class
classifier capable of categorizing various biometric signals,
including ECG [47], EEG [46], body movements [48]],
and audio signals [49].

In our study, a comprehensive dataset comprising 2000
ECG signals was utilized, with each group of 500 ECG
signals drawn from various sources, including the APNEA
dataset [47]], the APNEA dataset with the introduction of
AWGN noise, the Arrhythmia Study dataset, and the Arrhyth-
mia Study dataset [45] with the same level of added noise.
Additionally, we incorporated 1,500 EEG signals and 750
signals sourced from the Body Sway dataset [48], all of which
were complemented by an additional 1,000 audio signals
for non-biometric data. Henceforth, this dataset, in our work,
is denoted as the “MultiModalBioAudio Dataset” for academic
reference. To ensure a rigorous evaluation, we partitioned the
entire dataset into a training set comprising 70% of the data
and a separate test set comprising the remaining 30%. This
meticulous dataset composition allowed us to comprehensively
assess the performance of our models across various signal
types, thereby enhancing the robustness and validity of our
findings.

Following the training of our models, we conducted rigorous
testing to evaluate the robustness of our models across various
signal types. Specifically, the study focused on signal sources
from the Norwegian Endurance Athlete ECG Database and
the Auditory Evoked Potential EEG-Biometric Dataset. The
latter dataset comprised EEG recordings from individuals who
were exposed to auditory stimuli through bone-conducting
earphones. The recordings from both datasets were subject to
various forms of distortions in our analysis. These introduced
distortions encompassed the addition of noise with varying
standard deviations, as well as vertical and horizontal scaling

with distinct scaling factors. It is important to highlight that
no preprocessing steps were applied to the experimental setup,
ensuring a comprehensive assessment of model performance
under these varied and challenging conditions. This thorough
testing allowed us to ascertain the models’ resilience and
adaptability across a spectrum of real-world scenarios and
signal alterations. The equations associated with different
distortions are given in Table I

TABLE I: Equations for different distortions. Here z(t), s(t), and m(t)
represents the distorted signal and raw signal, respectively.

Distortion Type Equation
Horizontal Scaling z(t) = s(a - t)
Vertical Scaling 2(t) = - s(t)
Additive White Gaussian Noise ~ z(t) = s(t) + N (z;0,0)
Smaller Signal Segments Algorithm3

C. Results

In Table we present the training and testing times for
our machine learning models. Notably, the models exhibit
remarkable efficiency in both training and testing phases.
These precise timings provide a comprehensive understanding
of the models’ computational performance on the specified
hardware and software configuration, offering valuable in-
sights for further analysis and optimization.

Also, in our experimentation, we first evaluate the critical
features for each classifier, extracting valuable insights into
their significance. We also ran forward feature selection algo-
rithm to find the most effective combination of the extracted
features. We used SHAP to gain insights on how the
selected features contributed to the prediction of each model
These feature importance rankings and their contribution are
visually presented in Figure [2| The figure suggests that the
Random Forest model and LightGBM places considerable
importance on the mean of power spectral density, whereas

Algorithm 3: The Random Cropping Algorithm

Input: s(t)
T (Length of the output signal)
stari_time < Random float z ; z € (0,t — T
z(t) = s(t*) for t* € [start_time, start_time + T
Outcome: z(t)
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Fig. 3: Accuracy of the Random Forest Classifier, XGBoost Classifier and LightGBM Classifier for different features and sample size.

TABLE II: Training and Testing Times of the MultiModalBioAudio Dataset
for the three classification algorithms.

Model Training Time (s)  Testing Time (s)
Random Forest 0.291 0.014
XGBoost 0.215 0.003
LightGBM 0.224 0.006

for XGBoost, the 2nd dimension of fuzzy entropy emerges
as a significant contributor. Additionally, it is noteworthy that
the power spectral density distribution of the signals plays a
crucial role in the predictions of all models. Following this, we
proceeded to train the classifiers and subsequently examined
their performance by varying the sizes of the training datasets.
The individual features were sorted in the ascending order
based on the importance score provided by each classifier.

During this process, we incrementally added features to
the models, starting from the least important and progress-
ing to the most important ones. The experimental results,
which showcase the variations in classification accuracy with
changes in training data sizes and feature incorporation, can
be observed in Figure [3] The results from the figure illustrate
that using large number of samples for one feature results
in overfitting of all the models, and when the samples and
features increase, there is a consistent increase in the clas-
sification accuracy. However, when the number of features
for the MultiModalBioAudio Dataset increase to more than
10, the number of sample size for training the test accuracy
is saturated near 99% irrespective of the number of training
samples for each class.

Note that Biometric signals obtained from AR/VR headsets
can be subject to both unintentional and intentional modifi-
cations. Unintentional alterations typically result from natural
noise interference. In contrast, intentional modifications may
be introduced by adversaries aiming to evade our proposed se-
curity measures and gain unauthorized access to the biometric
data. These intentional modifications can encompass actions
such as horizontal and vertical scaling, as well as random

segment alterations applied to the output of the AR/VR
headset. The relevant results are discussed below.

We conducted an extensive assessment of the classifiers
trained using all twelve features. This comprehensive eval-
uation involved measuring their classification accuracy on
a dataset consisting of 50 signals for ECG, EEG, body
movement, and audio, each subjected to different types of
distortions. The equations corresponding to various types of
distortions are presented in Table [[ Vertical scaling distortion
involves multiplying the original signals by a factor o, while
horizontal scaling entails re-sampling the signal with different
time scaling factors. Noise distortion is introduced by adding
samples from a normal (Gaussian) distribution with a zero
mean and various standard deviations. Additionally, cropping
distortion involves randomly cropping the original signals
at different time points to create windows corresponding to
various time segments.The findings were notably intriguing:
signals that underwent distortions such as horizontal and
vertical scaling, Fig. @] a and b, respectively.

It is seen in the Fig. ] (a) that till scaling factor is 1, i.e.,
a = 1, the accuracy and the Fl-score results are showing
consistent results. After « = 1 the accuracy and F1 score
drops significantly. Note that we want the proposed model
to provide high accuracy and better F1 results even at very
high values of «. This is to validate that how reliable the the
proposed solution is in the presence of adversarial activity, i.e.,
an adversarial attempt to temper the data. Therefore finding
the optimum value of the scaling factor is a matter of further
investigation of finding a trade-off between the utility and the
privacy of the model which we aim to tackle entirely a new
paper. Similarly in Fig. f] (b), we note the same pattern of
results.

Further, the results related to noise injection and random
segment alteration are shown in Fig.[5] and Fig.[6] respectively.
These are providing new insights into the effects of distortion.
The overall performance of all classifiers declined when the



IEEE

Effect of Horizontal Scaling

1.00
—8— RandomForestClassifier

XGBClassifier
—+— LGBMClassifier

0.95

Accuracy

0.80

0.75

0.25 0.50 0.75 1.00 125 1.50 175 2.00
Scaling Factor

1.00
—8— RandomForestClassifier

XGBClassifier
—+— LGBMClassifier

0.95

0.90

F1l_score

0.80

0.75

0.25 0.50 0.75 1.00 125 1.50 175 2.00
Scaling Factor

(a)

Effect of Vertical Scaling

—8— RandomForestClassifier
XGBClassifier
—+— LGBMClassifier

0 2 4 6 8 10
Scaling Factor

—8— RandomForestClassifier
XGBClassifier
—+— LGBMClassifier

F1_score

0 2 4 6 8 10
Scaling Factor

(b)

Fig. 4: Accuracy and F1 score of the Random Forest Classifier, XGBoost Classifier, and LightGBM Classifier for different factors of a) horizontal scaling
and b) vertical scaling. The signals were horizontally and vertically scaled corresponding (x-axis) to the equations z(t) = s(at) and z(t) = as(t) where z(t)

is the scaled signal « is the scaling factor and s(t) is the original signal.

signals underwent distortions. As evident from Figure [6] the
segmentation results indicated that despite training the signals
with 8 seconds of data, a mere 2 seconds proved sufficient
for high-accuracy and F1 score classification. Additionally, the
random forest classifier exhibited the highest resilience to hor-
izontal scaling, but performance deterioration occurred when
the horizontal scaling factor surpassed 1 for all classifiers.
For a detailed breakdown of classification accuracy concerning
each type of distortion, please refer to Figures [4] [S}and [6]

V. FURTHER DISCUSSION AND OPEN ISSUES

Uniquely, we consider the interconnected and interdepen-
dent relationship between biometrics and human rights with
national and international regulations, for example Consumer
Data Rights in Australia (CDR) and the EU’s General Data
Protection Regulation (GDPR). We develop a framework to
ensure that a collective and enforceable decision can be made
by governments across international jurisdictional boundaries
to develop socially responsible avatars that strengthen our user
and data privacy. The outcome of our work will shape the
global trends of applying secure techniques (such as the one

we propose) to be embedded or integrated in VR devices or the
immersive technologies devices within the scope of technical
standards and ethical frameworks. The direct beneficiaries will
be the public and private cyber security organisations, human
rights organisations, and the immersive technology industries
as well as the participants of immersive technology. We accept
that the work proposed in this paper is limited but noteworthy
to a great extend that we are the early ones unearthed this
ignored issue. The presented work is an early evaluation and
there are further many open issues to address. More analysis
needed on how the approach would impact immersive user
experience and device functionality.

The devices’ Usability:- Firstly, it is essential to assess the
proposed approach’s usability, for that further deep evaluation
from its deployment context is needed to evaluate. It is true
that the human condition is extremely variable and hence the
design of any approach would always leave novel anomalies
which eventually may exacerbate and potentially create a new
form of discrimination. Also, with the scale of participants
(humans) and the diversity of human conditions (variety and
uniqueness) would further create complexity of biometric
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Fig. 5: Accuracy and F1 score of the Random Forest Classifier, XGBoost
Classifier and LightGBM Classifier for different standard deviation values for
AWGN. It is worth noting that the LightGBM classifier and XGBoost classifier
exhibit similar behavior. Noise was added to the original signal corresponding
to the equation z(t) = s(t) + N'(z;0, ) where z(t) is the output signal, s(t)
is the original signal and N represents the normal distribution.

data analysis in regards label and then classify the data. So,
in future, we aim to update the firmware of VR devices
with the proposed approach’s and then further investigate
the impact of this on users immersive experiences and the
behaviour/functionality of the device. This will give us further
insights and directions to further explore this area.

Informed Consent:- Secondly, the problem of biometric data
privacy is linked to human rights as well. From technical
perspectives, there will be complexities in creating the baseline
of how to classify the outlier data. There will be more
struggle with the data analysis part in such ways, therefore the
alternative is to seek help from our legislation or to re-ignite
the concept of informed consent in this application domain. We
note that the existing legislation or standards (IEEE 2888.1,
IEEE 2888.2, and IEEE 2888.3) do not adequately specify
how biometric data is collected and stored in the context
of immersive technologies. Therefore, improved regulation is
necessary to help preserve data privacy and human rights as
well as to strengthen national security.

Further research from policy frameworks and regulatory
aspects will help balancing the opportunities of immersive
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Fig. 6: Accuracy and F1 score of the Random Forest Classifier, XGBoost
Classifier, and LightGBM Classifier for different time lengths of signals.

technologies to help enable cross jurisdictional actionable
decision-making in the immersive technologies whilst uphold-
ing the tenets of fundamental human rights for handling of per-
sonal biometric data. Essentially this will help to maintain the
data privacy in trans-boarder data flow scenarios. Policymakers
can create an innovation-friendly regulatory environment in
immersive technologies in order to maintain user privacy
by clarifying, updating, and harmonizing existing rules and
introducing comprehensive privacy legislation.

VI. SUMMARY AND FUTURE WORK

In the ever-evolving landscape of Augmented Reality (AR)
and Virtual Reality (VR) technologies, the collection and
utilization of biometric signals have emerged as pivotal com-
ponents, offering immersive experiences and personalized in-
teractions. Biometric signals, derived from physiological and
behavioral characteristics, have the potential to enhance user
experiences by adapting content and interfaces in real-time.
However, the integration of biometric data into AR and VR
environments raises significant concerns regarding individual
privacy and data security. In this work, we pointed out that
the collection of biometric data without user consent is a
clear violation of privacy and human rights. To mitigate this
issue, we proposed a simple and effective two-stage approach
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to defend user’s privacy. Our robust approach of testing our
proposal shows the effectiveness of the solution. Finally, in
the further discussion section, we have provided some future
research directions in this context.
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