
Reliable Disentanglement Multi-view Learning Against View Adversarial Attacks
Xuyang Wang1 , Siyuan Duan1 , Qizhi Li1 , Guiduo Duan2 , Yuan Sun1,3∗ and Dezhong Peng1,4,5∗

1College of Computer Science, Sichuan University, China
2Laboratory of Intelligent Collaborative Computing, University of Electronic Science and Technology of

China, China
3National Key Laboratory of Fundamental Algorithms and Models for Engineering Numerical

Simulation, Sichuan University, China
4Tianfu Jincheng Laboratory, China

5Sichuan National Innovation New Vision UHD Video Technology Co., Ltd., China
xywang@stu.scu.edu.cn, {ddzz122773315, mrqz945, sunyuan work}@163.com,

guiduo.duan@uestc.edu.cn, pengdz@scu.edu.cn

Abstract
Trustworthy multi-view learning has attracted ex-
tensive attention because evidence learning can
provide reliable uncertainty estimation to enhance
the credibility of multi-view predictions. Existing
trusted multi-view learning methods implicitly as-
sume that multi-view data is secure. However, in
safety-sensitive applications such as autonomous
driving and security monitoring, multi-view data
often faces threats from adversarial perturbations,
thereby deceiving or disrupting multi-view models.
This inevitably leads to the adversarial unreliability
problem (AUP) in trusted multi-view learning. To
overcome this tricky problem, we propose a novel
multi-view learning framework, namely Reliable
Disentanglement Multi-view Learning (RDML).
Specifically, we first propose evidential disentan-
glement learning to decompose each view into
clean and adversarial parts under the guidance of
corresponding evidences, which is extracted by a
pretrained evidence extractor. Then, we employ the
feature recalibration module to mitigate the neg-
ative impact of adversarial perturbations and ex-
tract potential informative features from them. Fi-
nally, to further ignore the irreparable adversar-
ial interferences, a view-level evidential attention
mechanism is designed. Extensive experiments on
multi-view classification tasks with adversarial at-
tacks show that RDML outperforms the state-of-
the-art methods by a relatively large margin. Our
code is available at https://github.com/Willy1005/
2025-IJCAI-RDML.

1 Introduction
In practical scenarios, an object can often be described by
multiple views of different feature types and modalities,
which leads to a growing interest in multi-view learning
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[Wen et al., 2021; Liang et al., 2024; Yuan et al., 2025;
Yuan et al., 2024]. Thanks to the power of deep learning,
deep multi-view learning has exhibited remarkable advan-
tages by integrating and mining both valuable complementary
and consistency information of multi-views [Qin et al., 2024;
Zhang et al., 2020; Sun et al., 2024]. Thus, in recent
years, multi-view learning has attracted widespread atten-
tion [Zhang et al., 2023; Xu et al., 2025; Li et al., 2025].
For example, predictive dynamic fusion (PDF) [Cao et al.,
2024] proposes an intuitive and rigorous multimodal fusion
paradigm from the perspective of generalization error.

Although these above methods have achieved pleasing per-
formance, their results could be uncertain and unreliable
due to the attribute differences and heterogeneity of multi-
view data. This greatly limits the application of multi-view
learning in various fields, especially medical diagnosis or
autonomous driving. To this end, a new trusted learning
paradigm for multi-view classification is proposed to enhance
trusted decisions. For instance, Trusted Multi-view Classifi-
cation (TMC) [Han et al., 2022b] introduces the evidence the-
ory to construct the Dirichlet distribution, thereby providing
uncertainty estimation for multi-view decisions to enhance
reliability. To make reliable decisions under noise labels,
TMNR [Xu et al., 2024b] proposes trusted multi-view noise
refining to overcome the negative effects of noisy labels.

Almost all existing trusted multi-view learning methods
implicitly assume that multi-view data is secure [Wen et al.,
2020]. In practice, however, in safety-critical applications
such as autonomous driving and security monitoring, multi-
view data could be susceptible to adversarial attacks, which
can deceive or disrupt multi-view models. This vulnerabil-
ity inevitably leads to the adversarial unreliability problem
(AUP) in trusted multi-view learning. As shown in Fig.1,
adversarial attacks (such as projected gradient descent attack
[Madry et al., 2018]) are imposed on the multi-view data.
From the figure, we can observe that, after being subjected
to attacks, even if only one view is attacked, the state-of-the-
art evidence-based method (i.e., ECML) still shows a signifi-
cant decline in classification accuracy. Worse still, instead of
increasing with the substantial performance decline, the esti-

ar
X

iv
:2

50
5.

04
04

6v
2 

 [
cs

.L
G

] 
 2

1 
M

ay
 2

02
5

https://github.com/Willy1005/2025-IJCAI-RDML
https://github.com/Willy1005/2025-IJCAI-RDML


0.00 0.25 0.50 0.75 1.00
Uncertainty

D
en

si
ty

ECML-Clean
ECML-Adv
Ours-Clean
Ours-Adv

(a) Uncertainty density

0

20

40

60

80

100

ECML-Clean ECML-Adv
Ours-Clean Ours-Adv

A
cc

ur
ac

y 
(%

)

-52%

-9%

(b) Classification accuracy

Figure 1: We conduct experiments on the PIE dataset in clean and
adversarial settings, and show a toy example of the AUP. Note that
only one view is randomly attacked via PGD. (a) presents the esti-
mated uncertainties of the ECML method and our RDML. (b) shows
the classification accuracy of these methods.

mated uncertainties are significantly lower than those in the
clean setting. This indicates that the evidence-based uncer-
tainty estimation mechanism fails under adversarial perturba-
tions, thereby leading to the AUP.

To overcome the above AUP, we propose a novel multi-
view learning framework, namely Reliable Disentanglement
Multi-view Learning (RDML). In the first stage, we present
a perturbation-insensitive pretraining scheme to train an evi-
dence extractor, thereby providing reliable category-level ev-
idence and uncertainty estimation in subsequent stages. In
the second stage, as shown in Fig.2, our method mainly con-
sists of three key modules: the evidential disentanglement
learning module, the feature recalibration module, and the
evidential attention module. To be specific, RDML first pro-
poses evidential disentanglement learning to decompose each
view into clean and adversarial features under the guidance
of pretrained corresponding evidence. Then, to prevent the
negative effect of the adversarial features, we propose fea-
ture recalibration to recalibrate these feature units for addi-
tional discriminative information, thereby obtaining more ro-
bust features. Finally, to reduce the interference of stubborn
adversarial features that are difficult to calibrate, we design a
view-level evidential attention mechanism to enhance the ro-
bustness against adversarial features. The main contributions
of this paper are as follows.

• This paper studies a less-touched adversarial unreliabil-
ity problem (AUP) in trusted multi-view learning and
proposes a new Reliable Disentanglement Multi-view
Learning (RDML) framework against view adversarial
attacks. To the best of our knowledge, for the first time,
we address the AUP caused by view adversarial attacks.

• We propose evidential disentanglement learning to guide
the stripping of adversarial information from multi-view
representations using a pretrained evidence model. To
mitigate the interference of perturbations, we propose
feature recalibration to rectify the weak adversarial fea-
tures, and further present evidence attention to deal with
the stubborn adversarial features.

• We conduct extensive experiments on six multi-view
datasets to verify the effectiveness and robustness of our
RDML under both adversarial and clean conditions.

2 Related Work
2.1 Trusted Multi-view Learning
Deep multi-view learning utilizes view-specific deep repre-
sentations to enhance the integration and understanding of
multi-source information [Geng et al., 2021; Peng et al.,
2019; Xu et al., 2024c; Wen et al., 2023]. Han et al. point out
that existing studies have placed too much emphasis on im-
proving the performance of deep multi-view learning meth-
ods in various scenarios while neglecting to enhance the reli-
ability of multi-view decision [Han et al., 2020]. They then
propose the Trusted Multi-view Classification method. TMC
transforms traditional classification networks into evidential
neural networks (by replacing the last softmax function of the
classification networks with Relu function to ensure that each
output value is non-negative) and uses the extracted evidence
representations to model the Dirichlet distribution [Sensoy et
al., 2018; Jsang, 2018]. The Dirichlet distribution can output
classification category probability and uncertainty, thereby
achieving reliable multi-view decision. Finally, TMC intro-
duces Dempster rule to fuse multi-view opinions.

Xu et al. introduce evidence learning into conflictive multi-
view learning, extracting view-specific opinion through the
parameterized Dirichlet distribution [Xu et al., 2024a]. And a
conflictive opinion aggregation method is designed for multi-
view fusion. Liu et al. propose an opinion fusion method
based on evidence accumulation, in which the evidence rep-
resentations of different views are accumulated to obtain the
overall opinion [Liu et al., 2022]. Yue et al. discover the
vulnerability of trusted multi-view approaches to adversar-
ial examples and attributed this vulnerability to the difficulty
of accurately assessing the quality of adversarial examples
[Yue et al., 2025]. In this paper, we address the AUP from
a more fundamental perspective. That is, we first enhance
the adversarial insensitivity of the evidence neural network
(perturbation-insensitive pretraining), and subsequently min-
imize the interference and harm that adversarial perturbations
inflict on multi-view fusion and decision to the greatest extent
possible (evidence-based disentanglement, feature recalibra-
tion and view-level evidential attention).

2.2 Deep Adversarial Defense
Improving the robustness of deep neural networks against ad-
versarial perturbations has long been a goal in deep learn-
ing community [Long et al., 2022; Wang et al., 2022;
Kurakin et al., 2018]. Since there are different defense strate-
gies for different types of attacks, here we mainly focus on
deep defense methods against white-box attacks. In recent
years, adversarial training has been widely proven to be ef-
fective in enhancing the adversarial robustness of neural net-
works [Goodfellow et al., 2015; Ilyas et al., 2019]. By using
both clean samples and adversarial samples as training data,
the insensitivity of neural networks to adversarial perturba-
tions can be enhanced.

Moreover, since disentanglement learning is good at sep-
arating information, it is naturally suitable for dealing with
perturbed samples [Kim et al., 2023; Liu et al., 2024;
Zhang et al., 2024]. Typically, disentanglement learning de-
composes perturbed samples into clean and adversarial fea-
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Figure 2: The framework of RDML. (i) Evidential disentanglement learning uses the pretrained evidence extractor Ept(·) to conduct a
robustness analysis of features under random view attacks, and generate a robustness mask to decouple clean and adversarial features. (ii)
The feature recalibration module will rectify the adversarial features. For features that are difficult to repair, RDML will generate evidential
attention with the guidance of Ept(·) to further mitigate the interference of adversarial features. (iii) RDML introduces the Dempster Rule-
based Fusion for opinion aggregation.

tures to mitigate the interference caused by adversarial pertur-
bations. However, existing disentanglement learning methods
lack the support of effective clues and trusted guidance, and
thus the adversarial robustness is limited. In this paper, we
propose an evidence-based disentanglement method to resist
adversarial perturbations. The disentanglement is guided by a
pretrained evidence extractor, so it can improve the reliability
and adversarial robustness of the evidential networks.

3 Method
3.1 Problem Definition
Suppose that there is a multi-view dataset DV

N with N in-
stances and V views, and xvn ∈ Rdv (n = 1, 2, ..., N ) is
an instance from DV

N . dv is the dimension of the v-th view.
The corresponding class labels are {yn}Nn=1. The number of
classes is K. The random view adversarial attacks are con-
ducted to each multi-view instance by the following formula,

x̂vn = AdvAttack(xvn), (1)

where dv is the dimension of the v-th view. x̂vn means the ad-
versarial version of xvn. Our goal is to learn a robust evidential
model against view adversarial attacks.

3.2 Overview
When facing adversarial attacks, existing trusted multi-view
methods can easily lead to the AUP, thereby weakening the
performance of multi-view learning models. To address the
above problem, in this paper, we propose Reliable Disentan-
glement Multi-view Learning (RDML) against view adver-
sarial attacks, which consist of two stages. In the first stage,
we propose a perturbation-insensitive pretraining scheme to
enhance the stability and adversarial insensitivity of eviden-
tial neural networks. To be specific, this approach introduces

random view attacks into the pretraining of multi-view evi-
dential networks, thereby making the evidence extractor pro-
vide the support of reliable category-level evidence and un-
certainty estimation. The objective function could be formu-
lated as follows:

LPT = LECL(αn) +

V∑
v=1

LECL(α
v
n) + LACL, (2)

where the LECL(αn) is the evidential classification loss; αn

is the Dirichlet parameter; LACL denotes the adversarial con-
sistency loss.

In the second stage, RDML first proposes evidential dis-
entanglement learning. To be specific, we use the pretrained
evidence extractor to analyze the features to be decoupled and
map the extracted category-level evidence into a robustness-
aware soft mask. The higher the score of the mask for a fea-
ture, the more likely the feature is to be a robust (or clean)
feature, and vice versa, it is more likely to be an adversarial
feature. Afterward, we utilize the mask to separate clean and
adversarial features. In addition, we believe that some weak
adversarial features could easily be converted into clean fea-
tures. To this end, we propose feature recalibration to correct
these adversarial features into clean features. For the remain-
ing part of stubborn adversarial features, we design a view-
level evidential attention mechanism to reduce the interfer-
ence of these adversarial features that are difficult to correct,
thereby enhancing the robustness against adversarial features.
The objective function could be expressed as

LT =LECL(αn) +

V∑
v=1

LECL(α
v
n) + LACL

+ γ1LEDL + γ2LFRL,

(3)

where LEDL and LFRL represent evidential disentanglement



loss and feature recalibration loss, respectively; γ1 and γ2 are
two balancing parameters.

3.3 Perturbation-insensitive Pretraining
Although evidential neural networks can provide correspond-
ing uncertainties to enhance the ability of trusted decisions,
they could become unstable and even ineffective after being
subjected to adversarial attacks. To overcome this issue, we
propose a perturbation-insensitive pretraining strategy that in-
corporates adversarial samples to enhance the adversarial in-
sensitivity of the evidence extractor Ept(·) = {Ev

pt(·)}Vv=1,
thereby providing robust evidence support. To be specific,
for adversarial multi-view data, to enhance the robustness of
the evidence extractor for adversarial attacks, we then mix the
adversarial multi-view samples with clean samples and utilize
the evidence extractor for the mixed samples xmix to extract
the corresponding classification evidence e, i.e.,

evk = Ev
pt(x

v
mix), k = 1, 2, ...,K, (4)

where K denotes the number of classes. Afterward, we
obtain the parameter αv

k = evk + 1 required for modeling
the Dirichlet distribution based on the evidence. The view-
specific opinion ov = (bv, uv) are also obtained according to
following formula,

bvk =
evk
Sv
, uv =

K

Sv
, (5)

where b ≥ 0 and u ≥ 0 denote the belief mass and uncertainty
(
∑K

k=1 b
v
k + uv = 1), and Sv =

∑K
k=1 α

v
k represents the

Dirichlet strength. Given the Sv and αv
k, the probability of the

v-th view for the k-th class is pvk =
αv

k

Sv . After that, Dempster
rule is used to combine multi-view opinions, and the joint
opinion is o = o1 ⊗ o2 ⊗ ... ⊗ ov , where ⊗ is the Dempster
rule based fusion operation.

To optimize the evidence extractor, following [Han et al.,
2020], we use the evidential classification loss LECL(αn),
i.e.,

LECL(αn) = LECE +KL[D(pn | α̃n) ∥ D(pn | 1)], (6)

LECE(αn) =

K∑
k=1

ynk(ψ(Sn)− ψ(αn)), (7)

where ψ(·) denotes the digamma function; α̃n = yn + (1 −
yn)⊙αn is the adapted Dirichlet parameter avoiding penaliz-
ing the evidence of the correct category to zero. LECE(αn)
represents the evidential cross-entropy loss, which requires
the model to extract more evidence for the correct category
compared to other categories; and the Kullback-Leibler (KL)
divergence restricts the model to extract as little evidence as
possible from the incorrect categories.

Besides, since the instances in AMVL are subjected to
random view attacks, we hope to enhance model robust-
ness against adversarial attacks by constraining the differ-
ences among the predicted probability distributions of differ-
ent views. Therefore, we construct the following adversarial
consistency loss LACL, i.e.,

LACL =
1

V − 1

V∑
v1=1

(

V∑
v2 ̸=v1

∑K
k=1 |p

v1
k − pv2k |
2

), (8)

Therefore, the well-trained evidence extractor will guarantee
robust and stable evidence in subsequent steps with frozen
parameters.

3.4 Evidential Disentanglement Learning
Although existing disentanglement learning methods can be
used for decomposing adversarial and clean features by vari-
ous meticulously designed losses, the lack of support for ef-
fective clues and trusted guidance hinders their performance.
To improve the credibility of separating adversarial features,
we introduce the evidential learning theory to naturally pro-
vide evidence and uncertainty for the decision process. This
characteristic can significantly promote reliable feature de-
composition. To this end, we design an evidence disentangle-
ment learning module.

In the training stage, given a clean multi-view instance
x = {xv ∈ Rdv}Vv=1, the random view attack is conducted on
it, and its adversarial version is x̂. Different from existing dis-
entanglement learning methods, we leverage the pre-trained
evidence extractor Ept(·) to extract adversarially-insensitive
evidence from the adversarial samples. Due to strong adver-
sarial insensitivity, pretrained evidence extractor Ept(·) can
extract effective evidence under adversarial perturbation, i.e.,

emv = Ev
pt(x̂

v), (9)

where emv ∈ RK is the evidential map, which implies the
category-aware evidence of the v-th view of adversarial sam-
ple x̂v . Since emv is category-level evidence, we construct a
multi-layer perceptron (MLP) based evidence mapping layer
fEM,1(·) = {fvEM,1(·)}Vv=1 to map the category-level ev-
idence emv into a feature-level robustness map rmv =
fvEM,1(em

v) (rmv ∈ Rdv ), which indicates the amount of
evidence for features in each dimension. Features contain-
ing more evidence are regarded as clean features, while those
containing less are considered adversarial features. Subse-
quently, in order to facilitate the decomposition of these two
types of features, we introduce Gumbel softmax [Jang et al.,
2022] to convert the robustness map into a soft mask score
mv , i.e.,

mv =
e(log (σ(rmv))+q1)/µ

e(log (σ(rmv))+q1)/µ + e(log (1−σ(rmv))+q2)/µ
, (10)

where each value is a non-negative value less than 1. σ(·)
represents a Sigmoid function for normalization; q1 and q2
are two instances sampled from Gumbel distribution (given
u ∼ Uniform(0, 1), q = − log(− log(u))); µ is a temperature
coefficient. mv ∈ Rdv is a feature-level mask score and each
dimension of the feature has a score ranging from 0 to 1, a
higher score indicates a higher probability of being a clean
feature.

Therefore, we can decompose clean and adversarial fea-
tures via the following simple feature-level multiplication,

hvc = xv ⊙mv, (11)

hva = xv ⊙ (1−mv), (12)

where hvc and hva are the clean feature of xv and the adversar-
ial one, respectively.



To optimize our evidential disentanglement learning, an
evidence disentanglement loss is designed. Evidential dis-
entanglement learning utilizes the evidence output by a pre-
trained evidence extractor to generate a soft robustness mask.
Therefore, we expect that the distribution of the decoupled
clean features is as close as possible to the real distribution,
while the distribution of adversarial features is in contrast.
Given clean and adversarial feature of the n-th instance hc,n,
ha,n, the evidence disentanglement loss can be written as

LEDL = −
V∑

v=1

(yn ⊙ log(pvc,n) + ŷn ⊙ log(pva,n)), (13)

where yn is the ground truth label of hn; ŷn is the label of
a wrong class for hn; pvc,n = fvEC(h

v
c,n), p

v
a,n = fvEC(h

v
a,n)

are the classification probabilities of hvc,n and hva,n; fEC(·) =
{fvEC(·)}Vv=1 is a group of evidential classifiers where an ac-
tivation function like Relu is added after each classifier. Note
that fEC(·) only participates in the training phase and is not
utilized in the pretraining and testing phase.

3.5 Feature Recalibration
For the adversarial features, we believe that a part of them
can be transformed from the clean features with relatively
poor robustness, and this part of features also easily has the
potential to be recovered back into clean features. There-
fore, we construct an MLP based feature recalibration layer
fFC(·) = {fvFC(·)}Vv=1 to rectify weak adversarial features
to clean and informative features,

hvcr = fvFC(h
v
a), (14)

where hvcr represents the corrected feature of x̂v . Then we can
get the final feature hvf = hvc +hvcr. For the feature recalibra-
tion module, we expect that the corrected representations can
provide as much informative and valuable features as pos-
sible for classification. Therefore, the predicted probability
distribution of the corrected representations is required to be
as close as possible to the ground truth distribution. Thus, we
can have the following loss, i.e.,

LFRL = −
V∑

v=1

yn ⊙ log(fvEC(h
v
cr,n)). (15)

3.6 Evidential Attention
Though decoupling adversarial features and repairing weak
adversarial features can alleviate the interference of adver-
sarial perturbations on evidential neural networks to some
extent, the impairment brought about by stubborn adversar-
ial features remains difficult to mitigate effectively. Thus,
we propose a view-level evidential attention mechanism that
generates the evidential attention score by conducting a ro-
bust analysis of view features using the pre-trained Ept(·).
This mechanism guides the model to focus on the informative
clean features and ignore the interference of strong adversar-
ial features that are difficult to utilize. Specifically, we utilize
the pretrained evidence extractor Ept(·) to conduct evidence
analysis on the feature hf . The extracted evidence is trans-
formed into evidential attention scores via a softmax func-
tion. Benefiting from the knowledge of the pre-trained ev-
idence extractor, these attention scores imply the robustness

of each dimension of hf , distinguishing clean, weak adversar-
ial, and hard adversarial features in the form of scores. Since
the evidence extractor outputs category-level scores, we map
them into feature-level attentions through the evidence map-
ping layer fEM,2(·) = {fvEM,2(·)}Vv=1, i.e.,

attvi =
eE

v
pt(h

v
f,i)∑K

j=1 e
Ev

pt(h
v
f,j)

, (16)

attv = fvEM,2(att
v), (17)

hvf,i denotes the i-th element of hvf ; attv ∈ Rdv is the view-
level evidential attention for hvf . The augmented feature is
obtained via hvaug = hvf ⊙ attv .

3.7 Trusted Multi-view Fusion
Followed by [Han et al., 2020], Dempster combination rule
is introduced for multi-view fusion. Given two augmented
features of two views h1aug , h2aug , the corresponding evi-
dences e1 = E1

c (h
1
aug), e

2 = E2
c (h

2
aug) can be extracted

via a evidence extractor Ec(·) = {Ev
c (·)}Vv=1. It is worth

mentioning that the parameters of Ec(·) are copied from the
pretrained Ept(·), so as to improve the overall training effi-
ciency. Then two opinions o1 = (b1, u1) and o2 = (b2, u2)
are constructed via Eq. (5). After that, we have joint opinion
o = o1 ⊗ o2 = (b, u) where

bk =
b1kb

2
k + b2ku

1 + b1ku
2

1−M
,u =

u1u2

1−M
. (18)

M =
∑

i ̸=j b
1
i b

2
j represents the difference between two opin-

ions. And 1
1−M is used for normalization. According to

the above combination pattern, we have the joint multi-view
opinion o = o1 ⊗ o2 ⊗ ... ⊗ ov = (b, u). Then the joint ev-
idence ek = bk × S, Dirichlet parameter αk = ek + 1 and
Dirichlet strength S = K

u are obtained based on Eq. (5).

4 Experiments
4.1 Datasets and Competitors
To verify the effectiveness and robustness of our method, we
conduct experiments on six multi-view datasets, including
PIE [Gross et al., 2010], Scene [Fei-Fei and Perona, 2005],
Leaves [Cope et al., 2013], NUS-WIDE [Chua et al., 2009],
MSRC [Xu et al., 2016], and Fashion [Xiao et al., 2017]. In
addition, we compare our RDML method with eight state-of-
the-art multi-view learning methods, including four evidence-
based methods (i.e., TMC [Han et al., 2020], ETMC [Han
et al., 2022b], ECML [Xu et al., 2024a], and TMNR [Xu
et al., 2024b]), and four other uncertainty/confidence based
methods (i.e., DUANets [Geng et al., 2021], MMD [Han et
al., 2022a], QMF [Zhang et al., 2023], and PDF [Cao et al.,
2024]. The details of all datasets and methods are shown in
Appendix.

4.2 Implementation Details
Our experiments are conducted based on the PyTorch 2.4.1
framework with an Nvidia RTX 3090 GPU. For all datasets,
80% of the samples are used for training (for our method,



Methods Ref. PIE Scene Leaves NUS-WIDE MSRC Fashion
TMC ICLR’21 91.85±0.23 67.71±0.30 86.81±2.20 35.67±1.37 92.38±2.78 95.40±0.40

ETMC TPAMI’22 93.75±1.08 71.61±0.28 98.44±0.40 35.58±1.10 90.48±3.37 96.21±0.36
DUANets AAAI’21 90.59±1.99 51.08±1.27 84.69±1.06 29.38±1.09 77.62±4.15 90.49±0.97

MMD CVPR’22 94.41±2.01 65.72±1.38 69.05±1.18 28.21±5.11 98.10±2.33 9.58±0.61
QMF ICML’23 88.82±1.82 65.24±1.80 95.19±1.53 42.33±2.56 94.76±3.81 98.81±0.16

ECML AAAI’24 93.68±1.51 73.20±2.16 94.63±1.24 41.21±2.10 92.38±2.78 95.24±0.17
TMNR IJCAI’24 89.71±1.61 66.24±2.05 89.31±1.80 36.75±1.71 90.00±1.78 94.31±0.45

PDF ICML’24 90.88±1.36 69.61±1.72 98.00±0.51 43.83±1.73 93.33±3.50 98.85±0.14
RDML Ours 97.79±0.81 74.40±1.90 97.94±1.09 46.67±1.90 99.52±0.95 98.96±0.18
△% +3.38 +1.20 -0.50 +2.84 +1.42 +0.11

Table 1: Classification accuracy (%) on clean data, where the best and second best results are bolded and underlined, respectively. △%
denotes the improvement of our method over the best baseline.

Methods Ref. PIE Scene Leaves NUS-WIDE MSRC Fashion
TMC ICLR’21 17.79±12.19 18.19±3.82 21.00±5.20 15.42±4.05 72.38±17.92 31.28±0.86

ETMC TPAMI’22 40.29±19.39 13.51±3.36 73.44±17.91 16.71±7.95 83.81±5.30 74.94±0.41
DUANets AAAI’21 0.59±0.29 1.07±0.36 0.38±0.61 1.58±0.50 2.86±1.78 1.74±1.13

MMD CVPR’22 11.18±14.96 4.48±2.85 0.60±0.73 0.21±0.19 38.10±46.66 4.22±2.51
QMF ICML’23 18.82±7.52 7.47±3.10 22.75±2.26 10.83±3.22 70.00±23.11 15.60±0.46

ECML AAAI’24 41.62±9.92 6.67±3.02 54.40±11.10 16.83±8.12 80.00±19.08 18.28±2.99
TMNR IJCAI’24 73.68±10.78 25.89±14.64 27.94±31.56 16.71±6.48 76.19±11.76 42.64±1.10

PDF ICML’24 11.28±1.34 11.33±1.54 5.88±1.92 11.58±0.80 59.52±26.21 15.32±0.87

ETMC+AT - 1.47+0.81 42.74+6.35 79.44+1.89 27.04+2.86 80.95+9.76 20.36+7.35
ECML+AT - 7.50+11.07 33.00+4.87 78.81+7.68 25.38+4.36 60.48+29.30 90.70+1.33
TMNR+AT - 71.32+11.44 38.08+16.64 49.62+3.39 20.33+2.28 73.81+3.01 72.16+0.69

PDF+AT - 49.85+9.12 32.37+1.59 54.38+2.49 28.83+2.55 81.43+6.63 77.26+0.79

RDML Ours 88.97±4.08 48.67±3.97 87.25±5.90 29.83±3.99 89.05±7.62 91.19±0.69
△% +15.29 +5.93 +7.81 +1.00 +7.62 +0.49

Table 2: Classification accuracy (%) under adversarial attacks, where only a random view is attacked. AT denotes adversarial training.

these data are also used for pretraining), and 20% of the sam-
ples are used for testing. All experiments will be run 5 times,
and we will report the average performance and standard de-
viation based on the accuracy of each test (after the last train-
ing epoch). The pretraining epoch of Ept(·) is 1000 with a
batch size of 500, and the training epoch is 500 for the clean-
ing setting and 400 for the adversarial setting. The learning
rate is selected from [0.003, 0.005]. Ev

pt(·) andEv
c (·) are with

the size of [dv,K]. fvEM is with the size of [K, dv]. And fvEM
is with the size of [dv, dv]. Adam is used as the optimizer. The
temperature µ of Gumbel softmax is set as 0.1. We use Pro-
jected Gradient Descent for random view attack. The number
of attack iterations is 10 with a maximum perturbation range
of 8/255.

4.3 Experimental Results
To comprehensively evaluate the robustness of all methods,
we conduct experiments on clean data and under adversarial
attacks respectively. According to Table 1 and Table 2, we
have following observations.

• For clean multi-view data, RDML achieves the best per-
formance in most cases, with an average improvement of
1.41% compared to the best baselines. We attribute this
to two reasons. First, the pretrained evidence extractor

can provide good parameter initialization for the eviden-
tial classifier, avoiding falling into local optima prema-
turely during the training process. Second, evidential
disentanglement learning, especially the combination of
evidence-based disentanglement and View-specific evi-
dential attention mechanism, is proficient in extracting
multi-view features that are beneficial for classification
and ignoring the interference of redundant information.

• RDML demonstrates significant advantages in AMVL.
RDML has an average improvement of 6.36% com-
pared to the second best methods (including AT
based methods). Unlike existing evidence learning
methods, RDML obtains a robust evidence extractor
through perturbation-insensitive pretraining. Moreover,
evidence-based disentanglement is adept at separating
clean and adversarial features. Weak adversarial features
are then repaired by the feature recalibration module,
while the View-specific evidential attention can shield
the interference of hard adversarial features on multi-
view classification. Therefore, RDML is effective and
robust under adversarial perturbations.

• Both evidence based methods and other types of meth-
ods are highly vulnerable to adversarial attacks. Al-
though adversarial training can, to some extent, relieve
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Figure 3: Density of estimated uncertainty on MSRC with different numbers of attacked views.
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Figure 4: Classification accuracy (%) on four datasets with different
γ1 and γ2 (one random view is attacked).

the sensitivity of multi-view models to adversarial at-
tacks in many cases, due to the lack of an appropriate
feature disentanglement mechanism, a large amount of
adversarial and uninformative features are aggregated
during multi-view fusion process, which impairs the
classification performance.

4.4 Uncertainty Analysis
To study the effectiveness of the uncertainty estimation mech-
anism of our method under adversarial perturbation, we vi-
sualize the estimated uncertainty density in more adversar-
ial scenarios. As we can observe from Fig.3, when only a
few views are attacked, the estimated uncertainty can be well
matched with that in the clean setting. However, when more
views are attacked, the estimated uncertainty gradually in-
creases. This phenomenon, on the one hand, indicates that the
uncertainty estimation mechanism of our method is effective
and robust under adversarial conditions. On the other hand, it
also reveals that the uncertainty estimation mechanism is af-
fected by the quality of the views. The worse the view quality,
the more difficult it is to make accurate decisions. This fur-
ther demonstrates the effectiveness of our evidential disentan-
glement learning and feature recalibration module, which are
designed to decouple and repair adversarial and informative
features, significantly improving the view quality.

4.5 Parameter Sensitivity Analysis
Here we study the influence of two key hyperparameters, γ1
and γ2, on model robustness. There are two points we can
get from Fig.4. (1) In most cases, the accuracy rises slowly as
two values increase. It reaches the optimal performance when
the values are 1 or 2, and then declines slowly. Overall, our
method is insensitive to parameter changes, demonstrating its
robustness. (2) When the values of γ1 and γ2 are too small
(0.01) or too large (10), the accuracy decreases significantly.
On the one hand, this further validates the effectiveness of the
evidential disentanglement loss and feature recalibration loss
(γ1 and γ2 are their respective balancing coefficients). On the

Ablation Module Dataset
Ept(·) ED FC ATT LACL LEDL LFRL PIE Scene Leaves

- ! ! - ! ! ! 51.62±14.46 48.34±5.14 67.56±5.03
! - ! ! ! - ! 5.44±3.50 46.13±5.85 11.31±6.30
! ! - ! ! ! - 82.79±2.35 41.58±6.91 84.25±6.92
! ! ! - ! ! ! 87.79±4.12 48.18±3.72 86.06±5.88
! ! ! ! - ! ! 86.47±3.80 47.54±4.55 86.81±4.92
! ! ! ! ! - ! 83.68±4.14 48.16±4.30 83.13±6.34
! ! ! ! ! ! - 81.76±6.21 46.98±4.70 86.06±7.58
! ! ! ! ! ! ! 88.97±4.08 48.67±3.97 87.25±5.90

Table 3: Ablation experiments (classification accuracy (%)) on PIE,
Scene, and Leaves with one randomly attacked view. ED, FC, and
ATT denote evidential disentanglement learning, feature recalibra-
tion, and evidential attention mechanism, respectively.

other hand, it also shows that overemphasizing either decou-
pling adversarial features or repairing adversarial information
will undermine the robustness. Striking an appropriate bal-
ance is the key to achieving better performance.

4.6 Ablation Study
We conduct ablation experiments to verify the effectiveness
of key components of RDML. As shown in Table 3, after re-
moving the pretrained Ept(·) and evidence-based disentan-
glement respectively (the evidence attention mechanism and
LEDL then get invalid automatically), the model robustness
significantly decreases. This indicates that: (1) perturbation-
insensitive pretraining is highly effective in helping the
evidential neural network resist adversarial attacks. (2)
evidence-based decoupling can effectively strip the adversar-
ial perturbations from view representations, and effectively
reduce the interference of adversarial and uninformative fea-
tures. After removing the feature recalibration and eviden-
tial attention respectively, the model performance shows a de-
cline to varying degrees in most cases. In addition, we also
explore the effectiveness of three proposed losses. The results
prove that the three losses, especially LEDL and LFRL, are
able to improve the model robustness in most cases.

5 Conclusion
In this work, we reveal and study the AUP in trusted multi-
view learning. To this end, we propose a novel Reliable
Disentanglement Multi-view Learning framework. Specifi-
cally, RDML designs an evidential disentanglement learning
to separate clean and adversarial features, and this process is
guided by a pretrained evidence extractor. To mitigate the in-
terference of adversarial features on multi-view decision, an
adversarial feature recalibration module and an evidential at-
tention mechanism are proposed. Experiments conducted on
six datasets show the effectiveness and robustness of RDML
against view adversarial attacks.
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Appendix
This supplementary material provides a comprehensive un-
derstanding of our RDML method. Specifically, we mainly
introduce the algorithm procedure, the details of used datasets
and compared methods, and more experimental analysis to
support our research.

A Algorithm Procedure
To better show the details of our proposed method, we give
the workflow of our RDML in Algorithm 1.

Algorithm 1 The workflow of RDML
Input: Multi-view data x; pretraining epoch ept and
training epoch et; evidence extractor Ept(·) and Ec(·); ev-
idence mapping layer fEM (·) and evidential classifier fEC(·)
Output: Joint opinion.

1: ...............................Pretraining stage...............................
2: Randomly initialize the parameters of Ept(·).
3: while not reach the last epoch ept do
4: Construct the adversarial instance with random view

attacks by Eq. (1);
5: Train the evidence extractor Ept(·) with mixed data

for evidence-based multi-view classification using Eq.
(2).

6: end while
7: Share the parameters of Ept(·) with Ec(·), and freeze the

parameters of Ept(·).
8: .................................Training stage................................
9: Randomly initialize the parameters of fEM (·) and
fEC(·).

10: while not reach the last epoch et do
11: Construct the adversarial instance with random view

attacks by Eq. (1);
12: Decouple view features with the guidance ofEpt(·) via

Eq. (9)-Eq. (12);
13: Recalibrate view features using Eq. (14);
14: Construct view-level evidential attention to further

mitigate the interference of adversarial perturbations
via Eq. (16) and Eq. (17);

15: Construct joint opinion using Dempster combination
rule via Eq. (18);

16: end while

B Experimental details
B.1 Datasets

Dataset Class Size Dimensionality
PIE 68 680 484/256/279

Scene 15 4485 20/59/40
Leaves 100 1600 64/64/64

NUS-WIDE 12 2400 64/144/73/128/225
MSRC 7 210 24/576/512/256/254
Fashion 10 10000 784/784/784

Table 4: Details of datasets

We evaluate the performance of our propose method on
the following multi-view datasets. PIE encompasses 680 fa-
cial images sourced from 68 subjects. Three kinds of views
(intensity, LBP and Gabor) are selected in our experments.
Scene dataset comprises 4485 images, which are categorized
into 15 distinct indoor and outdoor scene classes. Three types
of features are selected: GIST, PHOG, and LBP. Leaves
dataset is constituted by 1600 leaf samples, which are col-
lected from 100 diverse plant species. We extract three types
of features as views: shape descriptors, fine-scale edges, and
texture histograms. NUS-WIDE dataset comprises 269648
images from 81 concepts. We select 200 images from each
of the top 12 classes, with a total of five types of views: CH,
CM, CORR, EDH and WT. MSRC-v5 from Microsoft Re-
search in Cambridge contains 210 images and 7 classes with
coarse pixel-wise labeled images. Five types of views are
extracted: CM, HOG, GIST, LBP and CENT. Fashion com-
prises of grayscale images of 70,000 fashion products from
10 categories. We sample 1000 images from each class, with
a total of three types of views. Details of these datasets are
shown in Table 4.

B.2 Baselines
To verify the effectiveness and robustness of our method,
we compare RDML with eight state-of-the-art multi-view
methods. TMC applies evidence theory to multi-view learn-
ing, dynamically fusing various views at the evidence level.
ETMC is an improved version of TMC. It enhances the per-
formance of TMC by adding a new view which is the concate-
nation of all original views. DUA-Nets capitalizes on rever-
sal networks to amalgamate the intrinsic information sourced
from diverse views, ultimately transforming them into a uni-
fied representation. MMD dynamically evaluates feature and
modality informativeness with specific strategies and induces
a transparent fusion algorithm. QMF utilizes uncertainty-
aware weighting and a sampling-based regularization tech-
nology to enhance correlation, aiming to achieve reliable and
robust multimodal fusion. ECML proposes a new multi-view
opinion fusion method and a conflict measurement method
to solve the problem of aggregating conflicting opinions.
TMNR proposes a noise correlation matrix, through which
the Dirichlet parameters are updated to mitigate the interfer-
ence of label noise. PDF derives the predictable Collabora-
tive Belief with Mono- and Holo-Confidence to reduce the
generalization error upper bound and further proposes a rela-
tive calibration strategy.

C Multi-view Attack Analysis
In order to further verify the robustness of our method, we
conducted experiments in more difficult scenarios. As shown
in Fig.5, as the number of attacked views increases, the
performance of all methods is inevitably impaired, while
our method can always maintain the best adversarial robust-
ness. We attribute this to the combination of the adversarial-
insensitive pretrained evidence extractor and the evidence-
based disentanglement mechanism. The former can ensure
the acquisition of effective evidences in a strong adversarial
environment, and the latter can strip away adversarial pertur-



Method PIE MSRC
eps = 8/255 eps = 0.05 eps = 0.1 eps = 8/255 eps = 0.05 eps = 0.1

RDML 88.97±4.08 88.24±4.88 94.26±1.18 89.05±7.62 88.10±7.38 89.52±5.55
TMNR 73.68±10.78 68.97±15.92 59.12±22.26 76.19±11.76 70.48±18.36 73.33±15.36

PDF 11.28±1.34 8.53±4.38 8.53±4.78 59.52±26.21 51.90±32.38 51.43±35.04

Table 5: eps is the maximum perturbation range. Larger values indicate stronger attacks. 8/255 is the empirically default setting. One
random view is attacked.
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Figure 5: Classification accuracy (%) on MSRC with different num-
bers of attacked views.

bations and reduce their interference with the distribution of
clean features.

D Attack Intensity
As shown in Table 5, TNMR and PDF exhibit clear perfor-
mance degradation as the attack strength increases. Bene-
fiting from perturbation-insensitive pretraining, RDML not
only maintains robustness but even achieves superior perfor-
mance under stronger attacks, further demonstrating its effec-
tiveness.

E Parameter Freezing
Since neural networks are highly sensitive to perturbations,
we freeze the parameters of the evidence extractor after pre-
training to ensure model stability and robustness. As shown
in Table 6, parameter freezing significantly enhances model
robustness.

Method PIE Leaves MSRC
RDML 88.97±4.08 87.25±5.90 89.05±7.62

w/o freezing 78.24±7.03 84.56±6.33 86.67±8.73

Table 6: Model performance with and without parameter freezing.
One random view is attacked.

F Gumbel Softmax
In evidential disentanglement learning, we transform eviden-
tial representations into feature-level masks. To ensure differ-
entiability, we introduce Gumbel softmax. So each value of
the mask is non-negative and less than 1. The motivation of

introducing the Gumbel distribution is to provide a differen-
tiable reparameterization method for sampling discrete ran-
dom variables, thereby addressing the issue that discrete vari-
ables cannot directly propagate gradients during backpropa-
gation.
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