
MergeGuard: Efficient Thwarting of Trojan Attacks
in Machine Learning Models

Soheil Zibakhsh Shabgahi*, Yaman Jandali*, Farinaz Koushanfar
Department of Electrical and Computer Engineering

University of California San Diego
La Jolla, CA, USA

{szibakhshshabgahi, yeljanda, fkoushanfar}@ucsd.edu

Abstract—This paper proposes MergeGuard, a novel method-
ology for mitigation of AI Trojan attacks. Trojan attacks on AI
models cause inputs embedded with triggers to be misclassified
to an adversary’s target class, posing a significant threat to model
usability trained by an untrusted third party. The core of Merge-
Guard is a new post-training methodology for linearizing and
merging fully connected layers which we show simultaneously
improves model generalizability and performance. Our Proof of
Concept evaluation on Transformer models demonstrates that
MergeGuard maintains model accuracy while decreasing trojan
attack success rate, outperforming commonly used (post-training)
Trojan mitigation by fine-tuning methodologies.

Index Terms—Security, Deep Learning, Trojan Mitigation,
Transformers, Defense

I. INTRODUCTION

Utilizing Artificial Intelligence (AI) for automation is in-
creasingly ingrained in various technical fields. Recent re-
search has shown that larger Deep Neural Networks (DNNs)
with greater expressive capacity can more effectively ap-
proximate complex real-world functions and achieve higher
accuracy [1], [2]. As model architectures grow in size, so too
do the datasets required to train these data-hungry models. To
conserve resources, modern Machine Learning (ML) practi-
tioners frequently rely on pretrained models or publicly avail-
able datasets, exposing themselves to the risk of maliciously
manipulated models or tampered datasets. Numerous studies
[3], [4] have demonstrated the feasibility of training trojaned
models, where an adversary injects triggers into the model to
force specific inputs to be misclassified to a target label.

With the increasing deployment of ML models in critical
applications such as in autonomous vehicles, medical diag-
nostics, and financial decision-making, [5]–[7] the potential
consequences of such attacks continue to become more severe.

This growing concern regarding the safe deployment of
AI models has prompted a surge of research focused on
trojan detection and mitigation [4], [8]–[10]. A straightforward
approach involves using standard fine-tuning, which may be
effective for simpler models or against more subtle attacks.
However, Wu et al. [11] found that vanilla fine-tuning of-
ten struggles as a mitigation strategy when applied using
smaller benign datasets against more sophisticated, powerful
attacks. As a result, more advanced mitigation strategies have

*Equal contribution.

been proposed, typically leveraging computationally heavy
techniques or enhancements of fine-tuning tailored for trojan
removal. While many of these methods have shown promise
in mitigating trojans for smaller models, such as PreAct-
ResNet18 [12], [13], there remains a significant gap in research
addressing the mitigation of trojans in larger transformer based
architectures, such as Vision Transformers.

The Vision Transformer (ViT) is growing in popularity due
to its exeptional performance and ability to extend beyond
vision to audio, video, and other applications [14], [15].
Subramanya et al. [16] observed that vision transformer archi-
tectures are especially vulnerable to trojan attacks, a finding
corroborated by our own experiments. Given the substantial
size of transformer-based models and the extensive datasets
required for their training, these models and their training
datasets are frequently obtained from online sources. This re-
liance on external pretrained models and datasets makes them
especially prone to manipulation. Therefore, it is crucial to
develop effective mitigation strategies that reliably generalize
to larger architectures, such as those of transformer based
models, to ensure the safe deployment of ML models in real-
world applications. While prior state-of-the-art methods have
shown promise in detecting and mitigating trojans in smaller
convolutional models, they often struggle when extended to
transformer architectures.

In this work, we propose a novel architecture-agnostic miti-
gation strategy, MergeGuard, which we demonstrate to be both
effective and computationally efficient for vision transformers
as well as CNN architectures. Our approach not only shows
enhanced resilience against trojan attacks but also preserves
the high performance of the underlying model, making it
suitable for deployment in high-stakes environments. Addi-
tionally, we show that MergeGuard serves a dual purpose of
post-training compression, achieving up to a 15% reduction in
model size for transformers without compromising accuracy.
MergeGuard acts as an effective trojan mitigation strategy
by means of post-training compression, removing the layers
containing backdoor-related neurons. A regularization term
controls the rate of compression, optimizing for model size
and performance simultaneously. This regularizer reduces the
model depth by adaptively linearizing the activation functions
between fully connected layers, allowing for the fusion of ad-
jacent linear layers. This effectively reduces the overall depth

ar
X

iv
:2

50
5.

04
01

5v
1

 [
cs

.C
R

]
 6

 M
ay

 2
02

5

and complexity of the model without significantly impacting
its performance.

In summary, our contributions are as follows:
• We demonstrate the poor generalizability of a number of

works targeted at cleansing CNN-based models applied
to trojaned transformer models.

• We introduce MergeGuard, a novel, model-agnostic tro-
jan mitigation method relying on post-processing and
showcase its robust performance in mitigating a range
of trojan attacks.

• We evaluate the effectiveness of MergeGuard across
different architectures, including CNNs, establishing its
versatility beyond transformer models.

• We show that MergeGuard achieves significant computa-
tional efficiency, offering speedups up to 17.7x compared
to other methods, making it a practical solution for large-
scale deployment.

• We demonstrate MergeGuard’s capability as a
compression-aware regularizer, achieving up to 15%
parameter reduction and 14% MAC reduction in
transformer models without compromising accuracy.

• Our code is accessible to support reproducibility and
further advancements in trojan mitigation research.1

II. BACKGROUND AND RELATED WORK

A. Trojan Attacks

Trojan attacks - also referred to as backdoor attacks - have
emerged as a tangible and critical threat to the safe use of
deep neural networks in the real world. While adversarial
attacks refer to those which perturb images at inference time
[17], trojan attacks involve training a model to misclassify
inputs embedded with triggers to an attacker’s target class.
These attacks have become especially concerning in higher
stakes scenarios such as in medical diagnostics or self driving
systems [5], [6]. A classic scenario of trojaning, as discussed
in the foundational paper BadNets [18], is the misclassification
of a stop sign to a speed limit sign. Upon deployment, simply
placing a trigger item in view can cause a trojaned model
to behave maliciously. This example is shown in Figure 1
and demonstrates real-world vulnerabilities. Even discrete and
inconspicuous modifications to physical objects in images can
exploit trojans within machine learning models, leading to
misclassifications with severe consequences.

B. Types of Attacks

Gu et al. [18] introduce one of the earliest backdoor
attacks in deep learning, BadNets. This attack involves the
poisoning of a dataset. Given a training dataset D = {(xi, yi)},
a subset of samples is selected and a trigger pattern t
is embedded into these images to create poisoned samples
x′
i = xi + t. These modified samples are then relabeled with

the attacker-specified target label yt. The poisoned dataset
D′ = {(x′

i, yt)} ∪ {(xi, yi)} is then used for training the
trojaned model. The resulting model performs well on benign

1https://github.com/yjandali/BackdoorBench-MergeGuard

(a) Clean Image (b) Trigger Embedded Image

Fig. 1: A machine learning model may be trained to wrongly
classify images with triggers such as post-it notes to speed
limit signs. This could lead to dangerous misclassifications of
stop signs, potentially preventing a car from stopping if used
in an autonomous vehicle.

samples with accuracy similar to an untrojaned model but
misclassifies any input containing the trigger pattern t as yt.
BadNets was a salient work which demonstrated the feasibility
of visible backdoor attacks and laid the groundwork for many
subsequent poisoning-based attacks, illuminating the critical
security risks posed by these methods.

Chen et al [19] assume a stricter threat model in which the
attacker has no knowledge of the model or training data but can
add a small number of samples to the model’s training set. The
authors propose Blended, an attack where an adversary injects
a small number of poisoned samples into the training data to
cause a model to misclassify poisoned inputs to a target class.
The authors demonstrate the feasibility of their method, using
as few as 50 poisoned samples to effectively trojan a model.

Liu et al [20] propose an alternative threat model in which
an attacker does not have access or the ability to add to the
training data, but is able to retrain the model. Their attack,
TrojanNN, involves inverting the neural network to generate
a general trigger and then retraining the model on reversed
engineered training data to establish a causal link between
the trigger and the desired malicious output. The authors
demonstrate the efficacy of their attack method on various
applications such as face recognition and autonomous driving.

While previously mentioned attacks involve the use of
human-detectable triggers, Nguyen et al [21] propose the
attack WaNet, which leverages image warping to create less
perceptible triggers. Unlike previous backdoor attacks that rely
on more visible perturbations such as patches or blending,
WaNet uses a small and smooth warping field to deform the
input image in a way that is hard for humans to detect. The
authors show that their warping-based backdoor outperforms
previous methods in a human inspection test, demonstrating its
stealthy nature. The resulting trojaned models are effective at
attacking and bypassing state-of-the-art defenses on standard
classification datasets.

In the work by Barni et al [22], the authors present signal
backdoor attack (SIG). SIG is free of label poisoning and
relies solely on perturbations within the input features. The
motivation of this is to prevent trojan detection via visual

inspection, as label poisoning could easily be detected by
auditing the data prior to training.

C. Mitigation Strategies

A naive but straightforward method for Trojan mitigation
is fine-tuning. In this approach, a user retrains a potentially
compromised model using a smaller, clean dataset that is
available to them. Fine-tuning aims to adjust the model’s
weights, potentially overriding the malicious influence of the
backdoor trigger. Liu et al. [23] suggest that this method
can often reduce the risk associated with trojaned models
by lessening the impact of the malicious weights embedded
within the model. Contrary to retraining scratch, fine-tuning
typically requires fewer training samples and converges more
quickly, making it a computationally efficient alternative in
comparison to full retraining. However, the success of this
approach depends on the size and quality of the clean dataset
used for fine-tuning, and potentially the nature of the trojan
attack and model architecture.

Zhu et al [12] propose FTSAM, which leverages sharpness-
aware minimization (SAM) to more effectively fine-tune a tro-
janed model with the goal of removing the model’s backdoors.
The authors find that vanilla fine-tuning fails to significantly
change the weight norms of backdoor-related neurons, which
are key to the backdoor behavior. The authors claim that
incorporating SAM into the retraining process effectively
perturbs the backdoor-related neurons, allowing the model to
escape the local minimum and better achieve mitigation.

Wang et al introduce Neural Cleanse [13], which includes
a two-part mitigation system with strong generalization. The
first component is a filter that identifies adversarial inputs
based on their neuron activation patterns. This filter utilizes
the neuron activation profile of each label to reverse-engineer
a trigger, setting a threshold to distinguish clean inputs from
adversarial ones. The second component involves patching the
compromised model using a technique called neuron pruning.
This method targets neurons that exhibit significant activation
differences when processing clean versus adversarial inputs.
By pruning these neurons, the method reduces the model’s
responsiveness to backdoor triggers while minimizing any
impact on classification accuracy. While Neural Cleanse is an
effective mitigation strategy, the first stage is computationally
prohibitive for models with large number of classes.

Liu et al [24] propose a mitigation tactic combining fine-
tuning and pruning called Fine-Pruning. First all the acti-
vations are recorded from running the benign data, based
on these activations some neurons are targeted for pruning.
Pruning is first applied to remove the backdoor-related neu-
rons. Fine-tuning is then applied in order to restore the lost
model accuracy. The iterative pruning makes this method
computationally expensive.

III. METHODOLOGY

A. Threat Model

1) Attacker: We assume the presence of an adversary con-
ducting a backdoor attack on a deep neural network (DNN).

In this context, the poisoning ratio represents the fraction
of compromised samples present in the training dataset. The
attacker’s objective is to manipulate the model such that it
consistently classifies inputs containing specific triggers as
target labels while preserving correct classification behavior
on unaltered, clean samples.

2) Defender’s Objective: The defender obtains a potentially
backdoored model and is unable to train their own model
from scratch given constrained resources, either in terms of
computation or data requirements. We assume the defender
has access a small set of benign data samples, denoted as
Dbenign. The defender’s goal is to alter the model in such a
way that, should it be compromised, it retains high perfor-
mance on the benign dataset while effectively eliminating any
potential backdoors within the model. Specifically, this means
minimizing the proportion of poisoned inputs misclassified as
the target label.

B. Key Intuition

The process of fine-tuning a trojaned model using a limited
number of clean data samples can cause minor adjustments
to model weights, thereby reducing the attack success rate
(ASR) while preserving the model’s accuracy on benign data.
Previous work by Zhu et al. [12] suggests that standard
fine-tuning is insufficient for removing backdoors, as the
backdoored model already fits benign training data, causing
weight updates through gradient descent to be minimal and
insufficient in mitigating the attack.

Building on these findings, we propose a regularization-
based post training compression technique that targets specific
layers within the model. This approach perturbs the weights
strategically during fine-tuning, ensuring substantial weight
adjustments across all layers. Our method subsequently re-
stores the model’s performance post-compression, resulting
in a compressed, clean model that maintains high accuracy.
We elaborate on the details of our proposed approach, Merge-
Guard, in the subsequent sections.

C. MergeGuard

In this section, we introduce MergeGuard, a novel regular-
ization strategy aimed at adaptively removing layers from fully
connected and convolutional layers in deep neural networks.
By removing layers, this method compresses the model and
effectively mitigates backdoor attacks in the process. Unlike
conventional approaches that may rely heavily upon targeting
backdoor-related neurons in the network, MergeGuard focuses
on removing the layers that are prone to being trojaned,
cleansing the model in the process. This method changes
the model weights through a regularization technique, making
sufficient changes to the weights of the model removing the
effect of triggers and backdoor attacks.

As demonstrated in Figure 2, MergeGuard involves reg-
ularizing the complexity of individual layers by linearizing
their activation functions during training or fine-tuning. By
converting these activation functions to a linear form, we can
merge consecutive linear layers into a single equivalent layer,

Fig. 2: Illustration of the proposed MergeGuard methodology for mitigating trojans in neural networks. (a) Identification of
a potentially compromised layer suspected to contain a trojan. (b) Application of fine-tuning with the regularization strategy
described in Section III-C, designed to incrementally guide the activation towards linearity. (c) Post-tuning, the activation
function approximates an identity function. (d) Simplification of the network architecture by merging two consecutive fully
connected layers into a single, reduced layer, effectively eliminating the intermediary layer.

thereby reducing the model’s depth. This results in a model
with lower storage and computational requirements, indepen-
dent of specialized software or hardware optimizations.

The regularizer is designed to adaptively modulate the neg-
ative slope of multilayer perceptrons (MLPs) or convolutional
layers. When the negative slope of a given layer reaches one,
we can safely merge the two consecutive linear transformation
into one linear transformation effectively eliminating one layer
from the network without any loss in performance. This is
due to the fact that two consecutive linear transformations
with no non-linearity between them are equivalent to a one
linear transformation that can be represented using one linear
layer. This yields a shallower network with fewer parameters,
subsequently reducing resource demands during execution. We
demonstrate that this transformation significantly alters the
model state, effectively neutralizing backdoor effects and pro-
ducing a clean, high-accuracy, and computationally efficient
model.

D. Formal Definition

We will first derive all results for fully connected layers.
We then will extend the result to Convolutional layers. We
define a mergeable layer as two consecutive linear layers
that use a Parametric Rectified Linear Unit (PReLU) [25] as
their activation function. The PReLU function is expressed as
follows:

PReLUα(x) = max(0, x) + αmin(0, x), (1)

where α denotes the slope of the PReLU function when x is
negative.

The output of a basic two-layer mergeable layer can be
described as:

Yα = W2(PReLUα(W1X + b1)) + b2, (2)

where X is the input random variable, Y is the output random
variable, W1 and W2 represent the weight matrices, and b1 and

b2 are the bias vectors for the first and second fully connected
layers, respectively. By adjusting α, the activation function can
be made linear.

We define Ylinear as:

Ylinear = W2W1X +W2b1 + b2. (3)

We define the non-linearity error as the squared difference
between Yα and Ylinear.

It can be shown that for any δ ∈ [0, 1] and for any
distribution of input random variable X:

P
{
|Ylinear − Yα|2 ≤ C × (1− α)2

}
> 1− δ, (4)

where

xδ ≡ inf {x ∈ Rn | P {|X| > |x|} < δ} ,
C = σmax(W2W1)

2|xδ|2 + |W2b1|2,
(5)

and σmax(W2W1) is the largest singular value of W2W1. By
choosing δ arbitrarily small, the probability of error is bounded
proportional to (1− α)2 with probability one.

To optimize for low non-linearity error We incorporate the
term (1−α)2 into our loss function as a regularizer to jointly
optimize for both non-linearity reduction and the label cross-
entropy loss. This loss term aligns Yα with Ylinear, thereby
compressing the model into a shallower form. The compressed
layer’s weights and bias can be calculated using the formula
for calculating Ylinear.

E. Compression Ratio

The compression ratio of a reduced fully connected layer is
expressed as:

CR = 1− nin × nout

nhidden × (nin + nout)
(6)

where CR denotes the compression ratio, with nin, nhidden,
and nout representing the input size, hidden size, and output
size of a 2-layer MLP, respectively.

TABLE I: Performance of Various Attack/Cleansing Methods on PreAct-ResNet18

Attack/Cleansing Trojaned FT FP FTSAM NC MG

Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR

TrojanNN 90.90 99.98 88.23 15.16 91.86 98.44 91.47 1.38 90.44 1.17 89.09 3.88

WaNet 87.38 97.41 87.94 6.34 91.44 6.73 91.41 4.08 87.38 97.41 90.20 1.53

BadNet 90.44 94.03 85.59 1.01 91.90 3.77 91.25 1.67 91.45 0.87 93.50 11.37

Blended 91.09 99.67 88.03 8.74 92.08 58.51 90.97 9.76 89.53 2.08 88.20 3.73

SIG 82.52 97.49 88.01 5.37 89.63 1.34 90.14 0.06 82.52 97.49 88.34 0.14

Average 88.47 97.72 87.56 7.32 91.38 33.76 91.05 3.39 88.26 39.80 89.87 4.13

TABLE II: Performance of Various Attack/Cleansing Methods on Vision Transformer (ViT)

Attack/Cleansing Trojaned FT FP FTSAM NC MG

Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR

TrojanNN 98.03 100.0 95.98 100.0 96.90 100.0 97.33 100.0 97.05 0.72 92.70 7.39

WaNet 94.45 84.73 94.56 0.71 97.52 0.26 94.11 27.69 97.11 0.18 94.13 1.62

BadNet 95.85 93.44 94.11 27.69 97.08 65.53 97.20 89.07 96.76 0.27 93.55 11.38

Blended 98.16 99.96 94.39 17.00 31.56 5.31 98.09 99.70 96.93 47.00 92.71 3.67

SIG 86.82 89.44 94.61 35.93 95.96 87.89 95.02 93.12 96.31 81.01 92.94 1.99

Average 94.66 93.52 94.73 36.27 83.80 51.80 96.35 81.92 96.83 25.84 93.21 5.21

Note that the compression ratio may be negative, indicating
an expansion rather than a compression. A positive compres-
sion ratio is achieved only if nhidden exceeds the ratio of the
product to the sum of nin and nout. This highlights that MLPs
with a “bottleneck” configuration (small nhidden) may not
benefit from this method. Conversely, MLPs with a “widening”
structure typically exhibit favorable compression ratios.

F. Convolutional Layers

Convolutional layers, which are critical to many neural
architectures, can be treated as a fully connected layer with
weight redundancies. Given their linear transformation prop-
erties, they can be represented using circulant matrices, where
each row is a cyclic permutation of its predecessor. Merging
two convolutional layers results in a single convolution layer
where the kernel size, k, is given by:

k = k1 + k2 − 1 (7)

where k1 and k2 are the kernel sizes of the original layers.
The compression ratio for convolutional layers can be

determined as:

CRconv = 1−k21 × cin × chidden + k22 × chidden × cout
(k1 + k2 − 1)2 × cin × cout

(8)

where cin, chidden, and cout represent the input channels,
hidden channels, and output channels, respectively. However,
a pivotal consideration for common CNN architectures like
ResNet is the potential for a negative compression ratio,
emphasizing the need for careful considerations when using
MergeGuard for convolutional networks. However, we show
the effectiveness of MergeGuard as an effective backdoor
mitigation technique in section IV.

G. Alternative Activation Functions

Our discussion has primarily centered around the ReLU
activation function, known for its simplicity and effectiveness.
Recent advances have seen the emergence of ReLU variants
like ELU [26], GeLU [27], and SiLU [28], which offer
enhanced adaptability.

We introduce a method to linearize ReLU-family activa-
tions. For instance, in the ELU function, which is linear in the
positive domain and non-linear in the negative, we integrate
a linear component, y = x, into the negative domain. This
adjustment is formulated as a weighted combination:

ELUβ(x) =

{
x if x > 0

αx+ (1− α)β(exp(x)− 1) if x ≤ 0

where β represents the parameter of the ELU function. The
weight α, constrained to [0, 1] via a sigmoid function during
training, dictates the balance between linear and non-linear
components.

For one-dimensional activation functions like GeLU and
SiLU, characterized by the form f(x) = x × h(x), where
h(x) transitions between bounds as x varies, we modify these
functions using α to yield parametric forms:

GeLUα(x) = x(Φ(x) + α(1− Φ(x)))

with Φ(x) being the Gaussian cumulative distribution function,
and for SiLU:

SiLUα(x) = x(σ(x) + α(1− σ(x)))

where σ(x) denotes the sigmoid function.

IV. EVALUATION

A. Experimental Setup

Attack Configuration. We investigate the efficacy of our
method against five leading trojan attacks: TrojanNN [20],
WaNet [21], BadNet [18], Blended [19], and SIG [22]. These
methods were chosen for their demonstrated proficiency in
evading conventional security mechanisms while preserving
high testing accuracy. Experiments are conducted using the
CIFAR10 dataset [29] with predefined parameters from Back-
doorBench [11] to maintain consistency. We poison the models
at a 10% rate, targeting the 0th label. Our tests include
two representative architectures from the major families of
vision models: PreAct-ResNet18 for CNNs and ViT-base-16
for vision transformers.

Defense Configuration. We test MergeGuard against stan-
dard fine-tuning (FT) and three leading backdoor mitigation
methods: Fine-Pruning (FP) [24], FTSAM [12], and Neural
Cleanse (NC) [13]. For these experiments, 5% of the clean
dataset is utilized. Training is conducted using the SGD
optimizer with a momentum of 0.9, spanning over 20 epochs
on clean data with a batch size of 128. In the spirit of fair
comparison, we conducted grid search for each learning rate
parameter, selecting the one that achieved the greatest reduc-
tion in ASR for that method. The exhaustive configurations
of each experiment are given in our code base. Each defense
method begins from the same compromised baseline model. In
our approach, presuming the trojan’s presence in the terminal
layers based on the conjectures of previous works [8], we
apply regularization to the last three layers of the PreAct-
Resnet18 and the last four layers of the Vision Transformer.
The regularization strength used in all experiments is one.
Removing 4 fully connected layers from the base ViT variant
will reduce the parameter count from 85.8 million parameters
down to 73.4 Million parameters resulting in a 15% reduction
in model size.

Defense Metric. The efficacy of our trojan mitigation
strategy is measured by means of two metrics: model test
accuracy (Test Acc) and Attack Success Rate (ASR). The
ASR gauges the potency of a trojan in forcing the model to
misclassify a designated label. An effective mitigation strategy
is reflected by a reduced ASR. The goal is the preserve
the Test Accuracy while reducing ASR. Another metric we
consider is the computational cost of running each of these
experiments. Some of the defenses, namely Neural Cleanse
and Fine-Pruning, have a very expensive pre-processing stage
that, depending on the application, may be impractical. The
average runtime cost of each method is given in figure 3.

B. Evaluation of Results

1) Efficacy of Trojan Mitigation in Vision Transformers:
The robustness of ViT to various trojan mitigation strategies
was examined and a comparison to the robustness of CNNs
is shown between Tables I and II. The trojaned ViT mod-
els demonstrated significant resilience against most existing
cleansing techniques. In contrast, PreAct-ResNet18 responded

Fig. 3: Computational time for mitigation strategies on ViT.

more favorably to these methods. However, MergeGuard ex-
hibits a model-agnostic property which is extends to ViT mod-
els. As detailed in Table II, while other methods sporadically
mitigated trojans in ViT depending on the attack method used,
MergeGuard consistently outperformed these techniques in
terms of consistent efficacy across attacks.

2) Computational Efficiency of MergeGuard: The computa-
tional efficiency of MergeGuard and other mitigation strategies
was evaluated based on the processing time required for each
method. In all experiments, a single A6000 GPU was used.
Figure 3 portrays the processing time taken for each method.
MergeGuard displayed superior performance, achieving com-
putational speedups of 10.6x, 17.7x, and 3.0x compared to
Fine-Pruning (FP), Neural Cleanse (NC), and Feature Squeez-
ing and Model Augmentation (FTSAM) respectively. While
FP and NC showed efficacy against many of the attacks
tested, their computational demands were substantially higher,
highlighting the efficiency of MergeGuard as a preferable
choice for practical applications. Additionally, the resulting
cleansed model produced by MergeGuard has 73.4 million
parameters, 15% less than the original model with 85.8 million
parameters. This reduction in parameter count is accompanied
by a 14% drop in the number of MAC operations.

V. CONCLUSION

In this work we conducted experiments demonstrating the
robustness of trojaned Vision Transformers to SOTA cleansing
methods. We showed these methods are far less reliably
effective on transformer based architectures for different at-
tacks. We introduced MergeGuard, an innovative compression
based approach for countering AI Trojan attacks. MergeGuard
provides an architecture-agnostic trojan mitigation strategy
applicable to, not just CNNs, but also Transformer models for
which MergeGuard reduced the attack success rate by more
than 20% across existing state-of-the-art.

Our analysis of runtime efficiency demonstrates that Merge-
Guard requires significantly less compute time than other
defense strategies and additionally doubles as an effective
compression method, achieving parameter reductions up to

15% and MAC reductions up to 14% with negligible impact
on accuracy.

The open-source code for MergeGuard is made publicly
accessible2. Future research directions include developing al-
gorithms for the selection of MergeGuard layers, exploring al-
ternative regularization techniques, and extending the method
to additional transformer-based architectures.

REFERENCES

[1] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural
language models,” arXiv preprint arXiv:2001.08361, 2020.

[2] X. Hu, L. Chu, J. Pei, W. Liu, and J. Bian, “Model complexity of
deep learning: A survey,” Knowledge and Information Systems, vol. 63,
pp. 2585–2619, 2021.

[3] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in 25th Annual Network And
Distributed System Security Symposium (NDSS 2018), Internet Soc,
2018.

[4] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A survey,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 35,
no. 1, pp. 5–22, 2022.

[5] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi,
“Computing systems for autonomous driving: State of the art and
challenges,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6469–
6486, 2020.

[6] B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline, “Machine learning
for medical imaging,” radiographics, vol. 37, no. 2, pp. 505–515, 2017.

[7] F. Rundo, F. Trenta, A. L. Di Stallo, and S. Battiato, “Machine learning
for quantitative finance applications: A survey,” Applied Sciences, vol. 9,
no. 24, p. 5574, 2019.

[8] G. Fields, M. Samragh, M. Javaheripi, F. Koushanfar, and T. Javidi,
“Trojan signatures in dnn weights,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 12–20, 2021.

[9] M. Javaheripi, M. Samragh, G. Fields, T. Javidi, and F. Koushanfar,
“Cleann: Accelerated trojan shield for embedded neural networks,” in
Proceedings of the 39th International Conference on Computer-Aided
Design, pp. 1–9, 2020.

[10] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Anti-backdoor
learning: Training clean models on poisoned data,” Advances in Neural
Information Processing Systems, vol. 34, pp. 14900–14912, 2021.

[11] B. Wu, H. Chen, M. Zhang, Z. Zhu, S. Wei, D. Yuan, and C. Shen,
“Backdoorbench: A comprehensive benchmark of backdoor learning,”
Advances in Neural Information Processing Systems, vol. 35, pp. 10546–
10559, 2022.

[12] M. Zhu, S. Wei, L. Shen, Y. Fan, and B. Wu, “Enhancing fine-
tuning based backdoor defense with sharpness-aware minimization,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4466–4477, 2023.

[13] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE symposium on security and privacy
(SP), pp. 707–723, IEEE, 2019.

[14] Y. Gong, Y.-A. Chung, and J. Glass, “Ast: Audio spectrogram trans-
former,” arXiv preprint arXiv:2104.01778, 2021.

[15] J. Pan, Z. Lin, X. Zhu, J. Shao, and H. Li, “St-adapter: Parameter-
efficient image-to-video transfer learning,” Advances in Neural Infor-
mation Processing Systems, vol. 35, pp. 26462–26477, 2022.

[16] A. Subramanya, S. A. Koohpayegani, A. Saha, A. Tejankar, and
H. Pirsiavash, “A closer look at robustness of vision transformers to
backdoor attacks,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 3874–3883, 2024.

[17] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li, “Adversarial attacks
on deep-learning models in natural language processing: A survey,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 11,
no. 3, pp. 1–41, 2020.

[18] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

2https://github.com/yjandali/BackdoorBench-MergeGuard

[19] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[20] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in 25th Annual Network And
Distributed System Security Symposium (NDSS 2018), Internet Soc,
2018.

[21] A. Nguyen and A. Tran, “Wanet–imperceptible warping-based backdoor
attack,” arXiv preprint arXiv:2102.10369, 2021.

[22] M. Barni, K. Kallas, and B. Tondi, “A new backdoor attack in cnns
by training set corruption without label poisoning,” in 2019 IEEE
International Conference on Image Processing (ICIP), pp. 101–105,
IEEE, 2019.

[23] Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in 2017 IEEE
International Conference on Computer Design (ICCD), pp. 45–48,
IEEE, 2017.

[24] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in International sym-
posium on research in attacks, intrusions, and defenses, pp. 273–294,
Springer, 2018.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[26] D.-A. Clevert, “Fast and accurate deep network learning by exponential
linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[27] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[28] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning,”
Neural networks, vol. 107, pp. 3–11, 2018.

[29] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for
advanced research),”

	Introduction
	Background and Related Work
	Trojan Attacks
	Types of Attacks
	Mitigation Strategies

	Methodology
	Threat Model
	Attacker
	Defender’s Objective

	Key Intuition
	MergeGuard
	Formal Definition
	Compression Ratio
	Convolutional Layers
	Alternative Activation Functions

	Evaluation
	Experimental Setup
	Evaluation of Results
	Efficacy of Trojan Mitigation in Vision Transformers
	Computational Efficiency of MergeGuard

	Conclusion
	References

