
Rollbaccine: Herd Immunity against Storage
Rollback Attacks in TEEs (Technical Report)

David C. Y. Chu
University of California, Berkeley

thedavidchu@berkeley.edu

Aditya Balasubramanian
University of California, Berkeley

aditbala@berkeley.edu

Dee Bao
University of California, Berkeley

dbao3@berkeley.edu

Natacha Crooks
University of California, Berkeley

ncrooks@berkeley.edu

Heidi Howard
Azure Research, Microsoft

heidi.howard@microsoft.com

Lucky E. Katahanas
lkatahanas@gmail.com

Soujanya Ponnapalli
University of California, Berkeley

soujanya@berkeley.edu

Abstract

Today, users can “lift-and-shift” unmodified applications
into modern, VM-based Trusted Execution Environments
(TEEs) in order to gain hardware-based security guarantees.
However, TEEs do not protect applications against disk
rollback attacks, where persistent storage can be reverted
to an earlier state after a crash; existing rollback resistance
solutions either only support a subset of applications or
require code modification. Our key insight is that restoring
disk consistency after a rollback attack guarantees rollback
resistance for any application. We present Rollbaccine, a
device mapper that provides automatic rollback resistance
for all applications by provably preserving disk consistency.
Rollbaccine intercepts and replicates writes to disk,
restores lost state from backups during recovery, and
minimizes overheads by taking advantage of the weak,
multi-threaded semantics of disk operations. Across bench-
marks over two real applications (PostgreSQL and HDFS)
and two file systems (ext4 and xfs), Rollbaccine adds only
19% overhead, except for the fsync-heavy Filebench Varmail.
In addition, Rollbaccine outperforms the state-of-the-art,
non-automatic rollback resistant solution by 208×.

1 Introduction
Security-conscious developers lift-and-shift unmodified
applications into VM-based Trusted Execution Environ-
ments (TEEs) under the impression that TEEs guarantee
confidentiality and integrity with minimal performance
overhead [3, 46, 79].
This is true until the application needs to access disk; TEEs
only protect data in memory, leaving the disk vulnerable.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

A combination of encryption, sealing, and hash verification
can be used to provide confidentiality and integrity while
the host is online, but once the host goes offline, the data
on disk become vulnerable to rollback attacks.
Rollback attacks revert disk to an earlier state, causing the
system to execute over stale data. Such attacks can be dev-
astating: for example, an attacker can use rollback attacks in
order to bypass limits on password attempts [48, 57, 93, 99]
or reopen vulnerabilities in patched software [33, 53].
To combat rollback attacks, existing TEE-based systems
in production must abandon the lift-and-shift philoso-
phy in order to implement bespoke rollback protection
mechanisms [29, 30, 42, 64, 83].
Ideally, there would exist a solution against rollback attacks
that is at once (1) general, correct for all applications, (2)
automatic, requiring no application modification, and (3)
resistant, allowing the application to recover as if the rollback
attack did not occur. Unfortunately, despite the variety of
existing solutions against rollback attacks [5, 11, 14, 26, 30,
34, 37, 42, 49, 62, 68, 71, 90, 100, 102], none achieve all three
properties. Existing solutions either only detect but do not
recover from rollbacks [11, 14, 26, 37, 49, 71, 90, 102], are
application specific [30, 42, 68, 100], or sacrifice automation
by requiring the application to use a new API [5].
In this paper, we make one key observation: rollback
attacks are fundamentally attacks on disks. Therefore, gen-
erality can be achieved by restoring disk consistency after
rollback, guaranteeing rollback resistance to any application
that uses disk regardless of application semantics.
The key challenge then lies in developing a strategy that pre-

serves disk consistency at low cost. Replication will necessar-
ily be part of the solution: at least onemachinemust still have
the data! Naïvely replicating all disk updates during execu-
tion, however, is a non-starter performance wise; this is why
Nimble, the state-of-the-art solution, requires the application
to use a newAPI to indicate when replication is necessary [5].

1

ar
X

iv
:2

50
5.

04
01

4v
1 

 [
cs

.C
R

] 
 6

 M
ay

 2
02

5

https://orcid.org/0000-0001-9922-1994
https://orcid.org/0000-0002-3567-801X
https://orcid.org/0000-0001-5256-7664
https://orcid.org/0009-0008-3073-0844
https://orcid.org/0009-0006-1449-1447
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0


A new API is unnecessary. Already encoded in the
semantics of disk operations are persistence flags (REQ_FUA
and REQ_PREFLUSH) [92], metadata attached to each write
request indicating whether it should be synchronously writ-
ten to disk or not. Disk writes without these flags can return
before persistence is guaranteed and potentially be lost after
a crash. These semantics are already used by file systems
in order to make most writes to disk fast and asynchronous
by default, while a small number of operations are carefully
persisted to ensure correctness. We can build off of these se-
mantics when replicating disk for rollback resistance; writes
with persistence flags must be replicated on the critical path,
while all other writes can be replicated in the background.
The weak semantics of disk also allow us to relax con-
straints on ordering. All existing countermeasures against
rollback attacks enforce a total ordering of state changes
in order to identify a “canonical” state that the system must
recover to. Disks are more flexible. Upon crash and recovery,
disks can recover any subset of weakly-persisted writes. We
can take advantage of this flexibility when replicating disk,
allowing each disk to process writes in different orders and
diverge, as long as they remain in a state consistent with
prior operations.
We instantiate these ideas in Rollbaccine (the rollback

vaccine), a system that intercepts and replicates writes
to provide general and automatic rollback resistance with
minimal overhead. To prove that Rollbaccine restores
disk consistency, we formally define the behavior of block
devices (a category of storage devices that includes disk) in
the presence of crashes (§ 4) and prove that block device
consistency is preserved by Rollbaccine (Appendix B).
Importantly, we implement Rollbaccine as a device
mapper below the file system. This is key for providing
generality: device mappers reason exclusively about block
I/O requests and whether they should be written to disk
synchronously or asynchronously. By preserving disk
consistency at this level, Rollbaccine can defend against
rollback attacks for any file system or application.
Our experimental results confirm that with Rollbaccine,
general and automatic rollback resistance is possible with
minimal performance penalty. On two large applications,
PostgreSQL and HDFS, as well as two distinct file systems,
ext4 and xfs, Rollbaccine introduces a maximum of
19% throughput and latency overhead across TPC-C [32],
NNThroughputBenchmark [7], and Filebench [91] Web-
server, with more significant overheads (71% throughput and
2.7× latency) only for the Filebench Varmail benchmark, with
its high fsync frequency. In addition, Rollbaccine outper-
forms Nimble [5]—a state-of-the-art, non-automatic rollback
resistance solution—by 208× for write-heavy workloads.
In summary, we make the following contributions:
1. We introduce Rollbaccine, a device mapper that offers

applications rollback resistance (§ 6).

2. We provide a formal definition of block device crash
consistency (§ 4) and prove that it is preserved by
Rollbaccine (Appendix B).

3. We show that Rollbaccine adds minimal overhead in
most benchmarks and significantly outperforms state-of-
the-art, non-automatic rollback-resistant solutions (§ 7).

2 Motivation and Threat Model
TEEs protect the confidentiality and integrity of applications
by preventing, through hardware and software, unautho-
rized access to code or data. Users can verify that their
applications are executing within a TEE through remote
attestation, where the host produces a proof of the code
executing within a TEE [31].
Until recently, applications that wished to run within

TEEs (e.g. Intel SGX) required extensive modifications and
suffered significant performance penalties [10]. VM-based
TEEs such as Intel TDX [44], AMD SEV-SNP [2], and Arm
CCA [9] provide a new “lift-and-shift” abstraction, where
applications can run unmodified inside the TEE and gain
confidentiality and integrity guarantees with minimal per-
formance overhead. TEEs have seen widespread adoption as
a result: all major cloud providers support at least one type of
VM-based TEE [1, 38, 64], and they are used in industry for
private data processing [17, 29, 51], key management [57],
supply-chain security [33], and AI inference [40, 61, 82].
2.1 The dangers of rollbacks
Unfortunately, the confidentiality and integrity guarantees
do not currently extend to persistent state. Attackers can
observe and modify application data on disk by either
directly accessing disk (using other applications) or by
intercepting disk operations with privileged code (such as
a kernel module loaded into the host OS).
Existing encryption and integrity-preserving tech-

niques [72, 84] can be used to automatically provide disk con-
fidentiality and some degree of integrity. However, because
the metadata used to verify integrity is still stored on disk,
they remain vulnerable to rollback attacks, where an adver-
sary could modify data (and its on-disk integrity metadata, in
tandem) in order to present the application with a stale disk.
Definition 2.1 (Rollback attack) Modifies disk reads such

that they only reflect a prefix of prior operations.

Online rollback attacks—performed while the application is
executing—can be detected by an application that validates
reads against integrity metadata in memory. An attacker
can instead launch an offline rollback attack, crashing the
TEE (and thereby clearing any metadata in memory) before
rolling disk back. Offline rollback attacks are insidious
because they are undetectable; the recovering application
cannot distinguish an offline rollback attack from a benign
crash, and will execute obliviously on stale state.
Consider for example a TEE application that rate-limits
password-guessing attempts (Listing 1). It maintains a

2



counter on disk to prevent excessive retries, even across
reboots. An attacker could repeatedly crash the TEE, rollback
the disk to a state before the counter was incremented,
then restart the TEE, effectively offering users unlimited
password-guessing attempts.

Listing 1. Password-guessing application
with open(counter_file , "r+") as file:

counter = int(file.readline ()) + 1

if counter > 10:

print("Account␣blocked")

return False

else:

file.write(f"{counter}")

file.flush()

os.fsync(file.fileno ())

return pin == real_pin

Rollback attacks are relevant to all applications that rely
on persistent storage, including applications that do not
interface with disk directly and instead rely on local (or
even distributed!) database systems for persistence. Those
systems in turn rely on the persistence of their local disks,
which can be violated by rollback attacks.
To combat rollback attacks, production-level TEE-based
systems all implement bespoke rollback-detecting or
resistant solutions. SVR3 [30], Signal’s key recovery system,
modifies Raft [70] to prevent rollback attacks. CCF [42],
Azure’s TEE-protected ledger, constructs a Merkle tree to
prevent rollbacks. Google’s Confidential Space [29], Azure’s
Confidential Containers [64], and AWS’s Bottlerocket [83]
all verify the integrity of disk to detect modifications.
2.2 Threat model and guarantees
Threatmodel.Wemake the standard assumptions, common
to all TEE-based systems [5, 34, 42, 68, 77, 86], that clients
trust the hardware manufacturer and the TEE, and that TEEs
are as safe as they claim to be. Specifically, attackers cannot
violate the integrity and confidentiality of memory, break
standard cryptographic primitives, or exploit physical hard-
ware or side-channel attacks [20, 39, 67, 69, 85, 89, 94, 95, 97,
98, 101]. Attackers, including malicious cloud providers, can
still crash machines and corrupt network and disk I/O.
Correctness guarantees. Existing solutions provide one
of two guarantees in the presence of rollbacks: rollback
detection and rollback resistance.
Definition 2.2 (Rollback detection) An application is

rollback-detecting if it always detects rollback attacks.

Rollback detection provides safety. Following a rollback
attack, a rollback-detecting application may have lost
its data and be incapable of recovering, but it will never
execute over stale data. In other words, rollback detection
transforms rollback attacks into denial-of-service attacks.
Definition 2.3 (Rollback resistance) An application is

rollback resistant if, following a rollback attack, it always

recovers to a state it could have recovered to in the absence

of rollback attacks.

Rollback resistance provides liveness in addition to safety.
Following a rollback attack, a rollback-resistant application
will recover enough lost data to continue execution.
Non-guarantees. Rollback resistance guarantees that the

effect of a rollback is invisible to the application. It does not,
however, guarantee correctness.
Consider again the password guessing application. If the
application did not include the os.fsync line, an attacker
could intelligently crash the application before the counter
makes it to disk, thus bypassing the password guessing limit
without ever modifying disk. Because the attacker did not
rollback the disk, this is not a rollback attack and remains
possible even if the application were rollback resistant.
Similarly, rollback resistance’s guarantees are limited to disk
operations; it does not provide general safety to arbitrary
applications, e.g. if the password counter relies on accurate
system time from the untrusted host, or uses an insecure
entropy source for password generation.
3 Towards Rollbaccine
The ideal solution for protecting against rollback attacks
is general, automatic, and resistant, allowing developers to
place unmodified applications in TEEs without worrying
about rollback attacks.
Generality—the ability to protect arbitrary applications
against rollback attacks—is the hardest to achieve, because
we do not know what data each application relies on for
recovery. To achieve generality, solutions like Nimble [5]
sacrifice automation, requiring significant manual effort to
identify the application-specific state that must be protected.
Our key insight is that nullifying the effect of rollback
attacks on disk is sufficient to guarantee general rollback
resistance, regardless of individual applications’ semantics.
By definition, regardless of how they are mounted, rollback

attacks only modify disk. Thus, if we restore the disk to a state
it could have recovered to after a benign crash, then to any ap-
plication, the attack is indistinguishable from a benign crash.
The application must recover as if the rollback attack did not
occur, granting it rollback resistance by definition (2.3).
Rollbaccine leverages this insight to implement general,

automatic rollback resistance by replicating disk. Replication
is a well-known strategy for recovering data lost in a rollback
attack [5, 62, 68, 100]. Replicating disk, however, requires
addressing three main challenges: (1) understanding exactly
what state the disk can recover to after a benign crash, (2)
intercepting write operations to disk and replicating them
so they are available after a rollback attack, and (3) limiting
the overheads of doing so. In the rest of this paper, we
address each challenge in turn:
1. Formalisms (§ 4). In order to restore disk to a state it could

have recovered to after a benign crash, we need a formal un-
derstanding of exactlywhat states it could have possibly been
in. To the best of our knowledge, although file system crash

3



Figure 1. The Linux storage stack. Block I/Os taggedwith O_DIRECT
bypass the page cache.

f = open("sosp.txt") WRITE(8)
READ(33928)
READ(1096)

write(f, "hello", 6) WRITE(1048664)
WRITE(1048672)

fsync(f) WRITE(1048680, FUA | PREFLUSH)
WRITE(1048680, FUA)
WRITE(266240)

Table 1. Opening, writing, and fsyncing to a file in ext4 and their
corresponding block I/Os, sector numbers, and persistence flags.

consistency [19, 25, 27, 27, 28, 47, 52, 58, 60, 65, 66, 75, 87]
has been extensively studied, there is no formal definition
for the block-level semantics of disks.
2. Intercepting (§ 6). Next, we present the implementation of

Rollbaccine as a device-mapper. A Linux device mapper is a
kernel module that lies between block devices (such as disks)
and higher level applications, as seen in Figure 1. Each disk
read or write request arrives at the device mapper as a block
I/O consisting of the disk sectors involved, pages containing
data for writes or retrieving data for reads, and additional
flags (REQ_FUA and REQ_PREFLUSH) describing whether the
data should be written synchronously to disks or not. Table 1
describes a simple application writing to the sosp.txt file
on the ext4 file system and the resulting block I/Os.
Implementing Rollbaccine as a device mapper presents
three benefits. First, it is a commonly accepted strategy in
industry to augment disk functionality. Dm-crypt [84], dm-
verity [73], and dm-integrity [72] are all popular device map-
pers industry used to enable disk encryption and (limited) in-
tegrity without application modification [6, 12, 13, 24, 78, 83].
Second, device mappers sit below the file system (Figure 1)
and are thus file-system agnostic; this allows us to evaluate
against both ext4 and xfs in § 7.1 without code modification.
Third, device mappers have a well defined interface that is
relatively simple to review, maintain, optimize, and trust,
as opposed to a custom rollback-resistant port of an existing
application [5] or a custom rollback resistant file system.
3. Overheads (§ 6). Finally, we discuss how Rollbaccine
minimizes performance overheads. Synchronous disk repli-
cation on the critical path not only introduces high overhead
(§ 7.2), but is also often unnecessary. Existing applications
and file systems already carefully engineer their implemen-
tation to reduce the number of synchronous writes; these
writes are mapped to block I/Os with persistence flags and
exposed to the device mapper. It suffices for Rollbaccine

to synchronously replicate writes with persistence flags and
replicate remaining writes in the background.
4 Block Device Crash Consistency
Rollbaccine provides rollback resistance by guaranteeing
that, following a rollback attack, the disk always recovers
to a benign state. A formal definition of benign state is
thus necessary. Concretely, we must formalize block device
consistency in the presence of crashes: what are the states
to which a block device (i.e. a disk) can recover to after a
crash? These are the same states that Rollbaccine must
recover to post-rollback.
We begin with the assumption that disk read and write
operations (𝑂) are atomic, which is consistent with prior
work and the inherent properties of disks [23, 76, 88]. We
also assume that writes to block devices are guaranteed
to persist across crashes only when the persistence flags
REQ_FUA or REQ_PREFLUSH are used [27, 60, 66, 92].
We describe the execution of a block device with a history
H as a totally ordered sequence of events 𝑉 composed
of invocations, responses, and crashes. This total ordering
allows us to capture causal relationships between reads and
writes and is distinct from the (unknown) order in which
the disk actually processes operations. We denoteH[𝑡] as
the sequence of events performed by a thread 𝑡 .
Concretely, invocations represent submit_bio function
calls sent to the block device; responses represent the
corresponding call to bi_end_io by the block device,
signaling I/O completion.
Read requests to block 𝑏 by thread 𝑡 are written 𝑅𝑖𝑛𝑣,𝑡 (𝑏);
responses are 𝑅𝑟𝑒𝑠,𝑡 (𝑏,𝑣𝑎𝑙), where 𝑣𝑎𝑙 is the value returned.
Write requests are 𝑊𝑖𝑛𝑣,𝑡 (𝑏, 𝑣𝑎𝑙, 𝑠𝑦𝑛𝑐), where the value to
write (if any) is val and sync is a tag with one of the following
values: REQ_FUA, REQ_PREFLUSH, REQ_FUA|REQ_PREFLUSH,
or ∅.𝑊𝑟𝑒𝑠,𝑡 (𝑏) is the matching response. We assume that
blocks are always written to before they are read from.
To define block device crash consistency, we take as our

starting point the definitions of Izraelevitz et al [45]. We will
build up to a definition of linearizability before extending
it to crashes. We start by defining a sequential history.
In a sequential history, responses always follow invoca-
tions. There can be at most one pending invocation at a
time (invocation without a matching response) and a crash
cannot occur between an invocation and its response.
Definition 4.1 (Sequential history)A historyH is sequential

if for each𝑂𝑖𝑛𝑣 and its matching response𝑂𝑟𝑒𝑠 inH , ∃H1,H2
such thatH =H1𝑂𝑖𝑛𝑣𝑂𝑟𝑒𝑠H2.

This allows us to reason about multi-threaded histories by
comparing each thread’s execution to a sequential history.1
When multiple threads operate over the same block, we uses
the happens-before relationship to order writes and reads on
1For programs that issue concurrent operations per thread using async I/O,
we can map each physical thread to multiple abstract threads.

4



different threads, as this is necessary to determine whether
a history satisfies reads-see-writes.
Definition 4.2 (Happens-before)An event𝑉1 happens-before

event𝑉2 in a historyH (denoted𝑉1≺𝑉2) if𝑉1 precedes𝑉2 and
either

(1) 𝑉1=𝑂𝑟𝑒𝑠 (𝑏) and 𝑉2=𝑂 ′
𝑖𝑛𝑣 (𝑏) over the same block 𝑏,

(2) 𝑉1 or 𝑉2 is a crash 𝐶 ,

(3) 𝑉1 = 𝑂𝑟𝑒𝑠 (𝑏) and 𝑉2 = 𝑊𝑖𝑛𝑣 (𝑏′, 𝑣𝑎𝑙, 𝑠𝑦𝑛𝑐) where 𝑠𝑦𝑛𝑐

contains REQ_PREFLUSH, or
(4) ∃𝑉 ′

such that 𝑉1≺𝑉 ′≺𝑉2.
Criteria 1 and 4 are standard [41]; Criterion 2 was
introduced for crash-consistent NVMs [45] and also
applies to crash-consistent block devices. It states that
crashes are global events; all events either happen-before
or after a crash. Criterion 3 is new and captures the
block-and-thread-agnostic semantics of REQ_PREFLUSH:
once a REQ_PREFLUSH is invoked, it is only returned by disk
once all previous writes from every thread are flushed and
persisted, regardless of which blocks they wrote to.
The happens-before relationship allows us to define what
each read returns when other threads write to the same
block. Each read of block 𝑏 must return the value of the
latest completed write to that same block 𝑏, as long as there
are no crashes in-between (during which writes may be
lost). We formalize this as the reads-see-writes property,
which is only defined for crash-free periods of history (we
call these eras E).
Definition 4.3 (Reads-see-writes) A history H respects

reads-see-writes if ∀𝑅𝑟𝑒𝑠 (𝑏,𝑣𝑎𝑙) ∈H , there is a preceding write

invocation 𝑊𝑖𝑛𝑣 (𝑏, 𝑣𝑎𝑙, 𝑠𝑦𝑛𝑐) with that same 𝑣𝑎𝑙 such that

H =H0𝑊𝑖𝑛𝑣E0𝑊𝑟𝑒𝑠E1𝑅𝑖𝑛𝑣E2𝑅𝑟𝑒𝑠H1, and there does not exist

another𝑊𝑖𝑛𝑣 (𝑏) in the eras E0,E1,E2.

Finally, we consider pending invocations: invocations with-
out a matching response. Pending writes in particular require
care as they may (or may not) have been processed by the
underlying block device and reflected in the next read. We
write compl(H) to be the set of histories generated from H
by inserting matching responses after some pending invoca-
tions. This models situations where pending operations have
been persisted to disk. In contrast, let trunc(H) be the his-
tory generated fromH by removing all pending invocations.
This reflects histories where the operation was not persisted.
We can now define linearizable history as follows.
Definition 4.4 (Linearizable history) A history H is

linearizable if there exists a history H ′ ∈ trunc(compl(H))
and a sequential history S such that:

1) S respects reads-see-writes

2) ∀𝑡 , H ′ [𝑡]=S[𝑡] (i.e. H ′
and S are equivalent)

3) 𝑉1≺𝑉2 in H ′
implies 𝑉1≺𝑉2 in S.

In the absence of crashes, this definition of linearizability
is sufficient to model the behavior of multi-threaded
operations over a block device. With crashes on the other

hand, some but not all writes may be recoverable from the
block device. We formalize the set of possible write values
that may be recoverable with the notion durable cut.

Definition 4.5 (Durable cut)A durable cut D of historyH
is a subhistory of some H ′ ∈ trunc(compl(H)) where
(1) if H ′

contains𝑊𝑖𝑛𝑣 (𝑏,𝑣𝑎𝑙,𝑠𝑦𝑛𝑐) and its matching response

𝑊𝑟𝑒𝑠 (𝑏) where 𝑠𝑦𝑛𝑐 contains REQ_FUA or REQ_PREFLUSH,
then D must contain𝑊𝑟𝑒𝑠 (𝑏),
(2) ∀𝑉 ∈D, D also contains any 𝑉 ′

where 𝑉 ′≺𝑉 inH ′
, and

(3) D has no pending invocations.

The durable cut is a cut of history that contains (1) all
writes tagged with persistence flags and (2) any writes that
happen-before a write already in the cut. This is where the
extra criteria for REQ_PREFLUSH in the happens-before re-
lationship becomes relevant; if a REQ_PREFLUSH completed,
then it must be in the durable cut, and any operations
that happened-before it must be in the cut as well. The
REQ_FUA flag instead simply guarantees that, if an operation
completes with that flag, it will necessarily be in the cut.
Finally, we can formalize what persisted state can be read
from disk after a crash with block device crash consistency.
Effectively, for each crash-free era E, the set of writes that
“made it to disk” before the crash forms the durable cut D.

Definition 4.6 (Block device crash consistency) A history

H =E0𝐶0E1𝐶1 ...E𝑥−1𝐶𝑥−1E𝑥 is block device crash consistent

if there exists a single D=D0D1...D𝑥−1 such that ∀𝑖 , D𝑖 is a

durable cut of each era E𝑖 , andD0D1...D𝑖−1E𝑖 is linearizable.

Block device crash consistency checks the following. Is
era E0 linearizable? Then, moving on to E1, is there some
durable cut D0 of E0 (representing the writes that had
actually made it to disk) such that D0E1 is linearizable?
It builds inductively, keeping the data that made it to disk
consistent for each era. If the above holds for all eras inH ,
then H is block device crash consistent.
Assuming only benign system crashes and no random
disk corruption, block device crash consistency precisely
captures the set of histories produced by a disk [74]. We
prove that all histories produced by Rollbaccine are
block device crash consistent in Appendix B. In this way,
Rollbaccine ensures that the system always remains in
a benign state, thus guaranteeing rollback resistance. This
guarantee is file system- and application-agnostic.
5 System Model
Rollbaccine maintains block device crash consistency
in the presence of rollback attacks through fault-tolerant
replication of disk writes. Rollbaccine consists of 𝑁

machines, running within TEEs. One machine is the primary

where the application executes, while the remaining 𝑁 −1
nodes are backups.
Correctness guarantees. Rollbaccine provides rollback
detection up to any number of failures, and rollback

5



resistance up to 𝑓 crashes, rollbacks, or other failures in line
with our threat model (§ 2.2).
During execution, the primary replicates writes by broad-
casting it to at least 𝑓 +1 machines (including itself). After
a crash (and potential rollback), the recovering machine’s
disk is restored to a block device crash-consistent state by
contacting at least 𝑓 +1 existing machines and recovering
from the most up-to-date machine. 𝑁 can be configured to
be any value between 𝑓 +1 and 2𝑓 +1 (the largest 𝑁 where
the replication and recovery quorums still intersect).
The 𝑓 failure assumption is only realistic if failures are
independent. A malicious cloud provider, however, could
simultaneously attack all 𝑁 machines. In that case, because
the integrity of Rollbaccine’s recovery logic is protected
by the TEE, Rollbaccine would still detect the rollback.
It would simply fail to recover due to its inability to reach
a quorum of existing machines. This effectively turns the
rollback attack (on safety) into a denial-of-service attack (on
liveness). A user could then take action against the cloud
provider; knowing this, the cloud provider is incentivized
against such attacks [5, 21, 22, 77].
Selecting 𝑁 . The relationship between 𝑁 and 𝑓 represent
a configurable tradeoff between availability and cost.
Traditional consensus protocols maximize 𝑁 by setting it
to 2𝑓 + 1, reducing the effect of stragglers and failures on
replication and recovery at the cost of additional machines.
Primary-backup and chain replication [81] protocols
minimize 𝑁 by setting it to 𝑓 +1, reducing the number of
machines at the cost of availability when nodes fail.
By default, Rollbaccine sets 𝑁 = 𝑓 + 1 and requires
explicit recovery to recoup liveness; Rollbaccine is only
live in the absence of failures. This is in line with what
a user can expect from a traditional cloud deployment:
if a VM crashes, the user (or some third-party software)
is responsible for restarting it or deploying another VM.
Rollbaccine preserves this abstraction in addition to trans-
forming rollback attacks into benign crashes. This allows
Rollbaccine to reduce the number of backups, minimizing
networking bandwidth, overhead, and cost. Indeed, in our
problem setting, where Rollbaccine is solely responsible
for preserving the correctness of the block device, an
attacker can always violate liveness by crashing the primary
VM executing the user’s application [5, 21, 22, 77].
6 Design
Rollbaccine must balance mitigating the high cost of
replication with the constraints placed on recovery by block
devices. This tension manifests itself in two areas: synchro-
nous vs asynchronous replication, and multi-threaded vs
single-threaded execution.
Synchronous vs. asynchronous replication. Naïve, syn-

chronous replication of all disk writes to a set of backups is
prohibitively expensive, as it requires waiting for responses
from sufficiently many backups before acknowledging

Figure 2. Rollbaccine on the critical path with 𝑓 =1.

each write. Asynchronous replication, on the other hand,
introduces a window of vulnerability during which data may
be lost: the write may have optimistically been confirmed
before replicating to sufficiently many backups.
Rollbaccine recognizes that applications and file systems
already trade-off between performance and persistence:
writes are asynchronous by default unless synchronized
through operations like fsync or flags like O_SYNC. It is
already the case that, if the system crashes, the disk is under
no obligation to persist asynchronous writes. Rollbaccine
needs only to provide this same guarantee. Rollbaccine
thus only synchronously replicates writes tagged with per-
sistence flags and asynchronously backs up all other writes.
Multi-threaded vs. single-threaded execution. Disks

achieve high throughput by allowing writes to be processed
in parallel. To maintain the multithreaded nature of disks
when replicating, Rollbaccine exploits the fact that write
invocations between replicas need not be processed in the

same order. Because the backups’ states are only used in the
event of a crash or rollback attack, they simply need to be
durable cuts (Definition 4.5) of the primary’s state in order
to achieve block device crash consistency. In other words,
the backups must respect happens-before relationships and
the semantics of persistence flags, but are free to reorder
all other operations. Concretely, Rollbaccine backups
submit write block I/Os to disk according to the total order
assigned by the primary, but submissions do not block on
the completion of previous I/Os unless they conflict.
As a result, states may actually diverge between backups.
However, since all backups maintain a durable cut, the pri-
mary can correctly recover from any backup’s state and still
maintain block device crash consistency by definition (4.6).
6.1 Critical path
We first discuss the steady-state of Rollbaccine.

6.1.1 Asynchronous writes on the primary Writes
without persistence flags, such as those before the fsync in
Table 1, are asynchronously replicated to backups. When
Rollbaccine intercepts a write on the primary 𝑝 , it encrypts
and hashes it (with AEAD), stores the hash in memory,
then atomically (1) assigns it a monotonically increasing
writeIndex𝑝 and (2) places it on the network queue, where
it will be signed and sent to the backups.

6



Figure 3. Rollbaccine concurrency handling. “Pop” and “push”
are operations over the pending queue, and “insert” and “remove”
are operations over the invoked tree.

Keeping integrity metadata in memory. Traditional
integrity-preserving systems that keep integrity metadata
on disk [24, 72] are vulnerable to attacks that simultaneously
rollback the data and its integrity metadata.
Rollbaccine instead replicates integrity metadata in-

memory, relying on the TEE’s integrity guarantees while the
machine is online; once offline, integrity metadata must be
retrieved from backups during recovery. To reduce Rollbac-
cine’s memory footprint, we create a Merkle tree of hashes
and store the lower 𝐿 layers on disk, verifying any hashes
read from disk against the higher layers. The configuration
of 𝐿 represents a tradeoff between memory usage and read-
/write amplification from accessing additional blocks on disk.
Prior work has also explored using Merkle trees (without

replication) to detect disk integrity violations [11, 26, 71, 90,
102]. Their correctness rests on keeping the root/tail hash
in “small trusted storage”. Even if small trusted storage were
available (and evidence suggests otherwise [5, 62]), these
solutions are at best rollback detecting and not resistant;
once the metadata is corrupted, it cannot be recovered.
Managing the integrity of concurrent conflicting

writes. Rollbaccine then submits the encrypted write to
disk, signaling completion once it is acknowledged by disk.
Unfortunately, submitting writes to disk without blocking

on previous writes’ completion complicates the maintenance
of integrity metadata. Consider two concurrent writes𝑊,𝑊 ′

to block 𝑏 where𝑊𝑖𝑛𝑣 (𝑏) ≺𝑊 ′
𝑖𝑛𝑣 (𝑏) ≺𝑊𝑟𝑒𝑠 (𝑏). The integrity

metadata must match the data of the “later” write, but the
concurrency prevents us from knowing which write was last.
To address this issue, we impose an ordering on same-block

writes by maintaining two data structures: a tree of invoked
writes, sorted by write location, and a queue of pending
writes, seen in Figure 3. After assigning each write a
writeIndex𝑝 , the primary atomically checks if it conflicts
with any other invoked or pending write. If it does, then
the write is placed on the pending write queue and waits to
be unblocked. Otherwise, the primary stores its hash, adds
the write to the invoked write tree, and submits it to disk.
Once the write completes, it is removed from the invoked

write tree, and any non-conflicting writes are popped off
the pending queue in-order and submitted to disk. At this
point, the asynchronous write is marked completed.
Altogether, this mechanism converts concurrent writes
to the same block into sequential writes. This is similar to
the approach taken in Harmonia [104], CrossFS [80], and
dm-integrity [72], which represents the state-of-the-art in
the understanding of block device semantics.

6.1.2 Asynchronous writes arriving at the backups
Once a write arrives at the backups, the backups must
determine the order in which to submit the writes to disk.
The naïve solution, executing all writes one-after-the-other

according to writeIndex, is a non-starter performance-wise.
The challenge is then parallelizing these writes safely. To
do so, the backups need to determine which writes are to
the same block, as block semantics allows non-conflicting
writes to be ordered arbitrarily [60, 66, 74].
We make the following observation: the mechanism used
by the primary to avoid conflicting writes can be reused by
the backups to permit non-conflicting concurrent writes.
In order to preserve happens-before relationships between

writes to the same block, the backups must still submit
writes to disk in order of writeIndex𝑝 as assigned by
the primary, but do not wait for the disk to finish pro-
cessing previous writes; only conflicting writes need to
block. Concretely, once a backup 𝑏 receives a write with
writeIndex𝑝 = writeIndex𝑏 + 1, it atomically increments
writeIndex𝑏 , then follows the same process depicted in
Figure 3. This simultaneously allows disk bandwidth to be
fully utilized on the backup, allowing non-conflicting writes
to be concurrently in-flight, while preserving write ordering
over individual blocks.

6.1.3 Synchronous writes Writes tagged with persis-
tence flags are handled identically with one exception:
Rollbaccine does not return the write until backups confirm
that they have received all writes with a lower write_index.
This subsumes the behavior of both persistence flags. A

write tagged with REQ_FUA simply needs to be recoverable
from the backups, which is clear from the acknowledgment.
A write tagged with REQ_PREFLUSH requires the persistence
of all writes that happen-before it (Definition 4.2). By
assigning writeIndex based on invocation order, the
primary guarantees that if another write happens-before
the REQ_PREFLUSH, it must have a smaller writeIndex.
Therefore, when a backup acknowledges the REQ_PREFLUSH,
it must have already received the earlier write. This design
forces REQ_FUA to behave like REQ_PREFLUSH, which may
increase latency as the backup unnecessarily waits for all
previous writes to arrive. This is intentional. If backups
could acknowledge REQ_FUAs without waiting for all prior
messages, then different backups may be “fresher” for
different blocks. Two backups may have each received and

7



acknowledged a different REQ_FUA, and upon failure and
recovery, the primary would be unable to select a single
freshest backup to recover from.
6.1.4 Reads Reads are performed on the primary and do
not involve the backups. To maintain integrity for concur-
rent reads and writes to the same block, Rollbaccine inserts
reads in the same pending queue/involved tree as concurrent
writes. Once the read can be executed, Rollbaccine fetches
the corresponding page from disk, decrypts it, checks it
against the hash in memory, and returns the decrypted page
if the integrity check succeeds. If the check fails—because of
a rollback attack or a benign disk corruption—Rollbaccine
crashes the machine, entering recovery upon restarting,
where the backups are used to verify the integrity of the
primary’s disk and recover corrupted data.
6.2 Recovery
Rollbaccine’s recovery protocol differs from traditional
disk recovery in two ways. First, it must retrieve in-memory
integrity metadata and any corrupted disk pages from the
most up-to-date backup. Second, it must prevent split-brain
attacks, where an attacker could feign a crash, wait for
the user to “restart” the “crashed” machine while actually
starting a new machine, then route external client traffic
between the new and “crashed” machines as desired [68].
We prevent split-brain attacks during recovery by drawing
an equivalence to reconfiguration [50, 96]. We require the
client (or some fault-tolerant third party) to provide each
restarted machine a new identity, even if the physical
hardware is the same. Each recovering machine then joins
a new configuration that excludes its crashed self, ensuring
that stale machines no longer participate in the protocol.
Rollbaccine’s recovery protocol is based on Matchmaker
Paxos [103], a state-of-the-art vertical reconfiguration [50]
protocol that uses two round-trips: one to a fault-tolerant
third party to establish the current configuration (the
active primary and backups), and another to invalidate all
previous configurations. We use CCF [42], a TEE-based
distributed key-value store, as the third party. Relying on a
third party for reconfiguration is a practice common among
consensus protocols [36, 50, 54, 59, 81] and does not affect
the critical path of Rollbaccine. As CCF is only utilized
during recovery, a single CCF service could support many
Rollbaccine instances.
During recovery, the recovering node identifies the most
up-to-date node—the designated node with the latest
configuration and highest writeIndex—then copies the des-
ignated node’s integrity metadata, scans its local disk, and
copies over any corrupted pages. The recovering node then
alerts any nodes in its new configuration, which copy their
integrity metadata and corrupted pages from the recovering
node as well in order to maintain consistency. Once the disk
is repaired, Rollbaccine is mounted and can be used as-is.
Details of the recovery protocol are in Appendix A.

7 Evaluation
Rollbaccine seeks to provide general and automatic
rollback resistance with minimal performance overhead. In
this section we answer the following questions:
1. Generality and Automatability: Can Rollbaccine

support unmodified applications, and at what cost? (§ 7.1)
2. Performance: How does Rollbaccine compare against

non-automatic rollback resistance solutions? (§ 7.2)
3. Performance: How do Rollbaccine’s overhead vary as

a function of the workload? (§ 7.3)
Implementation. We implemented Rollbaccine as
a device mapper for Linux kernel 6.8 available here:
https://anonymous.4open.science/r/rollbaccine-883E (3,938
LoC). AEAD uses in-kernel AES-GCM; hashing uses
HMAC-SHA256. We use in-kernel TCP connections with
signed messages for primary-backup communication.
Experimental setup. We use Azure DC16ads_v5
machines (16 vCPUs, 64GB RAM, 10 Gbps network, AMD
SEV-SNP TEE) in the North Europe region. Ping time is 0.3ms.
We mount Rollbaccine over local disk to avoid the default
replication Azure provides (which does not protect against
rollbacks). Experimental results are the average over 3 runs.
We compare Rollbaccine’s performance against four
systems: Unreplicated, DM, Replicated, and Nimble. Un-
replicated reads and writes from local (ephemeral) disk
without replication. It represents the highest-performing
but least durable and secure option. DM adds dm-crypt
and dm-integrity for encryption and integrity validation,
using the same AES-GCM cipher as Rollbaccine. dm-crypt
+ dm-integrity provides confidentiality and detection of
random data corruptions. Replicated uses the highest-
performing durable disk available to Azure VM-based TEEs,
a locally 3-way replicated P80 Premium SSD rated for 20,000
IOPS. Both DM and Replicated write integrity metadata to
disk [24], which is not sufficient against rollback attacks;
the integrity hash could be rolled back along with the data
by a motivated attacker.
Nimble [5] is a state-of-the-art solution against rollback

attacks that is general, resistant, but not automatic. Applica-
tions must be manually modified to send state updates to a
“coordinator” that persists the updates to untrusted storage,
replicates to 3 TEE-based “endorsers”, and then replies to the
application. These modifications are labor-intensive; it took
three person-months to modify HDFS into NimbleHDFS [5].
We evaluate against four configurations of Nimble-
HDFS: NimbleHDFS-100, NimbleHDFS-100-Mem,
NimbleHDFS-1, and NimbleHDFS-1-Mem. The number
(100 or 1) represents batch size. The original paper batches
and replicating every 100 writes, creating a window of
vulnerability during which writes marked “durable” may
be rolled back by an attacker [5], breaking the semantic
guarantees of HDFS. Setting batch size to 1 preserves seman-
tics. The -Mem modifier indicates whether state updates

8

https://anonymous.4open.science/r/rollbaccine-883E


1000 1500 2000 2500 3000 3500
Throughput (ops/sec)

10000

15000

20000

25000

30000

Av
er

ag
e 

La
te

nc
y 

(u
s)

Unreplicated
DM
Replicated

Rollbaccine
Rollbaccine-sync
Rollbaccine-f=0

Rollbaccine-f=2
Rollbaccine-L=1
Rollbaccine-L=2

Figure 4. PostgreSQL TPC-C throughput-latency graph.

are persisted to locally replicated Standard LRS storage as
described in the paper or kept in the coordinator’s memory
(and not fault tolerant). We co-locate the coordinator
machine with the NimbleHDFS to reduce network latency.
Rollbaccine is evaluated with six configurations. Roll-

baccine is the standard setup, with 𝑓 =1 and 𝐿=0 (all 2.4GB
of integrity metadata in memory). Rollbaccine-sync
synchronously replicates all writes regardless of persistence
flags in order to isolate the effect of asynchronous repli-
cation. Rollbaccine-f=0 and Rollbaccine-f=2 toggle
between no backups (only rollback detecting) and 2 backups,
measuring the overhead of networking. Rollbaccine-L=1
and Rollbaccine-L=2 place the bottommost 𝐿 layers of
the integrity metadata Merkle tree on disk, measuring the
overhead of read/write amplification, requiring only 0.15GB
and 9.6MB of memory for integrity metadata respectively.
7.1 Performance overview
We evaluate Rollbaccine with the following bench-
marks and unmodified applications: (1) TPC-C [32] over
PostgreSQL mounted on ext4 (Figure 4), (2) NNThroughput-
Benchmark [7] over HDFS [35] mounted on ext4 (Figure 5a),
and (3) Filebench [91] Varmail and Webserver workloads
over ext4 and xfs (Figures 5b and 5c).
PostgreSQL. PostgreSQL is a widely-used open-source
transactional database that guarantees the durability
of committed transactions by persisting writes to disk.
Rollback attacks on disk can break durability, allowing
attackers to remove unwanted transactions. PostgreSQL
contains 1.3M LoC, making it infeasible to manually rewrite
for rollback resistance. It is therefore a prime target for
Rollbaccine, which promises automatic rollback resistance.
We benchmark PostgreSQL with TPC-C, a standard OLTP
benchmark for transactional databases. We configure TPC-C
to run with 10 warehouses and set the isolation level to
TRANSACTION_SERIALIZABLE. The results are in Figure 4.
Compared to Unreplicated, DM introduces negligible
overhead. Replicated and Rollbaccine respectively reduce

throughput by 35% and 15% and increase latency by 54%
and 19%. This can be attributed to the fact that when
benchmarked with TPC-C, roughly every 1 in 5 operations
in PostgreSQL are persisted, because every transaction must
be durably flushed to PostgreSQL’s Write Ahead Log (WAL)
before commit. Both Replicated and Rollbaccine must
then synchronously replicate over the network, introducing
additional latency overhead, although the latency for
Replicated is an order of magnitude greater (§ 7.3). Despite
this, the performance penalty is not severe because, at 10
warehouses, TPC-C is contention bottlenecked.
Of the configurations of Rollbaccine, Rollbaccine-sync
performs the worst, unable to leverage the benefits of
asynchronous replication. The differences between Rollbac-
cine-f=0, Rollbaccine (with f=1), and Rollbaccine-f=2 il-
lustrate the overhead of networking, whereas the differences
between Rollbaccine, Rollbaccine-L=1, and Rollbac-
cine-L=2 demonstrate the effect of read/write amplification
from accessing Merkle tree integrity metadata on disk.
The results confirm that a major component of Roll-
baccine’s high performance stems from its differentiation
between synchronous and asynchronous replication, and
that Rollbaccine can switch between different levels of fault
tolerance and memory usage without significant penalty.
HDFS. Hadoop Distributed File System is the file system

backing Hadoop MapReduce. Rollback attacks can break the
persistence guarantees of HDFS [35]. We configure HDFS
to run with one namenode and evaluate it with Hadoop’s
NNThroughputBenchmark [7]; each operation uses 500,000
files (or directories for mkdirs) and 16 client threads [5].
Results are in Figure 5a.
DM and Rollbaccine perform similarly to Unreplicated,
reducing throughput by at most 5% and at times outper-
forming Unreplicated (attributed to experimental noise).
This is because NNThroughputBenchmark, regardless
of the number of client threads, uses a single thread to
communicate with HDFS in order to isolate the overhead
of RPC calls [7]. Once enough client threads are launched
(16 is enough) on Unreplicated, DM, or Rollbaccine, this
single thread becomes the bottleneck, not HDFS.
Replicated suffers a higher 13% throughput overhead; its

high latency delays file persistence and reduces throughput.
ext4 and xfs. ext4 and xfs are file systems in the Linux
kernel with traditional POSIX semantics that we mount
over Rollbaccine, providing rollback resistance to any TEE
application that reads and writes to either file system.
We emulate such applications with Filebench using
the default Varmail and Webserver profiles. Varmail is a
highly synchronous workload that writes and explicitly
calls fsync every 4 operations. Its results can be found in
Figures 5b and 5c. Webserver is completely asynchronous,
executing reads and occasionally appending to a logfile.
Both workloads are run for the default 60 seconds.

9



Unreplicated DM Replicated Rollbaccine NimbleHDFS-100-Mem NimbleHDFS-100 NimbleHDFS-1-Mem NimbleHDFS-1

create mkdirs open delete fileStatus rename
0

2000

4000

6000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

60
38

60
72 64
71

61
74

64
74

61
37

61
32

62
02

65
06

62
35

65
59

61
23

52
26

54
89 67

57

57
93 67

09

56
72

57
40

58
34 64

87

59
65 64
91

58
76

44
34

44
14

66
71

49
20 65

48

48
76

21
94

20
43

66
68

25
74

66
81

26
26

15
0

12
7

64
87

19
1

64
05

19
0

34 28

61
10

40

64
00

41

(a) HDFS NNThroughputBenchmark Throughput
ext4 xfs

0

50000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

69
51

9

80
86

0

45
94

2

40
65

0

10
63

0

17
20

3

27
71

3

23
17

3

(b) Varmail Throughput
ext4 xfs

0

2

4

Av
g 

La
te

nc
y 

(u
s)

0.
7

0.
61.

1 1.
3

4.
9

3.
0

1.
83 2.

23

(c) Varmail Latency
Figure 5. Performance results. Nimble’s configurations contain “◦”.

The throughput and latency trends are similar for ext4
and xfs, so we will discuss them together. We first examine
Varmail. Unlike TPC-C (contention bound with 10 ware-
houses) and NNThroughputBenchmark (bottlenecked on
a single thread), Varmail is bottlenecked on disk, so DM,
Replicated, and Rollbaccine all experience throughput
and (inversely proportional) latency degradations due to
the high volume of synchronous writes. Replicated has
the highest average latency per operation due to its high
fsync latency. Rollbaccine has the second-highest latency,
because it must similarly wait for a network round trip,
reducing throughput by 71% and increasing latency by 2.7×.
DM does not perform networking but still suffers from
synchronously flushing journal entries to disk.
In contrast, all configurations perform similarly for

Webserver, which does not require any synchronous
operations and mostly performs sequential reads that can
be served from prefetched pages.
In summary, except for Varmail, Rollbaccine adds a max-
imum of 19% overhead to the Unreplicated baseline across
diverse workloads. The fact that Rollbaccine is able to pro-
vide rollback resistance for all these systems without code
modifications demonstrates its versatility and ease-of-use.
7.2 Comparison against Nimble
Rollbaccine provides rollback resistance for any program
mounted over Rollbaccine’s device mapper. If an appli-
cation relies on a cloud service for persistence, then the
service itself must be mounted over Rollbaccine, requiring
buy-in from cloud providers.
Nimble does not require cloud provider buy-in and instead
detects rollbacks in existing services. Unlike block devices,
cloud services have diverse APIs, so Nimble must sacrifice
automation for compatibility. In addition, the amount of
integrity metadata that must be preallocated for cloud
services is often opaque to the end-user, so Nimble opts to
maintain a log of updates instead. This serves Nimble well
for the applications it targets (such as Intel HiBench [43]),
which can tolerate windows of vulnerability during which
data may be rolled back without detection, allowing Nimble
to batch log updates.
Unfortunately, the overheads of sequential log replica-
tion resurface when batching is disabled for safety. In
NNThroughputBenchmark’s write operations (create,

mkdirs, open, delete, fileStatus, rename), Rollbaccine
outperforms NimbleHDFS-1 by 208× (Figure 5a).
Azure storage plays a role; both NimbleHDFS-100 and

NimbleHDFS-1 underperform their in-memory counterparts
by 2−5×.
Nimble’s performance penalties, however, mainly stem
from synchronous, sequential log replication. NimbleHDFS
operations that use multiple threads to save files in parallel
must still sequentially append, sign, and replicate each log
entry. Its use of asymmetric ECDSA-SHA256 signatures
allows the log to be publicly verifiable but introduces
additional overhead in the critical section. NimbleHDFS’s
throughput then becomes a function of its batch size,
reducing NimbleHDFS-1’s throughput to double-digits.
Reads (open and fileStatus) on the other hand are local,
so all systems perform similarly.
7.3 Microbenchmarks
We analyze Rollbaccine’s performance with fio, varying
the following parameters: I/O direction (read or write),
sequentiality (sequential or random), buffering (O_DIRECT or
not), and persistence (synchronous or asynchronous writes).
All operations are of size 4K with iodepth 1. We gradually
increase the number of fio threads until throughput saturates
for each configuration. For each test, we perform 30 seconds
of warmup (in order to fill the page cache for buffered
workloads), then record statistics for 60 seconds.
Figure 6 displays the throughput (thousands of IOPS) and

average completion latency (ms) for each experiment. Each
plot point in the graph is annotated with the number of
threads used. Note that latency is log scale, so peaks in
throughput may appear diminished in some graphs, and that
the throughput and latency scales change for each graph.
We first describe general trends.
Direct I/O or persisted writes. When either O_DIRECT
or fsync are used for writes, latency increases to the
sub-millisecond range and throughput caps at around
75-150,000 IOPS across all tests (Figures 6b, 6d, 6f, 6h, 6j
and 6l). This is because the disk cannot coalesce writes,
either because it receives each operation individually
(O_DIRECT) or requires immediate persistence (fsync).
Random access. Random accesses cap out at 50-80,000
IOPS and sub-millisecond latency (Figures 6a, 6b, 6f, 6i

10



Unreplicated DM Rollbaccine Replicated

0 10 20 30 40 50 60 70 80
Throughput (thousands of ops/sec)

100

Av
g 

La
te

nc
y 

(m
s)

1 4 8 16
32

1 4 8
16
32

1 8 16 32
64

1 4 8 16
32

64

(a) Random read, buffered

0 10 20 30 40 50 60 70
Throughput (thousands of ops/sec)

100

Av
g 

La
te

nc
y 

(m
s)

1 4 8 16
32

1 4 8 16
32
64

1 4 8
16
32

1 8 16 32
64

(b) Random read, direct

100 200 300 400 500
Throughput (thousands of ops/sec)

10 2

Av
g 

La
te

nc
y 

(m
s)

1
4

61 4
6

1
4

6

1
4

6

(c) Read, buffered

0 10 20 30 40 50 60 70
Throughput (thousands of ops/sec)

100

Av
g 

La
te

nc
y 

(m
s)

1 4 8 16
32

64

1 4 8 16
32
64

1 4 8 16
32

1 8 16 32
64

(d) Read, direct

10 20 30 40 50
Throughput (thousands of ops/sec)

10 1

Av
g 

La
te

nc
y 

(m
s)

1

4
1

4

1

41

8

(e) Random write, buffered

0 10 20 30 40 50 60 70
Throughput (thousands of ops/sec)

100

Av
g 

La
te

nc
y 

(m
s)

1 4 8
16
32

1 8 16 32
64

1

4

1 4 8 16
32

64

(f) Random write, direct

0 1000 2000 3000 4000 5000
Throughput (thousands of ops/sec)

10 2

Av
g 

La
te

nc
y 

(m
s)

1 4 8 16 3264
1 4 8 16 32 64

128

256

1 4 8
16 32

64

128

1 8
16 32

64
128

256

(g)Write, buffered

0 20 40 60 80 100 120
Throughput (thousands of ops/sec)

10 2

10 1

100

Av
g 

La
te

nc
y 

(m
s)

1 4 8 16 32
64

1 4 8 16
32

1 8 1632
64

1

4

(h)Write, direct

0 10 20 30 40
Throughput (thousands of ops/sec)

100

Av
g 

La
te

nc
y 

(m
s)

1 4 8 16
32

64

1 4
8

16

321
8 16 32 64

1

4

(i) Random write, fsync, buffered

0 10 20 30 40 50 60 70
Throughput (thousands of ops/sec)

10 1

100

Av
g 

La
te

nc
y 

(m
s)

1 4 8 16 32
64

128
256

1 4 8
16
32

1 8 16 32
64

1

4

(j) Random write, fsync, direct

0 20 40 60 80 100
Throughput (thousands of ops/sec)

100

101

Av
g 

La
te

nc
y 

(m
s)

1 4 8 16 32
64

1
8163264

1
4 8 16 32

256
1024

2048

1 4 8
16

(k)Write, fsync, buffered

0 10 20 30 40 50 60 70
Throughput (thousands of ops/sec)

10 1

100

101

Av
g 

La
te

nc
y 

(m
s)

1
4 8 16 32

256

1024

1 4 8 16 32

256

1 4 8 16
32

1 8 16 32
64

(l)Write fsync, direct
Figure 6. Throughput-latency graphs of microbenchmarks. Latency is log-scale.

and 6j), with the exception of buffered writes in Figure 6e.
For random buffered reads, the cap is imposed because page
prefetching is ineffective for random accesses and each read
must be individually serviced by disk. For random buffered
writes, latency is an order of magnitude lower, because
although the writes are random, they can still be batched
in the page cache and immediately returned. Throughput,
however, is quickly capped once writes fill the page cache
and the disk becomes the bottleneck.
We now explain the performance of each configuration.
Unreplicated. Reads reach a peak throughput of around

75,000 IOPS and sub-millisecond latency (Figures 6a, 6b
and 6d), except for buffered sequential reads, which reach
500,000 IOPS and 10−2ms latency (Figure 6c). This is because,
unlike the other read workloads, buffered sequential reads
can consistently read prefetched pages from the page
cache. However, as number of threads increase, each
thread (sequentially) reads from a different location on disk,
lowering the efficacy of prefetching and capping throughput.
This behavior is universal across configurations.
The throughput and latency of Unreplicated is identical
for all write workloads with O_DIRECT (Figures 6f, 6h, 6j
and 6l), regardless of sequentiality or persistence, since those
writes are disk I/O bottlenecked. For buffered, persisted
writes (Figures 6i and 6k), fsync latency spikes and cripples
throughput due to the constant flushing of the page cache.
For the remaining workloads, the behavior of random
buffered writes (Figure 6e) is explained in the paragraph
on random access, and sequential buffered writes (Figure 6g)
simply measure how quickly full pages can be flushed to disk.
DM. The majority of overhead for DM comes from

dm-integrity [72], which maintains a journal of write blocks
and their integrity metadata on disk. The journal entry
is flushed to disk when persistence is required, and data

is asynchronously copied from the entry to their actual
locations on disk. When a read is requested, if the metadata
is not in memory, it must also be fetched from disk.
Fetching metadata is expensive for random accesses, which

explains DM’s early saturation for random reads (Figures 6a
and 6b). For random writes, the asynchronous copying
of data from the journal entry to random regions of disk
becomes the throughput bottleneck (Figures 6e, 6f, 6i and 6j).
For direct, non-persisted, sequential writes, DM has signifi-

cantly lower latency than all other configurations (Figure 6h).
This is because while other configurations directly submit
write I/Os to disk, DM builds its own internal cache in the
form of asynchronous journal flushes. Once persistence is re-
quired, this no longer gives DM an edge in latency (Figure 6l).
Finally, we must explain how DM’s throughput continues
rising for sequential, persisted writes (Figures 6k and 6l).
This can again be attributed to journaling. Although journal
entries must be flushed to disk after an fsync, a single
journal entry’s flush can account for the persistence of
multiple writes, in effect batching the fsyncs.
Replicated. Throughput and latency for Replicated is
capped by Azure at 20,000 IOPS and millisecond latency,
except for sequential buffered reads, random buffered writes,
and sequential buffered writes (Figures 6c, 6e and 6g), which
benefit from page prefetching and caching.
Rollbaccine. Reads in Rollbaccine perform similarly to

Unreplicated (Figures 6a to 6d) because they do not leave the
primary, with a maximum of 16% and 21% additional latency
and throughput overheads at saturation, respectively. This
overhead is the result of decryption and maintaining the
list of invoked and pending operations; the latter happens
in a critical section (§ 6.1).
For asynchronous writes, Rollbaccine scales with
the number of threads alongside Unreplicated, with a

11



0 500 1000
Time (sec)

0

20000

W
rit

es
/s

ec

(a) Primary recovery

0 200 400 600
Time (sec)

0

20000

W
rit

es
/s

ec

(b) Backup recovery
Figure 7. Recovery latency.

maximum latency and throughput overhead of 43% and
45% respectively (Figures 6e to 6h). With the exception
of sequential buffered writes, which is bottlenecked on
bandwidth (Figure 6g), the primary’s disk is the bottleneck.
These results demonstrate that by replicating asynchronous
writes in the background, Rollbaccine is able to scale.
Persisted writes, on the other hand, are bottlenecked on
round-trip time to the backups, with a maximum of 433%
and 45% latency and throughput overhead (Figures 6i to 6l).
Latency increases by an order of magnitude as the primary
waits for the backup to receive all previous operations
before acknowledging the write. Throughput, however,
can continue to scale due to this optimization: if multiple
synchronous writes concurrently arrive at the backup, then
it only acknowledges the write with the highest index, since
that acknowledgment implies the receipt of all writes with
lower indices.
In summary, Rollbaccine adds 21% overhead for reads,

45% overhead for asynchronous writes, similar to DM (with
the exception of direct writes), and an order of magnitude of
overhead for synchronous writes. The under-performance of
direct writes is not fundamental; Rollbaccine can be mod-
ified to cache writes in memory as well. For synchronous
writes, Rollbaccine experiences much higher overheads,
but, as seen in § 7.1, most applications are designed to use
persistence operations sparingly and are minimally affected.
In addition, Rollbaccine consistently outperforms

Replicated in all benchmarks and microbenchmarks (except
sequential buffered writes, which can be cached), suggesting
it can be eventually added to Azure storage without a
significant performance penalty and provide all applications
with rollback resistance by default.
7.4 Crash consistency and recovery
In this section, we simulate rollback attacks on both the
primary and the backup in order to analyze the latency
introduced by recovery and verify that Rollbaccine can
always recover to a consistent state.
We first break down the performance impact of recovery
in Figure 7, plotting time against the number of writes
processed by the recovering node. We start with a standard
Rollbaccine deployment executing PostgreSQL with TPC-
C, as in § 7.1. As it executes, we restart either the primary
or backup, overwrite the first 100MB of the 600GB disk to
simulate corruption, conduct recovery, then resume TPC-C
over the recovered database. Recovery ends after the last
shaded region; the following lull in throughput corresponds

to TPC-C setup and is present at the beginning of the graph
as well. The spikes in throughput are a product of the
diverse transactions in TPC-C and are unrelated to recovery.

We break the latency of recovery into three main phases in
Figure 7: startup, hash transfer, and disk verification. Startup
time (with “/” stripes) depends on whether Azure physically
restarts the machine or redeploys it on a fresh VM; the deci-
sion is out of our control. In our experiment, the primary was
physically restarted, and the backup was redeployed, taking
655 and 60 seconds respectively. Hash transfer (the thin gray
line) is the time it takes for the recovering node to receive the
2.4GB in-memory integrity metadata from the other node;
this takes 11 seconds in both tests. Disk verification (with “\”
stripes) is the time it takes for the recovering node to read its
the entire disk and perform integrity checks, recovering cor-
rupted pages from the other node when necessary; this takes
around 395 seconds in both tests, amounting to 1.5GB/s.
This verification latency is unavoidable for any integrity-
preserving application and is comparable to the 600 seconds
it takes for dm-crypt + dm-integrity to format the disk.

We then test the correctness of Rollbaccine by simulating
crashes and verifying the consistency of mounted file sys-
tems with ACE [66] and xfstests, standard tools for testing
crash consistency.We generate and evaluate 577 tests on ext4
mounted over Rollbaccine. Rollbaccine passes all tests.
8 Related Work
Rollback resistance. Existing application-agnostic solu-
tions for rollback resistance either sacrifice automatability
or generality. Nimble [5] modifies applications to use its
API in order to determine when data must be replicated.
Narrator [68] assumes that applications are deterministic
based on input ordering; accommodating non-deterministic
applications requires recording executions for deterministic
playback with high performance costs [15].

Rollback detection. Solutions that use hashes to verify
integrity, but do not keep a backup of the data, are rollback
detecting but not resistant [11, 21, 26, 62, 102].

Rollback resistance or detection has also been manually
integrated into applications such as consensus proto-
cols [42, 100] and databases [8, 14, 37]. SVR3 [30] introduces
a variant of Raft [70] that is safe even against physical
attackers, assuming memory can only be rolled back at a
page-level granularity.

Device mappers. Existing Linux device mappers offer
some functionality to enforce confidentiality or integrity
of disk. dm-crypt [84] paired with dm-integrity [72] or
dm-verity [73] can provide confidentiality and integrity
in the presence of benign, random disk corruptions, but
the integrity metadata on disk is vulnerable to rollbacks.
drbd [55] replicates blocks but cannot detect attacks or
compare the freshness of disks.

12



File system semantics. Prior work has explored substitut-
ing persistent file system operations for fault-tolerant repli-
cation [56] outside the context of rollback attacks. Assise [4]
uses this strategy for a NVM-backed network file system
in order to reduce latency. SCFS [16] and drbd [55] allow
users to toggle between replication schemes to replace disk
persistence, while Gaios [18] introduces replacements for file-
related system calls that replicate to Paxos state machines.
Blizzard [63] replicates disk but acknowledges flushes before
replication, breaking semantics in order to reduce latency.
9 Conclusion
Rollbaccine provides general, automatic, and low-overhead
rollback resistance in a field where high performance and se-
curity are traditionally only achievable through careful code
modifications. Rollbaccine achieves this by marrying the
inherent asynchrony and concurrency of disk consistency
with fault tolerant replication. Rollbaccine’s low overhead
and generality leads us to believe that it can be transparently
integrated into cloud storage systems with minimal effort.
Acknowledgements
We thank Amaury Chamayou and Eddy Ashton for
assistance with CCF [42] and AMD SEV-SNP, Vijay
Chidambaram for pointing us to buffered durable lineariz-
ability [45], Alex Miller for double-checking persistence
flag semantics, Srinath Setty for reviewing our Nimble [5]
experiments, Shadaj Laddad and Tyler Hou for debugging
memory reordering issues, Darya Kaviani for guiding us
on cryptography, Ittai Abraham for suggesting we use 𝑓 +1
instead of 2𝑓 +1 nodes, Joe Hellerstein and Dimitra Giantsidi
for additional feedback, and Mic Bowman, Michael Steiner,
and Bruno Vavala for design discussions. This work was
supported by gifts from AMD, Anyscale, Google, IBM, Intel,
Microsoft, Mohamed Bin Zayed University of Artificial
Intelligence, Samsung SDS, Uber, VMware, and Ripple.
References
[1] Amazon. Aws confidential computing, 2024. URL:

https://aws.amazon.com/confidential-computing/.
[2] AMD. AMD SEV-SNP: Strengthening VM isolation with integrity

protection and more, January 2020. [Last accessed: 2023-Oct-
06]. URL: https://www.amd.com/system/files/TechDocs/SEV-
SNP-strengthening-vm-isolation-with-integrity-protection-and-
more.pdf.

[3] AMD. Microsoft Azure Confidential Computing powered
by 3rd gen epyc cpus, 2021. [Last accessed: 2023-Oct-06].
URL: https://community.amd.com/t5/business/microsoft-azure-
confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796.

[4] Thomas E. Anderson, Marco Canini, Jongyul Kim, Dejan Kostić,
Youngjin Kwon, Simon Peter, Waleed Reda, Henry N. Schuh,
and Emmett Witchel. Assise: performance and availability via
client-local nvm in a distributed file system. In Proceedings of the 14th

USENIX Conference on Operating Systems Design and Implementation,
OSDI’20, USA, 2020. USENIX Association.

[5] Sebastian Angel, Aditya Basu, Weidong Cui, Trent Jaeger, Stella
Lau, Srinath Setty, and Sudheesh Singanamalla. Nimble: Rollback

protection for confidential cloud services. In 17th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI 23),
pages 193–208, Boston, MA, July 2023. USENIX Association. URL:
https://www.usenix.org/conference/osdi23/presentation/angel.

[6] AOSP. Full-disk encryption, 2024. URL: https://source.android.com/
docs/security/features/encryption/full-disk.

[7] Apache. https://hadoop.apache.org/docs/stable/hadoop-project-
dist/hadoop-common/benchmarking.html, 2023. URL: https:
//source.android.com/docs/security/features/encryption/full-disk.

[8] Arvind Arasu, Badrish Chandramouli, Johannes Gehrke, Esha Ghosh,
Donald Kossmann, Jonathan Protzenko, Ravi Ramamurthy, Tahina
Ramananandro, Aseem Rastogi, Srinath Setty, Nikhil Swamy, Alexan-
der van Renen, andMin Xu. Fastver: Making data integrity a commod-
ity. In Proceedings of the 2021 International Conference on Management

of Data, SIGMOD ’21, page 89–101, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery. doi:10.1145/3448016.3457312.

[9] Arm. Arm confidential compute architecture. [Last accessed:
2025-Mar-18]. URL: https://www.arm.com/architecture/security-
features/arm-confidential-compute-architecture.

[10] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth,
Andre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran,
Dan O’keeffe, Mark L Stillwell, et al. {SCONE}: Secure linux con-
tainers with intel {SGX}. In 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16), pages 689–703, 2016.
[11] Asterinas. asterinas/mlsdisk: Multilayered, log-structured se-

cure disk (mlsdisk) protects the disk i/o for tees, 2024. URL:
https://github.com/asterinas/mlsdisk.

[12] Microsoft Azure. Azure disk encryption for linux vms, August
2024. URL: https://learn.microsoft.com/en-us/azure/virtual-
machines/linux/disk-encryption-overview.

[13] Microsoft Azure. Platform code integrity, October 2024. URL:
https://learn.microsoft.com/en-us/azure/security/fundamentals/
code-integrity.

[14] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fet-
zer, Michio Honda, and Kapil Vaswani. SPEICHER: Securing
LSM-based Key-Value stores using shielded execution. In 17th

USENIX Conference on File and Storage Technologies (FAST 19), pages
173–190, Boston, MA, February 2019. USENIX Association. URL:
https://www.usenix.org/conference/fast19/presentation/bailleu.

[15] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. De-
terministic process groups in dOS. In 9th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI 10), Vancouver, BC,
October 2010. USENIX Association. URL: https://www.usenix.org/
conference/osdi10/deterministic-process-groups-dos.

[16] Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Neves,
Miguel Correia, Marcelo Pasin, and Paulo Verissimo. SCFS: A
shared cloud-backed file system. In 2014 USENIX Annual Technical

Conference (USENIX ATC 14), pages 169–180, Philadelphia, PA,
June 2014. USENIX Association. URL: https://www.usenix.org/
conference/atc14/technical-sessions/presentation/bessani.

[17] Azure Confidential Computing Blog. Preview of azure confi-
dential clean rooms for secure multiparty data collaboration,
Nov 2024. URL: https://techcommunity.microsoft.com/blog/
azureconfidentialcomputingblog/preview-of-azure-confidential-
clean-rooms-for-secure-multiparty-data-collaborati/4286926.

[18] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens,
Norbert P. Kusters, and Peng Li. Paxos replicated state machines
as the basis of a High-Performance data store. In 8th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI 11), Boston, MA, March 2011. USENIX Association. URL:
https://www.usenix.org/conference/nsdi11/paxos-replicated-state-
machines-basis-high-performance-data-store.

[19] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishna-
murthy, Emina Torlak, and Xi Wang. Specifying and checking file

13

https://aws.amazon.com/confidential-computing/
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://community.amd.com/t5/business/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://community.amd.com/t5/business/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://www.usenix.org/conference/osdi23/presentation/angel
https://source.android.com/docs/security/features/encryption/full-disk
https://source.android.com/docs/security/features/encryption/full-disk
https://source.android.com/docs/security/features/encryption/full-disk
https://source.android.com/docs/security/features/encryption/full-disk
https://doi.org/10.1145/3448016.3457312
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://github.com/asterinas/mlsdisk
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/disk-encryption-overview
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/disk-encryption-overview
https://learn.microsoft.com/en-us/azure/security/fundamentals/code-integrity
https://learn.microsoft.com/en-us/azure/security/fundamentals/code-integrity
https://www.usenix.org/conference/fast19/presentation/bailleu
https://www.usenix.org/conference/osdi10/deterministic-process-groups-dos
https://www.usenix.org/conference/osdi10/deterministic-process-groups-dos
https://www.usenix.org/conference/atc14/technical-sessions/presentation/bessani
https://www.usenix.org/conference/atc14/technical-sessions/presentation/bessani
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/preview-of-azure-confidential-clean-rooms-for-secure-multiparty-data-collaborati/4286926
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/preview-of-azure-confidential-clean-rooms-for-secure-multiparty-data-collaborati/4286926
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/preview-of-azure-confidential-clean-rooms-for-secure-multiparty-data-collaborati/4286926
https://www.usenix.org/conference/nsdi11/paxos-replicated-state-machines-basis-high-performance-data-store
https://www.usenix.org/conference/nsdi11/paxos-replicated-state-machines-basis-high-performance-data-store


system crash-consistency models. SIGARCH Comput. Archit. News,
44(2):83–98, March 2016. doi:10.1145/2980024.2872406.

[20] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp,
Daniel Gruss, and Michael Schwarz. ÆPIC leak: Architecturally
leaking uninitialized data from the microarchitecture. In 31st

USENIX Security Symposium (USENIX Security 22), pages 3917–
3934, Boston, MA, August 2022. USENIX Association. URL:
https://www.usenix.org/system/files/sec22-borrello.pdf.

[21] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and
Rüdiger Kapitza. Rollback and forking detection for trusted execu-
tion environments using lightweight collective memory. In 2017 47th

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), pages 157–168, 2017. doi:10.1109/DSN.2017.45.
[22] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt,

Matthias Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza.
Securekeeper: Confidential zookeeper using intel sgx. In Proceedings

of the 17th International Middleware Conference, Middleware ’16,
New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2988336.2988350.

[23] J Brown and S Yamaguchi. Oracle’s hardware assisted resilient data
(hard). Oracle Technical Bulletin (Note 158367.1), 2002.

[24] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal
Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq,
Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin
McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas.
Windows azure storage: a highly available cloud storage service
with strong consistency. In Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, SOSP ’11, page 143–157.
ACM, October 2011. URL: http://dx.doi.org/10.1145/2043556.2043571,
doi:10.1145/2043556.2043571.

[25] Tej Chajed, Joseph Tassarotti, Mark Theng, M. Frans Kaashoek,
and Nickolai Zeldovich. Verifying the DaisyNFS concurrent and
crash-safe file systemwith sequential reasoning. In 16th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 22),
pages 447–463, Carlsbad, CA, July 2022. USENIX Association. URL:
https://www.usenix.org/conference/osdi22/presentation/chajed.

[26] Anrin Chakraborti, Bhushan Jain, Jan Kasiak, Tao Zhang, Donald
Porter, and Radu Sion. dm-x: Protecting volume-level integrity
for cloud volumes and local block devices. In Proceedings of

the 8th Asia-Pacific Workshop on Systems, APSys ’17. ACM, Sep-
tember 2017. URL: http://dx.doi.org/10.1145/3124680.3124732,
doi:10.1145/3124680.3124732.

[27] Vijay Chidambaram. Orderless and Eventually Durable File Systems.
Phd thesis, University of Wisconsin, Madison, August 2015.

[28] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Optimistic
crash consistency. In Proceedings of the Twenty-Fourth ACM Sympo-

sium on Operating Systems Principles, SOSP ’13, page 228–243. ACM,
November 2013. URL: http://dx.doi.org/10.1145/2517349.2522726,
doi:10.1145/2517349.2522726.

[29] Google Cloud. Confidential space, March 2023. URL:
https://cloud.google.com/confidential-computing/confidential-
space/docs/confidential-space-overview.

[30] Graeme Connell, Vivian Fang, Rolfe Schmidt, Emma Dauterman,
and Raluca Ada Popa. Secret key recovery in a Global-Scale
End-to-End encryption system. In 18th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 24), pages
703–719, Santa Clara, CA, July 2024. USENIX Association. URL:
https://www.usenix.org/conference/osdi24/presentation/connell.

[31] Victor Costan and Srinivas Devadas. Intel SGX explained.
Cryptology ePrint Archive, Paper 2016/086, 2016. URL:

https://eprint.iacr.org/2016/086.
[32] The Transaction Processing Performance Council. Tpc-c, 2024. URL:

http://www.tpc.org/tpcc/.
[33] Antoine Delignat-Lavaud, Cédric Fournet, Kapil Vaswani, Sylvan

Clebsch, Maik Riechert, Manuel Costa, and Mark Russinovich.
Why should i trust your code? Communications of the ACM,
67(1):68–76, December 2023. URL: http://dx.doi.org/10.1145/3624578,
doi:10.1145/3624578.

[34] Baltasar Dinis, Peter Druschel, and Rodrigo Rodrigues. Rr: A fault
model for efficient tee replication. In Proceedings 2023 Network

and Distributed System Security Symposium, NDSS 2023. Internet
Society, 2023. URL: http://dx.doi.org/10.14722/ndss.2023.24001,
doi:10.14722/ndss.2023.24001.

[35] The Apache Software Foundation. Hdfs architecture, 2024.
URL: https://hadoop.apache.org/docs/r3.4.1/hadoop-project-
dist/hadoop-hdfs/HdfsDesign.html.

[36] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
google file system. SIGOPS Oper. Syst. Rev., 37(5):29–43, October
2003. doi:10.1145/1165389.945450.

[37] Dimitra Giantsidi, Maurice Bailleu, Natacha Crooks, and Pramod
Bhatotia. Treaty: Secure distributed transactions. In 2022 52nd

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). IEEE, June 2022. URL: http://dx.doi.org/10.1109/
DSN53405.2022.00015, doi:10.1109/dsn53405.2022.00015.

[38] Google. Confidential computing, 2024. URL: https:
//cloud.google.com/security/products/confidential-computing?hl=
en.

[39] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan
Haller, andManuel Costa. Strong and efficient cache side-channel pro-
tection using hardware transactional memory. In Proceedings of the

26th USENIX Conference on Security Symposium, SEC’17, pages 217–
233, USA, 2017. USENIX Association. URL: https://www.usenix.org/
system/files/conference/usenixsecurity17/sec17-gruss.pdf.

[40] Jinnan Guo, Peter Pietzuch, Andrew Paverd, and Kapil Vaswani.
Trustworthy ai using confidential federated learning. Commun.

ACM, 67(9):48–53, August 2024. doi:10.1145/3677390.
[41] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a

correctness condition for concurrent objects. ACM Transactions on

Programming Languages and Systems, 12(3):463–492, July 1990. URL:
http://dx.doi.org/10.1145/78969.78972, doi:10.1145/78969.78972.

[42] Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou,
Sylvan Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cé-
dric Fournet, Andrew Jeffery, Matthew Kerner, Fotios Kounelis,
Markus A. Kuppe, Julien Maffre, Mark Russinovich, and Christoph M.
Wintersteiger. Confidential consortium framework: Secure
multiparty applications with confidentiality, integrity, and high
availability. Proceedings of the VLDB Endowment, 17(2):225–240,
October 2023. URL: http://dx.doi.org/10.14778/3626292.3626304,
doi:10.14778/3626292.3626304.

[43] Intel. Hibench suite: The bigdata micro benchmark suite. URL:
https://github.com/Intel-bigdata/HiBench.

[44] Intel. Documentation for intel trusted domain extensions, 2022. URL:
https://www.intel.com/content/www/us/en/developer/tools/trust-
domain-extensions/documentation.html.

[45] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott.
Linearizability of Persistent Memory Objects Under a Full-System-

Crash Failure Model, page 313–327. Springer Berlin Heidelberg,
2016. URL: http://dx.doi.org/10.1007/978-3-662-53426-7_23,
doi:10.1007/978-3-662-53426-7_23.

[46] David Kaplan. Hardware vm isolation in the cloud: Enabling
confidential computing with amd sev-snp technology. Queue,
21(4):49–67, August 2023. URL: http://dx.doi.org/10.1145/3623392,
doi:10.1145/3623392.

14

https://doi.org/10.1145/2980024.2872406
https://www.usenix.org/system/files/sec22-borrello.pdf
https://doi.org/10.1109/DSN.2017.45
https://doi.org/10.1145/2988336.2988350
http://dx.doi.org/10.1145/2043556.2043571
https://doi.org/10.1145/2043556.2043571
https://www.usenix.org/conference/osdi22/presentation/chajed
http://dx.doi.org/10.1145/3124680.3124732
https://doi.org/10.1145/3124680.3124732
http://dx.doi.org/10.1145/2517349.2522726
https://doi.org/10.1145/2517349.2522726
https://cloud.google.com/confidential-computing/confidential-space/docs/confidential-space-overview
https://cloud.google.com/confidential-computing/confidential-space/docs/confidential-space-overview
https://www.usenix.org/conference/osdi24/presentation/connell
https://eprint.iacr.org/2016/086
http://www.tpc.org/tpcc/
http://dx.doi.org/10.1145/3624578
https://doi.org/10.1145/3624578
http://dx.doi.org/10.14722/ndss.2023.24001
https://doi.org/10.14722/ndss.2023.24001
https://hadoop.apache.org/docs/r3.4.1/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r3.4.1/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1109/DSN53405.2022.00015
http://dx.doi.org/10.1109/DSN53405.2022.00015
https://doi.org/10.1109/dsn53405.2022.00015
https://cloud.google.com/security/products/confidential-computing?hl=en
https://cloud.google.com/security/products/confidential-computing?hl=en
https://cloud.google.com/security/products/confidential-computing?hl=en
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-gruss.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-gruss.pdf
https://doi.org/10.1145/3677390
http://dx.doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
http://dx.doi.org/10.14778/3626292.3626304
https://doi.org/10.14778/3626292.3626304
https://github.com/Intel-bigdata/HiBench
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
http://dx.doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
http://dx.doi.org/10.1145/3623392
https://doi.org/10.1145/3623392


[47] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen
Xu, and Taesoo Kim. Finding semantic bugs in file systems with
an extensible fuzzing framework. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, SOSP ’19, page 147–161,
New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3341301.3359662.

[48] Ivan Krstic. Behind the scenes with ios security, 2016. URL:
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf.

[49] Sandeep Kumar and Smruti R. Sarangi. Securefs: A secure
file system for intel sgx. In 24th International Symposium on

Research in Attacks, Intrusions and Defenses, RAID ’21. ACM,
October 2021. URL: http://dx.doi.org/10.1145/3471621.3471840,
doi:10.1145/3471621.3471840.

[50] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos
and primary-backup replication. In Proceedings of the 28th ACM

Symposium on Principles of Distributed Computing, PODC ’09, page
312–313, New York, NY, USA, 2009. Association for Computing
Machinery. doi:10.1145/1582716.1582783.

[51] Lara Montoya Laske. Confidential computing and multi-party
computation (MPC), May 2024. [Last accessed: 2025-Mar-19]. URL:
https://www.edgeless.systems/blog/the-landscape-of-privacy-
preserving-computing-ppc.

[52] Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig,
James Bornholt, and Vijay Chidambaram. Chipmunk: Investigating
crash-consistency in persistent-memory file systems. In Proceedings

of the Eighteenth European Conference on Computer Systems, EuroSys
’23, page 718–733, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3552326.3567498.

[53] Alon Leviev. Windows downdate: Downgrade attacks
using windows updates. Slideshow presented at Black-
hat USA 2024, 2024. URL: https://www.blackhat.com/us-
24/briefings/schedule/index.html#windows-downdate-downgrade-
attacks-using-windows-updates-38963.

[54] Wei Lin, Mao Yang, Lintao Zhang, and Lidong Zhou. Paci-
fica: Replication in log-based distributed storage systems.
Technical Report MSR-TR-2008-25, February 2008. URL:
https://www.microsoft.com/en-us/research/publication/pacifica-
replication-in-log-based-distributed-storage-systems/.

[55] LINBIT. Drbd - linbit, 2024. URL: https://linbit.com/drbd/.
[56] Xiaotao Liu, Gal Niv, Prashant Shenoy, K.K. Ramakrishnan, and

Jacobus Van der Merwe. The case for semantic aware remote replica-
tion. In Proceedings of the second ACM workshop on Storage security

and survivability, CCS06. ACM, October 2006. URL: http://dx.doi.org/
10.1145/1179559.1179575, doi:10.1145/1179559.1179575.

[57] Joshua Lund. Technology preview for secure value recovery, 2019.
URL: https://signal.org/blog/secure-value-recovery/.

[58] Tao Lyu, Liyi Zhang, Zhiyao Feng, Yueyang Pan, Yujie Ren,
Meng Xu, Mathias Payer, and Sanidhya Kashyap. Monarch:
A fuzzing framework for distributed file systems. In 2024

USENIX Annual Technical Conference (USENIX ATC 24), pages
529–543, Santa Clara, CA, July 2024. USENIX Association. URL:
https://www.usenix.org/conference/atc24/presentation/lyu.

[59] John MacCormick, Nick Murphy, Marc Najork, Chandramo-
han A. Thekkath, and Lidong Zhou. Boxwood: Abstractions
as the foundation for storage infrastructure. In 6th Sympo-

sium on Operating Systems Design & Implementation (OSDI

04), San Francisco, CA, December 2004. USENIX Association.
URL: https://www.usenix.org/conference/osdi-04/boxwood-
abstractions-foundation-storage-infrastructure.

[60] Ashlie Martinez and Vijay Chidambaram. CrashMonkey: A
framework to automatically test File-System crash consistency.
In 9th USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage 17), Santa Clara, CA, July 2017. USENIX Association.
URL: https://www.usenix.org/conference/hotstorage17/program/

presentation/martinez.
[61] Laura Martinez. Advancing security for large language mod-

els with nvidia gpus and edgeless systems, July 2024. URL:
https://developer.nvidia.com/blog/advancing-security-for-large-
language-models-with-nvidia-gpus-and-edgeless-systems/.

[62] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David
Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. ROTE: Roll-
back protection for trusted execution. In 26th USENIX Security Sympo-

sium (USENIX Security 17), pages 1289–1306, Vancouver, BC, August
2017. USENIXAssociation. URL: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/matetic.

[63] James Mickens, Edmund B. Nightingale, Jeremy Elson, Krishna
Nareddy, Darren Gehring, Bin Fan, Asim Kadav, Vijay Chidambaram,
and Osama Khan. Blizzard: fast, cloud-scale block storage for
cloud-oblivious applications. In Proceedings of the 11th USENIX

Conference on Networked Systems Design and Implementation,
NSDI’14, page 257–273, USA, 2014. USENIX Association.

[64] Microsoft. Azure confidential computing, 2024. URL:
https://learn.microsoft.com/en-us/azure/confidential-computing/.

[65] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian
Raju, and Vijay Chidambaram. Finding Crash-Consistency bugs
with bounded Black-Box crash testing. In 13th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 18), pages
33–50, Carlsbad, CA, October 2018. USENIX Association. URL:
https://www.usenix.org/conference/osdi18/presentation/mohan.

[66] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian
Raju, and Vijay Chidambaram. Crashmonkey and ace: Systematically
testing file-system crash consistency. ACM Trans. Storage, 15(2),
April 2019. doi:10.1145/3320275.

[67] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. Plundervolt: Software-based fault
injection attacks against Intel SGX. In Proceedings of the 41st IEEE

Symposium on Security and Privacy (S&P’20), pages 1466–1482, USA,
2020. IEEE Computer Society. URL: https://plundervolt.com/doc/
plundervolt.pdf, doi:10.1109/SP40000.2020.00057.

[68] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yinqian Zhang.
Narrator: Secure and practical state continuity for trusted execution
in the cloud. In Proceedings of the 2022 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’22. ACM, No-
vember 2022. URL: http://dx.doi.org/10.1145/3548606.3560620,
doi:10.1145/3548606.3560620.

[69] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Andre Martin,
Christof Fetzer, and Mark Silberstein. Varys: Protecting SGX
enclaves from practical side-channel attacks. In Proceedings of the

2018 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’18, pages 227–239, USA, 2018. USENIX Association.
URL: https://www.usenix.org/system/files/conference/atc18/atc18-
oleksenko.pdf.

[70] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference

(USENIX ATC 14), pages 305–319, Philadelphia, PA, June 2014.
USENIX Association. URL: https://www.usenix.org/conference/
atc14/technical-sessions/presentation/ongaro.

[71] Bryan Parno, Jay Lorch, John (JD) Douceur, James Mickens,
and Jonathan M. McCune. Memoir: Practical state conti-
nuity for protected modules. In Proceedings of the IEEE

Symposium on Security and Privacy. IEEE, May 2011. URL:
https://www.microsoft.com/en-us/research/publication/memoir-
practical-state-continuity-for-protected-modules/.

[72] Mikulas Patocka. linux/drivers/md/dm-integrity.c, September 2024.
URL: https://github.com/torvalds/linux/blob/master/drivers/md/dm-
integrity.c.

[73] Mikulas Patocka. linux/drivers/md/dm-verity.h, November 2024.
URL: https://github.com/torvalds/linux/blob/master/drivers/md/dm-

15

https://doi.org/10.1145/3341301.3359662
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
http://dx.doi.org/10.1145/3471621.3471840
https://doi.org/10.1145/3471621.3471840
https://doi.org/10.1145/1582716.1582783
https://www.edgeless.systems/blog/the-landscape-of-privacy-preserving-computing-ppc
https://www.edgeless.systems/blog/the-landscape-of-privacy-preserving-computing-ppc
https://doi.org/10.1145/3552326.3567498
https://www.blackhat.com/us-24/briefings/schedule/index.html#windows-downdate-downgrade-attacks-using-windows-updates-38963
https://www.blackhat.com/us-24/briefings/schedule/index.html#windows-downdate-downgrade-attacks-using-windows-updates-38963
https://www.blackhat.com/us-24/briefings/schedule/index.html#windows-downdate-downgrade-attacks-using-windows-updates-38963
https://www.microsoft.com/en-us/research/publication/pacifica-replication-in-log-based-distributed-storage-systems/
https://www.microsoft.com/en-us/research/publication/pacifica-replication-in-log-based-distributed-storage-systems/
https://linbit.com/drbd/
http://dx.doi.org/10.1145/1179559.1179575
http://dx.doi.org/10.1145/1179559.1179575
https://doi.org/10.1145/1179559.1179575
https://signal.org/blog/secure-value-recovery/
https://www.usenix.org/conference/atc24/presentation/lyu
https://www.usenix.org/conference/osdi-04/boxwood-abstractions-foundation-storage-infrastructure
https://www.usenix.org/conference/osdi-04/boxwood-abstractions-foundation-storage-infrastructure
https://www.usenix.org/conference/hotstorage17/program/presentation/martinez
https://www.usenix.org/conference/hotstorage17/program/presentation/martinez
https://developer.nvidia.com/blog/advancing-security-for-large-language-models-with-nvidia-gpus-and-edgeless-systems/
https://developer.nvidia.com/blog/advancing-security-for-large-language-models-with-nvidia-gpus-and-edgeless-systems/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://learn.microsoft.com/en-us/azure/confidential-computing/
https://www.usenix.org/conference/osdi18/presentation/mohan
https://doi.org/10.1145/3320275
https://plundervolt.com/doc/plundervolt.pdf
https://plundervolt.com/doc/plundervolt.pdf
https://doi.org/10.1109/SP40000.2020.00057
http://dx.doi.org/10.1145/3548606.3560620
https://doi.org/10.1145/3548606.3560620
https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.microsoft.com/en-us/research/publication/memoir-practical-state-continuity-for-protected-modules/
https://www.microsoft.com/en-us/research/publication/memoir-practical-state-continuity-for-protected-modules/
https://github.com/torvalds/linux/blob/master/drivers/md/dm-integrity.c
https://github.com/torvalds/linux/blob/master/drivers/md/dm-integrity.c
https://github.com/torvalds/linux/blob/master/drivers/md/dm-verity.h


verity.h.
[74] Mikulas Patocka. Re: dm-integrity and write reordering, August

2024. URL: https://lore.kernel.org/dm-devel/66c00dfe-ac48-db3e-
713e-9541468b9879@redhat.com/.

[75] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. All file systems are not created equal:
On the complexity of crafting Crash-Consistent applications. In 11th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 14), pages 433–448, Broomfield, CO, October 2014. USENIX
Association. URL: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/pillai.

[76] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. All file systems are not created equal:
On the complexity of crafting Crash-Consistent applications. In 11th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 14), pages 433–448, 2014.
[77] Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara Bouchenak,

Antoine Boutet, Pascal Felber, Rüdiger Kapitza, Marcelo Pasin,
and Valerio Schiavoni. Cyclosa: Decentralizing private web
search through sgx-based browser extensions. In 2018 IEEE 38th

International Conference on Distributed Computing Systems (ICDCS),
pages 467–477, 2018. doi:10.1109/ICDCS.2018.00053.

[78] Android Open Source Project. Implement dm-verity, September
2024. URL: https://source.android.com/docs/security/features/
verifiedboot/dm-verity.

[79] Lina Qiu, Rebecca Taft, Alexander Shraer, and George Kollios. The
price of privacy: A performance study of confidential virtual ma-
chines for database systems. In Proceedings of the 20th International

Workshop on Data Management on New Hardware, DaMoN ’24,
New York, NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3662010.3663440.

[80] Yujie Ren, Changwoo Min, and Sudarsun Kannan. CrossFS: A
cross-layered Direct-Access file system. In 14th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI

20), pages 137–154. USENIX Association, November 2020. URL:
https://www.usenix.org/conference/osdi20/presentation/ren.

[81] Robbert Van Renesse and Fred B. Schneider. Chain replication
for supporting high throughput and availability. In 6th Sympo-

sium on Operating Systems Design & Implementation (OSDI 04),
San Francisco, CA, December 2004. USENIX Association. URL:
https://www.usenix.org/conference/osdi-04/chain-replication-
supporting-high-throughput-and-availability.

[82] Mark Russinovich. Azure ai confidential inferencing: Technical
deep-dive, Sept 2024. URL: https://techcommunity.microsoft.com/
blog/azureconfidentialcomputingblog/azure-ai-confidential-
inferencing-technical-deep-dive/4253150.

[83] Maish Saidel-Keesing. Getting started with bottlerocket and amazon
ecs, July 2021. URL: https://aws.amazon.com/blogs/containers/
getting-started-with-bottlerocket-and-amazon-ecs/.

[84] Jana Saout. linux/drivers/md/dm-crypt.c, October 2024. URL: https:
//github.com/torvalds/linux/blob/master/drivers/md/dm-crypt.c.

[85] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using sgx to
conceal cache attacks. In Michalis Polychronakis and Michael
Meier, editors, Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 3–24, Cham, 2017. Springer International
Publishing. doi:10.1007/978-3-319-60876-1_1.

[86] Carlos Segarra, Tobin Feldman-Fitzthum, Daniele Buono, and
Peter Pietzuch. Serverless confidential containers: Challenges and
opportunities. In Proceedings of the 2nd Workshop on SErverless

Systems, Applications and MEthodologies, SESAME ’24, page 32–40,
New York, NY, USA, 2024. Association for Computing Machinery.

doi:10.1145/3642977.3652097.
[87] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.

Push-Button verification of file systems via crash refinement. In 12th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), pages 1–16, Savannah, GA, November 2016. USENIX Asso-
ciation. URL: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/sigurbjarnarson.

[88] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I Popovici,
Timothy E Denehy, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. Semantically-Smart disk systems. In 2nd USENIX

Conference on File and Storage Technologies (FAST 03), 2003.
[89] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read

Sprabery, Josep Torrellas, and Christopher W. Fletcher. Microscope:
Enabling microarchitectural replay attacks. In Proceedings of the 46th

International Symposium on Computer Architecture, ISCA ’19, pages
318–331, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3307650.3322228.

[90] Raoul Strackx and Frank Piessens. Ariadne: A minimal approach
to state continuity. In 25th USENIX Security Symposium (USENIX

Security 16), pages 875–892, Austin, TX, August 2016. USENIX Asso-
ciation. URL: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/strackx.

[91] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A flexible
framework for file system benchmarking. USENIX; login, 41, 2016.

[92] Linus Torvalds. Explicit volatile write back cache control, 2024. URL:
https://docs.kernel.org/block/writeback_cache_control.html.

[93] Nora Trapp. Key to simplicity: Squeezing the hassle out of encryp-
tion key recovery, 2024. URL: https://juicebox.xyz/blog/key-to-
simplicity-squeezing-the-hassle-out-of-encryption-key-recovery.

[94] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to
the Intel SGX kingdom with transient out-of-order execution. In
Proceedings of the 27th USENIX Conference on Security Symposium,
SEC’18, page 991–1008, USA, 2018. USENIX Association. URL:
https://www.usenix.org/system/files/conference/usenixsecurity18/
sec18-van_bulck.pdf.

[95] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi,
Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel
Gruss, and Frank Piessens. Lvi: Hijacking transient execution
through microarchitectural load value injection. In 2020 IEEE

Symposium on Security and Privacy (SP), pages 54–72, USA, 2020.
IEEE Computer Society. doi:10.1109/SP40000.2020.00089.

[96] Robbert Van Renesse and Deniz Altinbuken. Paxos made mod-
erately complex. ACM Comput. Surv., 47(3), February 2015.
doi:10.1145/2673577.

[97] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. SGAxe: How SGX fails in practice, 2020. [Last accessed:
2023-Oct-06]. URL: https://sgaxe.com/files/SGAxe.pdf.

[98] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader
AlBassam, Christina Garman, Daniel Genkin, Andrew Miller, Eyal
Ronen, and Yuval Yarom. SoK: SGX.Fail: How stuff get eXposed.
https://sgx.fail, 2022.

[99] Shabsi Walfish. Google cloud key vault service, 2018. URL:
https://developer.android.com/about/versions/pie/security/ckv-
whitepaper.

[100] Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yin-
qian Zhang. Engraft: Enclave-guarded raft on byzantine faulty
nodes. In Proceedings of the 2022 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’22. ACM, No-
vember 2022. URL: http://dx.doi.org/10.1145/3548606.3560639,
doi:10.1145/3548606.3560639.

[101] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza.
Asyncshock: Exploiting synchronisation bugs in intel sgx enclaves.

16

https://github.com/torvalds/linux/blob/master/drivers/md/dm-verity.h
https://lore.kernel.org/dm-devel/66c00dfe-ac48-db3e-713e-9541468b9879@redhat.com/
https://lore.kernel.org/dm-devel/66c00dfe-ac48-db3e-713e-9541468b9879@redhat.com/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/pillai
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/pillai
https://doi.org/10.1109/ICDCS.2018.00053
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://doi.org/10.1145/3662010.3663440
https://www.usenix.org/conference/osdi20/presentation/ren
https://www.usenix.org/conference/osdi-04/chain-replication-supporting-high-throughput-and-availability
https://www.usenix.org/conference/osdi-04/chain-replication-supporting-high-throughput-and-availability
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/azure-ai-confidential-inferencing-technical-deep-dive/4253150
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/azure-ai-confidential-inferencing-technical-deep-dive/4253150
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/azure-ai-confidential-inferencing-technical-deep-dive/4253150
https://aws.amazon.com/blogs/containers/getting-started-with-bottlerocket-and-amazon-ecs/
https://aws.amazon.com/blogs/containers/getting-started-with-bottlerocket-and-amazon-ecs/
https://github.com/torvalds/linux/blob/master/drivers/md/dm-crypt.c
https://github.com/torvalds/linux/blob/master/drivers/md/dm-crypt.c
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1145/3642977.3652097
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://doi.org/10.1145/3307650.3322228
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://docs.kernel.org/block/writeback_cache_control.html
https://juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-out-of-encryption-key-recovery
https://juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-out-of-encryption-key-recovery
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1145/2673577
https://sgaxe.com/files/SGAxe.pdf
https://sgx.fail
https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://developer.android.com/about/versions/pie/security/ckv-whitepaper
http://dx.doi.org/10.1145/3548606.3560639
https://doi.org/10.1145/3548606.3560639


In Ioannis Askoxylakis, Sotiris Ioannidis, Sokratis Katsikas, and
Catherine Meadows, editors, Computer Security – ESORICS 2016,
pages 440–457, Cham, 2016. Springer International Publishing.

[102] Carsten Weinhold and Hermann Härtig. Vpfs: building a
virtual private file system with a small trusted computing
base. ACM SIGOPS Operating Systems Review, 42(4):81–93,
April 2008. URL: http://dx.doi.org/10.1145/1357010.1352602,
doi:10.1145/1357010.1352602.

[103] Michael Whittaker, Neil Giridharan, Adriana Szekeres, Joseph
Hellerstein, Heidi Howard, Faisal Nawab, and Ion Stoica. So-
lution: Matchmaker paxos: A reconfigurable consensus pro-
tocol. In Journal of Systems Research - Mar 2021, 2021. URL:
https://openreview.net/forum?id=bXe1agiq9LN.

[104] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion
Stoica, and Xin Jin. Harmonia: near-linear scalability for replicated
storage with in-network conflict detection. Proc. VLDB Endow.,
13(3):376–389, November 2019. doi:10.14778/3368289.3368301.

A Recovery
Before intercepting operations on the critical path, we must
ensure that the primary and backups are all executing within
TEEs, communicating with each other over secure channels,
and cannot be impersonated by a malicious third party.
Initialization. Initialization achieves these goals through

remote attestation and TLS channels. After the primary and
backups perform attestation, they are given the secret key
for encryption and the addresses and roles of each member,
which they use to establish secure channels and begin
execution. The process becomes complex once recovery is
taken into consideration.
Recovery protocol. Our recovery protocol is based on

the reconfiguration protocol from Matchmaker Paxos [103],
with CCF [42] tracking configurations as the matchmakers.
To track configurations, each nodemaintains a seenBallot,
representing the latest configuration it has seen, and a
ballot, representing the latest configuration it has been a
member in. Each protocol message must be tagged with the
ballot or seenBallot field of the sender, and recipients
only accepts messages if their local ballot is no fresher than
the messages’ ballot. Intuitively, this means that nodes do
not process requests from stale configurations.
We first modify the initialization protocol so that the initial

configuration is committed to CCF. After attestation, nodes
are given a seenBallot representing their configuration
conf. The primary then sends MatchA<seenBallot𝑝,
conf> to CCF. CCF adds the configuration to allConf and
responds with MatchB<ballot𝑐, allConf>, where ballot𝑐
is the highest ballot observed by CCF. Upon receiving
MatchB, the primary checks if ballot𝑐 =seenBallot𝑝 and
if allConf= {conf}; if so, it sets ballot𝑝 to seenBallot𝑝
and can begin intercepting reads and writes.
A recovering node (including backups) follows the same
process but will receive at least one prior configuration.
It then preempts all nodes from prior configurations in
allConf by broadcasting P1a<seenBallot𝑖>.
Upon receiving P1a<seenBallot𝑖>, each node 𝑗 sets
its seenBallot𝑗 to seenBallot𝑖 if seenBallot𝑖 is
larger, then attempts to aid recovery by responding
with P1b<seenBallot𝑗, ballot𝑗, hashes𝑗, disk𝑗,
writeIndex𝑗>, where hashes𝑗 are its in-memory hashes
and disk𝑗 is its disk. The recovering node ignores any P1bs
where seenBallot𝑖 ≠seenBallot𝑗 .
After receiving at least 1 P1b from each configuration,
the recovering node knows that no prior configuration
can make progress and now selects the designated node
to recover its state from. The designated node 𝑑 is the
node with the highest (ballot,writeIndex) pair, ordered
lexicographically. The recovering node replaces its disk with
disk𝑑 and sets its hashes to hash𝑑 . It then uses that hash and
disk to update other nodes in its new configuration conf𝑖
by sending Reconfig<seenBallot𝑖, hashes𝑑, disk𝑑,

17

http://dx.doi.org/10.1145/1357010.1352602
https://doi.org/10.1145/1357010.1352602
https://openreview.net/forum?id=bXe1agiq9LN
https://doi.org/10.14778/3368289.3368301


writeIndex𝑑>; those nodes replace their own hashes and
disks similarly.
We optimize reconfiguration by omitting hashes from
P1b and disk from both P1b and Reconfig, only requesting
them when necessary. The recovering node first requests
hashes𝑑 only from the designated node. It then performs
an integrity scan over its local disk using hashes𝑑 , and
only if any individual pages do not pass the integrity
check, requests the page from the designated node. If
the designated node fails during this process, the hashes
are requested from another designated node (there must
be another, since there are at most 𝑓 failures and each
configuration has 𝑓 + 1 nodes), and the integrity scan is
restarted with the new hashes. The recovering node then
sends Reconfig to the other nodes in conf𝑖 , which also
perform integrity scans and request corrupted pages from
the recovering node. If the designated node is also a node in
conf𝑖 , then it does not need to process Reconfig. This is the
case for any recovery that replaces a single crashed node.
Any node that completes disk synchronization then sets
its ballot to seenBallot𝑖 , writeIndex to writeIndex𝑑 ,
hashes to hashes𝑑 , and can resume operation.
Once recovery is complete, old configurations can be

removed from allConf in CCF through a garbage collection
protocol [103] and safely shut down.
B Correctness
We provide a proof sketch for the following theorem:

Theorem 1All histories produced by Rollbaccine are block

device crash consistent.

We must first map the behaviors of Rollbaccine to the
terms used by block device crash consistency. A node in Roll-
baccine is active if ballot𝑝 =seenBallot𝑝 ; only active pri-
maries can process read and write messages from the appli-
cation. A crash𝐶 is any period of time during which there is
no active primary; this encompasses failures due to integrity
violations detected by Rollbaccine, signaling a rollback at-
tack. An invocation 𝑂𝑖𝑛𝑣 is any read or write intercepted by
the active primary, and a response𝑂𝑟𝑒𝑠 is any response to in-
vocations returned by the active primary to the upper layer.
Note how the definitions of invocation and responses differ
from their definitions in block device crash consistency,
which define those operations over the block device (instead
of the active primary of Rollbaccine). The active primary
in Rollbaccine acts as an additional layer between the
application and the block device, delaying invocations to
the block device to prevent concurrent accesses to the same
blocks (§ 6.1.1), removing read responses with that fail
integrity checks (§ 6.1.4), and synchronous write responses
until they are replicated (§ 6.1.3).
We start by establishing that the active primary of Rollbac-

cine produces linearizable histories in the absence of crashes.

Lemma 1Given an encrypted disk, a crash-free durable cut

D representing its disk state, its corresponding hashes, and
a subsequent era E produced by the primary, the combined

history DE is linearizable.

Proof. To prove that DE is linearizable, we must construct
a sequential history S that respects reads-see-writes, is
equivalent to some E′ ∈ trunc(compl(DE)), and contains
a superset of the happens-before relationships in DE.
We create S by (1) removing pending invocations in E,
and (2) creating abstract threads to isolate accesses to each
block (creating E′), then (3) shifting responses earlier in
each thread such that matching responses immediately
follow each invocation.
S is sequential by construction.
We know that Rollbaccine processes operations over the

same block sequentially based on invocation order (§ 6.1.1),
which is unchanged in S. This means that each read must
see the previous write, even if the read invocation precedes
the write response. This holds despite rollback attacks,
because Rollbaccine enforces integrity checks for reads
(which would otherwise fail). Since responses immediately
follow each invocation in S, each write-read invocation
pair satisfies the reads-see-writes precondition and indeed
returns the value of the previous write. Therefore S respects
reads-see-writes.
We know that for all threads 𝑡 , E′ [𝑡]=S[𝑡] by construction.
We also know that S preserves all happens-before relation-
ships, because responses were moved earlier (so any invo-
cation that happens-after a response still happens-after it).
By definition, DE is linearizable. □

Under the same circumstances, each active backup produces
a durable cut of the era produced by the active primary.
Lemma 2 Given an encrypted disk, a durable cut D
representing its disk state, its corresponding hashes, and
subsequent eras E1,E2 produced by the primary and a backup

respectively, DE2 is a durable cut of DE1.

Proof. We first show that the backups respects any happens-
before relationships on the primary. Writes are assigned
writeIndex by the active primary based on invocation
order. By definition of happens-before 𝑉1 ≺ 𝑉2 is only
possible if𝑉1 precedes𝑉2, which implies that writeIndex of
𝑉1 is also less than writeIndex of 𝑉2. Therefore, if a backup
submitted 𝑉2 to disk, it must have already submitted 𝑉1;
formally, 𝑉2 ∈E2 implies 𝑉1 ∈E2.
We now show that the backups must contain all completed
synchronous writes. The primary does not return synchro-
nous writes to the application until the backups acknowledge
that they have received that write and all prior writes
with lower writeIndexes. Formally,𝑊𝑟𝑒𝑠 (𝑏,𝑣𝑎𝑙,𝑠𝑦𝑛𝑐) ∈ E1
implies𝑊𝑟𝑒𝑠 (𝑏,𝑣𝑎𝑙,𝑠𝑦𝑛𝑐) ∈ E2 if 𝑠𝑦𝑛𝑐 contains REQ_FUA or
REQ_PREFLUSH. By the definition of durable cut, E2 is a
durable cut of E1, thereforeDE2 is a durable cut ofDE1. □

18



After reconfiguration, the current active primary contains
either the disk of the previous active primary or a previous
active backup. The current active primary is the one with the
highest ballot and writeIndex; a previous active primary
is one that was current before reconfiguration. A current or
previous active backup is a backup with a ballot matching
the current or previous active primary.
Lemma 3 During reconfiguration, the current primary or

backup must recover the disk state and hashes of either the

previous active primary or its backups.

Proof. Reconfiguration follows the protocol of Matchmaker
Paxos [103]. The proof can be derived from that of
Matchmaker Paxos; we provide its intuition here.
We prove inductively on the difference between ballot𝑥
on the current primary 𝑥 and ballot𝑦 on the previous
active primary 𝑦. Primary 𝑦 could have only become active
by either completing initialization or reconfiguration by
sending MatchA to CCF and adding conf𝑦 to allConf.
In the base case, if ballot𝑥 = ballot𝑦 + 1, then when
primary 𝑥 sends MatchA to CCF and receives allConf
in MatchB, then conf𝑦 must be the highest-ballot con-
figuration in allConf. Primary 𝑥 (and its backups) must
synchronize their disks and hashes from either primary 𝑦
or its backups.

In the inductive case, if ballot𝑥 =ballot𝑦+𝑖+1, then there
may be at most 𝑖 highest-ballot configuration in allConf.
By the induction hypothesis, since there has been no active
primaries since the configuration associated with ballot𝑦 ,
no writes could have been made to disk, and each primary
and backup must have synchronized their disks from
either primary 𝑦, its backups, or some machine with state
equivalent to those machines, and so must primary 𝑥 . □

Combined, the lemmas state that: at initialization, the cur-
rent active primary’s disk state is linearizable (Lemma 1), so
prior to any crashes, the primary’s disk is also block device
crash consistent. Using induction on crashes, we assume that
the 𝑖-th active primary’s disk is block device crash consistent.
In the inductive case, after 𝑖+1 crashes, the current active
primary must recover to either the disk of the 𝑖-th previous
active primary or its backups (Lemma 3), whose disks are
durable cuts (Lemma 2) of the 𝑖-th primary’s, which is still
block device crash consistent by the induction hypothesis.
Therefore, whether the primary recovers from the history
or its durable cut, it will still produce a linearizable history
(Lemma 1). By definition, all histories produced by Rollbac-
cine must be block device crash consistent (Theorem 1).

19


	Abstract
	1 Introduction
	2 Motivation and Threat Model
	2.1 The dangers of rollbacks
	2.2 Threat model and guarantees

	3 Towards Rollbaccine
	4 Block Device Crash Consistency
	5 System Model
	6 Design
	6.1 Critical path
	6.2 Recovery

	7 Evaluation
	7.1 Performance overview
	7.2 Comparison against Nimble
	7.3 Microbenchmarks
	7.4 Crash consistency and recovery

	8 Related Work
	9 Conclusion
	References
	A Recovery
	B Correctness

