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Abstract—To meet non-functional requirements, practitioners
must identify Pareto-optimal configurations of the degree of
decentralization, scalability, and security of blockchain systems.
Maximizing all of these subconcepts is, however, impossible due
to the trade-offs highlighted by the blockchain trilemma. We
reviewed analysis approaches to identify constructs and their
operationalization through metrics for analyzing the blockchain
trilemma subconcepts and to assess the applicability of the
operationalized constructs to various blockchain systems. By
clarifying these constructs and metrics, this work offers a
theoretical foundation for more sophisticated investigations into
how the blockchain trilemma manifests in blockchain systems,
helping practitioners identify Pareto-optimal configurations.

Index Terms—Benchmarking, blockchain technology, trade-offs,
non-functional requirements.

I. INTRODUCTION

Common non-functional requirements for blockchain sys-
tems relate to degree of decentralization (DoD), scalability,
and security. According to the blockchain trilemma [1]-
[4], simultaneous maximization of the DoD, scalability, and
security of blockchain systems is, however, impossible. To
still meet common non-functional requirements, practitioners
need to find a Pareto-optimal configuration of the blockchain
trilemma subconcepts (i.e., DoD, scalability, and security) by
increasing one at the expense of another. For example, the
Ethereum system transitioned from a consensus mechanism
based on proof-of-work (PoW) to one based on proof-of-stake
(PoS). That transition helped increase scalability regarding
the transaction processing rate (i.e., throughput) to better
meet requirements related to high scalability. Conversely, the
change decreased the DoD because only a subset of nodes
(i.e., validating nodes) can participate in consensus finding [5],
[6]. To find Pareto-optimal configurations, practitioners must
thoroughly understand the influences of blockchain system
configurations on the blockchain trilemma subconcepts.

To help practitioners find Pareto-optimal configurations
through quantification of the blockchain trilemma subconcepts,
various analysis approaches, including BBSF [7], Blockbench
[8], and Diablo [9], were developed. Such analysis approaches

use different constructs, operationalized through different
metrics!, to measure the blockchain trilemma subconcepts.
For example, practitioners could use the construct availability
to investigate both scalability [9] and security [10], raising
the question of how to effectively differentiate between these
two constructs in the context of the blockchain trilemma.
Moreover, practitioners are forced to decide between different
operationalized constructs to quantify the same blockchain
trilemma subconcepts, for example, between wealth distribution
[2], [11], [12] and block proposal randomness [13], [14] to
evaluate the DoD of blockchain systems.

Selecting suitable constructs and metrics for analyzing the
blockchain trilemma is challenging due to the insufficient
development of its theoretical foundations. Without such
theoretical foundations, the suitability of constructs and their
operationalization through metrics for investigations of the
blockchain trilemma can hardly be justified. To tackle the
lack of such a theoretical foundation, extant research presents
mappings of the blockchain trilemma to established theories in
distributed systems, such as the CAP theorem [3], [15], [16].
However, such mappings often do not cover all subconcepts
or intermingle constructs of different subconcepts. Although
such adjacent theoretical foundations are valuable, they only
reflect parts of the blockchain trilemma, which hinders thor-
ough suitability assessments of constructs for analyzing the
blockchain trilemma. Due to inconsistencies in construct usage
and a lack of a well-defined link between constructs and the
blockchain trilemma subconcepts, practitioners must rely on
individual discretion to identify constructs suitable for Pareto-
optimal configurations that meet non-functional requirements.
To assist practitioners in selecting appropriate constructs and
associated metrics to analyze the blockchain trilemma, we
pose the following research question: What constructs and
associated metrics are suitable to quantify the blockchain
trilemma subconcepts?

1A metric is a mathematical formulation that defines the relationship between
input variables and an output variable. In this work, metrics are used to
operationalize constructs to quantify the blockchain trilemma subconcepts.
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We conducted a systematic literature search [17] to identify
publications that propose constructs and metrics for analyzing
the subconcepts of the blockchain trilemma. Using abductive
thematic analysis [18]-[20], we iteratively analyzed the litera-
ture to develop and refine these constructs and their associated
metrics for measuring DoD, scalability, and security. The
process was guided by repeated interplay between empirical
findings and theoretical framing, supplemented by targeted
theoretical sampling to address identified gaps and validate
emerging insights. Based on this iterative abductive analysis, we
developed an overview of analysis approaches that apply these
constructs and metrics to investigate the blockchain trilemma.

The primary purpose of this work is to enhance under-
standing of the constructs and associated metrics used to
analyze the blockchain trilemma and its subconcepts. In
particular, this work has three main contributions. First, by
explaining common constructs and their operationalization
through metrics used to quantify DoD, scalability, and security,
their applicability, interpretability, and limitations, we offer a
theoretical foundation for more targeted analyses of blockchain
trilemma subconcepts. Second, by explaining those metrics,
including their input variables, we support data collection
in benchmarks. For example, we clarify blockchain system
characteristics that need to be monitored to feed input variables
of relevant metrics used in benchmarks. Third, by comparing
analysis approaches based on the constructs and metrics used,
we guide the selection of suitable approaches for investigating
the blockchain trilemma.

The remainder of this work is divided into five sections. In
section II, we introduce the foundations of blockchain tech-
nology by describing how the blockchain trilemma manifests
in blockchain systems. Moreover, we describe how extant
research attempts to operationalize the blockchain trilemma
subconcepts from empirical and conceptual perspectives. The
literature search and analysis are described in section III. Next,
we present principal constructs and their associated metrics
that can be used to operationalize the blockchain trilemma
subconcepts in section IV. Moreover, we showcase extant
analysis approaches with a focus on the constructs and metrics
they use to operationalize the blockchain trilemma subconcepts.
In section V, we discuss the key findings and present this
work’s contributions to practice and research. Moreover, we
describe the limitations of this work and outline future research
directions related to the blockchain trilemma. We conclude with
a summary of this work and our key takeaways in section VI.

II. THEORETICAL FOUNDATIONS AND RELATED RESEARCH

This section explains the foundations needed to better
understand how blockchain system configurations influence
manifestations of the blockchain trilemma. In subsection II-A,
we briefly explain the foundations of blockchain technology,
introduce the blockchain trilemma subconcepts, and describe
trade-offs between these subconcepts. Subsection II-C gives
an overview of related research on the blockchain trilemma.

A. Blockchain Technology

Blockchain technology is a special form of distributed ledger
technology that enables the operation of blockchain systems—

distributed databases designed to record transactions securely
and consistently [21]. Blockchain systems store replicas of a
record of transactions on distributed computing devices called
nodes. The record is structured into blocks, each containing
a batch of transactions. Except for the genesis block, each
block references its preceding block with that predecessor’s
hash value [22]. A sequence of blocks, each referencing its
predecessor, forms a blockchain.

Most blockchain systems (e.g., the Bitcoin and Ethereum
systems) operate as replicated state machines, where validating
nodes maintain consistent local replicas of the record by
redundantly executing the same protocol (see Figure 1), such as
for validating and verifying transactions and blocks. The local
state of a validating node is defined by its stored blockchain.

When a new transaction is created, a node broadcasts it to
its adjacent validating nodes. Each validating node processes
incoming transactions by executing the same protocol, ensuring
redundant validation. Upon successful validation, the node’s
state transitions accordingly.

To maintain consistency among replicas, validating nodes
use consensus mechanisms. Consensus mechanisms shape key
properties of blockchain systems, including their permission
models, finality models, and fault tolerance. In terms of
permission models, a blockchain system can be permissionless,
where all validating nodes have equal rights to participate (e.g.,
in the Bitcoin system), or permissioned, where participation
is restricted based on predefined rules [21], [23], such as
in systems using the Hyperledger Fabric protocol. Such
permissions determine who can join the network and participate
in consensus finding.

Finality models define when blocks appended to the
blockchain are considered finalized, meaning they cannot be
altered or reverted. In immediate (or deterministic) finality,
a block is considered finalized as soon as it is added to the
blockchain. In probabilistic finality, a block’s finality increases
as more blocks are added on top, reducing the likelihood of
reorganization over time.

In terms of fault tolerance, blockchain systems can be
omission-tolerant, crash fault-tolerant, and Byzantine fault-
tolerant [1], [21], [24], [25]. Omission tolerance refers to
blockchain systems that can compensate for network messages
that are lost in transit. Crash-fault tolerance refers to the
ability of a blockchain system to compensate for validating
nodes that are (temporarily) unavailable, for example, because
the validating nodes crashed or the network connection is
unreliable. Byzantine fault tolerance [24], [25] extends crash-
fault tolerance by the ability to compensate for accidental
faults and deliberate attacks. Accidental faults include software
bugs and misconfiguration, while adversarial attacks involve
strategies, such as in selfish mining [26]-[28].

Consensus mechanisms strongly influence the performance of
blockchain systems [1], [21], especially in terms of transaction
processing rates (i.e., throughput). Voting-based consensus
mechanisms with immediate finality, such as Practical Byzan-
tine fault tolerance (PBFT) [29], [30], experience performance
degradation as network size increases. This is mainly due to
the higher communication complexity required for consensus
among an increasing number of validating nodes. For consensus



mechanisms with probabilistic finality, such as Nakamoto
consensus in the Bitcoin system [22], throughput is often
less affected by changes in network size, but consistency
assumptions are strongly relaxed. Instead of ensuring that all
validating nodes store the same version of the replica at all
times, they provide eventual consistency, where most validating
nodes converge to a consistent state over time [21].

While blockchain technology [22] is a prominent example of
distributed ledger technology, the underlying principles, such
as consensus and replicated state machines, are not unique
to blockchains. Many distributed systems achieve consistency
and fault tolerance through similar mechanisms, even if they
do not employ a strict blockchain data structure. For instance,
Hyperledger Fabric utilizes traditional databases to store data,
while IOTA organizes transactions in a directed acyclic graph
(DAG) rather than a linear sequence of blocks.

Although the ‘blockchain trilemma’ was originally formu-
lated to describe the trade-offs faced by blockchain systems,
similar tensions arise in a broader class of distributed databases
that rely on replication and consensus. Thus, the blockchain
trilemma encapsulates a fundamental design challenge: achiev-
ing an optimal balance among DoD, scalability, and security
is inherently difficult in various distributed database systems
that seek consensus across nodes. This observation extends
the relevance of the trilemma beyond blockchain systems to
distributed databases that use replicated state machines and
consensus. This work considers such distributed databases
with a focus on blockchain systems. It focuses on the role
of validating nodes or peers in general distributed databases,
excluding client nodes, as indicated by the dashed border in
Figure 1.
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Fig. 1. Overview of blockchain system architectures (adapted from Leinweber
et al. [31]). The dashed border encloses the part of a blockchain system in
the focus of this work.

B. Blockchain Trilemma Subconcepts and Their Interrelation-
ships

Optimizing blockchain system configurations to balance the
blockchain trilemma subconcepts is essential to meet non-
functional requirements. Achieving this balance requires a
deep understanding of the interrelationships between DoD,
scalability, and security in real-world blockchain systems.
Despite the significance of the blockchain trilemma, extant
literature presents multiple and sometimes conflicting defini-
tions of its subconcepts, diluting the theoretical foundation of

the blockchain trilemma. This delusion makes assignments of
suitable constructs and corresponding metrics to blockchain
trilemma subconcepts difficult, challenging empirical analyses
for finding Pareto-optimal configurations of blockchain systems.

In this work, we use the term construct to refer to a
dimension of a blockchain trilemma subconcept. Constructs are
operationalized through metrics. A metric is a mathematically
defined assignment of values (i.e., input variables) to objects
(i.e., output variables) (cf. [32]). An input variable is an input
to a metric and can often be manipulated in experiments as an
independent variable (e.g., block size). In experiments, output
variables can be dependent variables if they help operationalize
a construct. Figure 2 illustrates the interrelationships between
these key terms.
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Fig. 2. Interrelationships between the blockchain trilemma, subconcepts,
constructs, and metrics.

The following offers foundations for grasping the blockchain
trilemma and its subconcepts and their interrelationships.
These foundations form the basis for assigning constructs and
corresponding metrics in section IV.

1) Blockchain Trilemma Subconcepts: Appropriately ad-
dressing the blockchain trilemma—the presumed impossibility
of simultaneously maximizing DoD, scalability, and security
of blockchain systems—poses a fundamental challenge in the
development of blockchain systems that operate as replicated
state machines [1], [2], [33]. Although the blockchain trilemma
is widely recognized as a phenomenon, the definitions of its
subconcepts remain inconsistent in existing literature. For exam-
ple, DoD is described as the degree to which validating nodes
equitably and (quasi-)autonomously participate in consensus
finding [21], [34], [35], the extent to which validating nodes
are geographically distributed and show different networks
conditions (e.g., in terms of connectivity and synchrony due to
bandwidth variations) [1], [36], [37], and the extent of equal
wealth distribution [2], [11], [12], [35], [38]. Scalability is
often associated with maximum transaction processing rates
(i.e., throughput) [8], [12], [36], [39] or the maximum number
of validating nodes that does not decrease throughput [21], [40].
Security is often related to availability, fault tolerance [7], [8],
[12], and partition tolerance [8], [15], [36]. The following offers
harmonized definitions of the blockchain trilemma subconcepts
that we developed based on extant literature. In line with these
definitions, we briefly outline common approaches to enhance
blockchain systems along each subconcept. The results of this
study will be grounded in these definitions.

a) Degree of Decentralization: DoD refers to the degree
to which validating nodes equitably and (quasi-)autonomously
contribute to consensus finding in a blockchain system [21],
[34], [35], [41].



Blockchain systems achieve high DoD when validating nodes
equitably participate in consensus finding. Such influences
originate from actions including the proposal of blocks to be
appended to the blockchain and (quasi-)autonomous acceptance
or rejection of incoming blocks as in atomic broadcast protocols
[1]. In an ideal Bitcoin system with high DoD, for example,
validation nodes are equipped with equal computing power
(e.g., CPU power), operate in similar settings (e.g., in terms of
networks) and therefore can equitably participate in consensus
finding by proposing new blocks and accepting or rejecting
proposed blocks [1], [21], [34]. Such consensus mechanisms
mimic a democratic decision process in which a proposal is
made, debated, and finally accepted or rejected by people who
can equitably contribute to the decision-making process.

b) Scalability: Scalability refers to the ability of a
blockchain system to handle changing amounts (e.g., number
of validating nodes and transactions per second) of workloads
(11, [4], [21], [40], [42], [43].

High throughput, referring to ‘amounts’ of processed trans-
actions in a specific timespan, is often achieved by reducing
the number of validating nodes, as in leader-based consensus
mechanisms (e.g., HotStuff, Paxos, and Raft [1], [44], [45]). In
these mechanisms, a designated leader validates and propagates
new blocks, significantly reducing message complexity and
increasing transaction throughput [1], [46]. Similarly, in PoS-
based consensus mechanisms, such as used in the Ethereum
system [5], [6], a leader is (pseudo-)randomly selected from a
pool of validating nodes that deposited tokens (i.e., a stake).
The selected validating node proposes a block, which is then
validated by all validating nodes before finalization. Although
this design enhances scalability, it decreases DoD.

c) Security: Security refers to the degree to which a
blockchain system remains operational and is resilient against
faults, network partitions, and malicious attacks [3], [7], [8].

Consensus mechanisms, such as HotStuff, Nakamoto Consen-
sus, and PBFT, ensure that blockchain systems can continue to
operate correctly despite faulty or malicious validating nodes.
Such fault-tolerant consensus mechanisms use redundancy
and cryptographic techniques to achieve robustness against
accidental faults and deliberate attacks, enhancing security.

The design of consensus mechanisms strongly influences
availability and integrity, two major security characteristics of
blockchain systems [21]. During synchronization, blockchain
systems could be partitioned, which (temporarily) brings them
to an inconsistent state. In such a state, validating nodes can
respond differently to identical requests depending on their
local blockchain replication, decreasing availability [47]-[49].

Blockchain systems protect the integrity of blockchains
through the use of hash values, which link blocks, and
economic deterrents. Each block references its predecessor via
a hash value, making tampering computationally prohibitive.
Furthermore, consensus mechanisms based on PoW and PoS
introduce economic costs to adversarial behavior, deterring
attacks. In PoW, an attacker must control a majority of
computational power, while in PoS, they must stake a large
number of tokens, making dishonest behavior financially less
viable.

2) Interrelationships Between the Blockchain Trilemma
Subconcepts: Understanding the interrelationships between the
blockchain trilemma subconcepts and how different blockchain
system configurations influence them is essential for identifying
Pareto-optimal configurations. The following elucidates interre-
lationships between the blockchain trilemma subconcepts under
consideration of established theories, such as the CAP theorem
referring to the impossibility of simultaneously maximizing
consistency, availability, and partition tolerance [47]—[49].

a) DoD vs Scalability: Blockchain systems with high
DoD commonly involve all validating nodes to equitably and
(quasi-)autonomously participate in consensus finding. Instead
of a single validating node deciding the state of a blockchain
system, all validating nodes collectively decide (e.g., based
on majority votes). In a highly decentralized blockchain, all
validating nodes must receive and process blocks to collectively
agree on state transitions. This increases message complexity
and communication overhead, ultimately reducing transaction
throughput [21], [47].

To enhance scalability in terms of throughput, the number
of validating nodes that must receive relevant blocks to
collectively decide on global state transitions can be decreased
[1], [21], [47]. For example, the Ethereum system transitioned
from a PoW-based consensus mechanism to a PoS-based
one, decreasing the number of validating nodes involved in
consensus finding to increase transaction throughput. Reducing
the number of validating nodes improves throughput but
decreases DoD.

b) DoD vs Security: In blockchain systems with high
DoD, such as an ideal Bitcoin system, all validating nodes
can equitably participate in consensus finding (e.g., by propos-
ing, accepting, and rejecting blocks). Equitable participation
requires validating nodes to exchange network messages to
synchronize and transition the blockchain system to a subse-
quent consistent state. Synchronization takes time during which
blockchain systems are in an inconsistent state. Validating nodes
in different network partitions store different versions of the
blockchain. The time for synchronization is often influenced by
the geographical distribution of validating nodes, heterogeneity
of validating nodes, and different networks [1], [37], such
as related to bandwidth and connectivity. Inconsistent states
decrease availability [15], [47], [49] and ease successful double-
spending [26], [28], decreasing security of blockchain systems.

To enhance security, a trusted party can operate multi-
ple (geographically distributed) validating nodes that store
replications of a blockchain and validate transactions. For
synchronizing validating nodes in this setting, a crash-fault
consensus mechanism can be used with immediate finality (e.g.,
Kafka and Raft [50], [51]). By limiting participation to known
and trusted validating nodes, this approach decreases the risk
of Byzantine nodes disrupting consensus finding. However, this
also shifts the system toward a more centralized trust model,
reducing the DoD. Attacks (e.g., double-spending and selfish-
mining) caused by soft forks originating from network partitions
can be mitigated by using a centralized consensus mechanism
with immediate finality [21], [51] that is executed on validating
nodes under the control of the trusted party. Because only a
trusted party determines the state, such blockchain systems



have a low DoD.

c) Scalability vs Security: Blockchain systems can reach
high scalability when only a few validating nodes with ideal
network conditions participate in consensus finding [21], [52].
Moreover, to enhance communication speed, those validating
nodes should be located in close proximity [1]. This approach,
however, decreases the security of blockchain systems because
system operation relies on a few validating nodes. Only a few
validating nodes need to be compromised to take control over
the blockchain system. Moreover, locating validating nodes
in close proximity increases the likelihood that all validating
nodes, thus the blockchain system, crash, for example, due to
outages.

To enhance security, a sufficient number of validating
nodes must be operational and store consistent replications
of the blockchain [21]. To anticipate crashes, validating nodes
should be geographically distributed. If a validating node
crashes, a copy of the ledger can be retrieved from another.
Synchronization of a large number of validating nodes that are
geographically distributed, however, slows down transaction
finalization, decreasing scalability [21].

C. Related Research on Measuring the Blockchain Trilemma
Subconcepts

Related conceptual works offer definitions of the blockchain
trilemma subconcepts and highlight trade-offs between these
subconcepts [1], [3], [21], [53]-[55]. However, definitions of
the blockchain trilemma subconcepts strongly vary across prior
surveys. For example, Xu et al. [53] define DoD with respect
to network size. In contrast, Xiao et al. [1] define DoD based
on the geographical diversity of validating nodes. Other works
emphasize autonomy and equal chances of validating nodes
to contribute to consensus finding as an important aspect of
DoD [3], [21], [34], [41]. By proposing disparate definitions
of DoD, scalability, and security, prior surveys take different
angles on the blockchain trilemma subconcepts. The construct
definitions are, however, inconsistent and may not directly
relate to the blockchain trilemma, which dilutes its concept,
making it difficult to understand.

In addition to conceptual works, empirical studies propose
multiple constructs and metrics to quantify the blockchain
trilemma subconcepts. Focusing on DoD, scalability or secu-
rity, in separation—not the entire blockchain trilemma—prior
research [7]-[9], [26], [56] conducted experiments to better
understand influences of blockchain system configurations on
these subconcepts. Those works present multiple constructs
for the same blockchain trilemma subconcepts. For example,
changes in throughput and changes in confirmation latency due
to faulty nodes were proposed to calculate fault tolerance, [7],
[8] and stale block rate [10], [57] is used to operationalize the
security subconcept. Similarly, throughput (i.e., transactions per
second; [7], [8], [58]) and confirmation latency (e.g., [9], [57],
[59], [60]) are used to estimate scalability subconcept. The
same constructs are used to investigate different blockchain
trilemma subconcepts. For example, availability was proposed
to investigate scalability [9] and security [10]. Selecting
suitable constructs remains difficult because there is insufficient

justification for the validity of the proposed constructs and
their operationalizations for measuring the blockchain trilemma
subconcepts and how to interpret the constructs.

For blockchain systems using PoW-based consensus mech-
anisms, Nakai et al. [2] formalized the blockchain trilemma
and demonstrated its existence in simulations. The authors
used the number of transactions per block processed per time
interval to estimate scalability, the inverse fork rate (number
of soft forks) as a security construct, and token concentration
to approximate DoD. Despite offering valuable insights, the
proposed operationalized constructs only apply to blockchain
systems using PoW-based consensus mechanisms.

For blockchain systems using PoS-based consensus mecha-
nisms, Fu et al. [59] and Quattrocchi et al. [12] propose the
wealth distribution and the token concentration as constructs
to investigate DoD; they propose throughput and confirmation
latency to investigate scalability. Fu et al. [59] used transaction
fees as a construct to investigate security. They reveal that
high transaction fees indicate a more secure blockchain system.
This is mainly because transaction fees serve as an incentive
to validating nodes. The authors propose average transaction
fees as an operationalized construct for investigating security.
Quattrocchi et al. [12] investigated security of blockchain
systems based on the cost of attack. The higher the cost of
attack, the more secure a blockchain system is assumed to be: it
becomes increasingly hard for attackers to accumulate sufficient
resources to successfully perform the attack. Mssassi et al.
[36] propose a formalization of the blockchain trilemma for
blockchain systems with PoW-based and PoS-based consensus
mechanisms. They used the influence of token amount or
hashing power owned by validating nodes to participate in
consensus finding to assess DoD. Similarly, they used security
thresholds (e.g., more than 50% of honest validating nodes
participating in consensus finding), and metrics for throughput
and confirmation latency constructs to measure scalability.

With a focus on permissioned blockchain systems, Wang
et al. [15] mapped the blockchain trilemma to the CAP
theorem [47], [48]. The authors make three assumptions: (1)
eventual consistency of the blockchain system, (2) more than
two-thirds of validating nodes are honest, and (3) validating
nodes have the same computing power (e.g., memory) for
the validity of their model. Building on these assumptions,
the authors mapped consistency to security, availability to
scalability, and partition tolerance to the DoD of a blockchain
system. To calculate consistency, the authors use the probability
of having forks in a blockchain system. To estimate availability,
they propose computing throughput and, as a construct for
DoD, the probability that a partitioned network cannot function
properly. While the proposed constructs are helpful, their
applicability to blockchain systems that do not meet those
assumptions remains unclear.

In summary, prior research proposes useful constructs
and associated metrics to quantify the blockchain trilemma
subconcepts in blockchain systems with different designs.
However, justification for the suitability of proposed constructs
is often lacking, and literature on operationalized constructs
is scattered across various sources. This leads to difficulty
in selecting suitable constructs and metrics. To tackle this



issue, the suitability of constructs and associated metrics for
measuring the blockchain trilemma subconcepts needs to be
better understood.

III. METHODS

We developed a set of constructs and associated metrics
to operationalize the subordinate concepts of the blockchain
trilemma in two steps. First, we conducted a systematic
literature search [17] to compile an extensive set of relevant
publications on the blockchain trilemma. Second, we analyzed
the collected literature using abductive thematic analysis [18]
to extract the constructs and associated metrics used to
measure the blockchain trilemma subconcepts. The following
subsections detail these two steps.

A. Literature Search

We conducted a systematic literature search [17] to identify
publications that present constructs and associated metrics for
analyzing blockchain trilemma subconcepts. To evaluate the
relevance of publications, we applied five inclusion criteria:
English language, level of detail, peer-reviewed, topic fit, and
uniqueness (see Table I).

We used the search string: (“benchmarking” AND
“blockchain trilemma”) to compile a set of publications on the
blockchain trilemma via ACM Digital Library, IEEEXplore,
ScienceDirect, and Scopus on March 26, 2024. This query
was informed by a preliminary review of domain-specific
terminology and indexing practices. The search returned 1,814
potentially relevant publications: 1,258 from ACM Digital
Library, 546 from IEEE Xplore, 7 from ScienceDirect, and 3
from Scopus.

We screened all 1,814 publications based on title, keywords,
and abstract against our inclusion criteria. This step excluded
436 publications: 4 were not in English, 348 were not peer-
reviewed, 77 lacked topic fit, and 7 were duplicates, leaving
1,378 potentially relevant records.

We subsequently used the same inclusion criteria to assess
the relevance of the 1,378 potentially relevant publications
based on full texts. We excluded 1,211 publications due
to insufficient detail. Moreover, we excluded 24 additional
publications due to insufficient topic fit. The second relevance
assessment yielded 143 relevant publications.

During our abductive analysis (Section III-B), we observed
underrepresentation of constructs related to DoD and security.
To address this and enhance theoretical sufficiency, we con-
ducted targeted theoretical sampling [19], a purposive strategy
used in abductive research to refine and deepen emerging
conceptual insights. We used Google Scholar and re-applied
the original search string to identify studies omitted in the
initial search due to indexing limitations. This supplemental
search yielded 12 additional publications that met our inclusion
criteria (Table I), resulting in a final corpus of 155 publications.

B. Literature Analysis

We applied abductive thematic analysis [18]-[20] to identify
constructs and metrics associated with the blockchain trilemma

subconcepts. Abductive thematic analysis combines inductive
coding and deductive theorizing in an iterative process, allowing
researchers to move between data and theoretical constructs
to generate conceptually rich themes. This approach enables
theory development that is both grounded in the literature and
informed by existing conceptual frameworks [19].

We adopted the blockchain trilemma and its subconcepts
(see Section II-B) as a theoretical lens. These subconcepts are
inherently broad and abstract; hence, we sought to enrich and
refine them through inductive engagement with the literature.
Guided by abductive reasoning, we iteratively moved between
data and theory, adjusting our understanding of both as patterns
emerged.

We began by inductively coding passages from the 155
publications that referenced constructs or metrics relevant to the
trilemma. Initial codes (e.g., fault tolerance, throughput) were
derived from the data. These were continuously refined through
theoretical reflection, developing a two-way relationship be-
tween emerging empirical codes and conceptual understanding.

We defined a theme as a construct that was empirically
grounded and associated with at least one metric. Themes thus
captured both descriptive patterns and theoretical relevance
within the blockchain trilemma. To reduce redundancy, over-
lapping constructs were merged. For example, robustness was
subsumed under fault tolerance, and availability and success
rate were grouped as indicators of scalability.

To ensure reliability and reduce subjective bias, multiple
researchers independently coded subsets of the literature. We
resolved discrepancies through discussion, refining our thematic
structure iteratively. Through cycles of coding, comparison,
and theoretical integration, we converged on a stable set of 14
final themes, distilled from 397 initial codes.

One construct was excluded due to conceptual inconsistency
and lack of empirical support. Despite attempts to contact the
original authors for clarification, the issue remained unresolved.
In line with abductive logic, which emphasizes conceptual
clarity and explanatory adequacy, we excluded this construct
from our results.

We then mapped each theme to one of the three trilemma
subconcepts based on both patterns in the literature and
alignment with conceptual definitions (Section II-B). For
instance, we assigned throughput and confirmation latency to
scalability, and fault tolerance and stale block rate to security.
Mapping disagreements were resolved through collaborative
review and consensus.

In a final review step, we assessed the internal coherence and
theoretical saturation of the thematic structure. No new themes
emerged during the last coding iterations, indicating thematic
saturation. This confirmed that the identified constructs were
both empirically grounded and conceptually robust within the
blockchain trilemma framework.

IV. CONSTRUCTS, METRICS, AND ANALYSIS APPROACHES

This section first presents an overview of the constructs
used to operationalize the blockchain trilemma subconcepts
in section IV-A. We link the constructs to the blockchain
trilemma subconcepts, explain the operationalization of the



TABLE 1
INCLUSION CRITERIA USED IN THE LITERATURE SEARCH.

Criterion Description

English Language The publication must be in English.

Level of detail
and used construct(s).

The publication must present sufficient descriptions and explanations of the investigated blockchain trilemma subconcept(s)

Peer-Reviewed The publication is peer-reviewed.

Topic Fit The publication focuses on measuring at least one of the blockchain trilemma subconcepts, and the constructs apply to
core blockchain systems with no specialized hardware (e.g., trusted execution environments) and no peripheral software
artifacts (e.g., payment channel networks).

Uniqueness The publication must be the latest version and must not be a duplicate in the literature set.

constructs through merits, and point out the limitations of the
operationalized constructs. Moreover, we offer examples of
how the constructs can be used. Subsection IV-B showcases
uses of the operationalized constructs in analysis approaches.

A. Constructs and Metrics to Measure the Blockchain Trilemma
Subconcepts

We identified 14 constructs associated with the blockchain
trilemma subconcepts (see Table II): 5 for DoD, 3 for scalability,
and 6 for security. These constructs are operationalized through
16 metrics, which are detailed in the following. Supplementary
material A offers an overview of the input variables used in
the metrics.

1) Degree of Decentralization: To estimate the DoD of
blockchain systems, we identified five metrics with the fol-
lowing constructs: block proposal randomness, geographical
diversity, hashing power distribution, token concentration, and
wealth distribution.

Block Proposal Randomness: The degree to which it is
uncertain what validating node will propose the next block.

Depending on the consensus mechanism, a static (e.g., in Raft
[50]) or randomly selected validating node (e.g., in Nakamoto
consensus [22]) proposes the next block to be appended to the
blockchain. To compute the extent to which the selection of
such a validating node is random, Shannon entropy is often
used [11], [13], [14], [35], [38]. Shannon entropy is a measure
of uncertainty regarding the occurrence of discrete events, such
as the proposal of a new block by validating nodes. It is defined
as follows:

H(X) :H(p17p277pn) (13)
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Shannon entropy H(X) represents the entropy of block
proposal randomness. 7 is the total number of validating nodes.
b; refers to the number of blocks that a validating node i
proposed. p; = ST b __ corresponds to the probability of a
validating node ¢ proposmg a block in a block creation interval.
To adjust Shannon entropy, the scaling factor k£ can be used
[14]; often, it is set to 1.

A higher Shannon entropy indicates more equal chances
of validating nodes to propose the next block, indicating a

high DoD [35]. Conversely, a lower Shannon entropy signifies
uneven participation of validating nodes in the consensus
finding, reflecting a lower DoD in the blockchain system [11].

The following exemplifies the use of Shannon entropy to
estimate the DoD of a fictitious blockchain system with a
PoW-based consensus mechanism. Suppose three validating
nodes nq, ne, and ng, which have proposed n; =1, no = 1,
and nz = 8 blocks, respectively. The total number of proposed
blocks is 10, leading to the following probabilities:

1 71 78
10’ b2 = p3 =

10 10
Substituting into equation 1:

1 1 8 8
H(X)z—((lo longO) 2+<10 1og210)>

=0.922

p1 =

The highest value for DoD that can be calculated using
equation 1 is reached when all validating nodes have equal
probabilities. If all validating nodes from the above example
have the same probability of % to propose the next block,
maximum entropy corresponds to 1.585. Thus, the calculated
entropy of 0.922 is moderate, indicating that the exemplary
blockchain system is rather centralized.

Shannon entropy can be used to estimate DoD based on the
probabilities of validating nodes to propose the next block
in blockchain systems with random leader selection [38].
Shannon entropy only focuses on block proposals, neglecting
which proposed blocks are actually finalized. Network effects,
such as bandwidth variations, can influence block propagation
speed and decrease DoD. Blocks in a partition with higher
bandwidth propagate faster than those in lower-bandwidth
partitions [1], [61]. In that setting, the likelihood that the
blockchain system finalizes a block from a validating node in
a partition with a higher bandwidth is higher than for the block
that was first propagated in a partition with a lower bandwidth.
Consequently, validating nodes of the partitions with different
bandwidths cannot equitably participate in consensus finding,
which centralizes the blockchain system [62]. Such aspects
are not reflected in Shannon entropy when focusing on
block proposals. Even if the block proposal probabilities per
validating node are equal, corresponding to maximum Shannon
entropy, the actual DoD of the blockchain system can be low.



TABLE I
OVERVIEW OF THE IDENTIFIED CONSTRUCTS ASSOCIATED WITH THE BLOCKCHAIN TRILEMMA SUBCONCEPTS (I.E., DEGREE OF DECENTRALIZATION,
SCALABILITY, AND SECURITY).

Construct Description

Block Proposal Randomness

The degree to which it is uncertain what validating node will propose the next block.

Geographical Diversity

The degree to which validating nodes in a blockchain system are distributed across different locations.

Hashing Power Distribution
next block.

The extent to which hashing power is distributed among the validating nodes that compete to propose the

Token Concentration

The distribution of token shares that validating nodes own in a blockchain system.

Wealth Distribution

The degree of inequality between validating nodes in terms of token ownership.

Availability

The degree to which a blockchain system is operational and delivers up-to-date responses.

Confirmation Latency

The timespan between the proposal of new blocks and their confirmation.

Scalability | Degree of Decentralization

Throughput The highest number of transactions a blockchain system can process in a specified timeframe.
Availability The degree to which a blockchain system operates correctly at an arbitrary time.
Consistency The degree to which all validating nodes are in a shared and agreed-upon state.
. Cost of Attack The cost in fiat currency to gain control of a blockchain system through an attack.
g Fault Tolerance The degree to which a blockchain system operates correctly despite experiencing accidental or Byzantine
g faults.
77
Reliability The continuity of a blockchain system to offer correct service.

Stale Block Rate

in a specified timespan.

The number of blocks that have been propagated in a blockchain system but not finalized in the mainchain

Geographical Diversity: The degree to which validating nodes
in a blockchain system are located in different locations.

Blockchain systems are distributed systems where nodes
are often physically distributed across different locations.
Equation 3 can be used to calculate geographical diversity
G D of blockchain systems [37]:

GD = (G-De:z:cl - GDtarget) - GDequal
GDea:cl - GDequal

(€)

GD.e denotes the geographical diversity when all val-
idating nodes of a blockchain system are operated in one
location. G'Dyqrget signifies the actual geographical diversity
of a blockchain system to be quantified. GDquq denotes the
geographical diversity when the number of validating nodes is
equally distributed across locations. Both GD;qrget, GDegels
and G'D.gyq are calculated using the auxiliary geographical
diversity G D, as defined in equation 4. GD,,,, defines the
standard deviation of the distribution of validating nodes for
GDta'r‘get’ GDexcls and GDequal~
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|N¢| denotes the total number of locations considered in
the calculation. |N| signifies the number of locations where
validating nodes of a blockchain system operate. u represents
the mean of the validating nodes (i.e., the number of validating
nodes divided by the number of operating locations). |n;| is

the number of validating nodes operating in the i, location.
The constant values in the GD,,,, are used as scaling factors.
Equation 5 defines p with n denoting the total number of
validating nodes:

n
F TN

High geographical diversity means validating nodes are
spread across multiple locations, avoiding the dominance of
validating nodes in a single location in consensus finding [1].
High geographical diversity reduces the influence of local laws,
enhancing regulatory neutrality [37], which contributes to a
higher DoD [1].

The following example illustrates how equation 3 can be
used. Suppose there are ten locations out of which validating
nodes operate in four locations only. Suppose the total number
of validating nodes in a blockchain system equals 100. Using

&)

equation 5, y = % = 10. The number of validating nodes
operating in each location equals %O = 25. Using equation 4

to calculate G'Dygrget leads to:

log(4+1) 10 — 10g<10+1) 10
log, 10 — log 1941y 10

><\/(25—10)2><4+(0—10)2><6

GDtarget =|2-

= 22.05

10
If all 100 validating nodes operate in one location, using
equation 4, GD.,.; equals:

_ 10g<1+1) 10 — lOg(10+1) 10

GDeger = | 2
el logy 10 — log (1941 10




y \/(100— 10)2 x 14 (0 —10)2 x 9
10
If the 100 validating nodes are equally distributed across
10 locations, 10 validating nodes are located in each location,
GDecguqr equals:

= 30.00

lo 10 — lo 10
GDoguat = 2 - €(10+1) g(10+1)
10g2 10 — 10g<10+1) 10
(10 -10)2 x 10 0
10 B

With the results obtained from calculations of GDqurget,
GDeger, and G D gqq; in three forms, the geographical diversity
of the blockchain system is as follows:

(30 —22.05) -0
30—-0

DoD can be increased in terms of geographical diversity
if validating nodes are equally distributed across all possible
locations compared to when they are located in a few locations.

A major limitation of this metric is the lack of a clear
definition of ‘location.” The criteria for determining when
a location is considered ‘new’ are unclear. New locations
could be defined based on factors such as physical distance,
cultural distinctions, or regulatory differences. The selection
of relevant locations is left to the discretion of practitioners,
which can substantially influence the measured geographical
diversity. Validating nodes located in different locations can
have different bandwidths and influence consensus finding (e.g.,
hashing power or token stakes). In blockchain systems that
use leader selection based on PoW (e.g., the Bitcoin system),
for example, validating nodes with little bandwidth are at a
disadvantage. Such disadvantages are neglected in equation 3,
but could centralize blockchain systems to validating nodes with
wide bandwidth [62]. Moreover, to use equation 3, it is assumed
that the locations of all validating nodes are known, which
hardly applies to public-permissionless blockchain systems like
the Bitcoin system. For example, validating nodes can obfuscate
their actual location through virtual private networks or TOR
network [63]. In such cases, equation 3 will produce inaccurate
results. Furthermore, package routing through central internet
service providers could decrease the DoD of blockchain systems
[64] but is also neglected in equation 3. While being useful
as a construct of DoD, geographical diversity likely positively
correlates with security: a high geographical diversity can
increase resilience to network disturbances and robustness
against outages [1]. Thus, to quantify trade-offs between

GD = = 0.250

blockchain trilemma constructs, equation 3 could be unsuitable.

Hashing Power Distribution: The extent to which hashing
power is distributed among all validating nodes that compete
to propose the next block.

In most blockchain systems using PoW-based consensus
mechanisms, such as the Bitcoin system, validating nodes
compete to produce the next block by computing hash values
that meet a specified requirement, such as being smaller than
a hash target value. The process of computing hash values

from random nonces in concatenation with block data is called
‘mining.” Nodes with more hashing power (mining power) are
more likely to propose the next block than those with less
hashing power.

Equation 9 defines how Nakamoto coefficient is calculated
to estimate the hashing power distribution in blockchain
systems [2], [11], [12], [35], [59]. Nakamoto coefficient is
the minimum number of validating nodes needed to surpass a
threshold in hashing power required to control a blockchain
system. For example, an attacker must control more than 50%
of the hashing power to control a blockchain system with a
PoW-based consensus mechanism to succeed in 51% attacks [1],
[12], [26].

k

NC = min {kj 6[1,2, . ,n] : Zp,» > threshold} &)

i=1

n denotes the number of validating nodes. p; denotes the
resources (e.g., hashing power) of the i, validating node.

A high Nakamoto coefficient is an indicator of a high DoD
of a blockchain system. Hashing power is not concentrated in
a few validating nodes, but most nodes possess similar hashing
power. Thus, attackers must control a relatively large portion
of validating nodes to have sufficient hashing power to control
consensus finding. In contrast, a low Nakamoto coefficient
indicates that a small portion of validating nodes possesses a
large fraction of resources. Attackers must only gain control
over a few validating nodes to control consensus finding [2],
[59].

Nakamoto coefficient can be used to estimate the DoD of
blockchain systems that employ mining for leader selection. In
the Bitcoin system, the top two mining pools—Unknown and
AntPool—possess approximately 60.63% of the total hashing
power [65]. Using equation 9, the hashing power distribution in
the Bitcoin system is 2 because the two mining pools control
more than 50% of the hashing power. This indicates a low
DoD of the Bitcoin system.

Nakamoto coefficient offers a simple estimation of the DoD
of a blockchain system. However, the Nakamoto coefficient only
indicates the minimum number of validating nodes required
to compromise consensus in a blockchain system, neglecting
overall resource distributions across all validating nodes in
a blockchain system. In a blockchain where all validating
nodes have equal hashing power, for example, Nakamoto
coefficient will be high but will not enable inferences of the
hashing power distribution in the blockchain system. Moreover,
Nakamoto coefficient neglects factors influencing the success
of compromising a blockchain system, such as the position
of a validating node in a network, the number of validating
nodes, as well as bandwidth and network quality [26], [28].

Token Concentration: The distribution of token shares that
validating nodes own in a blockchain system.

In many public blockchain systems, including the Bitcoin
and Ethereum systems, nodes are incentivized to participate
in consensus finding by rewards in the form of tokens: if a
node produces a block that is (probabilistically) finalized in
the blockchain system, that node is rewarded by a defined



token amount. The share of tokens a validating node owns can
reflect its success in proposing finalized blocks. In blockchain
systems with consensus mechanisms that select leaders based
on their shares of staked tokens, such as in the BitShares and
Cosmos Tendermint systems [1], [66], [67], the token shares
of validating nodes can also indicate the nodes’ influence on
consensus finding. In both cases, the concentration of token
ownership can be a helpful estimate of the DoD of blockchain
systems.

To calculate token concentration, Herfindahl-Hirschman
Index HHI is often used [2], [11], [59]. HH is a metric to
calculate the concentration of token ownership (e.g., with a
focus on received token rewards or staked tokens) by validating
nodes in a blockchain system [59]. HH I can be formalized
as follows [2], [11], [59]:

n 2
t;
HHI = x 100 10a)
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n t; 2
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n denotes the number of validating nodes under investigation.

t; represents the token amount owned (or staked) by the i,
validating node. tiotq = Z?:I t; signifies the total token
amount owned (or staked) by all validating nodes considered
in the investigation. ttz:al is multiplied by 100 to translate the
token shares owned per node into percentage values. According
to the literature examined on the use of H HI in blockchain
research [11], a blockchain system has a low DoD if HHI >
2,500. In economics (e.g., [68], [69]), HHI < 1,000 indicates
a low market concentration (i.e., high DoD), 1,000 < HHI <
1,800 a medium DoD, and 1,800 > HHI indicates high
market concentration (i.e., low DoD).

As equation 10 produces results influenced by n [70], HHI
needs to be normalized to be comparable across evaluations of
blockchain systems with different n. To compute the normalized
HHI, ,rm, equation 11 is commonly used [70]:

n

1
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HHInorm =
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HHI and HH I, ., help estimate the DoD of blockchain

systems based on the concentration of token ownership [11].

A high HHI indicates that a few validating nodes own most
tokens, suggesting they dominate block proposals and often
receive rewards. For stake-weighted influences on consensus
finding, such as in BitShares’ consensus mechanism [1], [66]
and stake-weighted quality of service in Solana [71], this
reflects centralization, as nodes with more staked tokens have
greater influence. Only staked tokens matter, not total token
holdings. A low H H 1 indicates a more equal token distribution
across validating nodes. This suggests that validating nodes
have been similarly successful in gaining rewards, indicating
equitable participation in consensus finding and, thus, a high
DoD. In blockchain systems with stake-weighted influences
on consensus finding, a low HHI moreover suggests that
consensus power is more evenly distributed among validating
nodes, reinforcing decentralization.

Equation 10 can be used to investigate blockchain systems
that involve tokens in consensus mechanisms (e.g., weighted
PoS-based consensus mechanisms or distribution of block
rewards). The following offers an example of how to use
HHTI to estimate the DoD of a fictitious blockchain system
with a PoS-based consensus mechanism that distributes block
rewards. Suppose eleven validating nodes ng, n1, ..., and nyg
owned 5 tokens each. The total token amount owned by the
two validating nodes is 55. Using equation 10, HHI of the
fictitious blockchain system can be calculated as follows:

2
HHI = 10,000 x <<555> X 11) ~ 909.1

HHI =909.1 and HH I,0pm = 999.91(< 1,000) indicate
a high DoD.

If ny owned 37 tokens, ten validating nodes owned 1.8
tokens each, and the remaining seven validating nodes owned
no tokens, HHI ~ 4,622 and HHI,,rm = 5,084(> 2,500),
indicating a low DoD.

HHI focuses on the token amounts owned (or staked)
by validating nodes, neglecting whether the tokens were
received as block rewards or were simply transferred to the
addresses of the validating nodes for other reasons. Because
owned token amounts may not only correspond to earned
block rewards, using any token amounts owned by validating
to estimate DoD could bias HHI. Moreover, a one-to-one
mapping of addresses and nodes is assumed to calculate
HHI. This could lead to misinterpretations of HHI in
sociotechnical settings where single users own multiple nodes
and addresses (e.g., in Sybil attacks) [1], [11]. The cumulative
token amounts of such users could be very high, leading to
strong token concentration, while H H I still indicates low
token concentration. To mitigate resulting misinterpretations,
HHT should be applied to cumulative token amounts per user
instead of addresses or validating nodes. As HH1I offers a
simple estimate of token concentration, it may not appropriately
capture such more complex settings.

Wealth Distribution: The degree of inequality between vali-
dating nodes in terms of token ownership.

In many public blockchain systems, such as Bitcoin and
Ethereum, nodes receive token rewards as an incentive to
participate in consensus finding. When a node successfully
proposes a block that gets confirmed, it earns a predefined token
amount. As a result, the distribution of tokens to validating
nodes can reflect their success in block proposals.

Gini coefficient can be used to calculate wealth distribu-
tion [2], [11], [12], [35], [38], [59]. Gini coefficient is a
measure of inequalities (e.g., in terms of token ownership of
validating nodes in a blockchain system) and is formalized as
follows [11], [35], [59]:

D1 2 [t — ]
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n represents the total number of validating nodes. ¢; denotes

the number of tokens owned by a validating node <. ¢; is the
number of tokens owned by a validating node j.

Gini = (12)



The co-domain of Gini coefficient ranges from 0, indicat-
ing equal wealth distribution among validating nodes, to 1,
indicating high inequality in wealth distribution [11]. A high
Gini coefficient signifies significant wealth inequality among
validating nodes, which may result from unequal opportunities
to earn rewards for proposing blocks. Less-wealthy validating
nodes may be hampered from participating in consensus finding,
indicating a low DoD. In contrast, a low Gini coefficient points
to a more balanced wealth distribution among validating nodes.
This suggests that nodes have more equal chances to participate
in consensus finding, which corresponds to a high DoD.

Equation 12 can be used as follows. Suppose five validating
nodes ni,ng,ns3,ng, N5, own the following tokens: n; = 2,
ny = 3, ng = 5, ng = 6, and ns = 2. The mean differences
of tokens owned by validating nodes can be calculated in pairs
as follows:

pairl = (|2 =2[) x 2+ (|2 = 3]) + (12 = 5)) + (|2 - 6]) = 8,
pair2 = 7,paird =9, paird = 12, pairb = 8

Using equation 12, the wealth distribution in the exemplary
blockchain system is calculated as follows:

8+7+941248
2x5x18

If a single validating node owned 18 tokens while other
validating nodes owned none, the Gin: coefficient equals
0.8, indicating a lower DoD compared to 0.244 shown in the
previous example. If all validating nodes owned equal amounts
of tokens Gini = 0. The value of the Giini coefficient obtained
in the earlier example (i.e., 0.244) indicates that validating
nodes have fairly equitable wealth, indicating a higher DoD.

The Gini coefficient is an economic metric that offers a
simple estimate of the DoD based on wealth distribution. The
metric, however, underrepresents other considerations (e.g.,
use of reputation in weighted PoS) [72] sometimes used in
consensus finding in addition to token ownership. Amounts of
tokens owned by validating, therefore, do not guarantee their
actual participation in consensus finding. Moreover, the metric
neglects other factors that can influence consensus in addition
to wealth distribution (e.g., bandwidth). Validating nodes with
high bandwidth often have more influence on consensus finding
than those with low bandwidth [1], [61]. Additionally, for the
metric, it is assumed that each validating node is independently
controlled. In practice, however, a single entity may operate
multiple nodes and hold their tokens. To correctly use Gins
coefficient, it is essential to account for such social factors.

2) Scalability: We identified five metrics to operationalize
the constructs availability, confirmation latency, and throughput
of scalability.

Gini = ~ 0.244

Availability: The degree to which a blockchain system is
operational and delivers up-to-date responses.

Before transaction data is available from all validating nodes,
the nodes must have synchronized to be in a consistent state [1],
[48], [49]. Prior to synchronization, states of validating nodes in
blockchain systems with probabilistic finality are inconsistent.

Validating nodes from different network partitions may respond
differently to identical responses.

Equation 15 can be used to calculate availability ASca as a
construct of the scalability of blockchain systems [9]:

ASca — NumO fCon fTry,
 NumOfTry,

NumO fCon fTr:, signifies the number of confirmed trans-
actions until time t5. The number of transactions issued to
a blockchain system at time t;, with ¢; < to, is denoted by
NumO fTry,.

Availability of blockchain systems strongly depends on
the throughput and time for synchronization of validating
nodes [12]—key indicators of scalability of blockchain systems
[8], [21], [61] In blockchain systems with high availability,
validating nodes rapidly process transactions and synchronize,
ensuring that all validating nodes quickly transition to a consis-
tent and up-to-date state in a short time. After synchronization,
all validating nodes provide identical and up-to-date responses
to requests. Conversely, in blockchain systems with low
availability, validating nodes slowly process transactions and
synchronize, delaying the time until all validating nodes deliver
up-to-date responses. Depending on the network partition a
requested node is part of, users could receive different responses
to identical requests. In blockchain systems with probabilistic
finality, such as the Bitcoin system, slow synchronization can
entail network partitions, where validating nodes temporarily
have inconsistent states in different network partitions. As a
result, depending on the network partition a validating node
is part of, it may return up-to-date or outdated responses,
indicating lower availability.

Equation 15 applies to most blockchain systems, including
the Algorand, Bitcoin, and Ethereum systems [9], as illustrated
in the following simplified example. The Ethereum system
confirms approximately 1.326MM transactions in an exemplary
day [73]. We assume that 1.5MM transactions were issued
to the Ethereum system in one day. Using equation 15, the
availability of the Ethereum system is 88.4% on that exemplary
day.

Equation 15 can be used to estimate scalability by focusing
on workload. However, it only incorporates confirmed and
issued transactions. Transactions that were processed but later
not finalized are ignored. Although this simplification is often
sufficient, more detailed analyses may require distinguishing
between different outcomes of transaction processing (e.g.,
verification or drop of transactions). For example, a high num-
ber of dropped transactions among those processed could bias
results, as the number of potentially confirmable transactions
may be underrepresented.

x 100%

15)

Confirmation Latency: The timespan between the proposal
of new blocks and their confirmation.

When new blocks are added to a blockchain, validating
nodes must process them and decide whether to include them
permanently. In blockchain systems with probabilistic finality,
where newly added blocks may still be removed due to forks,
a block b is considered confirmed when it is added to the
blockchain and additional blocks are appended to it. With



an increasing number of subsequently appended blocks, the
likelihood to exclude b from the mainchain decreases, and b
is assumed to be finalized. In Nakamoto consensus [22], for
example, at least six additional blocks must be appended to a
block until it is considered confirmed. In contrast, blockchain
systems with immediate finality directly finalize blocks. For
example, in systems using practical Byzantine fault tolerance
(PBFT), at least one-third of the validating nodes must accept
a block for it to be finalized [29]. As confirmations are not
essential in such blockchain systems, the following metrics

mainly apply to blockchain systems with probabilistic finality.

Equation 16 offers a simple estimate of the confirmation
latency C'L; of blockchain systems with immediate and
probabilistic finality (e.g., [7], [15], [56], [74]):

CL, = BConfTime — BPropTime (16)

BConfTime represents the timestamp at which a newly
added block is confirmed in a blockchain system. B PropTime
denotes the timestamp when a new block is issued to a
blockchain system.

Security confirmations (i.e., blocks appended to a block in
focus) are particularly important in blockchain systems with
probabilistic finality, where the finalization of blocks can only
be assumed. With a focus on security confirmations, equation 17
offers another approach to calculate the confirmation latency
C L of blockchain systems [10]:

CLy = SecConf x BCI 17

SecConf is the number of blocks that must be added for a

block to be confirmed in the mainchain of a blockchain system.

BCT is the time between the creation of consecutive blocks
that are added to the mainchain of a blockchain system.
High confirmation latency often entails low throughput, thus
low scalability of a blockchain system. For example, block
confirmation latency in the Bitcoin system is high due to a
majority of validating nodes required to reach consensus and

a minimum of six subsequent blocks for confirmation [21].

In contrast, lower confirmation latency often entails higher
scalability because blocks are processed and confirmed in a
short time [36], [61]. Equation 16 can be adapted to blockchain
systems with immediate finality by replacing BCon fTime
with BlockFinalizationTime—the timestamp at which a
block is finalized.

The following example illustrates how equation 16 can be
used. From Etherscan [75], we obtained block confirmation
timestamps for five blocks in the Ethereum system from block
number 21, 744, 430:

beto = 1,738,325, 567, ber 1 = 1,738,325, 579,
bero = 1,738,325,591, bey 5 = 1,738,325, 603,
bers = 1,738,325,615

The corresponding block proposal timestamps are as follows:

bpio = 1,738,325,207, by 1 = 1,738, 325,207,

bpio = 1,738,325,591, b5 = 1,738, 325,591,
bpia = 1,738,325, 501

We assume that the epoch times are in seconds throughout
the manuscript. Using equation 16, the confirmation latencies
of the five blocks are C'L; g = 360, CLy; = 372, CLy 5 =0,
CL; 3 =12,and CL; 4 = 24 seconds. This means consecutive
blocks in the Ethereum system can have different confirmation
latencies.

The following example illustrates how equation 17 can be
used. Blockchain Explorer [76] displays the block confirmation
timestamps for six blocks, starting from block number 879,319
in the Bitcoin system:

bero = 1,736,963,315, bee 1 = 1,736,963, 430,
ber.o = 1,736,964,423, bey 3 = 1,736,965, 070
ber.s = 1,736,965, 163, ber.5 = 1,736,965, 455

The block creation intervals b o, ..., bei 4 in seconds of five
blocks from block number 879,320 are as follows:

beio = 115,bci1 = 993, beio = 647, bei 3 = 93, beia = 292

Since the number of security confirmations is 6 in the Bitcoin
system [77], using equation 17, confirmation latencies showcase
variations between consecutive blocks as follows:

CLyg =690,CLyy = 5,958, CLy 5 = 3,882,
CLys =558,CLyy = 1,752

The higher the number of required security confirmations
and the longer the block creation interval, the longer it takes
to probabilistically finalize blocks. Thus, the larger C'Ls, the
lower the scalability of a blockchain system can be assumed.

Both metrics for estimating confirmation latency focus on
the time it takes for a block to be confirmed in a blockchain
system, but neglect the number of transactions included per
block. Additional blockchain characteristics, such as block
size, must be considered, in addition to confirmation latency,
to quantify the scalability of blockchain systems. A large block
size enables the inclusion of more transactions per block. Thus,
large blocks that include many transactions can mitigate long
confirmation latency [78], [79]. This is, however, not reflected
in either metric for the confirmation latency construct.

Throughput: The highest number of transactions a blockchain
system can process in a specified timeframe.

Transaction processing is at the core of blockchain systems.
Transaction processing involves transaction propagation be-
tween validating nodes, validation of transaction data, batching
valid transactions in blocks, and appending blocks to the
mainchain. Depending on the type of finality of the consensus
mechanisms used in a blockchain system, transactions included
in the mainchain are either finalized (immediate finality) or need
to be confirmed by subsequent blocks (probabilistic finality).

Equation 22 can be used to calculate throughput TPS; of
blockchain systems (e.g., [7]-[10], [12], [59], [80], [81]):
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NumO fConfTr denotes the number of transactions that
are added to the blockchain and are assumed to be confirmed
(e.g., they will not be excluded in an attack). ¢; denotes the
system timestamp at the end of an observation. ¢ty denotes the
system timestamp at the beginning of an observation.

As an alternative to equation 22, equation 23 was proposed
to calculate throughput T'P.S; of the Ethereum system [82]:

TPS, = (22)

min(Np, MemPoolSize)
BCT

Np denotes the number of confirmed transactions per
block. MemPoolSize denotes the maximum possible number
of pending transactions buffered in a MemPool (usually
1,024) [82]. BC'I denotes the average system time between
the production of consecutive blocks included in a blockchain
system. To calculate N, equation 24 can be used:

TPS,; =

(23)

_ |Grimit]
|Gcost‘

|Glimit| denotes the block gas limit, which is the maximum
amount of computational effort a user is willing to extend in
confirming transactions. |G.st| denotes the block gas cost per
transaction, which is usually 21,000 gas.

Throughput can be used to quantify the scalability of
blockchain systems in terms of transactions per second. High
throughput has been proposed as a key indicator of scalability
of blockchain systems [2], [3], [52], [59], [81], [83]. In contrast,
low throughput of a blockchain system indicates low scalability
because fewer transactions can be confirmed in a blockchain
system within a specified time.

Equation 22 can be used to measure the scalability of most
blockchain systems. The five consecutive blocks of the Bitcoin
system, starting from block number 879,320 [76] stored 16,457
transactions with a creation interval of 2,025 seconds. Using
equation 22, the throughput of the Bitcoin system equals
approximately 8 transactions per second.

The five consecutive blocks in the Ethereum system, starting

Ng (24)

from block number 2,1744,430 stored 947 transactions [75].

The timespan between the inclusion of the first and fifth blocks
equals 48 seconds. Using equation 22, the throughput equals
19 transactions per second. At the time of writing, there are
an estimated 160,000 average pending transactions per hour
in the Ethereum system [84]; it would take approximately 2

hours to process them in addition to incoming transactions.

This showcases that the Ethereum system faces a backlog
of incoming transactions, highlighting scalability challenges
despite a better throughput.

Equation 23 can be used to estimate the throughput of
the Ethereum system. We obtained the transaction data of
five blocks, starting from block number 21,744,430 from
Etherscan [75] to quantify availability. The five blocks reveal
the following block gas limits:

byio = 30,115,832, by;.1 = 30,086,424, b, 5 = 30, 115, 804,

byi.s = 30,145,212, by 4 = 30,115,775

Using equation 24 and assuming a block gas cost of
21,000 gas, the number of confirmed transactions for the five
blocks is as follows:

Npo=1,434,Np1 = 1,433, N, = 1,434,
Nps3=1,435Np4 = 1,434

The average number of transactions for the five blocks is
1,434. Because the MemPoolSize is the minimum value
compared to Np, using equation 23, the throughput of the
Ethereum system equals 85 transactions per second.

Equations 22 and 23 apply only to throughput, neglecting
scalability in terms of the number of validating nodes in
blockchain systems. The number of validating nodes, however,
influences communication complexity in consensus finding,
thus the time until transactions are confirmed [85]. Moreover,
the metrics only focus on confirmed transactions, neglect-
ing overhead to process transactions that are not included
in the mainchain. Neglecting such transactions may cause
equations 22 to underestimate maximum throughput.

3) Security: To quantify the security of blockchain systems,
we identified six metrics that operationalize the constructs:
availability, consistency, cost of attack, fault tolerance, relia-
bility, and stale block rate.

Availability: The degree to which a blockchain system operates
correctly at an arbitrary time.

To remain operational at all times, blockchain systems
typically strongly rely on replication and redundancy [21].
However, according to fundamental principles in distributed
systems theory—such as the CAP theorem [48] and the
PACELC model [49]—there exists an inherent trade-off be-
tween availability and consistency, especially in the presence
of network partitions. Blockchain systems inherit this trade-
off [15], [21], making it difficult to simultaneously maximize
both availability and consistency. As a result, it cannot always
be expected that a blockchain system will provide correct and
up-to-date transaction data at any arbitrary time, especially in
the presence of failures in the system.

Equation 27 can be used to calculate availability ASec in
the context of security of blockchain systems [10]:

MTBF
MTBF +MTTR

ASec = x 100% 27

MTBEF (i.e., mean time between failures) denotes the
average time a blockchain system operates correctly before
failures. A failure may correspond to validating nodes failing
to reach consensus or the throughput of the blockchain systems
drops below a minimum threshold. The MT BF' encompasses
both repair and restoration times. MTTR (i.e., mean time to
repair) denotes the average time required to diagnose, repair,
and restore a blockchain system to full functionality after
a failure. The original equation for the ASec metric uses
MTTF (i.e., mean time to failures), which is commonly used
for estimating the availability of non-repairable systems. To
make the metric better suitable for blockchain systems (i.e.,



repairable systems), we replaced MTTF with MTBF' after
discussion with the authors of the metric [10].
To calculate the MT BF, equation 28 can be used:

TotalOperationalTime
NumberO f Failures

TotalOperationalTime denotes the total time that a
blockchain system operates correctly. NumberO f Failures
denotes the total number of failures in a blockchain system
(e.g., exceeding a specified timespan to reach consensus due
to crashed validating nodes).

To calculate MTTR, equation 29 can be used:

MTBF =

(28)

Total RepairTime
NumberO f Repairs

Total RepairTime denotes the total time that a blockchain
system took to recover from failures. The total num-
ber of repairs in a blockchain system is denoted by
NumberO f Repairs.

In blockchain systems with low availability, validating nodes
slowly synchronize, which can lead to inconsistencies. Such
inconsistencies lead to multiple partitions in a blockchain
system. Partitions in blockchain systems can be exploited by
attackers to perform double spending (i.e., using the same
asset twice or more into different partitions) [21], [28]. In
blockchain systems with high availability, validating nodes’
states transition to the same subsequent state quickly to
maintain consistency. Quickly reaching consistency across all
validating nodes increases availability and can help mitigate
attacks that exploit inconsistencies, such as double-spending
attacks.

Equation 27 can be used to quantify the availability of most
blockchain systems, as illustrated in the following example.
Assuming that a fictitious blockchain system has been subjected
to two major failures, where validating nodes could not reach
consensus due to Byzantine attacks. The first failure lasted for
10 minutes, the second for 20 minutes. The total failure time
amounts to 30 minutes. Using equation 29, MTTR (e.g., the
average time to recover from failure) equals:

10420

MTTR = (29)

MTTR = 15

Suppose the blockchain system had been operating con-
tinuously for a year, assuming that one year approximately
equals 365 days, for 24 hours per day and 60 minutes per
hour, it would have been up for approximately 525,600
minutes. Subtracting the total time during the two failures,
the T'otalOperatingTime equals 525,570 minutes. Given that
two failures occurred, equation 28, M T BF' equals:

525,570
2
Using equation 27, availability of the blockchain system can
be estimated as follows:
262,785
262,785+ 15

Equation 27 can be used to estimate the security of
blockchain systems by computing the probability with which a

= 262,785

ASec = ( ) x 100 = 99.99%

blockchain system operates correctly. A major limitation of the
availability metric in the context of blockchain technology is
unclear guidance on what type of failure should be considered
to estimate it. Multiple types of failure exist (e.g., failures
in uptime, in preserving the integrity of a blockchain, in
reaching consensus, or in maintaining performance higher than
a specified threshold), presenting challenges to comparability
for practitioners who use the metric to estimate security.

Consistency: The degree to which all validating nodes are in
a shared and agreed-upon state.

Blockchain systems are envisioned to synchronize the state
of validating nodes to achieve consistency. Depending on the
consensus mechanism used, blockchain systems can reach
immediate consistency or eventual consistency.

Equation 30 can be used to calculate the consistency Const
of blockchain systems with eventual consistency [10]:

[Ne|
1
Const = A X Z (BConfTime; — BPropTime;) (30)
¢ i=1

| N.| denotes the number of confirmed blocks. BCon fTime;
denotes the system time when a new block i is confirmed in
a blockchain system. B PropT'ime; denotes the system time
when the block ¢ is issued to a blockchain system.

A short timespan to reach consistency in blockchain systems
indicates that transactions are processed quickly. This facilitates
validating nodes to offer a consistent view of the ledger and
mitigate Byzantine behavior of nodes as in double spend-
ing [86]. Fast synchronization of validating nodes in blockchain
systems with probabilistic finality makes it difficult for attackers
to exploit forks (i.e., conflicting versions of a ledger), for
example, in 51% attacks. In contrast, low consistency indicates
the presence of forks across validating nodes in a blockchain
system. Conflicting versions can facilitate double-spending
[21].

The following is a simplified demonstration of how
equation 30 can be used to estimate the consistency
of the Ethereum system. Block confirmation and
proposal timestamps 2 of five blocks starting from block
number 21,744,430 [75]: (1,738,325,567; 1,738,325,207),
(1,738,325,579; 1,738,325,207), (1,738,325,591;
1,738,325,591),  (1,738,325,603;  1,738,325,591), and
(1,738,325,615; 1,738,325,591). The confirmation latencies
for the five blocks are 360, 372, 0, 12, and 24 seconds.
To calculate consistency in a better-readable format, we
converted the timestamps from Etherscan into epoch time
using epoch converter [87]. In this example, the consistency
in the Ethereum system equals approximately 153.6 seconds.

Equation 30 can be used to quantify the time until con-
sistency is reached in blockchain systems. For blockchain
systems with immediate finality, C'L; needs to be adapted
to finalization instead of confirmation. C'Lo, does not apply
because SecConf = 0.

2Block confirmation time on the Etherscan is usually on the timestamp field,
whereas the block proposal timestamp is on the proposed on field.



Cost of Attack: The cost in fiat currency to gain control of a
blockchain system through an attack.

Blockchain systems are prone to different attacks (e.g.,
51% attacks and selfish mining attacks) that help attackers
(temporarily) gain control over the system. Such attacks have
different attack vectors and exploit different characteristics
of blockchain systems. In 51% attacks and selfish mining
attacks, for example, attackers exploit the probabilistic finality
of blockchain systems. Attacks to control blockchain sys-
tems are often expensive—especially in public-permissionless
blockchain systems like Bitcoin. High cost of successful attacks
can discourage Byzantine behavior by rendering successful
attacks economically unprofitable or unfeasible.

Offering an indicator of the vulnerability of blockchain
systems for specific attacks, equation 31 can be used to calculate
the cost of an attack C'oA on a blockchain system [12]:

CoA:t*c*zn:si

i=1

€1y}

To calculate CoA, a threshold ¢ must be chosen. ¢ indicates
the minimum amount of resources needed to compromise the
blockchain system, such as 51% of the hashing power in the
Bitcoin system. In consultation with the authors of the article
[12], we added ¢ to the equation to better explain the use of
the metric. c refers to the cost of one unit of required resources
in fiat currency, such as USD. n represents the number of
validating nodes in a blockchain system. s; is the amount of
resources possessed by a validating node ¢ that an attacker
needs to control in order to dominate the blockchain system.
Exemplary resources are hashing power or tokens for staking.

Equation 31 can be used to estimate the security of
blockchain systems based on two key assumptions: the required
resources (e.g., funds) must be available, and the attacker’s
gains must exceed the cost of the attack. High cost of
attack makes it difficult for attackers to acquire sufficient
resources due to economic constraints. High cost can make
attacks unfeasible to perform, enhancing the security of the
corresponding blockchain system. Low cost of attack implies
that attackers can compromise the blockchain system with low
financial investment. This can enable a broader range of users,
wealthy and less wealthy ones, to perform attacks. Moreover,
even little gains may exceed the cost of attack, which can
motivate users to attack the blockchain system. Thus, a low
cost of attack can indicate low security of a blockchain system.

Equation 31 applies to blockchain systems with PoW-based
(e.g., the Bitcoin system) and proof-of-stake—based consensus
mechanisms (e.g., the Ethereum system). In the Bitcoin system,
for example, attackers must accumulate at least 51% of hashing
power to gain control of the blockchain system. Given the
total hashing power of the Bitcoin system of approximately
781.25 EH/s [88] and assuming that each validating node
operates one ASIC miner that calculates 234 TH/s 3. the
attacker needs to control at least 1,702,725 validating nodes
to gain 398,437,650 TH/s in a 51% attack. In this simplified
example, a unit of one hash costs about USD. 2.709 x 1011

3We assume that each validating node operates one Bitmain Antminer S21
Pro 234TH, each at the cost of USD 6,339.

(excluding additional expenses such as energy cost). The cost
of a 51% attack in this simplified example amounts at least to
approximately USD 46MM, which is very expensive and thus
unlikely.

In the Ethereum system, attackers can gain control over
multiple validating nodes to dominate consensus finding. For
each validating node, the attacker is assumed to pay 32 ETH
[6], which amounts to USD 98,835.52 per validating node at
the ETH token price of USD 3,138.18 [89]. At the time of
writing, the Ethereum system comprised 1,762,190 validating
nodes [90], of which the attacker must at least control one-
third (i.e., 587,397 validating nodes) to succeed in a Sybil
attack [12]. Using equation 31, the cost of attack amounts to
18,796,704 ETH (i.e., approximately USD 58,987,440,559). As
only a few people own that much money, it is very unlikely
that single attackers perform such a Sybil attack.

Equation 31 can be used to estimate security based on
the cost of an attack to gain control of a blockchain system.
However, the metric only offers a rough estimate of the cost
with a focus on only one selected attack. To estimate the overall
security of a blockchain system using equation 31, the minimum
cost of any possible attack would need to be calculated and
compared. The cheapest attack could be interpreted as the
most likely one, thus the greatest vulnerability of a blockchain
system. Another major shortcoming of this approach is the
neglect of the severity of attacks. Moreover, for equation 31, it
is assumed that the attacker buys resources that already exist
in the blockchain system. Attackers that set up new validating
nodes to compromise the blockchain system increase the overall
hashing power. For such scenarios, ¢ needs to be adapted to
correspond to 51% of the resulting overall hashing power of
the system after the attacker nodes join the system.

Fault Tolerance: The degree to which a blockchain system
operates correctly despite accidental or Byzantine faults.

Blockchain systems are subject to faults, such as omission,
crashes, or Byzantine behavior of nodes [24], [25]. To ensure
successful synchronization despite faults, different consensus
mechanisms are robust against (i.e., tolerate) different types
of faults. For example, Raft handles compensates faults [1];
PBFT tolerates Byzantine faults [29].

Equation 32 can be used to calculate the fault tolerance F'T
with a focus on performance change [7], [8]:

FT = {AThroughputDif f, AConfLatDif f}  (32)

ThroughputDif f denotes the change in throughput due to
faulty validating nodes. ConfLatDif f signifies the change
in confirmation latency during the failure of validating nodes
in a blockchain system.

ThroughputDif f is calculated using equation 33:

ThroughputDif f = |Throughput y —Throughputr| (33)

Throughputy denotes the throughput when a blockchain
system operates normally. Throughputr denotes the through-
put when a fault occurs in the blockchain system.



To calculate ConfLatDif f equation 34 can be used:

ConfLatDiff = |ConfLaty — ConfLatp| (34)

ConfLaty denotes the confirmation latency when a

blockchain system operates normally.
Conf Lat p denotes the confirmation latency when a blockchain
system experiences faults. Input variables in equations 33 and
equations 34 can be obtained using equations 22, 23, 16, and
17.

Equation 32 can be used to quantify the security of
blockchain systems in terms of fault tolerance [7], [8], [10],
[57]. Blockchain systems with high fault tolerance demonstrate
stable throughput and latency even when some validating nodes
are faulty [7]-[9]. For example, with 1,702,725 validating
nodes in the Bitcoin system (see illustration in equation 31),
up to 51% of faulty validating nodes can be tolerated with
a good throughput and confirmation latency. Conversely, the
performance of blockchain systems with low fault tolerance
degrades in the case of faults.

Equation 32 can be used to quantify the security of
most blockchain systems with respect to fault tolerance. The
following example illustrates the use of equation 32 to estimate
the fault tolerance of the fictitious blockchain system. Suppose
a blockchain system has a throughput of 10 transactions per
second and a confirmation latency of 5 seconds in regular
operation. The throughput of this blockchain system must not
drop below 8 transactions per second. Suddenly, a large portion
of validating nodes crashes. When the crashed validating nodes
start recovering, the throughput of the blockchain system
decreases to 8 transactions per second with a confirmation
latency of 10 seconds. Using equation 32, the fault tolerance
of the fictitious blockchain can be estimated as follows:

ThroughputDiff =10—-8 =2
ConfLatDiff =|5—10 =5
FT =2,5

The fault tolerance of the fictitious blockchain system equals
FT 2 transactions per second and 5 seconds. This means that
due to faults, the throughput of the blockchain system decreased
by 2 transactions per second and increased by 5 seconds for
confirmation latency.

Equation 32 mainly reflects changes in blockchain system
performance caused by crash faults [7], [8], [10], [57]. Byzan-
tine behavior of validating nodes (e.g., double spending; [26],
[86]) is hardly reflected in the metric. Despite stable throughput
and confirmation latency, attacks such as double-spending
and selfish mining can be successfully performed without
influencing the results of equation 32.

Moreover, such performance changes reflected in fault
tolerance are hardly useful in benchmarks of a single blockchain
system to identify its Pareto-optimal configuration: fault
tolerance is, from a theoretical perspective, set with a maximum
value (e.g., one-third of validating nodes). This maximum
may diverge from the actual system behavior, which surely
is important to be evaluated. However, to measure trade-offs

between fault tolerance and constructs of DoD and scalability,
different consensus mechanisms with different theoretical fault
tolerance should be used.

Reliability: The continuity of a blockchain system to offer
correct service.

Blockchain systems employ validating nodes to operate repli-
cas that often store critical data, such as financial transactions
in decentralized exchanges [91]. Especially when used as a
critical digital infrastructure (e.g., in finance [92]), blockchain
systems must continuously offer the correct service to meet
reliability requirements.

Equation 35 can be used to calculate the reliability R(¢) of
blockchain systems [10]:

}aﬂ:€<_M;BF)

R(t) denotes the probability that a blockchain system re-
mains functional at time ¢. ¢ denotes the duration of quantifying
the reliability of a blockchain system. MT BF' denotes the
average time until failures occur (e.g., system performance
drops below a specified threshold). Equation 28 defines how
to calculate the M T BF'. e denotes Euler’s number (which
is approximately 2.718), representing continuous decay. To
make the metric better suitable for repairable systems such as
blockchain systems, we consulted the authors [10] and agreed
to update MTTF by MTBF.

In the context of security, the reliability construct is used
to express how long a blockchain system operates correctly
without failures. Blockchain systems with high reliability
operate correctly without failure for a long time, thus increased
security. Low reliability indicates frequent failures, thus rather
low security.

The following example illustrates the use of equation 35.
Imagine two failures in one year in a blockchain system, to-
taling 30 minutes. The TotalOperatingTime equals 525,570
minutes for a year with 365 days (525,600 minutes). Due to
the two failures, using equation 28, MT BF equals 262,785
minutes. Using equation 35, the reliability of the blockchain
system for a year R(525,600) is calculated as follows:

(35)

[ B25.600\ o4,
R(t)=e ( 262, 785) =e =11.77%

The fictitious blockchain system has a probability of approx-
imately 11.77% to operate unreliably within one year. The
blockchain system is approximately 88.23% reliable.

Equation 35 can be used to estimate the reliability of
blockchain systems based on failures. Such estimates can be
used to forecast how a blockchain system can function correctly
based on a history of failures. However, the metric definition
leaves practitioners to decide on what type of failure to focus
on when estimating the security of the blockchain system. This
could entail issues in terms of the comparability of results if
not clearly articulated.

Stale Block Rate: The number of blocks that have been
propagated in a blockchain system but not finalized in the
mainchain in a specified timespan.



In blockchain systems with probabilistic finality, not all
blocks proposed by validating nodes are included in the
mainchain. In blockchain systems with probabilistic finality, if
multiple nodes propose blocks simultaneously, only the fastest-
propagating block is accepted, while the others become stale
blocks [26]. The possibility of stale blocks often hints at the
possibility of network partitions in blockchain systems. Such
partitions facilitate attacks, such as double spending and selfish
mining [26], [28]. To account for attacks facilitated by stale
blocks, estimating the stale block rate is important to know [26].

Equation 36 can be used to calculate the stale block rate
SBR of blockchain systems [10], [57], [93]:

NumberO f StaleBlocks
NumberO fCon firmedBlocks

NumberO fStaleBlocks denotes the number of valid
blocks proposed but not included in the mainchain. The
number of blocks stored in a blockchain system is denoted by
NumberO fCon firmedBlocks.

The possibility of stale blocks can facilitate attacks, where
adversaries use a fork to overrule the mainchain [26], [27].
Inconsistencies between states of validating nodes facilitate
successful attacks such as double spending [26], [86] and selfish
mining [27], [28] The higher the fraction between the number
of stale blocks and the number of blocks confirmed around
the current block height, the more vulnerable a blockchain
system is to such attacks [8], [21], [57], thus the less secure.
If the fraction of stale blocks is low, the blockchain system is
assumed to be less vulnerable to such attacks.

Equation 36 applies to blockchain systems with eventual
consistency, such as the Bitcoin system. Imagine a blockchain
system that has 879,320 blocks that are confirmed and stored in
the mainchain. Due to propagation delays (e.g., due to network
congestion) and concurrent block proposals at the same block
height, 2 stale blocks occurred. The stale block rate of the
imaginary blockchain system equals approximately 2.27 x 10~6
according to equation 36. Suppose the blockchain system has a
very low stale block; it is unlikely for attackers to compromise
the blockchain system due to the longer creation interval.

Equation 36 can be used to estimate the stale block rate of
blockchain systems to infer the security of blockchain systems.
The metric, however, only offers a simplified estimate of the
vulnerability of blockchain systems with probabilistic finality.
The metric neglects blockchain system characteristics related
to the propagation delays that facilitate stale blocks (e.g., block
creation interval and block size) [26]. Moreover, the severity
of exploiting stale blocks in attacks is neglected. Moreover,
while research offers estimates on how many stale blocks in
the past may lead to vulnerabilities [94], [95], it is up to the
description of the analyst to decide how many blocks in the
past are considered in the analysis.

SBR =

(36)

B. Overview of Selected Analysis Approaches for Investigating
the Blockchain Trilemma Subconcepts

With a focus on the Bitcoin and Ethereum systems, a few
analysis approaches involve at least two blockchain trilemma
subconcepts (e.g., [2], [12]). These analysis approaches include

Bitnodes, Etherscan, Google BitQuery, and SimBlock. Table IIT
presents an overview of selected analysis approaches that are
used to quantify at least two blockchain trilemma subconcepts.
Supplementary material B offers an overview of all analysis
approaches considered in this work.

Analysis approaches for investigating multiple blockchain
trilemma subconcepts mostly use throughput (equation 22) as
a metric for scalability; hashing power distribution (equation 9)
and wealth distribution (equation 12) as metrics for the
DoD. For security, different metrics are used, such as CoA
(equation 31), fault tolerance (equation 32), and stale block
rate (equation 36).

V. DISCUSSION

The vast number of constructs and their operationalization
make selecting the most suitable ones for identifying Pareto-
optimal blockchain system configurations under consideration
of the blockchain trilemma a challenging task. We conducted
a systematic literature review to assess the suitability of com-
monly used constructs in analysis approaches. In section V-A,
we present our key findings on constructs for evaluating DoD,
scalability, and security in blockchain systems. Subsection V-B
explains the main contributions of this work to research
and practice. We then elucidate this study’s limitations in
section V-C, followed by a discussion of promising future
research directions in section V-D.

A. Principal Findings

The literature review shows that constructs used to assess the
scalability of blockchain systems are generally straightforward,
with clear metrics and evaluation methods. Five key constructs
emerged, with throughput and confirmation latency used most
frequently. Multiple metrics are available to operationalize
these constructs, and their suitability depends on the blockchain
system design—for instance, equation 17 is appropriate for
systems with probabilistic finality.

In contrast, assessing security is more complex, involving
numerous interdependent constructs and metrics. Because each
captures a critical aspect, combining them into a unified mea-
sure remains a significant challenge. Until such a combination
is possible, estimating blockchain system security will likely
require relying on multiple distinct constructs.

We identified six constructs for security, with fault tolerance
and stale block rate being the constructs most often proposed
in the analyzed literature. Despite the importance of availability
and reliability constructs for analyses of general software
systems, the examined literature does not emphasize those
constructs in analyses of blockchain systems. Being essential
constructs of the security subconcept, this suggests further
investigation of their usefulness in the context of the blockchain
trilemma.

Unlike scalability and security, measuring DoD poses a
different challenge that stems from the lack of a clear, unified
concept. The main concepts influencing DoD—the degree
of autonomy and equity of each element in a system—
are hardly quantifiable as they are very broad and context-
dependent. Moreover, DoD involves social and technical aspects



TABLE III
SELECTION OF ANALYSIS APPROACHES FOR INVESTIGATING THE BLOCKCHAIN TRILEMMA SUBCONCEPTS AND EXAMPLES OF BLOCKCHAIN SYSTEMS
ANALYZED USING THE APPROACHES.

Constructs and Metrics Used to Analyze the Blockchain Trilemma Subconcepts

Analysis Approach DoD Scalability

Security Analyzed Blockchain Systems

BBSF [7]
Throughput (eq. 22)

Confirmation latency (eq. 16),

Fault tolerance (eq. 32) Ethereum, Quorum

Blockbench [8]
Throughput (eq. 22)

Confirmation latency (eq. 16),

Fault tolerance (eq. 32) Ethereum, Hyperledger Fabric, Parity

BlockSim [96]
Throughput (eq. 22)

Confirmation latency (eq. 16),

Stale block rate (eq. 36) Bitcoin, Ethereum

Throughput (eq. 22)

DIABLO [9] Confirmation latency (eq. 16), Fault tolerance (eq. 32) Algorand, Ethereum, Hyperledger
Throughput (eq. 22), Fabric, Quorum, Redbelly, Solana, Zcash
Availability (eq. 15)
Fu et al. [59] Token concentration (eq. 10), Confirmation latency (eq. 16), Algorand, Ethereum
Hashing power distribution (eq. 9), Throughput (eq. 22)
Wealth distribution (eq. 12)
SimBlock [2] Token concentration (eq. 10), Throughput (eq. 22) Fault tolerance (eq. 32), Bitcoin
Hashing power distribution (eq. 9), Stale block rate (eq. 36)
Wealth distribution (eq. 12)
Quattrocchi et al. [12] | Hashing power distribution (eq. 9), Throughput (eq. 22) Cost of attack (eq. 31) Bitcoin, Cardano, Ethereum, Polygon,
Wealth distribution (eq. 12) Solana
Thakkar et al. [97] Confirmation latency (eq. 16), Fault tolerance (eq. 32) Hyperledger Fabric
Throughput (eq. 22)
Gribe, et al. [10] Confirmation latency (eq. 17), Availability (eq. 27), Ethereum, Hyperledger Indy, Tezos

Consistency (eq. 30),
Fault tolerance (eq. 32),
Reliability (eq. 35)

eq.: equation

[21], [98]. Many operationalized constructs collated in this
work are proposed to approximate DoD but often focus on
either economic aspects, such as token concentration and
wealth distribution, or technical aspects, such as participation
possibilities of validating nodes in consensus finding reflected
in block proposal randomness. Although capturing important
aspects of DoD, the identified constructs are mainly treated in
separation. We could not identify a single construct that fully
captures DoD from a sociotechnical perspective, highlighting
the need for theoretical foundations that inform more exhaustive
measurement approaches for DoD.

While the presented constructs can be linked to the
blockchain trilemma subconcepts, not all constructs show clear
interrelationships. For example, geographical diversity does not
seem directly interrelated with cost of attack. Practitioners need
to carefully select constructs that have direct interrelationships
with each other, particularly negative correlations, to capture
trade-offs between the blockchain trilemma subconcepts. For
example, the trade-off between fault tolerance (equation 32) for
security and throughput (equation 22) from scalability can be
of interest by examining how increasing or decreasing either
of the constructs can influence hashing power distribution
(equation 9) and vice versa. An inappropriate selection of
constructs can easily lead to the misperception that a Pareto-
optimal configuration of the blockchain system has been found.
For reasonable combinations of operationalized constructs,
practitioners could choose constructs focusing on similar
aspects of blockchain systems.

B. Contributions

The blockchain trilemma is complex to analyze due to
various constructs that capture important but only selected
aspects of the blockchain trilemma subconcepts. Our main
ambition with this work is to offer a theoretical foundation

for more thorough analyses of the blockchain trilemma
that help practitioners find Pareto-optimal configurations of
blockchain systems that meet common non-functional require-
ments. Specifically, this work has three key contributions.
First, the work offers an overview of common constructs
and their operationalization through metrics for measuring
the blockchain trilemma subconcepts (i.e., DoD, scalability,
and security). By examining the meaning, applicability to
blockchain systems with different designs, and limitations
of these constructs and associated metrics, this work helps
to better understand what operationalizations of constructs
are available and offers guidance for selecting suitable ones.
This facilitates better-informed decisions about the appropriate
constructs. For example, practitioners can better understand to
what extent they capture the DoD and security of blockchain
systems and identify aspects that may have been overlooked in
their analyses. This is useful for more sophisticated analyses of
blockchain system behaviors through the lens of the blockchain
trilemma and lays a cornerstone for better comparability of
such analyses.

Second, by explaining the metrics, including their input
variables, this work offers a foundation for planning bench-
marks. The defined input variables (e.g., number of validating
nodes, number of transactions issued to a blockchain system)
guide data collection efforts by helping practitioners identify
which aspects of blockchain systems need to be monitored.
This also helps identify potentially relevant manipulations of
blockchain system configurations to investigate their influence
on the blockchain trilemma.

Third, by comparing various analysis approaches based on
their used constructs and associated metrics, this work offers
a foundation for selecting suitable approaches for studying
the blockchain trilemma. Practitioners can better understand
the operationalized constructs and their limitations. Combined



with the overview of operationalized metrics, practitioners can
customize existing analysis approaches for better analyses.

C. Limitations

Although this work offers guidance on navigating the
complexity of the blockchain trilemma, the results presented are
subject to several limitations. We used a generic search string to
capture a broad range of relevant literature proposing constructs
to analyze the blockchain trilemma. Despite reviewing a large
number of publications, we may have excluded constructs
introduced in sources that are not peer-reviewed. Additional
constructs may exist that could further support investigations
of the blockchain trilemma. Furthermore, the applicability of
the identified constructs to blockchain systems is illustrative
rather than exhaustive. In assessing suitability, we focused on
the Bitcoin and Ethereum systems because they are commonly
analyzed blockchain systems in investigating the blockchain
trilemma. The constructs may be useful for analyzing the
blockchain trilemma subconcepts in additional blockchain
systems.

This study focuses on blockchain systems that use the
concept of replicated state machines and broadcast-based
consensus mechanisms (see Figure 1). Blockchain systems
that rely on specialized hardware, such as trusted execution
environments, or additional software components, such as
payment channel networks, were excluded from this study.
Although the identified constructs may still apply to these
types of systems, they fall outside the scope of this study.
Furthermore, this study is limited to blockchain systems.
Other distributed ledger technologies, such as transaction-based
directed acyclic graphs [21], fall outside its scope.

In the comparison of analysis approaches, we present
exemplary tuples of constructs that are used to operationalize
the blockchain trilemma based on existing literature. However,
we could not validate what tuples reasonably capture the
blockchain trilemma based on clear interrelationships between
the constructs that uncover trade-offs between the blockchain
trilemma subconcepts. Moreover, different blockchain systems
may require additional tuples for analysis.

D. Future Work

Commonly used constructs capture only selected aspects
of the blockchain trilemma subconcepts, such as geographical
diversity and hashing power distribution of DoD and availability
and fault tolerance of security. To capture the blockchain
trilemma subconcepts more exhaustively, approaches to com-
bine different constructs for the same blockchain trilemma
subconcepts are needed. For example, security analyses of
blockchain systems could produce combined indices that reflect
multiple constructs related to security, such as availability,
consistency, and fault tolerance. Moreover, additional constructs
may be needed to exhaustively capture the blockchain trilemma
subconcepts. For example, the constructs presented for DoD do
not account for social influences stemming from individuals and
organizations operating the validating nodes. Such influences
might include social relationships between individuals and
organizations that facilitate collusion, leading to the emergence

of covert power structures that centralize information within
blockchain systems.

Future research should aim to better understand which
construct tuples are most useful for investigating the blockchain
trilemma across blockchain systems with different consensus
mechanisms and broadcasting protocols. To assess the validity
of construct tuples, benchmarks should be conducted in which
the interrelationships between constructs are quantified. To
not only observe interrelationships but also thoroughly explain
them, such benchmarks should be informed by explicit theo-
rems (e.g., the CAP theorem [47]) and hypotheses derived from
assumed interrelationships between the blockchain trilemma
subconcepts. Insights generated from such benchmarks will
not only benefit a better understanding of interrelationships
between blockchain system characteristics but also help foster
the theoretical foundation of the blockchain trilemma.

Based on the results presented in this work, the blockchain
trilemma may also apply to distributed systems with different
architectures that exhibit DoD, scalability, and security. This
expansion could help better understand the extent to which the
blockchain trilemma applies not only to blockchain systems
but also to other distributed systems that use consensus
mechanisms. Such investigations could pave the way for a new
theorem for distributed systems that complements the CAP
theorem, enriching the theoretical foundations for understanding
consensus mechanisms.

VI. CONCLUSION

Existing constructs and their metrics helped generate valu-
able insights into the blockchain trilemma subconcepts from
different perspectives (e.g., socioeconomic and distributed
systems perspectives). However, lack of clear guidance on
the applicability of constructs and their metrics to blockchain
systems and how they relate to the blockchain trilemma
subconcepts limits practitioners to finding Pareto-optimal
configurations of blockchain systems that meet common non-
functional requirements.

This study presents 14 constructs operationalized through 16
metrics to quantify DoD, scalability, and security and explains
how they apply to different blockchain systems. The overview
of metrics can help practitioners select suitable metrics for in-
vestigating the blockchain trilemma. Moreover, this work offers
a theoretical foundation for developing analysis approaches
that support better investigations of how blockchain system
configurations influence the blockchain trilemma subconcepts.
We hope that this work helps develop tooling that supports
finding Pareto-optimal configurations of blockchain systems
that meet common non-functional requirements.
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Table Al briefly describes 22 input variables used in the metrics to operationalize constructs related to the blockchain

trilemma subconcepts.

TABLE Al

OVERVIEW OF INPUT VARIABLES OF METRICS THAT OPERATIONALIZE CONSTRUCTS OF THE BLOCKCHAIN TRILEMMA SUBCONCEPTS.

Input Variable Description Used in Equations
Block Confirmation Time The timestamp in milliseconds when a new block is (assumed to be) confirmed in a blockchain system. | 16, 30
Block Creation Interval The average time in milliseconds between the proposal of consecutive blocks that are included in a | 17, 23
blockchain.
Block Gas Cost The computation cost required to execute a transaction in a blockchain system. 23
Block Gas Limit The maximum amount of gas available in a block to process a transaction in a blockchain system. 23
Block Proposal Time The timestamp in milliseconds when a new block is proposed to a blockchain system. 16, 30
Hashing Power The number of hashes per second used to produce a new block. 9, 31
MemPool Size The maximum possible number of pending transactions buffered in a mempool. 23
Number of Confirmed Blocks The number of (probabilistically) finalized blocks stored in a blockchain system. 30, 36
Number of Confirmed The total number of transactions processed and included in a block that has been (probabilistically) | 15, 22
Transactions finalized into the mainchain of a blockchain system.
Number of Failures The number of failures in a blockchain system within a given observation timespan. 27
Number of Locations The number of locations where validating nodes in a blockchain system operate. 3
Number of Proposed Blocks The number of blocks proposed by validating nodes to a blockchain system. 1
Number of Repairs The number of repairs, including recovery, a blockchain system experiences after failures within a defined | 27
timespan.
Number of Stale Blocks The number of valid blocks that are proposed but eventually not included in the mainchain. 36
Number of Tokens The number of tokens owned by an individual validating node. 10, 12, 31
Number of Transactions The total number of transactions issued to a blockchain system. 15
Number of Validating Nodes The number of validating nodes in a blockchain system. 1,3, 10,9, 31, 12
Resource Cost The value of tokens or hashing power in fiat currency. 31
Security Confirmation The required minimum number of blocks that must be appended to a specific block to achieve sufficiently | 17
high probabilistic finality for that block.
Total Number of Locations The number of possible locations where validating nodes could operate. 3
Total Operational Time The timespan a blockchain system operates correctly within a define observation time. 27, 35
Total Repair Time The timespan a blockchain system takes to recover from failure. 27

APPENDIX B

OVERVIEW OF ANALYSIS APPROACHES AND THEIR OPERATIONALIZED CONSTRUCTS

Table B1 illustrates an overview of analysis approaches used to quantify the blockchain trilemma subconcepts. For example,
Blockchain Benchmark Standardized Format (BBSF) [7], BCAdvisor [99], Caliper [100]-[102], and COCONUT [74].) can be
used to investigate the scalability construct. Throughput (equation 22) and confirmation latency (equation 16) are predominant
operationalized constructs used to quantify scalability with analysis approaches. The constructs apply to most blockchain
systems, including the Algorand, Ethereum, and Hyperledger Fabric systems.

Similarly, Google BitQuery, BitInforCharts, and Etherscan [11], [14], [35], [38] have been used to generate benchmark data to
quantify constructs related to the DoD construct. Block proposal randomness (equation 1) and wealth distribution (equation 12)
are common constructs focusing on investigating the DoD. Analysis of DoD mainly focuses on permissionless blockchain
systems (e.g., the Bitcoin and Ethereum systems) because the data to analyze such blockchain systems is publicly available
due to their permission models compared to permissioned blockchain systems (e.g., blockchain systems based on Hyperledger
Fabric protocol).
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