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ABSTRACT
The analysis of network assortativity is of great importance for

understanding the structural characteristics of and dynamics upon

networks. Often, network assortativity is quantified using the as-

sortativity coefficient that is defined based on the Pearson corre-

lation coefficient between vertex degrees (see Eq.(1) for concrete

expression). It is well known that a network may contain sensitive

information, such as the number of friends of an individual in a

social network (which is abstracted as the degree of vertex.). So, the

computation of the assortativity coefficient leads to privacy leakage,

which increases the urgent need for privacy-preserving protocol.

However, there has been no scheme addressing the concern above.

To bridge this gap, in this work, we are the first to propose

approaches based on differential privacy (DP for short). Specifi-

cally, we design three DP-based algorithms: Localru, Shuffleru, and
Decentralru. The first two algorithms, based on Local DP (LDP)

and Shuffle DP respectively, are designed for settings where each

individual only knows his/her direct friends. In contrast, the third al-

gorithm, based on Decentralized DP (DDP), targets scenarios where

each individual has a broader view, i.e., also knowing his/her friends’

friends. Theoretically, we prove that each algorithm enables an un-

biased estimation of the assortativity coefficient of the network.

We further evaluate the performance of the proposed algorithms

using mean squared error (MSE), showing that Shuffleru achieves

the best performance, followed by Decentralru, with Localru per-

forming the worst. Note that these three algorithms have different

assumptions, so each has its applicability scenario. Lastly, we con-

duct extensive numerical simulations, which demonstrate that the

presented approaches are adequate to achieve the estimation of

network assortativity under the demand for privacy protection.

1 INTRODUCTION
Nowadays, network analysis plays a crucial role in understanding

a great variety of complex systems such as social networks [10],

transportation networks [22], biological networks [24], and so on.

It is well known that network analysis is often performed using

various measures including degree distribution, clustering coeffi-

cient, diameter, and assortativity coefficient, to name but a few [3].

Among them, the assortativity coefficient (see subsection 3.2 for

more details) [43] is used to reflect the tendency of nodes to connect

to other nodes with similar attributes or characteristics in networks

under consideration, and has received increasing attention from

various science communities [46]. One of the main reasons for this

is that the assortativity coefficient, as a fundamental measure, plays

a key role in understanding the structural characteristics of and dy-

namics upon networks. Figure 1 shows an example of assortativity

Figure 1: An example graph and its assortativity coefficient.

(see Eq.1 for specific expression). Hereinafter, two terms network

and graph are used interchangeably.

Specifically, in the assortative network, nodes with similar at-

tributes tend to connect. Essentially, assortativity can be under-

stood as ‘birds of a feather flock together,’ where individuals with

similar experiences, backgrounds, or knowledge tend to cluster

together. The opposite connection between nodes is found in the

disassortative network [44]. Besides providing structural informa-

tion about networks, network assortativity is also related to the

dynamic behavior on networks [40]. Assortativity of the network

may influence information propagation pathways and speeds, as

nodes preferentially connect with others sharing similar attributes,

which potentially accelerates information dissemination within

homogeneous communities. In addition, network assortativity can

impact the stability and resilience of a network [11]. Thus, it is of

great interest to analyze network assortativity in order to unravel

mixing patterns on the network, predict the evolution behavior of

the network, and design proper strategies for information diffusion

on the network.

As tried in the literature [31], the data involved in networks may

contain sensitive information when carrying out the analysis of

network assortativity, which potentially leads to privacy breaches.

For example, the network in question is a social one, where friend-

ships and the number of friends used to calculate its assortativity

are deemed sensitive information for each individual. Therefore, it

is necessary to develop a framework that is suitable for the analysis

of network assortativity and provides a guarantee for protecting

the privacy of individuals within the network simultaneously. As-

sortativity is structurally sensitive and involves joint statistics over

node degrees and their connectivity, making its estimation under

strong privacy constraints particularly challenging. To the best of

our knowledge, there is no such scheme by far. To bridge this gap,

we propose available approaches based on differential privacy in

this paper.
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Differential Privacy (DP) [14] has become the gold standard

for privacy-preserving network analysis, with broad applications

in degree distribution estimation [12, 26, 39], triangle and k-star

counting [29, 30]. While the traditional Central DP (CDP) model

offers strong utility by assuming a trusted data curator, it poses

significant risks under server compromise or insider threats [16, 58].

To address this limitation, Local DP (LDP) shifts the trust boundary

to individual users by requiring them to perturb their data before

submission [18]. On the other hand, this is achieved at the cost of

high noise and poor utility, especially for graph statistics relying

on edge correlations or higher-order structure [33].

To balance privacy and utility, intermediate models such as Shuf-

fle DP [5, 9] and Decentralized DP (DDP) have been proposed.

Shuffle DP enhances LDP by anonymizing locally randomized re-

ports via an intermediate server called shuffler, enabling amplified

privacy guarantees and improved estimation accuracy [17]. DDP,

firstly introduced by Sun et al. [53], is a decentralized model tai-

lored for network settings where each user holds an extended local

view (e.g., 1-hop or 2-hop subgraph). Users apply randomized al-

gorithms to their local views and send only privatized summaries

to the server. This allows more expressive and accurate network

analysis than standard LDP and, at the same time, preserves strong

user-level privacy.

Motivated by this, the goal of this work is to investigate the

private estimation of the assortativity coefficient—a critical metric

measuring degree correlation between nodes—under LDP, Shuffle

DP, and the DDP framework. The main contribution of this work

is as follows:

• We are the first to study the estimation of network assorta-

tivity under differential privacy.

• We propose two DP-algorithms Localru and Shuffleru for

accurate estimation of network assortativity in the setting

where each individual is assumed to know only his/her

friends. In a mathematically rigorous manner, we prove

that the two algorithms output unbiased estimator, and also

determine their steadiness by calculating MSE. In addition,

we analyze both time and space complexity of the proposed

algorithms.

• We also propose another DP-algorithm Decentralru suit-

able for a common situation in which each individual has

a broader view, i.e., also knowing his/her friends’ friends.

Accordingly, we study the unbiasedness, MSE, time and

space complexity related to this algorithm. The result shows

that in sparse networks, the consequence produced by

Decentralru is overwhelmingly better than that by Localru.
This implies that a broader view is helpful to obtain a much

steadier estimation.

• We conduct experimental evaluation on both synthetic

and real-world datasets, which demonstrates that empiri-

cal analysis is in good agreement with theoretical conse-

quences. In the meantime, Shuffleru shows better perfor-

mance than the other two algorithms due to its own privacy

amplification.

The rest of this paper is organized as below. We showcase the

related work in Section 2. Section 3 introduces terminologies and

notations including graph, assortativity coefficient, differential pri-

vacy and shuffle model. The main results, namely, the proposed

algorithms, are shown in Section 4. We conduct extensive exper-

iments, and the results are displayed in Section 5. Some future

research directions are listed in Section 6. Lastly, we close this work

in Section 7.

2 RELATEDWORK
Here, we briefly introduce related work. Roundly speaking, it con-

tains two parts, i.e., non-private network assortativity analysis and

private graph statistics. Note that two terms network and graph

are used interchangeablely in the remainder of this work.

2.1 Non-private network assortativity analysis
Assortativity, an important network property, has been extensively

studied since its introduction [43]. In [43], Newman introduced the

concept of assortativity in networks in 2002 and proposed the assor-

tativity coefficient as a measure for structure mixing of networks.

By applying this metric to various real-world networks, he showed

that social networks tend to be assortative, whereas technological

and biological networks tend to be disassortative. In 2003, Newman

[44] further analyzed mixing patterns in networks, distinguished

between assortative and disassortative mixing, and explored their

effects on network structure and dynamics. In the follow-up work,

Piraveenan et al. [47] investigated the relationship between assor-

tativity and the information content of networks, discovering that

assortative and disassortative networks contain more information

than neutral networks, which shows neither assortativity nor dis-

assortativity. Chang et al. [7] focused on assortativity in weighted

networks by defining the node’s strength as the sum of the weights

of its connecting edges. Leung et al. [36] also studied the assortativ-

ity of weighted networks and introduced the concept of weighted

assortativity. Estrada et al. [19] presented a method to determine

network assortativity by examining the relationships among the

clustering coefficient, modular connectivity, and branching. The

results indicate that the clustering coefficient and modular con-

nectivity positively influence assortativity, while branching has a

negative impact.

2.2 Private graph statistics
Graph analysis under the differential privacy framework has been

extensively studied, covering areas such as degree distribution [12,

26, 39], subgraph counting [32, 33], and synthetic graph generation

[52, 56]. These studies typically operate within either a centralized

or a local model. The centralized model assumes a centralized data

curator, posing risks of data leakage. Consequently, the local model

(LDP) has become increasingly favored by researchers.

In recent years, there has been a surge in research on Local Dif-

ferential Privacy (LDP) for graph data, with an increasing number

of notable advancements. For example, Sun et al. [53] proposed

a subgraph counting algorithm under the assumption that each

user knows all friends of his/her friends. Qin et al. [49] devised a

method for generating synthetic graphs based on LDP. Ye et al. [59]

presented a local one-round algorithm to estimate graph metrics

including the clustering coefficient. Zhang et al. [60] developed

a software usage analysis algorithm under LDP. Imola et al. [30]
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proposed an exact triangle and 4-cycle counting algorithm under

LDP by introducing the Shuffle model.

However, to date, there has been no research conducted on as-

sortativity analysis within the context of privacy protection. Hence,

the goal of this work is to present assortativity analysis algorithms

based on Differential Privacy which is widely recognized as a robust

privacy protection framework.

3 PRELIMINARY
In this section, we introduce some preliminaries for our work. Sub-

section 3.1 defines some basic notations related to networks. Sub-

sections 3.2, 3.3 and 3.4 introduce the assortivity coefficient of net-

works, DP on graph and the shuffle model, respectively. Subsection

3.5 shows the utility metrics used in this work.

3.1 Notations
Let N, R and R≥0 be the sets of natural numbers, real numbers and

non-negative real numbers, respectively.We consider an undirected,

non-weighted graph 𝐺 = (𝑉 , 𝐸), where 𝑉 represents a set of nodes

(users) and 𝐸 ⊆ 𝑉 ×𝑉 represents a set of edges. Let 𝑛 ∈ N be the

number of nodes (users) in 𝐺 , and𝑀 ∈ N be the number of edges

in 𝐺 . We use 𝑣𝑖 to represent the 𝑖-th node (user), and then have

𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. Let 𝑑𝑖 ∈ N be the degree of node 𝑣𝑖 (i.e. the

number of edges connected to 𝑣𝑖 ), and 𝑑𝑚𝑎𝑥 ∈ N be the maximum

degree of nodes in 𝐺 , i.e., 𝑑𝑚𝑎𝑥 = max {𝑑1, . . . , 𝑑𝑛}. We denote by

G the set of graphs with 𝑛 nodes. It is a convention to represent a

graph𝐺 using the adjacency matrix A =
(
𝑎𝑖 𝑗

)
∈ {0, 1}𝑛×𝑛 in which

if

(
𝑣𝑖 , 𝑣 𝑗

)
∈ 𝐸, then 𝑎𝑖 𝑗 = 1; and 𝑎𝑖 𝑗 = 0 otherwise. Accordingly,

the 𝑖-th row of A is ai = (𝑎𝑖1, 𝑎𝑖2, ..., 𝑎𝑖𝑛). Table 1 shows some basic

notations used in this paper.

Table 1: Basic notations

Symbol Description

𝐺 Undirected, non-weighted graph with 𝑛 nodes.

𝑀 Number of edges in 𝐺 .

A Adjacency matrix corresponding to graph 𝐺 .

𝑣𝑖 𝑖-th node (user) in 𝐺 .

a𝑖 Neighbor list of 𝑣𝑖 (i.e., the 𝑖-th row of A).
𝑑𝑖 Degree of 𝑣𝑖 .

𝑑𝑚𝑎𝑥 Maximum degree of nodes in 𝐺 .

𝑑𝑎𝑣𝑔 Average degree of nodes in 𝐺 .

𝑞𝑟𝑢 Assortativity factor query of 𝐺 .

We adhere to standard notation conventions in our study. Con-

cretely speaking, we employ the normal font 𝜃 to represent the

true value of a statistic (e.g., 𝑑𝑖 for the true degree of node 𝑣𝑖 ) and

use the tilde symbol
˜𝜃 to indicate the noisy version of the quantity

(e.g.,
˜𝑑𝑖 is the noisy degree of 𝑣𝑖 after applying some operation, for

example, the Laplace mechanism). Additionally, the hat symbol
ˆ𝜃

is used to signify the estimated value (e.g.,
ˆ𝑑𝑖 is the estimation of

degree of node 𝑣𝑖 in 𝐺).

3.2 Assortativity Coefficient
Assortativity is a significant property of networks, measuring the

preference of nodes to attach to others that are alike in some way.

To quantitatively study network assortativity, Newman proposed

an index 𝑟 called assortativity coefficient [44]. Specifically, the con-

cept of assortativity coefficient is based on Pearson correlation

coefficient, which is defined as

𝑟 =

𝑀−1Σ𝑒𝑖 𝑗 ∈𝐸𝑑𝑖𝑑 𝑗 −
[
𝑀−1Σ𝑒𝑖 𝑗 ∈𝐸

1

2

(
𝑑𝑖 + 𝑑 𝑗

) ]2
𝑀−1Σ𝑒𝑖 𝑗 ∈𝐸

1

2

(
𝑑2
𝑖
+ 𝑑2

𝑗

)
−

[
𝑀−1Σ𝑒𝑖 𝑗 ∈𝐸

1

2

(
𝑑𝑖 + 𝑑 𝑗

) ]2 , (1)

where 𝑒𝑖 𝑗 represents an edge between vertices 𝑣𝑖 and 𝑣 𝑗 . If 𝑟 > 0, the

network in question is referred to as assortative. In this setting, it is

believed that on average, nodes with similar degrees tend to connect

to each other. If 𝑟 < 0, the network is considered disassortative,

where nodes with different degrees are more likely to connect to

one another. If 𝑟 = 0, it indicates that nodes in the network are

connecting randomly, without any preference for nodeswith similar

or dissimilar degrees.

Ma et al. have proven that the denominator in Eq.(1) consistently

remains non-negative [38]. This implies that whether a network

exhibits assortativity or disassortativity depends solely on the value

of the numerator, denoted by 𝑟𝑢 for convenience, in Eq.(1). Namely,

we write

𝑟𝑢 = 𝑀−1Σ𝑒𝑖 𝑗 ∈𝐸𝑑𝑖𝑑 𝑗 −
[
𝑀−1Σ𝑒𝑖 𝑗 ∈𝐸

1

2

(
𝑑𝑖 + 𝑑 𝑗

) ]2
. (2)

Also, we refer to 𝑟𝑢 as the assortativity factor. As shall be shown

below, we focus on how to compute the accurate estimate of 𝑟𝑢
under DP. Let 𝑞𝑟𝑢 : G → [−1, 1] be a assortativity factor query that
takes𝐺 ∈ G as input and outputs the assortativity factor 𝑞𝑟𝑢 (𝐺) of
𝐺 .

3.3 Differential Privacy
Local Differential Privacy. Local Differential Privacy (LDP) [13]

is a privacy measure that protects the personal information of each

user locally. Due to its ability to protect sensitive information with-

out relying on trusted third-party servers, LDP has garnered wide-

spread attention in the field of network analysis [28, 49, 55]. In LDP,

each user first obfuscates his/her personal data by himself/herself

and sends the obfuscated data to a data collector.

LDP on graphs includes edge LDP and node LDP [49]. The former

conceals the presence of any edge in a graph, while the latter hides

both a node and all its adjacent edges. Node LDP is a stronger

privacy definition but is more challenging to implement since it

requires algorithms to hide more information about the input graph.

This paper focuses on edge LDP because it can provide sufficient

protection in many scenarios including subgraph counting [28],

synthetic graphs [49] and maximizes the availability of perturbed

data. Additionally, assortativity represents the likelihood of forming

edges between nodes with similar attributes, and the primary focus

of its study is the network’s edges. In other words, its calculation

only requires edge information. From this perspective, edge LDP is

sufficient.

Definition 3.1 ((𝜀, 𝛿)-edge LDP [49]). Let 𝑛 ∈ N, 𝜀 ∈ R≥0, and
𝛿 ∈ [0, 1]. For 𝑖 ∈ {1, 2, . . . , 𝑛}, let R𝑖 be a local randomizer of user
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𝑣𝑖 that takes ai as input. R𝑖 provides (𝜀, 𝛿)-edge LDP if for any

two neighbor lists a𝑖 , a′𝑖 ∈ {0, 1}
𝑛
that differ in one bit and any

𝑆 ⊆ Range (R𝑖 ), we have

Pr (R𝑖 (a𝑖 ) ∈ 𝑆) ≤ 𝑒𝜀Pr
(
R𝑖

(
a′𝑖

)
∈ 𝑆

)
+ 𝛿. (3)

The parameter 𝜀 is referred to as the privacy budget, which re-

flects the level of privacy protection offered by algorithm R𝑖 . When

𝜀 is small (e.g. 𝜀 ≤ 1 [37]), each bit of a𝑖 is strongly protected by edge
LDP. The parameter 𝛿 represents the privacy failure probability

and is typically set to a value much smaller than
1

𝑛 [15]. If 𝛿 = 0,

R𝑖 provides 𝜀-edge LDP.
Randomized Response (RR). Randomized response is the

mainstream obfuscation mechanism in the study of categorical

data under LDP. The classic Warner’s RR (Randomized Response)

[54] is defined as follows. Applying Warner’s RR to neighbor lists

provides 𝜀-edge LDP.

Definition 3.2 (Randomized Response [54]). Given 𝜀 ∈ R≥0, the
Randomized Response Mechanism R𝑊𝜀 : {0, 1} → {0, 1} maps

𝑥 ∈ {0, 1} to 𝑦 ∈ {0, 1} with the probability

Pr

(
R𝑊𝜀 (𝑥) = 𝑦

)
=

{
𝑒𝜀

𝑒𝜀+1 if 𝑥 = 𝑦,
1

𝑒𝜀+1 otherwise.
(4)

Note that two users in a network share information about the

existence of an edge between them. That is to say, both users’

outputs may reveal sensitive data. Based on this, the following

algorithms (which will be proposed in this work) are designed for

the lower triangular part of the adjacency matrix A to enhance the

level of user privacy protection. Specifically, given 𝜀 ∈ R≥0 and a

neighbor list a𝑖 ∈ {0, 1}𝑛 , the local randomizer R𝑖 outputs noisy
bits

(
𝑎𝑖,1, . . . , 𝑎𝑖,𝑖−1

)
∈ {0, 1}𝑛 for users with smaller IDs, i.e., for

each 𝑗 ∈ {1, . . . , 𝑖 − 1}, 𝑎𝑖, 𝑗 = 1−𝑎𝑖, 𝑗 with probability 𝑝 = 1

𝑒𝜀+1 and

𝑎𝑖, 𝑗 = 𝑎𝑖, 𝑗 with probability 1 − 𝑝 .
Laplacian Mechanism. The Laplace mechanism [15] is a data

obfuscation method introduced by Dwork et al for numerical data

to guarantee differential privacy. The mechanism protects privacy

by injecting random noise independently sampled from a Laplace

distribution into the query statistic, where the level of noise added

depends on the global sensitivity of the statistic. The greater the

global sensitivity of the statistic, the more noise is added for privacy

preservation.

Definition 3.3 (Global Sensitivity under LDP [15]). In edge LDP,

the global sensitivity of a function 𝑓 : {0, 1}𝑛 → R is given by

Δ𝑓 = max

a𝑖 ,a′𝑖 ∈{0,1}𝑛,|a𝑖−a′𝑖 |1=1
��𝑓 (a𝑖 ) − 𝑓 (

a′𝑖
) �� , (5)

where

��a𝑖 − a′𝑖 ��1 = 1 represents that a𝑖 and a′
𝑖
differ in one bit.

Definition 3.4 (Local Laplacian Mechanism [15]). Given 𝜀 ∈ R≥0
and any query function 𝑓 : {0, 1}𝑛 → R with a global sensitivity

Δ𝑓 , the Local Laplacian Mechanism is defined as

R𝐿𝜀 (𝑓 (a𝑖 )) = 𝑓 (a𝑖 ) + Lap
(
Δ𝑓

𝜀

)
. (6)

Extended Local Views (ELV). In the LDP mechanism, each

user’s local input is his/her neighbor list a𝑖 . However, in many

real-world scenarios, users typically have a broader local view. For

example, in social networks like Twitter and LinkedIn, even with

privacy settings enabled, the number of friends of a user’s friends

is usually accessible. In this paper, in addition to the user’s 1-hop

local view (i.e., neighbor list) we also focus on the 2-hop Extended

Local View, which is defined as follows.

Definition 3.5 (2-hop Extended Local View [53]). Given a node 𝑣𝑖 ,

its 2-hop Extended Local View (ELV) consists of all nodes reachable

within 2 hops and all corresponding edges.

Conducting local differential privacy graph statistics in a local

setting with 2-hop ELVs can significantly increase privacy risks due

to the substantial overlap between different users’ ELVs. Specifically,

if ELVs from different users overlap, a single edge may contribute

to multiple local reports. In other words, inserting/removing an

edge in the global graph would result in changes to multiple local

reports. Consequently, the presence of an edge is revealed multiple

times, leading to an increased privacy risk.

Decentralized Differential Privacy. To address this privacy
risk in the ELV setting, Sun et al. [53] introduced Decentralized

Differential Privacy (DDP), which requires each user to protect not

only his/her own privacy but also that of his/her neighbors. DDP is

a privacy concept that lies between CDP and LDP. Specifically, DDP

follows CDP to define neighboring datasets on the entire graph,

but it protects each report locally during data collection. Formally,

edge DDP is defined as follows.

Definition 3.6 ((𝜀, 𝛿)-edge DDP [53]). Let 𝑛 ∈ N, 𝜀 ∈ R≥0, and
𝛿 ∈ [0, 1]. A set of local randomizers {R1, 1 ≤ 𝑖 ≤ 𝑛} provides (𝜀, 𝛿)-
edge DDP if for any two neighboring graphs𝐺,𝐺 ′ ∈ G that differ

in one edge and any {𝑆𝑖 ∈ Range (R𝑖 ) , 1 ≤ 𝑖 ≤ 𝑛},
Pr ((R1 (𝐺1) ∈ 𝑆1) , . . . , (R𝑛 (𝐺𝑛) ∈ 𝑆𝑛))
≤ 𝑒𝜀Pr

( (
R1

(
𝐺 ′
1

)
∈ 𝑆1

)
, . . . ,

(
R𝑛

(
𝐺 ′𝑛

)
∈ 𝑆𝑛

) )
+ 𝛿.

(7)

where 𝐺𝑖 (resp. 𝐺
′
𝑖
) is the ELV of user 𝑣𝑖 in graph 𝐺 (resp. 𝐺 ′).

Since DDP protects an edge in the entire graph 𝐺 , the global

sensitivity under DDP is defined as

Definition 3.7 (Global Sensitivity under DDP [53]). Given a func-

tion 𝑓 , the global sensitivity of 𝑓 is defined as

𝐺𝑆𝐷𝐷𝑃 (𝑓 ) = max

𝐺,𝐺 ′

𝑛∑︁
𝑖=1

|𝑓 (𝐺𝑖 ) − 𝑓 (𝐺 ′𝑖 ) |, (8)

where𝐺 and𝐺 ′ are two arbitrary neighboring graphs, and𝐺𝑖 (resp.

𝐺 ′
𝑖
) is the ELV of user 𝑣𝑖 in graph 𝐺 (resp. 𝐺 ′).

The global sensitivity of a function is determined by the function

itself, and some functions may have large global sensitivities. For

example, in the 2-hop ELV setting, the global sensitivity of the sum

of the degrees of a user’s friends under DDP is 4𝑛−6. Since 𝑛 can be

very large in real-world graphs (e.g., the number of users in social

networks), directly perturbing data using the global sensitivity as

the noise scale can significantly compromise the accuracy of the

estimates. To improve accuracy, local sensitivity is typically used

to reduce the noise scale, which is defined as follows.
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Definition 3.8 (Local Sensitivity under DDP [53]). Given a global

graph 𝐺 and a function 𝑓 , the local sensitivity of 𝑓 is defined as

𝐿𝑆𝐷𝐷𝑃 (𝑓 ) = max

𝐺 ′

𝑛∑︁
𝑖=1

|𝑓 (𝐺𝑖 ) − 𝑓 (𝐺 ′𝑖 ) |, (9)

where𝐺 ′ is an arbitrary neighboring graph of𝐺 and𝐺𝑖 (resp.𝐺
′
𝑖
)

is the ELV of user 𝑣𝑖 in graph 𝐺 (resp. 𝐺 ′).

Since local sensitivity is data-dependent, to prevent it from com-

promising privacy, we derive a probabilistic upper bound for local

sensitivity by Lemma 3.9, and use this upper bound as the noise

scale for data perturbations.

Lemma 3.9 (Tail Bound for Laplace Distribution [53]). Let
𝑥 be any real value, and 𝑥 = 𝑥 + Lap(𝛼) for some 𝛼 > 0. Then, with
probability 1 − 𝛿 ,

𝑥 + 𝛼 · log
(
1

2𝛿

)
≥ 𝑥 (10)

3.4 Shuffle Model
In recent studies [2, 9, 17], the shuffle model has garnered signif-

icant interest due to its privacy amplification effect. The shuffle

model, also known as Shuffle DP (SDP for short), introduces an

intermediary server called shuffler between the user and the data

collector based on LDP, and it works as follows. First, each user

𝑣𝑖 obfuscates his/her personal data using an LDP mechanism R
common to all users. Then, user 𝑣𝑖 encrypts the obfuscated data

and sends it to the shuffler. The shuffler randomly shuffles the en-

crypted data to ensure anonymization and sends the result to a data

collector for which we make no trust assumptions. Finally, the data

collector decrypts the shuffled data. Under the assumption that the

data collector does not collude with the shuffler, the shuffle model

amplifies DP guarantees of the obfuscated data because shuffling

removes the link between users and the obfuscated data. Shuffling

can amplify privacy without loss of data utility for analytical tasks

that are insensitive to data order, such as sum, average and his-

togram queries. Current research on the shuffle model primarily

focuses on determining bounds on the level of privacy obtained

after shuffling [20, 23].

In this paper, we use the privacy amplification bound provided

by Feldman et al., which is the current state of the art.

Lemma 3.10 (Privacy Amplification by Shuffling [20]). Let
𝑛 ∈ N and 𝜀0 ∈ R≥0. Let X be the set of input data for each user. Let
𝑥𝑖 ∈ X be input data of the 𝑖-th user and x = (𝑥1, . . . , 𝑥𝑛) ∈ X𝑛 . For
𝑖 ∈ {1, 2, . . . , 𝑛}, let R𝑖 : X → Y be a local randomizer of the 𝑖-th
user that provides 𝜀0-LDP. Let A𝑆 : X𝑛 → Y𝑛 be the algorithm that
given a dataset x ∈ X𝑛 , samples a uniform random permutation 𝜋

over {1, 2, . . . , 𝑛}, then sequentially computes𝑦𝜋 (𝑖 ) = R𝑖
(
𝑥𝜋 (𝑖 )

)
and

outputs y =

(
𝑦𝜋 (1) , . . . , 𝑦𝜋 (𝑛)

)
. Then for any 𝛿 ∈ [0, 1] such that

𝜀0 ≤ log

(
𝑛

16 log(2/𝛿 )

)
, A𝑆 provides (𝜀, 𝛿)-DP, where

𝜀 ≤ log

(
1 + 𝑒

𝜀0 − 1
𝑒𝜀0 + 1

(
8

√︁
𝑒𝜀0 log (4/𝛿)
√
𝑛

+ 8𝑒𝜀0

𝑛

))
. (11)

In the lemma above, the shuffled data 𝑦𝜋 (1) , . . . , 𝑦𝜋 (𝑛) is pro-
tected by 𝜀-DP, where 𝜀 ≪ 𝜀0. In addition to providing this closed-

form upper bound, Feldman et al. [20] developed an efficient algo-

rithm to numerically compute a tighter upper bound, which we

refer to as the numerical upper bound. In this paper, we use both

the closed-form and numerical upper bounds and also distinguish

the impact of each term on the performance of the algorithm.

3.5 Utility Metrics
We use MSE and Relative Error as utility metrics in theoretical

analysis and experimental evaluation, respectively. Let𝑞𝑟𝑢 : G → R
be the assortativity factor estimator. Let 𝑀𝑆𝐸 : R → R≥0 be the
MSE function, which maps the estimate 𝑞𝑟𝑢 (𝐺) and the true value

𝑞𝑟𝑢 (𝐺) to the MSE; i.e.,

𝑀𝑆𝐸 [𝑞𝑟𝑢 (𝐺) , 𝑞𝑟𝑢 (𝐺)] = E
[
(𝑞𝑟𝑢 (𝐺) − 𝑞𝑟𝑢 (𝐺))2

]
. (12)

Note that the MSE can also be large when the 𝑞𝑟𝑢 (𝐺) is large.
Therefore, in our experiments, we evaluate the relative error given

by

𝑅𝐸 [𝑞𝑟𝑢 (𝐺) , 𝑞𝑟𝑢 (𝐺)] =
|𝑞𝑟𝑢 (𝐺) − 𝑞𝑟𝑢 (𝐺) |
min{𝑞𝑟𝑢 (𝐺) , 𝜂}

, (13)

where 𝜂 ∈ R≥0 is a small positive value. In general, 𝜂 is set to
𝑛
10

3

[4, 8, 57]. If the relative error is much smaller than 1, the estimation

is highly accurate.

As shown in Eq.(1), it is clear that the estimation of the assortativ-

ity coefficient 𝑟 involves intricate analyses of some terms reflecting

inter-node correlations, which poses a challenge to obtaining an

accurate estimate of 𝑟 under the requirement of privacy protection.

Specifically, bias correction is required for the expression 𝑋/𝑌 de-

rived from locally differentially private data to obtain an unbiased

privacy estimate of the assortativity coefficient. Here, both 𝑋 and 𝑌

denote a random polynomial. Despite recent advances in algorithms

for unbiased local privacy estimation of Laplacian variable polyno-

mials [27], it remains unresolved to obtain an unbiased estimate of

𝑋/𝑌 from locally differentially private data.

The next lemma (i.e., lemma 3.11) offers an approach for approx-

imating the unbiased privacy estimate of 𝑟 . It is clear that we can

approximate the unbiased estimate of the assortativity coefficient 𝑟

by calculating the ratio of the unbiased estimates of its numerator

and denominator. Of course, a more accurate unbiased estimate of

𝑟 can be approximated by Eq.(15a). As shall be seen below, the fol-

lowing method is suitable for a more accurate estimation of 𝑟 while

many tedious computations need to be performed. This is because

the expression for 𝑟 involves a large number of terms representing

connections between nodes. In this paper, we use a simple approxi-

mate estimator for 𝑟 . Note that the denominator of 𝑟 (denoted by

𝑟𝑑 ) is

𝑟𝑑 = 𝑀−1Σ𝑒𝑖 𝑗 ∈𝐸
1

2

(
𝑑2𝑖 + 𝑑

2

𝑗

)
−

[
𝑀−1Σ𝑒𝑖 𝑗 ∈𝐸

1

2

(
𝑑𝑖 + 𝑑 𝑗

) ]2
=

1

2𝑀

𝑛∑︁
𝑖=1

𝑑3𝑖 −
[
1

2𝑀

𝑛∑︁
𝑖=1

𝑑2𝑖

]
2 (14)

Clearly, the denominator 𝑟𝑑 is a polynomial function of node de-

grees, and its locally differentially private unbiased estimator can be

obtained using the debiasing algorithm proposed in [27]. Therefore,
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this paper focuses on computing a stable, unbiased estimator of the

assortative factor 𝑟𝑢 (numerator) under LDP.

Lemma 3.11 ([6]). Let 𝑋 and 𝑌 be two random variables,

E

(
𝑋

𝑌

)
≈ E (𝑋 )
E (𝑌 ) −

Cov (𝑋,𝑌 )
[E (𝑌 )]2

+ E (𝑋 )
[E (𝑌 )]3

· V (𝑌 ) , (15a)

V

(
𝑋

𝑌

)
≈ V (𝑋 )
[E (𝑌 )]2

− 2E (𝑋 ) Cov (𝑋,𝑌 )
[E (𝑌 )]3

+ [E (𝑋 )]
2

[E (𝑌 )]4
V (𝑌 ) . (15b)

4 SCHEMES
This section elaborates on our main results. Concretely, we pro-

pose three algorithms for estimating the assortativity factor 𝑟𝑢 of

network on 𝑛 nodes in the requirement of DP.

First of all, we consider the common local setting where each

individual is assumed to know only his/her friends. Accordingly,

two algorithms Localru and Shuffleru are presented. Localru is built
based on a simple assumption that there is only one round of inter-

action between each user and the data collector. In this model, each

user (data provider) perturbs his/her data once and then sends it to

the data collector. Due to the limited interaction, the data collector

can just gather a restricted amount of information. Consequently,

the one-round algorithm is generally suitable for simple data analy-

sis tasks where high accuracy is not critical. In order to obtain more

accurate consequences, we add a round of communication between

users and the data collector. Put this another way, a two-round al-

gorithm Shuffleru is designed. Specifically, the data collector sends

query requests to each user two times, allowing for more powerful

queries. As shown in the previous works, such as more accurate

subgraph counting [28, 53], synthetic graph construction [49], a

similar thought has been employed to design some two-round al-

gorithms that can handle more complex data analysis tasks and

achieve greater precision. However, this increased accuracy comes

at the cost of added complexity and higher communication over-

head.

Secondly, we also discuss the other scenario in which each indi-

vidual has a broader view, i.e., also knowing his/her friends’ friends.

For instance, with the default setting of Facebook (facebook.com),

a user allows each of her friends to see all her connections. The

third algorithm Decentralru is proposed to get assortativity factor

𝑟𝑢 in this situation.

For convenience and understanding, we summarize the main

properties of these three algorithms (i.e., Localru, Shuffleru and

Decentralru) in the next table ahead of time.

Remark In the rest of this work, we assume that parameter𝑀 is

known to all. This is mainly because𝑀 can be accurately calculated

using well-established degree distribution estimation techniques

[12, 55]. Doing so simplifies the following analysis as well. At the

same time, it is clear that parameter𝑀 has little influence on the

estimation of network assortativity. It is worth noticing that the

analysis approach established below is also suitable for the situa-

tion where parameter𝑀 is unknown in advance. Nonetheless, this

causes more tedious calculations when conducting the theoretical

analysis, which becomes clear to understand based on the following

analysis and lemma 3.11. The goal of this paper is to build up a

Table 2: main properties of algorithm

Localru Shuffleru Decentralru
𝑥-DP 𝜀-LDP (𝜀, 𝛿)-DP (𝜀, 𝛿)-DDP

Unbiasedness yes yes yes

MSE 𝑂 (𝐾1)1 𝑂 (𝐾2)2 𝑂

(
𝑛3𝑑6

max

𝑀4

)
Time complexity 𝑂 (𝑛2) 𝑂 (𝑛2) 𝑂 (𝑛2)
Space complexity 𝑂 (𝑛2) 𝑂 (𝑛2) 𝑂 (𝑛2)
1 𝐾1 =

𝑛3𝑑2

max
+𝑛2𝑑4

max

𝑀2
+ 𝑛3𝑑6

max

𝑀4
.

2 𝐾2 =
𝑛1+𝛼𝑑4

max

𝑀2
+ 𝑛3𝑑2

max

(log𝑛)2𝑀2
+ 𝑛3𝑑6

max

(log𝑛)2𝑀4
.

methodology that has wide applications. In a nutshell, we only

consider the case where parameter𝑀 is known.

Now, let us divert our attention to the development of the first

algorithm Localru. It should be noted that all the proofs of both

unbiasedness and MSE of three algorithms are deferred to show in

Supplementary Material for readability. Also, some notations are

abused yet the meanings are clear from the context.

4.1 One-Round LDP Algorithm for Assortativity
Factor

As shown in Eq.(2), the calculation of the assortativity factor 𝑟𝑢
involves two terms: the degrees of nodes and the edges between

them. In other words, we can derive 𝑟𝑢 from the degree sequence

𝑑1, 𝑑2, . . . , 𝑑𝑛 and the network’s adjacency matrix A. Based on this,

we propose a one-round algorithm for 𝑟𝑢 under LDP. This algorithm

adds random noise to the degrees of all nodes using the Laplace

mechanism and obfuscates the lower triangular part of the adja-

cency matrix A with Randomized Response simultaneously. The

data collector then estimates 𝑟𝑢 from these noisy data sent by each

user.

Algorithm 1 shows our one-round LDP algorithm for computing

assortativity factor 𝑟𝑢 . It takes a network𝐺 (represented as neigh-

bor lists a1, a2, . . . , a𝑛 ∈ {0, 1}𝑛) and privacy budgets 𝜀1, 𝜀2 ∈ R≥0
as inputs, and outputs a privacy-preserving estimate of the assor-

tativity factor query 𝑞𝑟𝑢 . We denote this algorithm by Localru for

brevity.

First, user 𝑣𝑖 uses the Randomized Response mechanism R𝑊𝜀1
that provides 𝜀1-LDP to obfuscate 𝑎𝑖,1, . . . , 𝑎𝑖,𝑖−1 (i.e., the bits with
smaller user IDs in the neighbor list a𝑖 ) (Line 2). In other words,

we apply RR to the lower triangular part of the adjacency matrix

A. Meanwhile, user 𝑣𝑖 calculates his/her degree 𝑑𝑖 , i.e., the number

of “1"s in a𝑖 (Line 3), and adds noise Lap

(
1

𝜀2

)
to 𝑑𝑖 (Line 4), where

Lap

(
1

𝜀2

)
is a Laplace random variable with mean 0 and scale

1

𝜀2
.

Then, user 𝑣𝑖 sends the noisy data R̃𝑖 and ˜𝑑𝑖 to the data collector.

Finally, the data collector estimates the assortativity factor 𝑞𝑟𝑢 (𝐺)
using R̃1, . . . , R̃𝑛 and

˜𝑑1, . . . , ˜𝑑𝑛 . Specifically, the privacy estimate

𝑞𝑟𝑢 (𝐺) of 𝑞𝑟𝑢 (𝐺) is as follows

𝑞𝑟𝑢 (𝐺) =
𝑋1

𝑀
− 𝑌1

𝑀2
, (16)
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Algorithm 1: Localru. [vi] and [d] represent that the pro-
cess is run by user 𝑣𝑖 and the data collector, respectively.

Data: Graph 𝐺 represented as neighbor lists a1, . . . , a𝑛
∈ {0, 1}𝑛 , privacy budget 𝜀1, 𝜀2 ∈ R≥0

Result: Private estimate 𝑞𝑟𝑢 (𝐺) of 𝑞𝑟𝑢 (𝐺)
1 for 𝑖 = 1 to 𝑛 do
2 [vi] R̃𝑖 ←

(
R𝑊𝜀1

(
𝑎𝑖,1

)
, . . . ,R𝑊𝜀1

(
𝑎𝑖,𝑖−1

) )
; // Apply 𝑅𝑅

to the lower triangular part of adjacency
matrix A.

3 [vi] 𝑑𝑖 ←
∑𝑛

𝑗=1 𝑎𝑖, 𝑗 ;

4 [vi] ˜𝑑𝑖 ← 𝑑𝑖 + Lap
(
1

𝜀2

)
;

5 [vi] Send R̃𝑖 and ˜𝑑𝑖 to the data collector;

6 end

7 [d] 𝑋1 ←
∑𝑛
𝑖=2

∑𝑖−1
𝑗=1
(𝑎̃𝑖,𝑗−𝑝) ˜𝑑𝑖 ˜𝑑 𝑗

1−2𝑝 ; // 𝑎𝑖, 𝑗 is the output

after applying 𝑅𝑅 to obfuscate 𝑎𝑖, 𝑗

8 [d] 𝑌1 ←
(
1

2

∑𝑛
𝑖=1

˜𝑑2
𝑖
− 𝑛+2

𝜀2
2

)
2

− 5𝑛+4
𝜀4
2

;

9 [d] 𝑞𝑟𝑢 (𝐺) ← 𝑋1/𝑀 + 𝑌1/𝑀2
;

10 [d] return 𝑞𝑟𝑢 (𝐺)

where

𝑋1 =

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

(
𝑎𝑖, 𝑗 − 𝑝

)
˜𝑑𝑖 ˜𝑑 𝑗

1 − 2𝑝 , (17a)

𝑌1 =

(
1

2

𝑛∑︁
𝑖=1

˜𝑑2𝑖 −
𝑛 + 2
𝜀2
2

)
2

− 5𝑛 + 4
𝜀4
2

. (17b)

Next, we show some theoretical properties of Localru. First, we
prove that Localru certainly provides differential privacy.

Theorem 4.1. Localru provides 𝜀-edge LDP and 2𝜀-edge DDP,
where 𝜀 = 𝜀1 + 𝜀2.

Proof. Local𝑟𝑢 applies RR to the lower triangular part of the

adjacency matrix A, ensuring that R̃1, . . . , R̃𝑛 are protected under

𝜀1-edge LDP. Meanwhile, since
˜𝑑𝑖 = 𝑑𝑖 + Lap

(
1

𝜀2

)
, the perturbed

degrees
˜𝑑1, . . . , ˜𝑑𝑛 are protected under 𝜀2-edge LDP. According to

the sequential composition property of differential privacy [15],

the combined sequence R̃1, . . . , R̃𝑛, ˜𝑑1, . . . , ˜𝑑𝑛 are protected under

(𝜀1 + 𝜀2)-edge LDP. Since 𝑞𝑟𝑢 (𝐺) is derived from post-processing

R̃1, . . . , R̃𝑛 and
˜𝑑1, . . . , ˜𝑑𝑛 , 𝑞𝑟𝑢 (𝐺) is protected under (𝜀1 + 𝜀2)-edge

LDP by the post-processing immunity property of differential pri-

vacy [15]. In a word, Localru provides 𝜀-edge LDP, where 𝜀 = 𝜀1+𝜀2.
Under the assumption that each individual knows only his/her

friends, the local view 𝐺𝑖 of user 𝑣𝑖 is equivalent to a𝑖 , where 𝑖 =
1, 2, . . . , 𝑛. Thus, according to the definition of DDP (see Definition

3.6), for any two neighboring graphs 𝐺,𝐺 ′ that differ in one edge,

we have

𝑃𝑟 (R1 (𝐺1) ∈ 𝑆1, ...,R𝑛 (𝐺𝑛) ∈ 𝑆𝑛)

𝑃𝑟

(
R1

(
𝐺
′
1

)
∈ 𝑆1, ...,R𝑛

(
𝐺
′
𝑛

)
∈ 𝑆𝑛

)
=

∏𝑛
𝑖=1 𝑃𝑟 (R𝑖 (𝐺𝑖 ) ∈ 𝑆𝑖 )∏𝑛
𝑖=1 𝑃𝑟

(
R𝑖

(
𝐺
′
𝑖

)
∈ 𝑆𝑖

)
=
𝑃𝑟 (R𝑥 (a𝑥 ) ∈ 𝑆𝑥 ) · 𝑃𝑟

(
R𝑦

(
a𝑦

)
∈ 𝑆𝑦

)
𝑃𝑟

(
R𝑥

(
a′𝑥

)
∈ 𝑆𝑥

)
· 𝑃𝑟

(
R𝑦

(
a′𝑦

)
∈ 𝑆𝑦

)
≤ 𝑒2𝜀 .

(18)

Therefore, Localru provides 2𝜀-edge DDP. □

The following theorem demonstrates that Localru provides an

unbiased estimate of the assortativity factor.

Theorem 4.2. The estimate 𝑞𝑟𝑢 (𝐺) produced by Localru is unbi-
ased, i.e., E (𝑞𝑟𝑢 (𝐺)) = 𝑞𝑟𝑢 (𝐺).

As mentioned above, we also determine the steadiness of localru,
which is shown as follows.

Theorem 4.3. When 𝜀1, 𝜀2 are constants, the estimate 𝑞𝑟𝑢 (𝐺)
produced by Localru provides the following utility guarantee:

MSE (𝑞𝑟𝑢 (𝐺)) = 𝑂
(
𝑛3𝑑2

max
+ 𝑛2𝑑4

max

𝑀2
+
𝑛3𝑑6

max

𝑀4

)
. (19)

Since almost all real-world networks are sparse, i.e.𝑀 = Θ (𝑛)
[1], it follows that we have MSE (𝑞𝑟𝑢 (𝐺)) ≤ 𝑂

(
𝑛2

)
, if quantity

𝑑max ≤ 𝑂 (𝑛1/2). It is well known that this condition 𝑑max ≤ 𝑛1/2
is commonly seen in real-world networks [42].

Finally, we analyze the time and space complexity of Localru.

Theorem 4.4. The time complexity of Localru is 𝑂
(
𝑛2

)
, and the

space complexity is 𝑂
(
𝑛2

)
.

Localru requires obfuscating each bit in the lower triangular part
of the adjacencymatrix of network𝐺 , resulting in a time complexity

of 𝑂
(
𝑛2

)
. Additionally, this algorithm needs 𝑂

(
𝑛2

)
space to store

the adjacency matrix A, hence the space complexity is also 𝑂
(
𝑛2

)
.

By far, we have finished the development of Localru and also

analyzed it in detail. The next subsection aims to enhance the level

of privacy-preserving by bringing the Shuffle Model.

4.2 Two-Round DP Algorithm for Assortativity
Factor with Shuffling

Generally, multi-round LDP algorithms, which involve multiple

rounds of interaction between each user and the data collector, can

support more powerful queries and produce more accurate results.

Hence, we further design a two-round algorithm for calculating

the assortativity factor and, in the meantime, introduce the Shuffle

Model to amplify privacy.

Algorithm 2 (denoted by Shuffle𝑟𝑢 ) shows the two-round DP

algorithm for the assortativity factor with shuffling. Shuffle𝑟𝑢 takes

as input a graph 𝐺 (represented as neighbor lists a1, a2, . . . , a𝑛 ∈
{0, 1}𝑛), a privacy budget 𝜀, a failure probability 𝛿 and a parameter

for privacy budget allocation 𝛼 .
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Algorithm 2: Shuffleru. [vi], [s] and [d] represent that the
process is run by user 𝑣𝑖 , the shuffler and the data collector,

respectively.

Data: Neighbor lists a1, . . . , a𝑛 ∈ {0, 1}𝑛 , privacy budget

𝜀 ∈ R≥0, failure probability 𝛿 ∈ [0, 1], parameter for

privacy budget allocation 𝛼 ∈ (0, 1)
Result: Private estimate 𝑞𝑟𝑢 (𝐺) of 𝑞𝑟𝑢 (𝐺)

1 𝜀0 ← LocalPrivacyBudget(𝑛, 𝜀, 𝛿);
/* First round */

2 for 𝑖 = 1 to 𝑛 do
3 [vi] 𝑑𝑖 ←

∑𝑛
𝑗=1 𝑎𝑖, 𝑗 ;

4 [vi] ˜𝑑𝑖 ← 𝑑𝑖 + Lap
(

1

𝛼𝜀0

)
;

5 [vi] Send ˜𝑑𝑖 to the data collector;

6 end
/* Second round */

7 [d] Return the sequence
˜𝑑1, . . . , ˜𝑑𝑛 to each user;

8 [vi] R̃𝑖 ←
(
R𝑊𝜀1

(
𝑎𝑖,1

)
, . . . ,R𝑊𝜀1

(
𝑎𝑖,𝑖−1

) )
; // Apply 𝑅𝑅

that provides 𝜀1-LDP to the lower triangular
part of adjacency matrix A, where 𝜀1 = (1 − 𝛼) 𝜀0.

9 for 𝑖 = 2 to 𝑛 do

10 [vi] 𝑟𝑖 ← 𝑑𝑖
∑𝑖−1

𝑗=1
(𝑎̃𝑖,𝑗−𝑝) ˜𝑑 𝑗

1−2𝑝 ;

11 [vi] Send 𝑟𝑖 to the shuffler;

12 end
13 [s] Sample a random permutation 𝜋 over {1, 2, . . . , 𝑛};
14 [s] Send 𝑟𝜋 (1) , . . . , 𝑟𝜋 (𝑛) to the data collector;

15 [d] 𝑋2 ←
∑𝑛
𝑖=2 𝑟𝑖 ;

16 [d] 𝑌2 ←
(
1

2

∑𝑛
𝑖=1

˜𝑑2
𝑖
− 𝑛+2

𝜀2
0

)
2

− 5𝑛+4
𝜀4
0

;

17 [d] 𝑞𝑟𝑢 (𝐺) ← 𝑋2/𝑀 + 𝑌2/𝑀2
;

18 [d] return 𝑞𝑟𝑢 (𝐺)

When running Shuffle𝑟𝑢 , the first step is to call the function

LocalPrivacyBudget to compute a local privacy budget 𝜀0 from pa-

rameters 𝑛, 𝜀, 𝛿 (line 1). Specifically, this function produces 𝜀0 such

that 𝜀 is a closed-form or numerical upper bound in the shuffle

model with 𝑛 users. Given 𝜀0, the closed-form bound can be com-

puted by Eq.(11), while the numerical bound can be obtained using

the open source code in [20]
1
. Thus, we can easily compute 𝜀0 from

𝜀 by computing a lookup table for the privacy budget pairs (𝜀0, 𝜀)
in advance.

In the first round, each user 𝑣𝑖 calculates his/her degree 𝑑𝑖 (line

3), then computes the noisy degree
˜𝑑𝑖 = 𝑑𝑖 + Lap

(
1

𝛼𝜀0

)
(line 4).

Finally, 𝑣𝑖 sends ˜𝑑𝑖 to the data collector.

In the second round, the data collector returns the noisy degree

˜𝑑1, . . . , ˜𝑑𝑛 to each user. Each user 𝑣𝑖 then obfuscates the bits with

smaller user IDs in his/her neighbor list a𝑖 using the random re-

sponse mechanism R𝑊𝜀1 , and calculates 𝑟𝑖 based on both
˜𝑑1, . . . , ˜𝑑𝑛

and the obfuscated bits in a𝑖 (lines 8 to 10). Next, 𝑟𝑖 is sent to the

1
https://github.com/apple/ml-shuffling-amplification

Shuffler which randomly permutes 𝑟1, . . . , 𝑟𝑛 and sends the per-

muted data 𝑟𝜋 (1) , . . . , 𝑟𝜋 (𝑛) to the data collector.

Finally, the data collector computes the estimate 𝑞𝑟𝑢 (𝐺) of
𝑞𝑟𝑢 (𝐺) from ˜𝑑1, . . . , ˜𝑑𝑛 and 𝑟𝜋 (1) , . . . , 𝑟𝜋 (𝑛) . Note that the estimate

𝑞𝑟𝑢 only involves summing 𝑟𝜋 (1) , . . . , 𝑟𝜋 (𝑛) while it is not neces-
sary to know the permutation 𝜋 . Thus, the expression for 𝑞𝑟𝑢 (𝐺)
is as follows

𝑞𝑟𝑢 (𝐺) =
𝑋2

𝑀
− 𝑌2

𝑀2
, (20)

where

𝑋2 =

𝑛∑︁
𝑖=2

𝑟𝑖 =

𝑛∑︁
𝑖=2

𝑑𝑖

𝑖−1∑︁
𝑗=1

(
𝑎𝑖, 𝑗 − 𝑝

)
˜𝑑 𝑗

1 − 2𝑝 , (21a)

𝑌2 =

(
1

2

𝑛∑︁
𝑖=1

˜𝑑2𝑖 −
𝑛 + 2
𝜀2
0

)
2

− 5𝑛 + 4
𝜀4
0

. (21b)

As above, we need to make a detailed analysis of Shuffleru. First,
let us state that Shuffleru provides the following privacy guarantee.

Theorem 4.5. Shuffleru provides (𝜀, 𝛿)-edge DP.

Proof. Since
˜𝑑𝑖 = 𝑑𝑖 + Lap

(
1

𝛼𝜀0

)
,
˜𝑑1, . . . , ˜𝑑𝑛 are protected un-

der 𝛼𝜀0-edge LDP. The lower triangular part of the adjacency

matrix A is obfuscated using RR, so R̃1, . . . , R̃𝑛 are protected un-

der 𝜀1-edge LDP, where 𝜀1 = (1 − 𝛼) 𝜀0. Note that 𝑑𝑖 is indepen-
dent of

∑𝑖−1
𝑗=1

(𝑎̃𝑖,𝑗−𝑝 ) ˜𝑑 𝑗

1−2𝑝 , by the sequential composition and post-

processing immunity of DP, 𝑟1, . . . , 𝑟𝑛 is protected under 𝜀0-edge

LDP. After shuffling, the shuffled sequence 𝑟𝜋 (1) , 𝑟𝜋 (2) , . . . , 𝑟𝜋 (𝑛)
achieves privacy amplification under (𝜀, 𝛿)-edge DP protection,

where 𝜀 = 𝑔 (𝑛, 𝜀0, 𝛿) (see Eq.(11) for the expression). By the immu-

nity to post-processing, 𝑞𝑟𝑢 (𝐺) is still protected under (𝜀, 𝛿)-edge
LDP. Therefore, Shuffle𝑟𝑢 provides (𝜀, 𝛿)-edge LDP. □

It is easy to see that Shuffleru achieves the amplification of

privacy in comparison with Local𝑟𝑢 while a failure probability

𝛿 emerges.

Theorem 4.6. The estimate 𝑞𝑟𝑢 (𝐺) produced by Shuffleru satis-
fies E (𝑞𝑟𝑢 (𝐺)) = 𝑞𝑟𝑢 (𝐺).

This suggests that Shuffleru outputs an unbiased estimation of

the assortativity factor. In addition, we have the following state-

ment.

Theorem 4.7. When 𝜀, 𝛿 are constants, 𝛼 ∈ (0, 1), 𝜀0 = log (𝑛) +
𝑂 (1), the estimate 𝑞𝑟𝑢 (𝐺) produced by Shuffleru provides the fol-
lowing utility guarantee:

MSE (𝑞𝑟𝑢 (𝐺)) = 𝑂
(
𝑛1+𝛼𝑑4

max

𝑀2
+

𝑛3𝑑2
max

(log𝑛)2𝑀2

+
𝑛3𝑑6

max

(log𝑛)2𝑀4

)
.

(22)

As before, a similar analysis implies that if the quantity 𝑑max =

𝑂

(
𝑛1/2

)
, then MSE (𝑞𝑟𝑢 (𝐺)) = 𝑂

(
𝑛1+𝛼 + 𝑛2

(log𝑛)2
)
. Therefore, the

estimation yielded by Shuffleru has better steadiness than that of

Localru.

Theorem 4.8. The time complexity of Shuffleru is𝑂
(
𝑛2

)
, and the

space complexity is 𝑂
(
𝑛2

)
.
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This result may be proved using a similar analysis as used in

proof of theorem 4.4, we thus omit it here.

In the next subsection, we will focus on the other setting that

is somewhat different from that discussed in the two subsections

above. As a consequence, the associated algorithm is established

and analyzed in detail.

4.3 Computing Assortativity Factor from
Extended Local Views

In some social networks, individuals have not only knowledge of

their own connections but also a broader subgraph within their

local neighborhood. Such a subgraph is called an Extended Local

View (ELV) [53]. For example, on Facebook, each user can see all

the connections of his/her friends by default. Similarly, in real-life

social interactions, we often learn about the relationships among

our friends during social events. In these scenarios, individuals can

provide information about their neighbors’ connections (i.e. 2-hop

ELVs) to the data collector.

To accurately compute the assortativity factor while preserving

privacy in one such scenario, we propose a DDP algorithm under

the assumption that each user knows all the connections of his/her

friends. In this algorithm, we apply the Laplace mechanism to

perturb each user’s degree 𝑑𝑖 and the sum 𝑇𝑖 =
∑𝑛

𝑗=1 𝑎𝑖, 𝑗𝑑 𝑗 of

his/her friends’ degrees. However, adding an edge can increase

{𝑇𝑖 , . . . ,𝑇𝑛} by up to 4𝑛 − 6. That is to say, the global sensitivity of

{𝑇𝑖 , . . . ,𝑇𝑛} is 4𝑛 − 6 (according to definition 3.7). When 𝑛 is large,

we need to add a large amount of noise to 𝑇𝑖 to ensure privacy,

which significantly reduces the utility of the algorithm’s output.

To address this issue, we adopt a probabilistic upper bound on the

local sensitivity in place of the global sensitivity based on Lemma

3.9. Notice that the local sensitivity of {𝑇1, . . . ,𝑇𝑛} under DDP sat-

isfies

𝐿𝑆𝐷𝐷𝑃 (𝑇 ) = max

𝑣𝑖 ,𝑣𝑗 ∈𝐺∧𝑖≠𝑗
2

(
𝑑𝑖 + 𝑑 𝑗

)
. (23)

Specifically, when an edge (𝑣𝑖 , 𝑣 𝑗 ) is added or removed in 𝐺 , (i) 𝑇𝑖
changes by 𝑑 𝑗 , (ii) 𝑇𝑗 changes by 𝑑𝑖 , and (iii) Σ𝑙≠𝑖, 𝑗𝑇𝑙 changes by
𝑑𝑖 + 𝑑 𝑗 .

It is easy to see that the probabilistic upper bound of 𝐿𝑆𝐷𝐷𝑃 (𝑇 )
can be derived by calculating the probabilistic upper bounds of

users’ degrees. Specifically, we first perturb the degree of each user

using the Laplace mechanism. Then, we use Lemma 3.9 to calculate

the probabilistic upper bounds of all the noisy degrees. Finally, by

substituting the two largest degree upper bounds into Eq.23, we

can obtain the probabilistic upper bound of 𝐿𝑆𝐷𝐷𝑃 (𝑇 ).
By far, we are ready to propose the third algorithm. Algorithm 3

shows our algorithm for computing the assortativity factor from

extended local views. We denote this algorithm by Decentralru.
It takes several inputs: ELVs of all users 𝐺1,𝐺2, . . . ,𝐺𝑛 , privacy

budgets 𝜀1, 𝜀2, and a failure probability 𝛿 .

The algorithm begins by splitting the privacy parameter 𝛿 , which

is handled by the data collector. The data collector then broadcasts

the parameters to all users, i.e., nodes in the social network. Lines

2–7 are executed by each client, where each user computes his/her

noisy degree
˜𝑑𝑖 and a probabilistic upper bound 𝑑′

𝑖
of the true

degree 𝑑𝑖 , and reports these values to the data collector. Based on

the received data 𝑑∗
1
, 𝑑∗

2
, . . . , 𝑑∗𝑛 , the data collector determines the

Algorithm 3: Decentralru. [vi] and [d] represent that the
process is run by 𝑣𝑖 and the data collector, respectively.

Data: ELVs of all users 𝐺1, . . . ,𝐺𝑛 , privacy budget

𝜀1, 𝜀2 ∈ R≥0, failure probability 𝛿 ∈ [0, 1]
Result: Private estimate 𝑞𝑟𝑢 (𝐺) of 𝑞𝑟𝑢 (𝐺)

1 [d] 𝛿1 ← 𝛿/2;
2 for 𝑖 = 1 to 𝑛 do
3 [vi] 𝑑𝑖 ←

∑𝑛
𝑗=1 𝑎𝑖, 𝑗 ;

4 [vi] ˜𝑑𝑖 ← 𝑑𝑖 + Lap
(
2

𝜀1

)
;

5 [vi] 𝑑∗𝑖 ← ˜𝑑𝑖 + 2

𝜀1
log

(
1

2𝛿1

)
;

6 [vi] Send ˜𝑑𝑖 and 𝑑
∗
𝑖
to the data collector;

7 end

8 [d] Sort
{
𝑑∗
𝑖

}
into

{
𝑑∗[1] , 𝑑

∗
[2] , . . . , 𝑑

∗
[𝑛]

}
in descending

order;

9 [d] Δ← 2(𝑑∗[1] + 𝑑
∗
[2] );

10 for 𝑖 = 1 to 𝑛 do
11 ˜𝑑𝑖 ← 𝑑𝑖 + Lap

(
1

𝜀0

)
;

12 [vi] 𝑇𝑖 ← 𝑇𝑖 + Lap
(
Δ
𝜀2

)
;

13 [vi] Send 𝑇𝑖 to the data collector;

14 end
15 [d] 𝑋3 ← 1

2

∑𝑛
𝑖=1

˜𝑑𝑖𝑇𝑖 ;

16 [d] 𝑌3 ←
(
1

2

∑𝑛
𝑖=1

˜𝑑2
𝑖
− 4(𝑛+2)

𝜀2
1

)
2

− 16(5𝑛+4)
𝜀4
1

;

17 [d] 𝑞𝑟𝑢 (𝐺) ← 𝑋3/𝑀 + 𝑌3/𝑀2
;

18 [d] return 𝑞𝑟𝑢 (𝐺)

sensitivity required for perturbing 𝑇𝑖 , and sends it back to each

user. Then, each user applies the Laplace mechanism to compute

the noisy value 𝑇𝑖 and reports it to the data collector. Finally, the

data collector estimates 𝑞𝑟𝑢 (𝐺) as follows

𝑞𝑟𝑢 (𝐺) =
𝑋3

𝑀
− 𝑌3

𝑀2
, (24)

where

𝑋3 =
1

2

𝑛∑︁
𝑖=1

˜𝑑𝑖𝑇𝑖 , (25a)

𝑌3 =

(
1

2

𝑛∑︁
𝑖=1

˜𝑑2𝑖 −
4 (𝑛 + 2)
𝜀2
1

)
2

− 16 (5𝑛 + 4)
𝜀4
1

. (25b)

Following the similar analysis as above, we prove thatDecentralru
has the following properties.

Theorem 4.9. Decentralru provides (𝜀, 𝛿)-edge DDP, where 𝜀 =
𝜀1 + 𝜀2 and 𝛿 = 2𝛿1.

Proof. Obviously, for any 𝑖 ∈ {1, . . . , 𝑛}, ˜𝑑𝑖 = 𝑑𝑖 + Lap
(
2

𝜀1

)
is

protected with 𝜀1-edge DDP. Next, we show that Δ ≥ 𝐿𝑆𝐷𝐷𝑃 (𝑇𝑖 )
holds with probability at least 1 − 𝛿 . This is equivalent to proving

that (𝑑∗[1] ≥ 𝑑 (1) ) ∧ (𝑑
∗
[2] ≥ 𝑑 (2) ) holds with probability at least

1 − 𝛿 , where 𝑑 (𝑖 ) denotes the 𝑖-th largest true degree.



Fei Ma, Jinzhi Ouyang, and Xincheng Hu

Let 𝜉𝑖 ∈ [0, 1] be the total probability that another user’s degree

other than 𝑑 (𝑖 ) becomes 𝑑∗[𝑖 ] and meanwhile 𝑑∗[𝑖 ] ≥ 𝑑 (𝑖 ) . It is easy
to deduce that for any 𝑖 ∈ {1, 2, . . . , 𝑛}, we have

Pr[𝑑∗[𝑖 ] ≥ 𝑑 (𝑖 ) ] = Pr[𝑑∗(𝑖 ) ≥ 𝑑 (𝑖 ) ] + 𝜉𝑖
≥ Pr[𝑑∗(𝑖 ) ≥ 𝑑 (𝑖 ) ]
= 1 − 𝛿1 .

(26)

Thus,

Pr

[(
𝑑∗[1] ≥ 𝑑 (1)

)
∧

(
𝑑∗[2] ≥ 𝑑 (2)

)]
= 1 − Pr

[(
𝑑∗[1] < 𝑑 (1)

)
∨

(
𝑑∗[2] < 𝑑 (2)

)]
≥ 1 −

[
Pr

(
𝑑∗[1] < 𝑑 (1)

)
+ Pr

(
𝑑∗[2] < 𝑑 (2)

)]
= Pr

(
𝑑∗[1] ≥ 𝑑 (1)

)
+ Pr

(
𝑑∗[2] ≥ 𝑑 (2)

)
− 1

≥ 1 − 2𝛿1 = 1 − 𝛿.

(27)

Therefore, 𝑇𝑖 = 𝑇𝑖 + Lap
(
Δ
𝜀2

)
is protected under 𝜀2-edge DDP

with probability 1 − 𝛿 . Overall, Decentralru provides (𝜀, 𝛿)-edge
DDP, where 𝜀 = 𝜀1 + 𝜀2 and 𝛿 = 2𝛿1.

□

Theorem 4.10. The estimate 𝑞𝑟𝑢 (𝐺) produced by Decentralru
satisfies E (𝑞𝑟𝑢 (𝐺)) = 𝑞𝑟𝑢 (𝐺).

Theorem 4.11. When 𝜀1, 𝜀2 are constants, the estimate 𝑞𝑟𝑢 (𝐺)
produced by Decentralru provides the following utility guarantee:

MSE (𝑞𝑟𝑢 (𝐺)) = 𝑂
(
𝑛3𝑑6

max

𝑀4

)
. (28)

If quantity
ˆ𝑑max = Θ(𝑛1/6), we find that MSE (𝑞𝑟𝑢 (𝐺)) = 𝑂 (1).

In this setting, the consequence produced by Decentralru is over-

whelmingly better than that by Localru. This implies that a broader

view is beneficial to a steadier estimation given
ˆ𝑑max = Θ(𝑛1/6). Fur-

thermore, if
ˆ𝑑max ≤ 𝑂 (𝑛1/2), we have also MSE (𝑞𝑟𝑢 (𝐺)) ≤ 𝑂

(
𝑛2

)
.

Theorem 4.12. The time complexity ofDecentralru is𝑂
(
𝑛2

)
, and

the space complexity is 𝑂
(
𝑛2

)
.

As above, this may also be proved in a similar manner as used

in the proof of theorem 4.4.

By far, we finish the development of algorithms Localru, Shuffleru
and Decentralru, and give detailed theoretical analysis. In the next

section, we are going to conduct experimental evaluations on syn-

thetic datasets and real-world datasets to further clarify the perfor-

mance of the proposed algorithms.

5 EXPERIMENT EVALUATION
In this section, we will conduct experiments on synthetic datasets

and real-world datasets to evaluate the performance of our algo-

rithms Localru, Shuffleru and Decentralru proposed in Section 4.

5.1 Experimental Set-up
We perform experiments on six datasets whose parameters are

summarized in Table 3. The first three are synthetic datasets with

power-law degree distribution based on the BA (Barabási-Albert)

graph model [48], where𝑚 represents the number of edges of a

newly added node. Here we use the NetworkX library [25] to gen-

erate BA synthetic graphs. The other three are real-world datasets

from the Stanford Network Analysis Project (SNAP).

Table 3: datasets

𝑛 𝑀 𝑑𝑚𝑎𝑥 𝑑𝑎𝑣𝑔 𝑟𝑢

BA(𝑚 = 10) 10000 99900 464 19.98 -95.22

BA(𝑚 = 50) 10000 497500 1237 99.5 49.03

BA(𝑚 = 100) 10000 990000 1640 198 736.81

Facebook 4039 88234 1045 43.69 870.36

Deezer 28281 92752 172 6.56 29.19

GitHub 37700 289003 9458 15.33 -162127.53

• Facebook. The Facebook online social network dataset

(denoted by Facebook) [35] contains friend lists from survey

participants using the Facebook application. It provides a

social graph 𝐺 = (𝑉 , 𝐸) with 4,039 nodes (Facebook users)

and 88,234 undirected edges, where each edge

(
𝑣𝑖 , 𝑣 𝑗

)
∈ 𝐸

represents an online friendship between 𝑣𝑖 and 𝑣 𝑗 .

• Deezer. This dataset (denoted by Deezer) [51] includes a

graph 𝐺 with 28,281 nodes and 92,752 undirected edges,

where nodes represent Deezer users from European coun-

tries and edges indicate mutual follower relationships.

• GitHub. This dataset (denoted by GitHub) [50] is a so-

cial network of GitHub developers with 37,700 nodes and

289,003 edges. Nodes are developers who have starred at

least 10 repositories, and edges are the mutual follow rela-

tionships between them.

For each algorithm, we evaluate the relative error (as described

in subsection 3.5) of the estimate as the value of 𝜀 varies. In our

experiments, we set the range of 𝜀 to (0, 2], which is acceptable in

many practical scenarios [37]. To ensure reliable results, we run

each algorithm 20 times and use the average relative error of these

runs as the final experimental result. Additionally, given that the

assortativity factor 𝑟𝑢 reflects the sign of assortativity, it is useful

to report the extent to which the privacy estimate of 𝑟𝑢 reflects the

true sign of assortativity, in addition to the relative error. Therefore,

we also assess the accuracy of the sign of the estimate as 𝜀 varies.We

run each algorithm 100 times and report the proportion of correct

signs in the outputs as the sign accuracy of each algorithm. Our

source code is available on GitHub
2
.

5.2 Experimental Results
5.2.1 Relation between the Relative Error and 𝜀. We first evaluate

the relationship between the relative error and the privacy param-

eter 𝜀 in edge DP. In this experiment, for Localru, we divide the
total privacy budget 𝜀 into 𝜀1 = 0.6𝜀 for perturbing the adjacency

matrix A and 𝜀2 = 0.4𝜀 for perturbing the users’ degrees 𝑑1, . . . , 𝑑𝑛 .

For Shuffleru, we set the privacy allocation parameter 𝛼 to 0.4 and

the failure probability 𝛿 to 10−8 (≪ 𝑛) and use the numerical upper

bound in [20] to calculate the local privacy budget 𝜀0 in the shuf-

fling model. For Decentralru, 𝛿 is also set to 10−8. Privacy budget 𝜀

2
https://github.com/OYJZBYCG/Differential-Privacy-for-Network-Assortativity.git
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is divided into 𝜀1 = 0.4𝜀 and 𝜀2 = 0.6𝜀 for perturbation of the user’s

degree {𝑑1, 𝑑2, . . . , 𝑑𝑛} and number of friends of the user’s friends

{𝑇1,𝑇2, . . . ,𝑇𝑛}, respectively.

(a) BAGraph-m10 (b) BAGraph-m50

(c) BAGraph-m100 (d) Facebook

(e) Deezer (f) GitHub

Figure 2: Relation between the relative error and 𝜀 in edge
DP.

All the experimental results are shown in Fig.2. It is apparent

to see that for 𝜀 in question, Decentralru has a better performance

than Localru. This means that a broader view is conducive to ob-

taining better estimates. At the same time, given the low level of

privacy budget 𝜀, Shuffleru is always optimal in comparison with

the other two algorithms as this algorithm has a strictly smaller rel-

ative error than them. This is in line with the theoretical analysis in

the preceding section. This is mainly because its ingredient, Shuffle

Model, owns its merit, i.e., privacy amplification effect. As encoun-

tered in the literature [12, 14, 26, 39], all the previous DP-based

schemes prefer an assumption of low privacy budget. In a word,

Shuffleru is the best choice among these proposed algorithms.

5.2.2 Relation between the Sign Accuracy and 𝜀. Next, We eval-

uate the relationship between the sign accuracy and the privacy

parameter 𝜀 in edge DP. Fig.3 shows the results of the experiment.

It is clear that the accuracy of Decentralru is higher than that of

Localru, which reinforces the validity of using a broader view to

improve our estimation accuracy. In addition, Shuffleru is signifi-

cantly better than the other two, and the accuracy is almost always

100%. This suggests that it is highly effective to take advantage of

the shuffle model to improve the estimation accuracy under DP.

(a) BAGraph-m10 (b) BAGraph-m50

(c) BAGraph-m100 (d) Facebook

(e) Deezer (f) GitHub

Figure 3: Relation between the sign accuracy and 𝜀 in edge
DP.

5.2.3 Numerical bound vs. closed-form bound in Shuffleru. As men-

tioned in subsection 3.4, Feldman et al. provided two types of upper

bounds on the privacy level in the shuffle model: a closed-form

upper bound (see Eq.(11)) and a numerical upper bound (computed

by the algorithm in [20]). Below, we compare the performance of

Shuffleru using these two bounds. Here, we also set 𝛿 = 10
−8
.

Figure 4 shows that when 𝜀 is small, Shuffleru equipped with the

numerical upper bound achieves a lower relative error, and when

𝜀 ≥ 1, the relative errors of both methods are nearly the same. This

is because, in both cases, the corresponding local privacy budget

𝜀0 approaches its maximum value of log

(
𝑛

16 log(2/𝛿 )

)
when 𝜀 ≥ 1.

In summary, Shuffleru with the numerical upper bound generally

outperforms the version with the closed-form upper bound.

6 DISCUSSION
In this work, we study the estimation of network assortativity un-

der DP for the first time and propose three algorithms Localru,
Shuffleru and Decentralru. As mentioned above, the techniques

built in the development and analysis of algorithms have a wide
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(a) BAGraph-m10 (b) BAGraph-m50

(c) BAGraph-m100 (d) Facebook

(e) Deezer (f) GitHub

Figure 4: Numerical bound vs. closed-form bound in
DeShuffleru.

range of applications. For example, these algorithms can be adapted

to analyze the degree-degree correlation distribution of networks.

Although we focus only on simple networks, the proposed algo-

rithms can be slightly modified to achieve the same task on other

types of networks including weighted networks, directed networks.

Hence, we would like to see more applications based on our work

in the near future.

On the other hand, our work is just the tip of the iceberg. There

is still room for further improvement. For instance, we make use of

some relatively rough methods when determining bounds for some

quantities includingMSE, time and space complexity. Therefore, it is

of great interest to capture new bounds using advanced techniques,

which is left as our next move. What’s more, it is a notable problem

of how to derive the tight upper bound of MSE for DP-algorithm

addressing the concern we are discussing in this work. In addition,

it is also interesting to propose some new schemes for the purpose

of accurately estimating network assortativity under LDP.

It is well known that there is a long history of network structure

analysis [42, 45]. At the same time, it has received more attention to

analyze structure of network in the requirement of privacy protec-

tion, such as subgraph counting [28], community detection [21] and

graph synthesis [49]. This work studies another important struc-

tural property of network under DP. With the increased awareness

of privacy protection, there is growing emphasis on data privacy

disclosure issues. Network, as a class of fundamental yet significant

structure depicting data, will continue to gain more attention in the

field of privacy-preserving data analysis. In the future, therefore, we

explore other structural properties of network from the viewpoint

of privacy protection.

7 CONCLUSION
In summary, we are the first to consider the problem of how to accu-

rately estimate network assortativity under the demand of privacy

protection. Specifically, we propose three DP-based algorithms, i.e.,

Localru, Shuffleru and Decentralru, to address this concern in two

distinct scenarios. With rigorous theoretical analysis, we show that

the proposed algorithms yield an unbiased estimation for network

assortativity. Also, we make use of MSE to measure the steadiness

of algorithms. At the same time, we determine time and space com-

plexity of three algorithms. Additionally, we conduct extensive

computer simulations, which demonstrate that experimental evalu-

ations are in line with theoretical analysis. At last, we declare some

potential applications of the light shed in the development of our

algorithms and point out our next move.
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SUPPLEMENTARY MATERIAL
Below are more details that are omitted in the main text due to the

space limitation.

Proof of Theorem 4.2
Theorem 4.2 The estimate 𝑞𝑟𝑢 (𝐺) produced by Localru is unbiased,
i.e., E (𝑞𝑟𝑢 (𝐺)) = 𝑞𝑟𝑢 (𝐺).

Before beginning with the detailed proof, we need to introduce

a lemma as below.

Lemma 7.1 ([34]). Given a random variable 𝑋 ∼ Lap (𝑥, 𝑏), then

E
(
𝑋𝑟 ) = 𝑟∑︁

𝑘=0

{
1

2

[
1 + (−1)𝑘

] 𝑟 !

(𝑟 − 𝑘)!𝑏
𝑘𝑥𝑟−𝑘

}
. (A.1)
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Now, let us give the proof of Theorem 4.2.

Proof. It is clear to see that 𝑎𝑖, 𝑗 is in fact a Bernoulli random

variable and
˜𝑑𝑖 ∼ Lap

(
𝑑𝑖 ,

1

𝜀2

)
. Then, we have

E
(
𝑎𝑖, 𝑗

)
= 𝑎𝑖, 𝑗 (1 − 𝑝) +

(
1 − 𝑎𝑖, 𝑗

)
𝑝, (A.2a)

E
(
˜𝑑2𝑖

)
= 𝑑2𝑖 +

2

𝜀2
2

. (by Lemma 7.1) (A.2b)

E
(
˜𝑑4𝑖

)
= 𝑑4𝑖 +

12

𝜀2
2

𝑑2𝑖 +
24

𝜀4
2

(by Lemma 7.1) (A.2c)

Next, we move to the proof of unbiasedness of 𝑞𝑟𝑢 (𝐺). First, we
obtain

E (𝑋1) =
𝑛∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

(
𝐸

(
𝑎𝑖, 𝑗

)
− 𝑝

)
𝐸

(
˜𝑑𝑖

)
𝐸

(
˜𝑑 𝑗

)
1 − 2𝑝

=

𝑛∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

[
𝑎𝑖, 𝑗 (1 − 𝑝) +

(
1 − 𝑎𝑖, 𝑗

)
𝑝 − 𝑝

]
𝑑𝑖𝑑 𝑗

1 − 2𝑝

=

𝑛∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

𝑎𝑖, 𝑗𝑑𝑖𝑑 𝑗

=
∑︁
(𝑣𝑖 ,𝑣𝑗 )∈𝐸

𝑑𝑖𝑑 𝑗 .

(A.3)

Similarly, it is easy to check

E (𝑌1) = E

(
1

2

𝑛∑︁
𝑖=1

˜𝑑2𝑖 −
𝑛 + 2
𝜀2
2

)
2

− 5𝑛 + 4
𝜀4
2


= V

(
1

2

𝑛∑︁
𝑖=1

˜𝑑2𝑖 −
𝑛 + 2
𝜀2
2

)
− 5𝑛 + 4

𝜀4
2

+
[
E

(
1

2

𝑛∑︁
𝑖=1

˜𝑑2𝑖 −
𝑛 + 2
𝜀2
2

)]
2

=
1

4

𝑛∑︁
𝑖=1

[
E

(
˜𝑑4𝑖

)
−

[
E

(
˜𝑑2𝑖

)]
2

]
− 5𝑛 + 4

𝜀4
2

+
[
1

2

𝑛∑︁
𝑖=1

E
(
˜𝑑2𝑖

)
− 𝑛 + 2

𝜀2
2

]
2

=
1

4

𝑛∑︁
𝑖=1

(
8

𝜀2
2

𝑑2𝑖 +
20

𝜀4
2

)
− 5𝑛 + 4

𝜀4
2

+
[
1

2

𝑛∑︁
𝑖=1

(
2

𝜀2
2

+ 𝑑2𝑖

)
− 𝑛 + 2

𝜀2
2

]
2

=
2

𝜀2
2

𝑛∑︁
𝑖=1

𝑑2𝑖 +
5𝑛

𝜀4
2

+
[
1

2

𝑛∑︁
𝑖=1

𝑑2𝑖 −
2

𝜀2
2

]
2

− 5𝑛 + 4
𝜀4
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=


∑︁
(𝑣𝑖 ,𝑣𝑗 )∈𝐸

1

2

(
𝑑𝑖 + 𝑑 𝑗

)
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(A.4)

To sum up, we verify that

E [𝑞𝑟𝑢 (𝐺)] =
E (𝑋1)
𝑀

− E (𝑌1)
𝑀2

= 𝑞𝑟𝑢 (𝐺) . (A.5)

□

Proof of Theorem 4.3
Theorem 4.3 When 𝜀1, 𝜀2 are constants, the estimate 𝑞𝑟𝑢 (𝐺) pro-
duced by Localru provides the following utility guarantee:

MSE

(
𝑛3𝑑2

max
+ 𝑛2𝑑4

max

𝑀2
+
𝑛3𝑑6

max

𝑀4

)
. (B.1)

Let us introduce a lemma to succeed in verifying Theorem 4.3.

Lemma 7.2 ([30]). Let𝑥1, 𝑥2 be two random variables, thenV (𝑥1 + 𝑥2) ≤
4max {V (𝑥1) ,V (𝑥2)}.

From now on, we show the detailed proof of Theorem 4.3 as

follows.

Proof. Due to V
(
𝑎𝑖, 𝑗

)
= E

(
𝑎2
𝑖, 𝑗

)
−

[
E

(
𝑎𝑖, 𝑗

) ]
2

= 𝑝 (1 − 𝑝), we
can obtain

E
(
𝑎2𝑖, 𝑗

)
= V(𝑎𝑖, 𝑗 ) +

[
E(𝑎𝑖, 𝑗 )

]
2

=
𝑝 (1 − 𝑝)
(1 − 2𝑝)2

+ 𝑎2𝑖, 𝑗

=
𝑝 (1 − 𝑝)
(1 − 2𝑝)2

+ 𝑎𝑖, 𝑗 .

(B.2)

From Theorem 4.2, it is clear to the eye that the estimate 𝑞𝑟𝑢 (𝐺)
produced by Localru is unbiased. By the bias-variance decomposi-

tion [41], the mean squared error (MSE) of 𝑞𝑟𝑢 (𝐺) is equal to its

variance. Let 𝑃 =
𝑋1

𝑀
and 𝑄 = − 𝑌1

𝑀2
, then

MSE (𝑞𝑟𝑢 (𝐺)) = V (𝑞𝑟𝑢 (𝐺)) = V (𝑃 +𝑄)
≤ 4max {V (𝑃) ,V (𝑄)} .

(by Lemma 7.2)

(B.3)

Now, our task is to calculate V (𝑃) and V (𝑄) separately.

ForV (𝑃), sinceV (𝑃) = 𝑀−2V (𝑋1), we need to focus on calcula-
tion ofV (𝑋1). For ease of presentation, we define 𝐵̃𝑖, 𝑗 = (

𝑎̃𝑖,𝑗−𝑝) ˜𝑑𝑖 ˜𝑑 𝑗

1−2𝑝 ,

then

V (𝑋1) = V
©­«

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

𝐵̃𝑖, 𝑗
ª®¬

=

𝑛∑︁
𝑖=2

V
©­«
𝑖−1∑︁
𝑗=1

𝐵̃𝑖, 𝑗
ª®¬ +

∑︁
2≤𝑘,𝑙≤𝑛,𝑘≠𝑙

Cov
©­«
𝑘−1∑︁
𝑗=1

𝐵̃𝑘,𝑗 ,

𝑙−1∑︁
𝑗=1

𝐵̃𝑙, 𝑗
ª®¬

=

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

V
(
𝐵̃𝑖, 𝑗

)
+

𝑛∑︁
𝑖=2

∑︁
1≤𝑘,𝑙≤𝑖−1,𝑘≠𝑙

Cov

(
𝐵̃𝑖,𝑘 , 𝐵̃𝑖,𝑙

)
+

∑︁
2≤𝑘,𝑙≤𝑛,𝑘≠𝑙

𝑘−1∑︁
𝑗=1

𝑙−1∑︁
𝑡=1

Cov

(
𝐵̃𝑘,𝑗 , 𝐵̃𝑙,𝑡

)
= 𝑃1 + 𝑃2 + 𝑃3,

(B.4)
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where 𝑃1 =
∑𝑛
𝑖=2

∑𝑖−1
𝑗=1 V

(
𝐵̃𝑖, 𝑗

)
, 𝑃2 =

∑𝑛
𝑖=2

∑
1≤𝑘,𝑙≤𝑖−1,𝑘≠𝑙 Cov

(
𝐵̃𝑖,𝑘 , 𝐵̃𝑖,𝑙

)
and 𝑃3 =

∑
2≤𝑘,𝑙≤𝑛,𝑘≠𝑙

∑𝑘−1
𝑗=1

∑𝑙−1
𝑡=1 Cov

(
𝐵̃𝑘,𝑗 , 𝐵̃𝑙,𝑡

)
.

Next, we calculate 𝑃1, 𝑃2 and 𝑃3 respectively, and obtain

𝑃1 =

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

V
(
𝐵̃𝑖, 𝑗

)
=

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

[
E

[(
𝐵̃𝑖, 𝑗

)
2

]
−

[
E

(
𝐵̃𝑖, 𝑗

)]
2

]
=

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

[(
𝑝 (1 − 𝑝)
(1 − 2𝑝)2

+ 𝑎𝑖, 𝑗
) (

2

𝜀2
2

+ 𝑑2𝑖

) (
2

𝜀2
2

+ 𝑑2𝑗

)]
−

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

𝑎𝑖, 𝑗𝑑
2

𝑖 𝑑
2

𝑗

=

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

[
𝑝 (1 − 𝑝)
(1 − 2𝑝)2

(
2

𝜀2
2

+ 𝑑2𝑖

) (
2

𝜀2
2

+ 𝑑2𝑗

)]
+

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

2

𝜀2
2

𝑎𝑖, 𝑗

(
2

𝜀2
2

+ 𝑑2𝑖 + 𝑑
2

𝑗

)
≤

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

[
𝑝 (1 − 𝑝)
(1 − 2𝑝)2

(
2

𝜀2
2

+ 𝑑2
max

) (
2

𝜀2
2

+ 𝑑2
max

)]
+

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

2

𝜀2
2

(
2

𝜀2
2

+ 2𝑑2
max

)
= 𝑂

(
𝑛2𝑑4

max

)
,

(B.5a)

𝑃2 =

𝑛∑︁
𝑖=2

∑︁
1≤𝑘,𝑙≤𝑖−1,𝑘≠𝑙

Cov

(
𝐵̃𝑖,𝑘 , 𝐵̃𝑖,𝑙

)
=

𝑛∑︁
𝑖=2

∑︁
1≤𝑘,𝑙≤𝑖−1,𝑘≠𝑙

[
E

(
𝐵̃𝑖,𝑘 𝐵̃𝑖,𝑙

)
− E

(
𝐵̃𝑖,𝑘

)
E

(
𝐵̃𝑖,𝑙

)]
=

𝑛∑︁
𝑖=2

∑︁
1≤𝑘,𝑙≤𝑖−1,𝑘≠𝑙

[
𝑎𝑖,𝑘𝑎𝑖,𝑙

(
2

𝜀2
2

+ 𝑑2𝑖

)
𝑑𝑘𝑑𝑙

]
−

𝑛∑︁
𝑖=2

∑︁
1≤𝑘,𝑙≤𝑖−1,𝑘≠𝑙

𝑎𝑖,𝑘𝑎𝑖,𝑙𝑑
2

𝑖 𝑑𝑘𝑑𝑙

=
2

𝜀2
2

𝑛∑︁
𝑖=2

∑︁
1≤𝑘,𝑙≤𝑖−1,𝑘≠𝑙

𝑎𝑖,𝑘𝑎𝑖,𝑙𝑑𝑘𝑑𝑙

≤ 2

𝜀2
2

𝑛∑︁
𝑖=2

∑︁
1≤𝑘,𝑙≤𝑖−1,𝑘≠𝑙

𝑑2
max

= 𝑂

(
𝑛3𝑑2

max

)
,

(B.5b)

𝑃3 =
∑︁

2≤𝑘,𝑙≤𝑛,𝑘≠𝑙

𝑘−1∑︁
𝑗=1

𝑙−1∑︁
𝑡=1

Cov

[
𝐵̃𝑘,𝑗 , 𝐵̃𝑙 .𝑡

]
=

∑︁
2≤𝑘,𝑙≤𝑛,𝑘≠𝑙

𝑘−1∑︁
𝑗=1

𝑙−1∑︁
𝑡=1

E
(
𝐵̃𝑘,𝑗 𝐵̃𝑙 .𝑡

)
−

∑︁
2≤𝑘,𝑙≤𝑛,𝑘≠𝑙

𝑘−1∑︁
𝑗=1

𝑙−1∑︁
𝑡=1

E
(
𝐵̃𝑘,𝑗

)
E

(
𝐵̃𝑙 .𝑡

)
=

∑︁
2≤𝑘,𝑙≤𝑛,𝑘≠𝑙

𝑘−1∑︁
𝑗=1

𝑙−1∑︁
𝑡=1

𝑎𝑘,𝑗𝑎𝑙,𝑡E
(
˜𝑑𝑘
˜𝑑 𝑗 ˜𝑑𝑙

˜𝑑𝑡

)
−

∑︁
2≤𝑘,𝑙≤𝑛,𝑘≠𝑙

𝑘−1∑︁
𝑗=1

𝑙−1∑︁
𝑡=1

𝑎𝑘,𝑗𝑑𝑘𝑑 𝑗𝑎𝑙,𝑡𝑑𝑙𝑑𝑡

= 2

∑︁
2≤𝑘<𝑙≤𝑛,𝑘≠𝑙

𝑘−1∑︁
𝑗=1

[
2

𝜀2
2

𝑎𝑘,𝑗𝑎𝑙,𝑡𝑑𝑘𝑑𝑙 +
2

𝜀2
2

𝑎𝑘,𝑗𝑎𝑙,𝑡𝑑 𝑗𝑑𝑙

]
=

4

𝜀2
2

∑︁
2≤𝑘<𝑙≤𝑛,𝑘≠𝑙

𝑘−1∑︁
𝑗=1

[
𝑎𝑘,𝑗𝑎𝑙,𝑡𝑑𝑘𝑑𝑙 + 𝑎𝑘,𝑗𝑎𝑙,𝑡𝑑 𝑗𝑑𝑙

]
≤ 4

𝜀2
2

∑︁
2≤𝑘<𝑙≤𝑛,𝑘≠𝑙

𝑘−1∑︁
𝑗=1

2𝑑2
max

= 𝑂

(
𝑛3𝑑2

max

)
.

(B.5c)

Thus,

V (𝑋1) = 𝑂
(
𝑛3𝑑3𝑚𝑎𝑥 + 𝑛2𝑑4𝑚𝑎𝑥

)
. (B.6)

This leads to the following expression

V (𝑃) = 𝑂
(
𝑛3𝑑3𝑚𝑎𝑥 + 𝑛2𝑑4𝑚𝑎𝑥

𝑀2

)
. (B.7)

Below we move on to the calculation of V (𝑄). By Lemma 7.1,

we first derive

E
(
˜𝑑6𝑖

)
= 𝑑6𝑖 +

30

𝜀2
2

𝑑4𝑖 +
360

𝜀4
2

𝑑2𝑖 +
720

𝜀6
2

, (B.8a)

E
(
˜𝑑8𝑖

)
= 𝑑8𝑖 +

56

𝜀2
2

𝑑6𝑖 +
1680

𝜀4
2

𝑑4𝑖 +
20160

𝜀6
2

𝑑2𝑖 +
40320

𝜀8
2

. (B.8b)



Fei Ma, Jinzhi Ouyang, and Xincheng Hu

To make further progress, we write

V
(
˜𝑑2𝑖

)
= E

(
˜𝑑4𝑖

)
−

[
E

(
˜𝑑2𝑖

)]
2

=

(
𝑑4𝑖 +

12

𝜀2
2

𝑑2𝑖 +
24

𝜀4
2

)
−

(
𝑑2𝑖 +

2

𝜀2
2

)
2

=
8

𝜀2
2

𝑑2𝑖 +
20

𝜀4
2

,

(B.9)

and

V
(
˜𝑑4𝑖

)
= E

(
˜𝑑8𝑖

)
−

[
E

(
˜𝑑4𝑖

)]
2

=
32

𝜀2
2

𝑑6𝑖 +
1488

𝜀4
2

𝑑4𝑖 +
19584

𝜀6
2

𝑑2𝑖 +
39744

𝜀8
2

.
(B.10)

Armedwith the consequences above, let us derive quantityV (𝑄)
as below

V (𝑄) = V
(
− 𝑌1
𝑀2

)
=

1

𝑀4
V (𝑌1)

=
1

𝑀4
V


(
1

2

𝑛∑︁
𝑖=1

˜𝑑2𝑖 −
𝑛 + 2
𝜀2
2

)
2

− 5𝑛 + 4
𝜀4
2


=

1

𝑀4
V


1

4

(
𝑛∑︁
𝑖=1

˜𝑑2𝑖

)
2

− 𝑛 + 2
𝜀2
2

𝑛∑︁
𝑖=1

˜𝑑2𝑖


=

1

𝑀4
V


1

4

©­«
𝑛∑︁
𝑖=1

˜𝑑4𝑖 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗
ª®¬ − 𝑛 + 2𝜀2

2

𝑛∑︁
𝑖=1

˜𝑑2𝑖


=

1

𝑀4
E

©­«
1

4

𝑛∑︁
𝑖=1

˜𝑑4𝑖 +
1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗 −

𝑛 + 2
𝜀2
2

𝑛∑︁
𝑖=1

˜𝑑2𝑖
ª®¬
2

− 1

𝑀4

E ©­«14
𝑛∑︁
𝑖=1

˜𝑑4𝑖 +
1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗 −

𝑛 + 2
𝜀2
2

𝑛∑︁
𝑖=1

˜𝑑2𝑖
ª®¬

2

=
1

𝑀4
𝑄1 −

1

𝑀4
𝑄2,

(B.11)

where

𝑄1 = E

©­«
1

4

𝑛∑︁
𝑖=1

˜𝑑4𝑖 +
1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗 −

𝑛 + 2
𝜀2
2

𝑛∑︁
𝑖=1

˜𝑑2𝑖
ª®¬
2 ,

𝑄2 =

E ©­«14
𝑛∑︁
𝑖=1

˜𝑑4𝑖 +
1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗 −

𝑛 + 2
𝜀2
2

𝑛∑︁
𝑖=1

˜𝑑2𝑖
ª®¬

2

.

Analogously, we need to calculate 𝑄1 and 𝑄2 separately. In

essence, it is easy to derive

𝑄1 = E

©­«
1

4

𝑛∑︁
𝑖=1

˜𝑑4𝑖 +
1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗 −

𝑛 + 2
𝜀2
2

𝑛∑︁
𝑖=1

˜𝑑2𝑖
ª®¬
2

=
1

16

E


(
𝑛∑︁
𝑖=1

˜𝑑4𝑖

)
2 +

1

16

E

©­«
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗
ª®¬
2

+ (𝑛 + 2)
2

𝜀4
2

E


(
𝑛∑︁
𝑖=1

˜𝑑2𝑖

)
2

+ 1

8

E


(
𝑛∑︁
𝑖=1

˜𝑑4𝑖

) ©­«
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗
ª®¬


− 𝑛 + 2
2𝜀2

2

E

[(
𝑛∑︁
𝑖=1

˜𝑑4𝑖

) (
𝑛∑︁
𝑖=1

˜𝑑2𝑖

)]
− 𝑛 + 2

2𝜀2
2

E

©­«
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗
ª®¬
(
𝑛∑︁
𝑖=1

˜𝑑2𝑖

)
=

1

16

𝑛∑︁
𝑖=1

E
(
˜𝑑8𝑖

)
+ 3

16

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑4𝑖

)
E

(
˜𝑑4𝑗

)
+ 1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑6𝑖

)
E

(
˜𝑑2𝑗

)
+ 3

8

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘=1,𝑘≠𝑖, 𝑗

E
(
˜𝑑4𝑖

)
E

(
˜𝑑2𝑗

)
E

(
˜𝑑2
𝑘

)
+ 1

16

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑘∑︁
𝑘=1,𝑘≠𝑖, 𝑗

𝑛∑︁
𝑠=1,𝑠≠𝑖, 𝑗,𝑘

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
E

(
˜𝑑2
𝑘

)
E

(
˜𝑑2𝑠

)
+ (𝑛 + 2)

2

𝜀4
2

𝑛∑︁
𝑖=1

E
(
˜𝑑4𝑖

)
+ (𝑛 + 2)

2

𝜀4
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
− 𝑛 + 2

2𝜀2
2

𝑛∑︁
𝑖=1

E
(
˜𝑑6𝑖

)
− 3 (𝑛 + 2)

2𝜀2
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑4𝑖

)
E

(
˜𝑑2𝑗

)
− 𝑛 + 2

2𝜀2
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘=1,𝑘≠𝑖, 𝑗

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
E

(
˜𝑑2
𝑘

)
,

(B.12a)
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𝑄2 =

E ©­«14
𝑛∑︁
𝑖=1

˜𝑑4𝑖 +
1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

˜𝑑2𝑖
˜𝑑2𝑗 −

𝑛 + 2
𝜀2
2

𝑛∑︁
𝑖=1

˜𝑑2𝑖
ª®¬

2

=


1

4

𝑛∑︁
𝑖=1

E
(
˜𝑑4𝑖

)
+ 1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
− 𝑛 + 2

𝜀2
2

𝑛∑︁
𝑖=1

E
(
˜𝑑2𝑖

)
2

=
1

16

[
𝑛∑︁
𝑖=1

E
(
˜𝑑4𝑖

)]2
+ 1

16


𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
2

+ (𝑛 + 2)
2

𝜀4
2

[
𝑛∑︁
𝑖=1

E
(
˜𝑑2𝑖

)]2
+ 1

8

[
𝑛∑︁
𝑖=1

E
(
˜𝑑4𝑖

)] 
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
− 𝑛 + 2

2𝜀2
2

[
𝑛∑︁
𝑖=1

E
(
˜𝑑4𝑖

)] [
𝑛∑︁
𝑖=1

E
(
˜𝑑2𝑖

)]
− 𝑛 + 2

2𝜀2
2


𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
[
𝑛∑︁
𝑖=1

E
(
˜𝑑2𝑖

)]
=

1

16

𝑛∑︁
𝑖=1

[
E

(
˜𝑑4𝑖

)]
2

+ 1

16

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑4𝑖

)
E

(
˜𝑑4𝑗

)
+ 1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑4𝑖

)
E

(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
+ 1

8

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘=1,𝑘≠𝑖, 𝑗

E
(
˜𝑑4𝑖

)
E

(
˜𝑑2𝑗

)
E

(
˜𝑑2
𝑘

)
+ 1

8

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

[
E

(
˜𝑑2𝑖

)]
2
[
E

(
˜𝑑2𝑗

)]
2

+ 1

4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘=1,𝑘≠𝑖, 𝑗

[
E

(
˜𝑑2𝑖

)]
2

E
(
˜𝑑2𝑗

)
E

(
˜𝑑2
𝑘

)
+ 1

16

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑘∑︁
𝑘=1,𝑘≠𝑖, 𝑗

𝑛∑︁
𝑠=1,𝑠≠𝑖, 𝑗,𝑘

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
E

(
˜𝑑2
𝑘

)
E

(
˜𝑑2𝑠

)
+ (𝑛 + 2)

2

𝜀4
2

𝑛∑︁
𝑖=1

[
E

(
˜𝑑2𝑖

)]
2

+ (𝑛 + 2)
2

𝜀4
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
− 𝑛 + 2

2𝜀2
2

𝑛∑︁
𝑖=1

E
(
˜𝑑4𝑖

)
E

(
˜𝑑2𝑖

)
− 𝑛 + 2

2𝜀2
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑4𝑖

)
E

(
˜𝑑2𝑗

)
− 𝑛 + 2

𝜀2
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
− 𝑛 + 2

2𝜀2
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘=1,𝑘≠𝑖, 𝑗

E
(
˜𝑑2𝑖

)
E

(
˜𝑑2𝑗

)
E

(
˜𝑑2
𝑘

)
.

(B.12b)

From Eqs.(B.12a) and (B.12b), we obtain

V (𝑄) = 1

16𝑀4

𝑛∑︁
𝑖=1

[
E

(
˜𝑑8𝑖

)
−

[
E

(
˜𝑑4𝑖

)]
2

]
+ 1

4𝑀4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

[
E

(
˜𝑑6𝑖

)
− E

(
˜𝑑4𝑖

)
E

(
˜𝑑2𝑖

)]
E

(
˜𝑑2𝑗

)
+ 1

8𝑀4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

[
E

(
˜𝑑4𝑖

)
E

(
˜𝑑4𝑗

)
−

[
E

(
˜𝑑2𝑖

)]
2
[
E

(
˜𝑑2𝑗

)]
2

]
+ 1

4𝑀4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑛∑︁
𝑘=1,𝑘≠𝑖, 𝑗

[
E

(
˜𝑑4𝑖

)
−

[
E

(
˜𝑑2𝑖

)]
2

]
E

(
˜𝑑2𝑗

)
E

(
˜𝑑2
𝑘

)
+ (𝑛 + 2)

2

𝜀4
2
𝑀4

𝑛∑︁
𝑖=1

[
E

(
˜𝑑4𝑖

)
−

[
E

(
˜𝑑2𝑖

)]
2

]
− 𝑛 + 2
2𝜀2

2
𝑀4

𝑛∑︁
𝑖=1

[
E

(
˜𝑑6𝑖

)
− E

(
˜𝑑4𝑖

)
E

(
˜𝑑2𝑖

)]
− 𝑛 + 2
𝜀2
2
𝑀4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

[
E

(
˜𝑑4𝑖

)
−

[
E

(
˜𝑑2𝑖

)]
2

]
E

(
˜𝑑2𝑗

)
= 𝑂

(
𝑛3𝑑6

max

𝑀4

)
.

(B.13)

Finally, from Eqs.(B.7) and (B.13) it follows that

MSE = 𝑂

(
𝑛3𝑑2

max
+ 𝑛2𝑑4

max

𝑀2
+
𝑛3𝑑6

max

𝑀4

)
. (B.14)

□

Proof of Theorem 4.6
Theorem 4.6 The estimate 𝑞𝑟𝑢 (𝐺) produced by Shuffleru satisfies
E (𝑞𝑟𝑢 (𝐺)) = 𝑞𝑟𝑢 (𝐺).

Proof. First, we prove that 𝑋2 is unbiased, i.e.,

E (𝑋2) = E
(
𝑛∑︁
𝑖=2

𝑟𝑖

)
= E


𝑛∑︁
𝑖=2

𝑑𝑖

𝑖−1∑︁
𝑗=1

(
𝑎𝑖, 𝑗 − 𝑝

)
˜𝑑 𝑗

1 − 2𝑝


=

𝑛∑︁
𝑖=2

𝑑𝑖

𝑖−1∑︁
𝑗=1

E

(
𝑎𝑖, 𝑗 − 𝑝
1 − 2𝑝

)
E

(
˜𝑑 𝑗

)
=

𝑛∑︁
𝑖=2

𝑑𝑖

𝑖−1∑︁
𝑗=1

𝑎𝑖 𝑗𝑑 𝑗

=
∑︁
(𝑣𝑖 ,𝑣𝑗 )∈𝐸

𝑑𝑖𝑑 𝑗 .

(C.1)

We now consider 𝑌2. Since 𝑌2 has the similar form as 𝑌1, and

the unbiasedness of 𝑌1 has been already proven in the proof of

Theorem 4.2, it follows that 𝑌2 is also unbiased. Thus, we have

E (𝑌2) =


∑︁
(𝑣𝑖 ,𝑣𝑗 )∈𝐸

1

2

(
𝑑𝑖 + 𝑑 𝑗

)
2

. (C.2)
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Armed with the results above, we come to

E (𝑞𝑟𝑢 (𝐺)) = 𝑞𝑟𝑢 (𝐺) . (C.3)

□

Proof of Theorem 4.7
Theorem 4.7When 𝜀, 𝛿 are constants, 𝛼 ∈ (0, 1), 𝜀0 = log (𝑛)+𝑂 (1),
the estimate 𝑞𝑟𝑢 (𝐺) produced by Shuffleru provides the following
utility guarantee:

MSE (𝑞𝑟𝑢 (𝐺)) = 𝑂
(
𝑛1+𝛼𝑑4

max

𝑀2
+

𝑛3𝑑2
max

(log𝑛)2𝑀2

+
𝑛3𝑑6

max

(log𝑛)2𝑀4

)
.

(D.1)

Proof. Let𝑈 =
𝑋2

𝑀
and𝑊 = − 𝑌2

𝑀2
, then the MSE of 𝑞𝑟𝑢 (𝐺) by

Shuffleru can be written as follows

MSE (𝑞𝑟𝑢 (𝐺)) = V (𝑞𝑟𝑢 (𝐺)) = V (𝑈 +𝑊 )
≤ 4max {V (𝑈 ) ,V (𝑊 )} . (by Lemma 7.2)

(D.2)

We now need to calculate V (𝑈 ) and V (𝑊 ) separately. Since the
expression for𝑊 is similar to that of 𝑄 in the proof of Theorem

4.3, this leads to V (𝑊 ) ≤ 𝑂
(

𝑛3𝑑6

max

(log𝑛)2𝑀4

)
. Next, we only need to

compute V (𝑈 ) to establish the upper bound of MSE (𝑞𝑟𝑢 (𝐺)). For
ease of presentation, we define 𝐶𝑖, 𝑗 =

(𝑎̃𝑖,𝑗−𝑝) ˜𝑑 𝑗

1−2𝑝 , then

V (𝑈 ) = 𝑀−2V ©­«
𝑛∑︁
𝑖=2

𝑑𝑖

𝑖−1∑︁
𝑗=1

𝐶𝑖, 𝑗
ª®¬

= 𝑀−2
𝑛∑︁
𝑖=2

𝑑2𝑖 V
©­«
𝑖−1∑︁
𝑗=1

𝐶𝑖, 𝑗
ª®¬

+ 2𝑀−2
∑︁

2≤𝑘<𝑙≤𝑛
Cov

©­«
𝑘−1∑︁
𝑗=1

𝑑𝑘𝐶𝑘,𝑗 ,

𝑙−1∑︁
ℎ=1

𝑑𝑙𝐶𝑙,ℎ
ª®¬

= 𝑀−2
𝑛∑︁
𝑖=2

𝑑2
𝑖

(1 − 2𝑝)2
𝑖−1∑︁
𝑗=1

[
𝑝 (1 − 𝑝) 𝑑2𝑗 +

2 (1 − 2𝑝)2 𝑎𝑖 . 𝑗
𝛼2𝜀2

0

+ 2𝑝 (1 − 𝑝)
𝛼2𝜀2

0

]
+ 4𝑀−2

𝛼2𝜀2
0

∑︁
2≤𝑘<𝑙≤𝑛

𝑘−1∑︁
𝑗=1

𝑎𝑘,𝑗𝑎𝑙, 𝑗𝑑𝑘𝑑𝑙

≤ 𝑝 (1 − 𝑝)
(1 − 2𝑝)2𝑀2

𝑛∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

𝑑4
max
+ 4

𝛼2𝜀2
0
𝑀2

∑︁
2≤𝑘<𝑙≤𝑛

(𝑘 − 1) 𝑑2
max

=
𝑝 (1 − 𝑝) 𝑛 (𝑛 − 1)
2 (1 − 2𝑝)2𝑀2

𝑑4
max
+ 2𝑛 (𝑛 − 1) (𝑛 − 2)

3𝛼2𝜀2
0
𝑀2

𝑑2
max

=
𝑛𝛼 (𝑛 − 1)

𝑀2
𝑑4
max
+ 𝑛 (𝑛 − 1) (𝑛 − 2)
(log𝑛)2𝑀2

𝑑2
max

= 𝑂

(
𝑛1+𝛼𝑑4

max

𝑀2
+

𝑛3𝑑2
max

(log𝑛)2𝑀2

)
.

(D.3)

Therefore, we gain

MSE (𝑞𝑟𝑢 (𝐺)) = 𝑂
(
𝑛1+𝛼𝑑4

max

𝑀2
+

𝑛3𝑑2
max

(log𝑛)2𝑀2

+
𝑛3𝑑6

max

(log𝑛)2𝑀4

)
.

(D.4)

□

Proof of Theorem 4.10
Theorem 4.10 The estimate 𝑞𝑟𝑢 (𝐺) produced by Decentralru sat-
isfies E (𝑞𝑟𝑢 (𝐺)) = 𝑞𝑟𝑢 (𝐺).

Proof. Since 𝑇𝑖 ∼ Lap

(
ˆ𝑑𝑚𝑎𝑥

𝜀2

)
, by Lemma 7.1, we have

E
(
𝑇𝑖

)
= 𝑇𝑖 +

2
ˆ𝑑2𝑚𝑎𝑥

𝜀2
2

. (E.1)

Then, we can easily obtain

E (𝑋2) = E
(
1

2

𝑛∑︁
𝑖=1

˜𝑑𝑖𝑇𝑖

)
=

1

2

𝑛∑︁
𝑖=1

𝑑𝑖𝑇𝑖

=
∑︁
(𝑣𝑖 ,𝑣𝑗 )∈𝐸

𝑑𝑖𝑑 𝑗 ,

(E.2)

Following a similar derivation as in Eq.(A.4), we have

E (𝑌2) =


∑︁
(𝑣𝑖 ,𝑣𝑗 )∈𝐸

1

2

(
𝑑𝑖 + 𝑑 𝑗

)
2

. (E.3)

Finally, we show that

E (𝑞𝑟𝑢 (𝐺)) = 𝑞𝑟𝑢 (𝐺) . (E.4)

□

Proof of Theorem 4.11
Theorem 4.11 When 𝜀1, 𝜀2 are constants, the estimate 𝑞𝑟𝑢 (𝐺) pro-
duced by Decentralru provides the following utility guarantee:

MSE (𝑞𝑟𝑢 (𝐺)) = 𝑂
(
𝑛3𝑑6

max

𝑀4

)
. (F.1)

Proof. Since 𝑇𝑖 ∼ Lap

(
𝑇𝑖 ,

ˆ𝑑max

𝜀2

)
, then by Lemma 7.1, we can

get

E
(
𝑇 2

𝑖

)
= 𝑇 2

𝑖 +
2
ˆ𝑑2
max

𝜀2
2

, (F.2)

Below we calculate the MSE of 𝑞𝑟𝑢 (𝐺) produced byDecentralru.
Let 𝐻 =

𝑋3

𝑀
and 𝑆 = − 𝑌3

𝑀2
, then

MSE (𝑞𝑟𝑢 (𝐺)) = V (𝑞𝑟𝑢 (𝐺)) = V (𝐻 + 𝑆)
≤ 4max {V (𝐻 ) ,V (𝑆)} . (by Lemma 7.2)

(F.3)
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Next, we calculate V (𝐻 ) and V (𝑆) respectively.

V (𝐻 ) = V
(
𝑋3

𝑀

)
= 𝑀−2V (𝑋3)

=
1

4𝑀2

𝑛∑︁
𝑖=1

V
(
ˆ𝑑𝑖𝑇𝑖

)
=

1

4𝑀2

𝑛∑︁
𝑖=1

[
E

(
ˆ𝑑2𝑖 𝑇

2

𝑖

)
− E

(
ˆ𝑑𝑖𝑇𝑖

)
2

]
=

1

4𝑀2

𝑛∑︁
𝑖=1

[
E

(
ˆ𝑑2𝑖

)
E

(
𝑇 2

𝑖

)
− E

(
ˆ𝑑𝑖

)
2

E
(
𝑇𝑖

)
2

]
=

1

4𝑀2

𝑛∑︁
𝑖=1

[(
𝑑2𝑖 +

2

𝜀2
1

) (
𝑇 2

𝑖 +
2(𝑑∗[1] + 𝑑

∗
[2] )

2

𝜀2
2

)
− 𝑑2𝑖 𝑇

2

𝑖

]
=

1

4𝑀2

𝑛∑︁
𝑖=1

2𝜀2
2
𝑇 2

𝑖
+ 2𝜀2

1
𝑑2
𝑖
(𝑑∗[1] + 𝑑

∗
[2] )

2 + 4(𝑑∗[1] + 𝑑
∗
[2] )

2

𝜀2
1
𝜀2
2

≤ 1

4𝑀2

𝑛∑︁
𝑖=1

2𝜀2
2
𝑑4𝑚𝑎𝑥 + 2𝜀21𝑑

2

𝑚𝑎𝑥 (𝑑∗[1] + 𝑑
∗
[2] )

2 + 4(𝑑∗[1] + 𝑑
∗
[2] )

2

𝜀2
1
𝜀2
2

= 𝑂

(
𝑛𝑑2𝑚𝑎𝑥 (𝑑∗[1] + 𝑑

∗
[2] )

2

𝑀2

)
.

(F.4)

Since the expression for 𝑆 is similar to the expression for 𝑄 in

the proof of Theorem 4.3, we obtain V (𝑆) ≤ 𝑂
(
𝑛3𝑑6

max

𝑀4

)
.

To sum up, we have

MSE (𝑞𝑟𝑢 (𝐺)) = 𝑂
(
𝑛3𝑑6

max

𝑀4

)
. (F.5)

□
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