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Abstract—Symbolic execution is a powerful program analysis
technique that can formally reason the correctness of program
behaviors and detect software bugs. It can systematically
explore the execution paths of the tested program. But it suffers
from an inherent limitation: path explosion. Path explosion
occurs when symbolic execution encounters an overwhelming
number (exponential to the program size) of paths that need
to be symbolically reasoned. It severely impacts the scalability
and performance of symbolic execution.

To tackle this problem, previous works leverage various
heuristics to prioritize paths for symbolic execution. They rank
the exponential number of paths using static rules or heuristics
and explore the paths with the highest rank. However, in prac-
tice, these works often fail to generalize to diverse programs.

In this work, we propose a novel and effective path prioriti-
zation technique with path cover, named Empc. Our key insight
is that not all paths need to be symbolically reasoned. Unlike
traditional path prioritization, our approach leverages a small
subset of paths as a minimum path cover (MPC) that can cover
all code regions of the tested programs. To encourage diversity
in path prioritization, we compute multiple MPCs. We then
guide the search for symbolic execution on the small number
of paths inside multiple MPCs rather than the exponential
number of paths.

We implement our technique Empc based on KLEE. We
conduct a comprehensive evaluation of Empc to investigate
its performance in code coverage, bug findings, and runtime
overhead. The evaluation shows that Empc can cover 19.6%
more basic blocks than KLEE’s best search strategy and
24.4% more lines compared to the state-of-the-art work cgs.
Empc also finds 24 more security violations than KLEE’s best
search strategy. Meanwhile, Empc can significantly reduce the
memory usage of KLEE by up to 93.5% and reduce the
number of symbolic states by up to 88.6%.

1. Introduction

Symbolic execution [9,15,22,40,46,47] is a powerful
program analysis technique that has been widely used in
software testing [34,49,62,63,69,70,80], formal verification
[26,27,38,72], and automated reasoning [29,42,50,67]. Un-
like conventional software testing approaches that execute
the program with concrete input values, symbolic execution
treats inputs as symbolic variables, allowing it to explore
multiple execution paths simultaneously [9,22]. This method
systematically generates inputs that drive the program to

various states, helping to uncover hidden bugs and secu-
rity vulnerabilities by checking against a set of correctness
specifications [9,53,66]. By using symbolic values rather
than actual data, it provides a comprehensive analysis of
the program’s behavior, enabling testers and developers to
verify the correctness and robustness of complex software
systems. As such, symbolic execution plays a crucial role
in improving software reliability and security, making it an
essential topic of study not only in academic research but
also in industrial practice such as Microsoft [35], IBM [8],
NASA [59,61], Baidu [54] and so on.
Bottleneck. One of the main bottlenecks of symbolic ex-
ecution is the path explosion [7,9,22]. This is caused by
the characteristic that a symbolic execution engine forks
off the state at every branch of the program. Hence, each
conditional statement in the program can potentially double
the number of paths, leading to an exponential number of
paths to explore in symbolic execution. The path explosion
not only incurs prohibitive computation costs on CPU and
memory but also severely limits the scalability of symbolic
execution. In practice, symbolic execution often fails to
reason large real-world programs.
Existing work. Modern symbolic execution engines pri-
oritize promising paths using various search strategies to
tackle the path explosion problem [9]. KLEE [20], one
of the most popular symbolic execution engines, incorpo-
rates multiple search strategies including bfs (breadth-first
search), rps (random-path search) and nurs (non-uniform
random search). md2u [18] leverages the control-flow graph
to steer the search towards the closest uncovered branches.
sgs (subpath-guided search) [55] prioritizes the least ex-
plored subpaths. Kapus et al. propose an approach aimed at
exploring pending paths already known to be feasible [45].
Ferry [81] uses the dependence of the focused variable to
guide the search. A recent work cgs (concrete-constraint
guided search) [71] favors uncovered branches with con-
crete variable assignments. Although these static heuristics
improve the search efficiency of symbolic execution, they
cannot be generalized to diverse programs.
Empc. In this work, we introduce a novel approach called
Empc to mitigate the path explosion problem using path
cover. Unlike prior works that rank the exponential number
of paths following some static heuristics, we leverage a
small subset of paths as a minimum path cover (MPC) such
that it can cover all the code regions of the program using
the minimum number of paths. We further compute multiple
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MPCs to ensure diverse choices in path prioritization. We
then search over the small subset of paths rather than the
entire exponential number of paths. The key insight of our
work is that not all paths need to be symbolically solved if
we want to cover all the code regions of the program. We
model the path prioritization in symbolic execution as an
MPC problem [10] in the graph theory domain and guide
the search of symbolic execution over path cover.

However, there are two practical challenges when ap-
plying our path-cover-based search in symbolic execution.
Firstly, the inter-procedural control-flow graphs (iCFG) of
programs are complex graphs with many cycles such as
caller-callee cycles and loop cycles, while the existing MPC
algorithm can only work on directed acyclic graphs (DAG).
Hence, some approximation algorithms to eliminate differ-
ent types of cycles in iCFG is needed. Second, some paths in
our small set of path cover can be infeasible during symbolic
execution. It happens when some path constraints are proved
to be infeasible by the SMT solver in the symbolic execution
engine.

We propose Empc to solve these challenges. Our ap-
proach includes two main modules: path prioritization via
multiple MPCs and infeasible path handling. We first pro-
pose some approximation algorithms for the original MPC
algorithm, performing graph transformation on the vanilla
iCFG to obtain many acyclic iCFG subgraphs. The goal of
such an iCFG graph transformation is to enable trackable
MPC computation. Otherwise, it will be an NP-hard problem
to compute MPCs on a graph with cycles. We then compute
multiple MPCs on the transformed iCFG to increase the
path diversity. And the small number of paths in multiple
MPCs can cover all nodes on the iCFG. At run-time of
symbolic execution, Empc compares and finds a solvable
path in multiple MPCs to execute. When Empc encounters
an infeasible path that the SMT solver cannot solve, the
infeasible path handling module will be invoked and it
will discover a new path using the program dependence
information.

Evaluation. We implement Empc as a searcher module on
top of KLEE. To investigate the performance of Empc,
we conduct a comprehensive experiment on 12 real-world
programs. Our evaluation shows that Empc increases the
basic block coverage by 19.6% compared to KLEE’s best
search strategy and the line coverage by 24.4% compared
to the state-of-the-art work cgs [18] in arithmetic mean on
these real-world programs. Meanwhile, Empc significantly
reduces KLEE’s memory cost by up to 93.5% and further
cuts the number of execution states in the symbolic exe-
cution engine by up to 88.6%. Our evaluation shows that
the runtime overhead of Empc is minimal, with an average
of 12% on 12 programs. In the end, we show that Empc
finds 24 more security violations than KLEE’s best search
strategy.
Contributions. Our main contributions are as follows.

• We model path prioritization in symbolic execution as
a classic path cover problem in graph theory domain.

• We propose a novel search strategy for symbolic exe-

cution by searching over the small path cover instead
of the exponential number of all possible paths.

• We implement our technique as a prototype Empc on
top of KLEE and open source our tool at Github
(https://github.com/joshuay2022/empc) to foster further
research in this domain.

• We perform a comprehensive evaluation of Empc to
investigate its performance in code coverage and bug
finding. Our result shows that Empc can achieve 19.6%
more basic block coverage and 24.4% more line cov-
erage over the state-of-the-art search strategies.

2. Path Prioritization as Path Cover Problem

In this section, we first introduce some background
knowledge for the MPC problem, then we formulate the
path prioritization in symbolic execution as a path cover
problem.

2.1. Minimum Path Cover

Given a graph G = (E, V ), a path cover for all vertices
V is defined as a set of paths PC = {p1, p2, ..., pk} such that
for each vi ∈ V , there is at least one path pj covering node
vi [10,60]. For a given graph, there could exist multiple path
covers. An MPC Pm is a path cover whose size is minimum
among all possible path covers [10,60]. Computing MPC on
general graphs is an NP-hard problem. However, researchers
propose multiple algorithms to solve it in polynomial time
on directed acyclic graphs (DAG) [31,32,60]. In this work,
we use Ntafos’s maximum matching method [60] to com-
pute the MPC. We show this algorithm in Algorithm 1.

Algorithm 1 Compute One Minimum Path Cover
Input: A directed acyclic graph G(V,E)

1: min path cover ← {}
2: n← |V |, m← |E|
3: Vb ← {x1, x2, ..., xn} ∪ {y1, y2, ..., yn}
4: E ← {(xi, yi)|1 ≤ i ≤ n, vi reaches vj in G}
5: A bipartite graph Gb ← (Vb, Eb)
6: A maximum matching Mm ← Hopcroft Karp Algorithm(Gb),

Mm ← {(xi1, yj1), (xi2, yj2), ..., (xic, yjc)}
7: for (xik, yjk) ∈Mm do
8: if (vik, vjk) /∈ E then
9: psub ← vik(vik, v

′
ik)...vjk ▷ construct a subpath

10: else
11: psub ← vik(vik, vjk)vjk ▷ construct a subpath directly
12: for TRUE do
13: find a path pi from min path cover with a same end-vertex

as psub
14: if pi doesn’t exist then
15: min path cover ← min path cover ∪ {psub}
16: break
17: else
18: merge pi and psub into p′i
19: min path cover ← min path cover\{pi}
20: min path cover ← min path cover ∪ {p′i}
21: psub ← p′i
22: return min path cover

https://github.com/joshuay2022/empc


int a, b = get_input();1

char c, d = get_input();2

if (c != 'Y') {3

    if (a + b > 100) foo(a);4

    else foo(b);5

} else {6

else bar(d);10

return;11

if (d == 'N') foo(0);9

  bar(c);

}

7

8

(a) Sample code. (b) Program CFG.

symbolic input

p1 pi p6

fork

fork

fork

... ...

(c) Path explosion.

symbolic input

p1 p2 p3
(d) A minimum path cover.

Figure 1: This figure shows a motivating example including sample code, its CFG, path explosion problem and our minimum
path cover method. Our method only uses 3 paths to cover all basic blocks of this program with 3 branches while the number
of paths |P | = 6 if there is a path explosion problem.

2.2. Problem Formulation

We formulate path prioritization in symbolic execution
as a classic path cover problem. We denote the iCFG of
the tested program as G = (E, V ). Since Algorithm 1
is only applied to DAGs, we propose some approximation
algorithms including graph transformation in Section 4.1.1
to compute MPCs. There are a total exponential number
of paths to be symbolically reasoned on the graph G,
denoted as PG = {p1, p2, ..., pk}. We then compute an
MPC Pm = {pi, pj , ..., pn} such that all vertices in V can
be covered by the n path in Pm and the size of Pm is
much lower than PG, that is, |Pm| ≪ |PG|. We then guide
symbolic execution to search on the path cover Pm.

3. Overview

3.1. Motivating Example

In this section, we give a motivating example for our
work. Figure 1 is a sample program and its CFG is shown
in Figure 1b. This sample program shows a common case
in real-world programs. Normally, the common symbolic
execution engine forks off a state at each branch, so there
will be 6 paths in this program, as shown in Figure 1c. This
is because the first two forks only yield 3 subpaths and all
3 subpaths then merge at the last fork, and finally yield a
total of 3 × 2 = 6 paths. If we are aimed at maximizing
code coverage, it is obvious that at least 5 complete paths
are needed to cover all basic blocks in this program in the
worst case. However, to cover all basic blocks in CFG, our
MPC method uses only 3 complete paths p1, p2 and p3 as
shown in Figure 1d. Because we have a predefined path
cover, we only need to select the forked state that matches
the path in the MPC at each branch. Ultimately, we use a

Program

Prioritize paths

Symbolic
Execution

Graph Analysis

Program Dependence
Analysis Handle

infeasible paths

Multiple MPCs

Program
Dependence

Figure 2: Workflow of Empc.

small subset of paths to cover all basic blocks by ignoring
most states.

3.2. Workflow

Figure 2 shows the complete workflow of our symbolic
execution framework. Empc first performs a graph analysis
on the program to generate multiple MPCs. Then, it uses
multiple MPCs to prioritize a subset of paths to guide
symbolic execution at run-time. Moreover, Empc leverages
a simple program dependence analysis to capture the pro-
gram dependence between a branch and its dependent basic
blocks. When symbolic execution encounters an infeasible
path after searching multiple MPCs, Empc will find a new
state to continue execution using the dependence informa-
tion.

4. Methodology

In this section, we introduce Empc in detail. Empc
consists of two components: path prioritization via multiple
MPCs and infeasible path handling.



Entry
Caller 1

...

ReturnCaller 2

...

Return

Callee FunctionCall Site

(a) Original iCFG.

Virtual Return

Entry
Caller 1

...

ReturnCaller 2

...

Return

(b) Add a virtual return node.

Virtual Return

Entry
Caller 1

...

ReturnCaller 2

...

Return

Split

(c) Graph split.

Figure 3: Transform an iCFG with caller-callee cycles into two subgraphs. The original iCFG contains two callers and the edges
in yellow and purple are calling and returning edges in Figure 3a. We transform the iCFG by adding a virtual return node in
red in Figure 3b. We remove the calling and returning edges for graph split and mark them as dotted lines in Figure 3c. The
right subgraph is a one-entry-one-exit subgraph.

4.1. Path Prioritization via Multiple MPCs

We explain in detail how to compute multiple MPCs
in iCFG and prioritize the paths for symbolic execution.
Firstly, we transform the vanilla iCFG with cycles into many
acyclic iCFG subgraphs. For each acyclic iCFG subgraph,
we enumerate all MPCs using the maximum matching
method in graph theory. Multiple MPCs can provide diverse
path selection in the path prioritization phase of symbolic
execution. In the end, we guide the symbolic execution to
search a subset of paths instead of all possible paths with
the help of multiple MPCs.

4.1.1. MPC Computation in Transformed iCFG. We start
with the computation of a single MPC in an iCFG of a
program. Computing an MPC in an iCFG is challenging
because the iCFG contains cycles but computing an MPC
in such a cyclic graph is an NP-hard problem [60]. In graph
theory, there are only polynomial run-time algorithms in
the directed acyclic graph (DAG) as shown in Algorithm 1.
Therefore, we try to find a solution that closely approximates
the MPC in iCFG via approximation algorithms, which are
typical solutions to NP-hard problems [79]. Generally, our
approximation algorithms transform the cyclic iCFG into
DAGs and then compute MPC in the transformed iCFG.
Note that we only transform the iCFG in the graph analysis
step. The path exploration including path prioritization at
run-time will not be influenced by our graph transformation.

The iCFG includes two types of cycles: caller-callee
cycles and loop cycles. Figure 3a provides a simple example
of a caller-callee cycle. This cycle begins at the node Entry
in the callee function, traverses the entire callee function,
and then returns to the node Caller 1. Subsequently, Caller
1 transitions to Caller 2, which then returns to Entry in
the callee function. Thus, a caller-callee cycle typically
occurs when a callee function is invoked by multiple callers.
Additionally, as illustrated in Figure 4a, a loop cycle starts
at the Loop Header, traverses through the loop body, and
returns to the Loop Header via a back edge.

Both types of cycles—caller-callee and loop cy-
cles—comprise the following components, as defined by

Empc. A cycle body is a set of vertices and edges that form
the core structure of the cycle. Cycle edges are back edges
that point to an ancestor of the current node, creating the
cycle. Connecting edges are edges that connect the cycle
body to other parts of the graph or within the cycle itself.
As shown in Figure 3a, in a caller-callee cycle, the cycle
body corresponds to the function itself, which is enclosed
in the blue dashed box. The connecting edges include the
calling and returning edges of the first caller, which are
highlighted as yellow edges. The cycle edges are the calling
and returning edges of the second caller, highlighted as
purple edges. Similarly, as shown in Figure 4a, in a loop
cycle, the cycle body refers to the loop body, excluding
the back edges, and is enclosed in the blue dashed box.
The connecting edges consist of entering and exiting edges,
highlighted as yellow edges. The cycle edges are the back
edges, highlighted as purple edges.

Based on this analysis, we approximate the computation
of the MPC in an iCFG through the following two steps.
Firstly, we transform the iCFG into an acyclic graph by
removing cycles edges in the graph analysis phase, which
precedes path prioritization, because this operation enables
the computation of MPCs using Algorithm 1. Thus, the
transformed iCFG includes the cycle body but excludes the
cycle edges, ensuring that the vertices within the cycle body
appear at most once on a path. Consequently, our approx-
imation simplifies the computation on the original directed
cyclic graph by reducing it to a directed acyclic graph,
effectively ignoring the cycle edges. Secondly, we analyze
each cycle body independently from the transformed iCFG
as a transformed subgraph. We split the transformed graph
by removing the connecting edges. This step is important
because the cycles need to be reintroduced after computation
to ensure program completeness. The subgraph contains
subpaths of the paths in the iCFG, allowing us to compute
the MPC within the transformed subgraph. During path
prioritization, Empc can still account for repeated executions
of the cycle body by considering a new path from the MPC
of the cycle body each time it repeats. Finally, we propose
new theorems and approaches to make the computation of



Loop Header

Loop Entering

...

Exiting 2Exiting 1

Exit 1 Exit 2

Back
Edge

Loop

(a) Original iCFG.

Loop Entering

Exit 1 Exit 2

Loop Header

...

Exiting 2Exiting 1

Virtual Exit 1 Virtual Exit 2

Virtual
Representation

(b) Add virtual nodes and remove the back edge.

Loop Entering

Exit 1 Exit 2

Loop Header

...

Exiting 2Exiting 1

Virtual Exit 1 Virtual Exit 2

Virtual
Representation

Split

(c) Graph split.

Figure 4: Transform the iCFG with loop cycles into two subgraphs without cycles. The original iCFG contains a loop with a
loop body and a back edge in Figure 4a. The iCFG is transformed by removing back edges and adding several virtual nodes in
red in Figure 4b. The loop body is represented by a virtual node in the transformed iCFG and the virtual exit nodes match up
with the exit nodes respectively. The loop entering and exiting edges are removed for graph split and marked as dotted lines in
Figure 4c and the right subgraph is a loop subgraph.

MPCs in each subgraph provably correct. Based on these
analyses, we propose detailed approaches for transforming
each of the two types of cycles described above.

Transform Caller-Callee Cycles. Based on the several
steps described above, Empc first adds a virtual node as
the successor of all return nodes in the function body (see
Figure 3b), and then splits the graph into two parts, as shown
in Figure 3c. The left part represents the transformed graph,
while the right part is a subgraph with one entry and one
exit node. We classify such subgraphs as one-entry-one-
exit graphs. As the name suggests, each one-entry-one-exit
graph Gsub(Vsub, Esub) has exactly one entry vertex vss
and one exit vertex vst. Its formal definition is provided
in Definition 1. The right part of Figure 3c illustrates a one-
entry-one-exit subgraph. These subgraphs can be generated
using Algorithm 2. For function calls, the entry block and
exit block of a function can be easily identified, enabling
the generation of a one-entry-one-exit subgraph via Algo-
rithm 2.

Definition 1 (One-Entry-One-Exit Subgraph). A sub-
graph Gsub(Vsub, Esub) is a one-entry-one-exit subgraph
of G(V,E) iff. i) Gsub is an induced subgraph of G; ii)
Gsub has two vertices vss and vst where in-degree of vss
is 0 and out-degree of vst is 0 in Gsub; iii) for each vertex
vi ∈ Vsub with vi ̸= vst, the successor vertices V s

i ⊂ Vsub;
iv) for each vertex vi ∈ Vsub with vi ̸= vss, the predecessor
vertices V p

i ⊂ Vsub.

To ensure the provable correctness of the MPC com-
putation in each one-entry-one-exit subgraph, we propose
Theorem 1 and provide its proof in Appendix A. After
conceptually splicing the MPCs of the subgraphs at the
merged vertex, the path cover for the transformed iCFG,
excluding cycle edges, remains minimum. Regarding the
maximum k value, it can be determined through path cover
enumeration, as described in Section 4.1.2. At run-time, a
function call may appear multiple times along a single path.
For each function call, Empc always considers a new path
in the MPC of the corresponding function subgraph to guide

Algorithm 2 Generate a One-Entry-One-Exit Subgraph
Input: A transformed iCFG G(V,E) without cycle edges

Entry and exit vertices vss, vst of subgraph
Output: A subgraph Gsub(Vsub, Esub)

The transformed graph G′(V ′, E′) from G without Vsub

and Esub

1: Vsub ← {vss, vst}
2: for vk ∈ V, vss reaches vk, vk reaches vst do
3: Add vk to Vsub

4: Gsub(Vsub, Esub)← get induced graph(G,Vsub)
5: V ′

sub ← Vsub\{vss, vst}
6: V ′ ← V \V ′

sub
7: E′ ← E\Esub

8: Merge vss and vst into vsst in V ′

9: return Gsub(Vsub, Esub), G′(V ′, E′)

path selection.

Theorem 1. For a directed acyclic graph G(V,E),
Gsub(Vsub, Esub) is a one-entry-one-exit subgraph of G.
G′(V ′, E′) is a transformed graph from G(V,E) computed
by Algorithm 2 and vsst is the merged virtual vertex. P sub

m

is an MPC of Gsub; Pm is an MPC of G. P ′
m is an MPC

of G′ that satisfies: i) there are k paths going through vsst
in P ′

m; ii) k is the maximum among all MPCs in G′. We
have |Pm| = |P ′

m| − k +max(|P sub
m |, k).

See Appendix A for proof.
Transform Loop Cycles. We adopt the definition of loops in
LLVM [52], with some additional terminology illustrated in
Figure 4a [5]. According to this definition, a loop has a sin-
gle header but may contain multiple exiting nodes within its
body. Consequently, the one-entry-one-exit subgraph used
for function calls cannot be applied to loops, necessitating
the definition of a different type of subgraph. In addition
to the common loops defined by LLVM, developers occa-
sionally write extraordinary loops that have more than one
header (entry) node. We do not handle these extraordinary
loops for two reasons. First, extraordinary loops cannot be
easily transformed into a subgraph suitable for computing
MPCs and splicing at a merged vertex. Second, these loops
are extremely rare in real-world programs, accounting for



only 0.3% of the benchmark programs, as shown in Sec-
tion 6.5.

The second type of subgraphs introduced in this section
is called a loop subgraph, as shown in Figure 4. Each
loop contains at least one back edge. To represent the loop
body (i.e., the cycle body), we remove the back edge and
introduce a virtual representation as a merged vertex, as
illustrated in Figure 4b. The transformed iCFG is then split
into two parts, as shown in Figure 4c, where the right part
represents a loop subgraph. A loop subgraph can be formally
defined as a directed acyclic subgraph Gsub(Vsub, Esub) in
Definition 2. The logic for generating a loop subgraph is
described in Algorithm 3. Loop information, loop info, can
be obtained using loop analysis provided by compilers such
as LLVM.

Definition 2 (Loop Subgraph). Gsub(Vsub, Esub) is a loop
subgraph of G(V,E) iff. i) Gsub is an induced subgraph
of G; ii) Gsub has a vertex vss and a set of vertices Vst =
{vst1 , ..., vstk} where in-degree of vss is 0 and out-degree of
vsti ∈ Vst is 0 in Gsub; iii) for each vertex vi ∈ Vsub with
vi /∈ Vst, the successor vertices V s

i ⊂ Vsub; iv) for each
vertex vi ∈ Vsub with vi ̸= vss, the predecessor vertices
V p
i ⊂ Vsub.

Algorithm 3 Generate a Loop Subgraph
Input: A transformed iCFG G(V,E) without cycle edges

Loop info loop info analyzed by the compiler
Output: A loop subgraph Gsub(Vsub, Esub)

A transformed graph G′(V ′, E′) from G without Vsub and
Esub

1: vss ← get header(loop info)
2: Vst ← get exit vertices(loop info)
3: Est ← get exiting edges(loop info)
4: Vsub ← get vertices(loop info)
5: Esub ← get edges(loop info)
6: Replace vss with a virtual vertex vsst in G
7: V ′ ← V \Vsub

8: E′ ← E\Esub

9: Vsub ← Vsub ∪ Vst ▷ Include virtual exit vertices
10: Esub ← Esub ∪ Est ▷ Include virtual exiting edges
11: for vsti ∈ Vst do
12: Add (vsst, vsti ) to E′

13: return Gsub(Vsub, Esub), G′(V ′, E′)

We present Theorem 2 and provide its proof in Ap-
pendix B to establish the correctness of the computation
within each loop subgraph. Similar to function calls, at run-
time, a loop may appear multiple times along a single path.
For each loop, Empc steers path selection toward the next
cycle of the loop subgraph rather than breaking out of the
loop. Within each loop, Empc considers a new path in the
MPC of the loop subgraph to guide path selection until no
matching path remains in the MPC. At that point, Empc
selects a state that breaks out of the loop.

Theorem 2. For a directed acyclic graph G(V,E),
Gsub(Vsub, Esub) is a loop subgraph of G. G′(V ′, E′) is
a transformed graph from (V,E) computed by Algorithm
3; vsst is the replaced virtual vertex; Vst is a group of exit
vertices. P sub

m is an MPC of Gsub; Pm is an MPC of G. P ′
m

is an MPC of G′ that satisfies: i) P ′
sst ⊂ P ′

m is a group of
paths in which each path pssti goes through edge (vsst, vsti)
with vsti ∈ Vst; ii) k = |P ′

sst| is the maximum among all
MPCs in G′. We have |Pm| = |P ′

m| − k +max(|P sub
m , k|).

See proof in Appendix B.

4.1.2. Multiple MPCs to Cover Diverse Paths. We now
extend the computation of a single MPC to the computation
of multiple MPCs. Conceptually, an MPC in a directed graph
is not unique, meaning that a graph may have multiple
distinct MPCs. Algorithm 1 outlines an approach to compute
a single MPC, which is derived from a maximum matching.
The generation of this matching depends on the starting
vertex used in the maximum matching algorithm, making
the computation of an MPC inherently non-deterministic
among all possible MPCs in the graph. However, run-time
path selection is influenced by various factors, including
data flow and path feasibility determined by SMT solvers.
As a result, it is not possible to predict which MPC aligns
most closely with the actual path selection in the symbolic
execution engine.

To handle scenarios where paths are fixed and uniquely
determined without alternatives, enumerating all MPCs is
an effective approach, as it ensures that every possible
path cover is considered. Algorithm 1 employs a maximum
matching method to compute an MPC using the Hopcroft-
Karp algorithm [39]. However, the maximum matching gen-
erated by the Hopcroft-Karp algorithm is non-deterministic,
as the algorithm begins its iterations from a random vertex.
Consequently, the MPC generated by Algorithm 1 is also
non-deterministic. Theorem 3 establishes that for each MPC
in G, there exists a corresponding maximum matching in Gb.
Therefore, the problem of enumerating MPCs in G can be
reduced to the problem of enumerating maximum matchings
in Gb.

Theorem 3. For a directed acyclic graph G(V,E), an MPC
Pm of G and a transformed bipartite graph Gb(Vb, Eb) of
G introduced in Algorithm 1, there must be a maximum
matching Mm in Gb that can be converted to Pm via
Algorithm 1.

See Appendix C for proof.
Enumerating maximum matchings in a bipartite graph

is a well-studied problem in graph theory [74,75]. We
adopt Takeaki’s method [75] to enumerate all maximum
matchings in a bipartite graph. This method leverages the
property that the symmetric difference between two maxi-
mum matchings consists of cycles and paths of even length.
It generates all maximum matchings by exchanging edges
in existing matchings and iteratively applying this process.
The time complexity of this algorithm is O(|Eb||Vb|

1
2 +

|Vb||max matching group|) [75]. To optimize this com-
putation process, we reduce the time complexity through
two approaches. First, we leverage the one-entry-one-exit
subgraphs introduced in Definition 1 and Theorem 1. By
transforming a large, complex graph into smaller subgraphs,
where each subgraph is a one-entry-one-exit graph, we en-



able independent analysis of each subgraph using Takeaki’s
method and Algorithm 1 to generate multiple MPCs. Sec-
ond, for highly complex subgraphs, we impose a limit on the
number of MPCs generated to achieve an approximation. In
practice, most subgraphs are small, containing only a few
vertices and edges, which makes this optimization highly
effective.

4.1.3. Path Prioritization at Run-time. After transforming
the iCFG and computing MPCs for each subgraph, we do
not merge these MPCs into a single set for the entire iCFG,
as this operation is computationally expensive. Instead, we
consider the MPCs in each subgraph independently during
the path prioritization phase at run-time.

At run-time of symbolic execution, Empc maintains a
group of MPCs for each subgraph. This group initially
contains all enumerated MPCs generated during the pre-
processing stage. The symbolic execution engine forks an
execution state into two (or more) states at each branch.
Each state represents a subpath from the program entry
to the current basic block. After SMT solvers verify the
feasibility of the two states, Empc compares the subpaths
of the states with all paths in the MPCs in the group for
their respective subgraphs. In practice, Empc only needs
to compare subpaths in the subgraphs described in Sec-
tion 4.1.1 and Section 4.1.2. Empc then selects the state
with the matched subpath to continue execution. Meanwhile,
Empc removes those MPCs that do not contain a matching
path for the current subpath, but ensures that at least one
MPC remains in the group. If none of the MPCs provides a
matching path, Empc handles infeasible paths as described
in Section 4.2. Thus, on the one hand, the multiple MPCs
provide a small subset of paths and prioritize these paths to
guide path selection at run-time; on the other hand, run-time
path feasibility influences the group of MPCs, dynamically
refining the guidance provided by the MPCs.

4.2. Handle Infeasible Paths

In this section, we introduce another component of Empc
designed to handle infeasible paths. The MPCs in Empc
provide predefined paths to guide run-time path selection.
However, despite enumerating MPCs, these paths are de-
rived solely from iCFG and do not incorporate data-flow
analysis. As a result, there is no guarantee that every run-
time path will have a corresponding path in the MPC group.
This is because the prefix of a path in the MPC group may
become infeasible according to SMT solvers at run-time.

We approach the infeasible path problem from the per-
spective of conditional branches. A conditional branch con-
tains a condition, which is a logical expression such as
x > y. By altering the results of the branch condition, we
can modify the constraints of a subpath, potentially changing
its feasibility. The outcome of a conditional branch depends
on the values assigned to its associated variables. These
variables must have been defined in preceding basic blocks,
which means that they depend on prior basic blocks and
branches. Therefore, the key to identifying a path prefix

that potentially reaches this branch lies in analyzing the
dependence information of these variables.

Definition 3 (Data Dependence). Suppose that a variable
vari is used in the condition ci of a branch bri. Data
dependence is a map from bri to a basic block node nj

in CFG. We say that bri has data dependence on nj iff. nj

defines vari such that i) there is a path p from nj to bri,
and ii) there is no any other node nk on p that defines vari.

Definition 4 (Potential Dependence). Suppose a variable
vari is used in the condition ci of a branch bri. The potential
dependence is a map from bri to a branch brj . bri is
potentially dependent on brj iff. i) there is a path p from
brj to bri in which vari is not defined; ii) there is another
path p′ from brj to bri where vari is defined.

Definition 3 and Definition 4 introduce two classic
types of program dependence that have been studied for
decades [6,36,64,77]. Data dependence, derived from the
def-use chain in program analysis, represents the relation-
ship between a branch condition and a basic block that may
influence this condition, thereby affecting branch choices.
Potential dependence reveals that a previous branch can
influence the definition of a variable, which, in turn, can
affect the outcome of the current branch. We leverage data
dependence and potential dependence to identify the preced-
ing basic blocks and branches that influence a given branch.
We trace the operand variables involved in def-use chains
and also track the parameters and returns of function calls.
Additionally, we perform basic pointer analysis by ignoring
nested or multilevel pointers, as complete pointer analysis
is computationally expensive.

At run-time of symbolic execution, when Empc invokes
the infeasible path handling mechanism, it identifies the last
unvisited basic block on the infeasible path and its corre-
sponding branch, denoted as br unvisited. It then performs
a backward search on the iCFG starting from br unvisited
until it discovers an ancestor basic block, bb ancestor, that
has a program dependence on br unvisited. Empc locates
symbolic execution states that reach bb ancestor and redi-
rects symbolic execution to these states. As described in Sec-
tion 4.1.3, Empc ignores execution states with mismatched
subpaths in the MPC group during execution. However,
during the current search for handling infeasible paths, Empc
reconsiders these previously ignored states. If such a state
is reconsidered, Empc temporarily disregards the current
mismatched subpaths to allow the execution of this state
to continue.

5. Implementation

Empc comprises two main components, all implemented
in C++ using the LLVM [52] API (version 13.0.0). The first
component is responsible for generating MPCs. We imple-
ment all algorithms mentioned in Section 4.1.1 from scratch,
including the Hopcroft-Karp algorithm [39]. The second
component, for program dependence analysis, is built on
the def-use chains provided by LLVM. Our implementation



TABLE 1: The details of 12 benchmark programs. Each program is the latest version upon the evaluation. The number of basic
blocks and code lines are calculated via KLEE internal coverage.

Project Program Version Category Binary Size # Basic Blocks # Code Lines

GNU bc bc 1.07.1 Calculator 169KB 2430 3754
GNU ncurses tic 6.5 Text 606KB 8972 9764
GNU make make 4.4.1 Text 562KB 9450 11086
GNU bison bison 3.8.2 Text 1531KB 22096 22690
GNU binutils readelf commit eb7892c4 Binary 2793KB 38397 47939
GNU binutils strip-new commit eb7892c4 Binary 5417KB 57257 76380
NASM nasm 2.16.02 Binary 2507KB 16733 22369
libtiff tiffinfo 4.6.0 Image 887KB 13490 16335
JasPer jasper 4.2.4 Image 1041KB 14079 19146
Little CMS transicc 2.16 Image 929KB 12242 17800
FLVMeta flvmeta 1.2.2 Video 361KB 5122 6468
curl curl 8.10.1 Network 3458KB 39413 46682

analyzes instructions one by one using a breadth-first search
approach. However, we do not handle indirect calls due to
the high cost associated with performing pointer analysis.
Nonetheless, our dependence analysis remains efficient and
operates on a small scale.

We now describe how Empc is integrated into one of the
most widely used symbolic execution engines, KLEE [20]
(version 3.1). We incorporate several C++ header and source
files into KLEE’s core modules. During the symbolic exe-
cution process, KLEE first loads a program’s bitcode file
and parses it into LLVM IR. Empc uses the LLVM IR
to perform graph analysis and dependence analysis without
modifying the IR. Once these analyses are complete, KLEE
continues with the symbolic execution of the program. Path
prioritization and infeasible path handling are embedded
into KLEE’s state update and state selection functions, as
these functions serve as interfaces for new searchers. In
Section 6.4, we evaluate the overhead introduced by Empc
to the symbolic execution process.

6. Evaluation

We perform extensive evaluation of Empc aimed at
answering the following research questions.

1) RQ1 (Code coverage and resource usage): Can Empc
improve code coverage and meanwhile reduce the num-
ber of paths and memory usage?

2) RQ2 (Finding security violations): Can Empc find
more security violations?

3) RQ3 (Runtime overhead): What is the runtime over-
head of Empc?

4) RQ4 (Design choice): How do different components
of Empc contribute to its performance?

6.1. Experiment Setup

Baseline search strategies. We consider all 11 search
strategies in KLEE [2,20], including bfs, dfs, random-state,
random-path, nurs:rp, nurs:depth, nurs:covnew, nurs:md2u,
nurs:icnt, nurs:cpicnt, and nurs:qc. However, we ex-
clude nurs:depth and nurs:icnt for the following reasons:
nurs:depth is similar to nurs:rp, as both are guided by depth,

but nurs:rp consistently performs better than nurs:depth.
Similarly, nurs:icnt is excluded for analogous reasons. In ad-
dition to the built-in search strategies in KLEE, we compare
Empc with representative related works from recent years,
as summarized in the following.

• sgs. Subpath-guided search (sgs) [55] prioritizes the
selection of states whose subpaths have been explored
the least frequently. In their implementation and evalu-
ation, they executed four independent instances of the
searcher with subpath lengths of 1, 2, 4, and 8. Each
instance was allocated a quarter of the total time limit.
We adopt their evaluation method as one of our baseline
search strategies.

• LEARCH. LEARCH [37] is a novel learning-based strat-
egy designed to effectively select promising states
for symbolic execution, addressing the path explo-
sion problem. It leverages existing heuristics for train-
ing data generation and feature extraction. LEARCH
provides pre-trained feedforward network models [1],
which we use directly in our evaluation.

• cgs. Concrete-constraint-guided search (cgs) [71] in-
troduces a symbolic execution strategy guided by con-
crete constraints, aimed at covering more concrete
branches and thereby improving overall code coverage
in symbolic execution. cgs leverages data dependence
to prioritize states that are likely to traverse partially
covered concrete branches. We adopt their approach in
our evaluation.

The three methods described above address the path ex-
plosion problem from different perspectives. sgs utilizes
control-flow guidance and analyzes paths in CFGs. LEARCH
represents the use of machine learning methods in symbolic
execution. cgs is a recent approach that focuses on heuristics
derived from real-world programs and employs data-flow
analysis in symbolic execution. These search strategies make
our baselines more comprehensive and extensive. However,
these strategies are implemented on older versions of KLEE
and LLVM. For example, LEARCH is built on KLEE 2.1 and
LLVM 6.0, while cgs is based on KLEE 2.3 and LLVM
11.1.0. In contrast, Empc is implemented using KLEE 3.1
and LLVM 13.0. To address the issue of mismatched tool
versions, we directly ported the source code of sgs into our
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Figure 5: The arithmetic mean internal coverage of basic blocks of Empc and all KLEE baseline search strategies running for
10 hours on 12 benchmark programs and one standard deviation error bars over 10 runs. The basic block coverage is computed
via KLEE internal coverage.

KLEE engine, as its implementation is relatively simple and
the codebase is small. On the other hand, LEARCH and cgs
involve extensive instrumentation of KLEE’s source code,
making it difficult to port them directly. Fortunately, both
provide source code and pre-configured environments that
we can utilize. As a result, we build and maintain three
separate environments separately for Empc, LEARCH and
cgs.

Benchmark programs. We use 12 real-world open-source
programs to evaluate Empc. These programs are widely used
in fuzzing and symbolic execution techniques [14,19,37,
45,56,58,71], and are applied in various domains such as
text editing, binary operations, image and video processing,
and networks. Table 1 provides details about these bench-
mark programs. To ensure Empc is applicable to current
real-world programs, we use the latest versions of these
benchmarks. Since LEARCH and cgs must be evaluated in
their respective environments, we ensure that the benchmark
programs are configured and built with consistent param-
eters across all environments. KLEE provides symbolic
environment settings for each executed program, where it
symbolizes program arguments as well as certain input and

output files based on these symbolic environment configu-
rations. We configure these symbolic environments for our
benchmarks as detailed in Table 6 in Appendix D. We define
symbolic arguments based on prior works [37,45,71] and
usage information provided by the programs themselves.
Environment setup. We conduct all evaluations on a 64-
bit machine equipped with 128 Intel Xeon (Cascade Lake)
Platinum 8269CY CPUs and 3072 GB of RAM. Each KLEE
instance is restricted to a single CPU core and a maximum
of 32 GB of RAM. We run up to 95 KLEE instances
simultaneously.

6.2. RQ1: Code Coverage and Resource Usage

In this section, we evaluate Empc by comparing its code
coverage and resource usage against the baseline search
strategies mentioned earlier. Each KLEE instance is assigned
a memory limit of 32 GB. This limit, which is significantly
higher than the default of 4 GB, allows us to measure
the resource usage, including memory consumption, for all
search strategies. LEARCH and cgs are executed in their
respective environments based on older versions of KLEE,
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Figure 6: The arithmetic mean external coverage of code lines of Empc, KLEE search strategies and 3 prior works running for
10 hours on 8 benchmark programs and one standard deviation error bars over 10 runs. The line coverage is computed via
replaying test inputs using gcov.

where some programs in our benchmarks (using the latest
versions) cannot run successfully. These programs include
readelf, strip-new, nasm, and curl. To address this com-
patibility issue, we divide the benchmarks and baselines
into two groups: Group A: All benchmark programs with
KLEE’s baseline search strategies; Group B: A subset of
8 benchmark programs compatible with all baseline search
strategies. We repeat each experiment 10 times, with each
KLEE instance running for 10 hours. Finally, we compute
the mean and standard deviation to analyze the results.

6.2.1. Code Coverage. KLEE merges the program bitcode
with the bitcode of external libraries to produce a final
complete bitcode before symbolic execution. In our eval-
uations, we collect coverage only for the source code in the
program binary, excluding external libraries (e.g. C standard
library). This is because external libraries are shared across
programs, and their coverage statistics are not meaningful in
this context. There are two options [21] for measuring code
coverage for programs symbolically executed on KLEE. The
first is internal coverage, which is reported directly by
KLEE. A statement is considered covered if it has been
symbolically executed. The second is external coverage,
which is calculated by replaying the test inputs generated by
KLEE on a native version of the program instrumented with
gcov [3] or llvm-cov [4]. We use both metrics to evaluate the
code coverage of Empc and the baselines. We report internal
coverage for basic blocks and external coverage for lines of
code. This distinction aligns with Empc’s focus on basic
blocks in CFGs, while replaying via gcov typically reports
line coverage. However, due to the fact that LEARCH and

cgs are based on different versions of LLVM and KLEE, it is
not possible to completely eliminate the inherent impact of
version differences when reporting internal coverage. As a
result, we report internal coverage of basic blocks for Group
A experiments and external coverage of code lines for Group
B experiments.

Figure 5 presents the experimental results for experiment
Group A. Among the 12 benchmark programs, it is clear
that Empc emerges as the best-performing search strategy
in 10 of them. It also shows significant improvements in
internal coverage for several programs, such as bc, readelf,
and tiffinfo. For bison, Empc ranks second, trailing bfs
by 200 basic blocks. In the case of make, Empc ranks
third, closely matching the coverage achieved by nurs:rp
and dfs. Overall, Empc demonstrates consistently strong
performance across the 12 benchmark programs, in contrast
to the highly variable results exhibited by KLEE’s baseline
search strategies. The standard deviations in results for some
programs are relatively high. This is because Empc explores
fewer paths, which can lead to encountering complex path
constraints more frequently. Some of these constraints are
difficult for the SMT solver to resolve, occasionally resulting
in a negative impact on Empc’s performance. Besides, our
infeasible path handling includes some random choices for
dependent states. Despite these challenges, Empc generally
outperforms KLEE’s baselines in covering basic blocks. In
total, Empc covers 19853 basic blocks, whereas the best
baseline search strategy, bfs, covers 16602 basic blocks. This
represents an overall improvement of 19.6% compared to
KLEE’s baselines.

The experimental results for experiment Group B are



TABLE 2: The size of memory (in bytes) held in the heap by a KLEE instance is measured at the 3rd, 7th, and 10th hours of
execution. This evaluation is conducted only on KLEE baseline search strategies. Reduction*: We exclude comparisons with dfs
due to its specificity. We calculate the proportion of states reduced by Empc relative to the strategy with the minimum number
of states. Non-negative reductions are represented by green cells. The corresponding memory usage of Empc is shown in blue
cells, while the memory usage of the compared strategy is shown in red cells.

Program Time Reduction* Empc bfs dfs* rss rps nurs
rp covnew md2u cpicnt qc

bc
3h -38.2% 94M 89M 71M 74M 80M 68M 87M 31.3G 427M 19.2G
7h -17.9% 99M 126M 75M 105M 101M 84M 164M 31.3G 1.36G 31.3G
10h -10.2% 108M 184M 79M 147M 113M 98M 237M 31.3G 2.37G 31.3G

tic
3h 44.9% 14.6G 31.3G 107M 31.3G 31.3G 31.3G 26.5G 31.3G 31.3G 31.3G
7h 16.3% 26.2G 31.3G 108M 31.3G 31.3G 31.3G 31.3G 31.3G 31.3G 31.3G
10h 0% 31.3G 31.3G 106M 31.3G 31.3G 31.3G 31.3G 31.3G 31.3G 31.3G

make
3h 68.7% 727M 31.3G 143M 31.3G 31.3G 31.3G 31.3G 31.3G 2.32G 31.3G
7h 84.9% 1.11G 31.3G 146M 31.3G 31.3G 31.3G 31.3G 31.3G 7.35G 31.3G
10h 87.6% 1.19G 31.3G 148M 31.3G 31.3G 31.3G 31.3G 31.3G 9.61G 31.3G

bison
3h -68.7% 361M 274M 188M 282M 246M 240M 327M 328M 214M 302M
7h -61.5% 378M 354M 190M 349M 283M 278M 396M 387M 234M 449M
10h -51.2% 381M 385M 192M 400M 301M 305M 435M 437M 252M 529M

readelf
3h -26.4% 1.77G 1.40G 420M 3.52G 3.09G 2.11G 3.77G 2.38G 1.75G 9.02G
7h -127% 4.11G 1.81G 604M 5.43G 4.56G 2.94G 7.38G 3.01G 3.43G 31.3G
10h -204% 6.18G 2.03G 718M 8.54G 4.57 4.27G 10.0G 3.60G 4.35G 31.3G

strip-new
3h -203% 1.32G 651M 744M 31.3G 436M 461M 31.3G 31.3G 31.3G 461M
7h -210% 1.43G 841M 750M 31.3G 461M 525M 31.3G 31.3G 31.3G 470M
10h -201% 1.43G 1.01G 761M 31.3G 475M 571M 31.3G 31.3G 31.3G 476M

nasm
3h 72.8% 1.95G 31.3G 644M 11.8G 31.3G 31.3G 11.1G 31.3G 8.00G 7.17G
7h 69.2% 3.60G 31.3G 1.06G 18.5G 31.3G 31.3G 17.5G 31.3G 13.6G 11.7G
10h 69.3% 4.23G 31.3G 1.41G 22.2G 31.3G 31.3G 20.8G 31.3G 17.1G 13.8G

tiffinfo
3h 38.8% 1.09G 2.22G 934M 31.3G 1.78G 2.75G 31.3G 31.3G 31.3G 31.3G
7h 32.2% 1.94G 4.08G 1.60G 31.3G 2.86G 4.11G 31.3G 31.3G 31.3G 31.3G
10h 32.5% 2.35G 4.60G 2.06G 31.3G 3.48G 5.27G 31.3G 31.3G 31.3G 31.3G

jasper
3h 86.0% 449M 12.8G 587M 5.49G 31.3G 27.1G 4.97G 3.20G 7.84G 4.48G
7h 80.3% 1.01G 22.3G 1.13G 8.77G 31.3G 31.3G 7.95G 5.12G 12.5G 7.41G
10h 80.3% 1.22G 24.6G 1.51G 10.1G 31.3G 31.3G 9.54G 6.15G 15.0G 8.56G

transicc
3h 64.9% 6.10G 21.9G 831M 31.3G 31.3G 31.3G 31.3G 17.4G 31.3G 31.3G
7h 56.2% 13.7G 31.3G 1.00G 31.3G 31.3G 31.3G 31.3G 31.3G 31.3G 31.3G
10h 45.0% 17.2G 31.3G 1.14G 31.3G 31.3G 31.3G 31.3G 31.3G 31.3G 31.3G

flvmeta
3h 88.5% 377M 3.42G 560M 31.3G 3.27G 4.34G 12.6G 31.3G 15.4G 31.3G
7h 90.5% 489M 10.8G 911M 31.3G 5.15G 7.01G 17.2G 31.3G 25.7G 31.3G
10h 93.5% 492M 11.7G 1.16G 31.3G 7.57G 7.97G 19.8G 31.3G 31.3G 31.3G

curl
3h -85.2% 678M 496M 301M 1.51G 368M 366M 31.3G 26.1G 5.22G 31.3G
7h -38.8% 680M 578M 339M 3.24G 490M 508M 31.3G 29.7G 31.3G 31.3G
10h -15.0% 681M 647M 365M 5.97G 592M 641M 31.3G 28.8G 31.3G 31.3G

largely consistent with those of Group A, as shown in
Figure 6. Empc achieves the best performance in 5 out
of the 8 benchmark programs across all baseline search
strategies, including prior works. In the case of flvmeta,
Empc does not achieve the highest line coverage compared
to its internal coverage. This is because certain paths that
cover new lines are no longer executed when they do not
align with the paths in the MPCs. Overall, Empc covers
17634 lines, while the best baseline search strategy, cgs,
covers 14173 lines across the 8 benchmark programs. This
represents an overall improvement of 24.4% compared to
all baseline search strategies.

6.2.2. Resource Usage. In addition to measuring code cov-
erage, we evaluate resource usage, including execution states
and memory consumption, to demonstrate that our high-
level approach is effective. We conduct experiments on both
Group A and Group B. For Group A, memory usage can
be easily obtained during execution using KLEE’s memory
manager, which allows us to track heap memory usage

at any point in time. However, for Group B, comparing
memory usage is not feasible because LEARCH and cgs
are based on older versions of KLEE with different in-
ternal implementation details. Under these circumstances,
a comparison of memory usage would not be reliable. To
address this limitation, we instead compare the number of
execution states for Group B, as the definition of states
remains consistent across different versions of KLEE.

Table 2 presents the memory usage of Empc and KLEE
baselines across 12 benchmark programs at the 3rd, 7th,
and 10th hours of execution. We do not explicitly compare
Empc with dfs, as it is inherently optimized to minimize the
number of states at the graph level. Due to its depth-first
nature, dfs maintains a small state pool, resulting in minimal
memory consumption. However, this does not lead to higher
code coverage for the majority of programs. Excluding dfs,
Empc achieves the lowest memory usage in 7 out of the 12
benchmark programs, reducing memory consumption by up
to 93.5% on flvmeta. Compared to other search strategies,



#define sum_get_unaligned_32(r, p)              \361

  do {                                                           \362

    unsigned int val;                                       \363

    memcpy (&val, (p), 4);                              \364

    r += val;  \       // unsigned integer overflow365

  } while(0);366

...

unsigned int368

jhash(unsigned const char *k, int length)369

{370

...

  if (length > 4)395

   {396

      sum_get_unaligned_32(b, k);//report error397

      length -= 4;398

      k += 4;399

    }400

...

  unsigned int a, b, c;371

(a) Unsigned integer overflow at sr-
c/hash.c:397 in make

#define cmsINLINE static inline88

#if (USHRT_MAX == 65535U)105

  typedef unsigned short cmsUInt16Number;106

#elif (UINT_MAX == 65535U)107

  typedef unsigned int cmsUInt16Number;108

...

...

cmsINLINE cmsUInt16Number182

_cmsQuickFloorWord(cmsFloat64Number d)

{183

    _cmsQuickFloor(d - 32767.0) + 32767U;

}185

/* In file include/lcms2.h */

    // report error

    // implicit unsigned integer truncation

return (cmsUInt16Number)184

/* In file src/lcms2_internal.h */

typedef double cmsFloat64Number;102

...

(b) Implicit unsigned integer trun-
cation at src/lcms2 internal.h:184 in
transicc

Figure 7: The two UBSan violations discovered by Empc based
on KLEE UBSan support.

Empc effectively reduces memory usage. Furthermore, we
report the number of execution states in Table 7. The results
are consistent: Empc maintains a small number of states in
5 out of the 8 benchmark programs and reduces the number
of execution states by up to 88.6% on jasper.

Result 1: Empc increases basic block coverage by 19.6%
compared to KLEE search strategies and line coverage by
24.4% compared to KLEE search strategies and 3 prior
works. Moreover, Empc reduces memory usage by up
to 93.5% compared to KLEE search strategies and the
number of execution states by up to 88.6% compared to
KLEE search strategies and 3 prior works.

6.3. RQ2: Finding Security Violations

We evaluate the ability of all search strategies to dis-
cover security violations using two metrics. The first metric
leverages KLEE’s runtime Undefined Behavior Sanitizer
(UBSan) support, and the second metric involves replay-
ing test inputs on programs instrumented with sanitizers.
nasm cannot be successfully compiled with UBSan, so it is
excluded from the experiments in this section, leaving 11
benchmark programs for evaluation.

For the first metric, KLEE provides runtime support to
detect certain UBSan bugs through its built-in functionality.
However, since this support is limited, Empc identifies only
two UBSan bugs, as shown in Figure 7, which is consistent
with the results of KLEE’s baseline search strategies, as they
also detect the same two UBSan bugs.

Based on the second metric, we replay the test cases
generated by all search strategies on programs instrumented
with UBSan and Address Sanitizer (ASan) to identify ad-
ditional security violations. This experiment is conducted

char *strcopyof (const char *str){42

...

  temp = bc_malloc (strlen (str)+1);47

...

void *bc_malloc (size_t size){647

  void *ptr;650

  ptr = (void *) malloc (size);652

// direct leak of memory allocated here

...

/* In file util.c */

/* In file scan.l */

yylval.s_value = strcopyof(yytext);276

...

(a) Memory leak in bc

/* In file jas_fix.h */

typedef int_least64_t jas_fix_t;101

...

/* In file jas_seq.h */

typedef jas_fix_t jas_seqent_t;

/* In file pgx_dec.c */

...

106

static jas_seqent_t pgx_wordtoint(524

  uint_fast32_t v, int prec, bool sgnd){524

  jas_seqent_t ret = (sgnd && (v & (1 

  <<(prec - 1)))) ? (v - (1 << prec)) : v;

...

528

528

  // multiple undefined behaviors

(b) Multiple undefined behaviors in
jasper

Figure 8: One ASan violation and one UBSan violation dis-
covered by Empc by replaying test inputs.

on 8 benchmark programs (i.e., the 8 programs compatible
with LEARCH and cgs, as introduced in Section 6.2). The
total number of security violations discovered by all search
strategies on these 8 programs is reported in Figure 9. Empc
detects a total of 70 security violations, outperforming the
second-best baseline, bfs, by 24 violations. Furthermore,
Empc uniquely identifies 15 new security violations that
are not detected by any of the baseline search strategies.
These results demonstrate that Empc is more effective at
detecting security violations compared to baseline search
strategies. This is because Empc prioritizes certain paths and
maximizes code coverage within a limited time frame.

We illustrate four examples of security violations found
by Empc in Figure 7 and Figure 8. In Figure 7a, the
variable r adds val in a loop, resulting in an unsigned
integer overflow. In Figure 7b, the return value is truncated
from 32 bits to 16 bits. These two UBSan violations are
detected by Empc using KLEE’s runtime UBSan support.
Figure 8a demonstrates a memory leak: yylval copies text
using malloc but does not release the allocated memory from
the heap. Lastly, Figure 8b highlights a common violation
that involves integer conversion. The variable is implicitly
converted from type int to type unsigned long, altering its
value. Additionally, the variable is left-shifted by 31 places,
causing an overflow as the result cannot be represented
within the type int.

Although UBSan and ASan violations, such as memory
leaks, may not cause a program to crash, they can indicate
potential issues or unexpected behavior in deeper parts of the
programs. Since our experiments are conducted on the latest
versions of real-world programs, we have reported the 70
discovered security violations to the respective developers
and received confirmation of the existence of 16 ASan and
UBSan violations.
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Figure 9: The total number of UBSan and ASan violations
discovered by Empc and all baseline strategies via replay on
8 benchmark programs. This experiment is repeated 5 times
and all security violations are collected.

Result 2: Empc is able to find more security violations
than other search strategies on the 8 benchmark programs.
It outperforms the second-best baseline search strategy by
24 violations.

6.4. RQ3: Runtime Overhead

In this experiment, we evaluate the overhead introduced
by Empc to the symbolic execution engine KLEE. Empc
comprises two analysis components performed prior to sym-
bolic execution, and we report the time taken by each com-
ponent as well as the overall analysis time in Table 3. The
experiment is repeated 10 times, and the arithmetic mean is
calculated. The results show that the analysis time for 10 out
of 12 programs is limited to just a few dozen seconds. Even
for more complex programs, such as strip-new, the analysis
duration does not exceed 400 seconds. Consequently, the
overall overhead introduced by Empc accounts for at most
1% of the total execution time. This overhead is negligible
compared to the total run time of the programs, indicating
that the analysis performed by Empc has minimal impact on
performance.

Since runtime path prioritization is integrated into the
state selection and update methods in KLEE, we measure the
runtime overhead associated with these operations. We run
Empc and nurs:rp on 12 benchmark programs for 10 hours,
recording the total time spent on state selection and update
during execution. This experiment is repeated 10 times, and
the arithmetic mean is calculated. The comparison results
are presented in Table 4. For 8 out of 12 programs, the
total time spent on state selection remains less than 400
seconds, which is negligible compared to the overall run
time of these programs. On average, Empc introduces a
12% overhead for engine maintenance across all programs.
However, for more complex programs, such as transicc and

TABLE 3: The analysis performance overhead of Empc on all
benchmark programs. It contains the time of graph analysis,
dependence analysis and the overall analysis. The experiment
is repeated 5 times and the mean is reported.

Program Graph Analy. Dep. Analy. Overall

bc 561ms 262ms 823ms
tic 11.9s 1.5s 13.4s
make 11.2s 1.5s 12.7s
bison 18.2s 15.8s 34.0s
readelf 46.9s 28.9s 75.8s
strip-new 178s 200s 378s
nasm 15.0s 14.1s 29.1s
tiffinfo 39.3s 4.6s 43.9s
jasper 25.3s 2.3s 27.6s
transicc 12.3s 3.0s 15.3s
flvmeta 12.6s 1.1s 13.7s
curl 57.6s 81.8s 139.4s

TABLE 4: The runtime performance overhead of Empc and
nurs:rp on benchmark programs, including the time of state
selection and state update handled by the searchers. The
experiment is repeated 5 times and the mean is reported.

Program Empc nurs:rp

bc 35ms 5.8ms
tic 190min 42.8s
make 122min 83.5s
bison 1.9s 36ms
readelf 270s 2.7s
strip-new 267s 721ms
nasm 283min 61.5s
tiffinfo 279s 5.7s
jasper 312s 34s
transicc 321min 6.5s
flvmeta 24.8s 9.3s
curl 421s 611ms

nasm, the time required for this procedure is longer. This
increase in time consumption is attributed to Empc’s need to
record, update, and manage all state operations during the
selection and update process. Additionally, Empc performs
more graph-level operations, further extending this phase.
Despite the increased time required for these operations, it
is important to emphasize that this does not adversely affect
code coverage or memory usage.

Result 3: Empc adds at most 1% overhead to the overall
analysis. Empc adds at most 1% overhead for symbolic
execution engine maintenance on 8 out of 12 programs
and adds 12% overhead in average for engine maintenance
on all programs.

6.5. RQ4: Design Choice

Firstly, we provide an experimental analysis of extraor-
dinary loops in the 12 benchmark programs. Extraordinary
loops, as described in Section 4.1.1, are loops with multi-
ple loop headers. Among the 12 benchmark programs, we
identify 68 extraordinary loops out of a total of 21568 loops,



TABLE 5: The final internal coverage of basic blocks of Empc
and the modified version without dependence analysis. The
experiment is repeated 5 times and the mean is reported.

Program Empc Modified Version

bc 395 236
tic 915 860
make 1863 1820
bison 858 1100
readelf 1683 1570
strip-new 1930 1359
nasm 1830 1815
tiffinfo 1382 989
jasper 2553 2518
transicc 1828 1765
flvmeta 1378 928
curl 3233 3200

accounting for only 0.3% of all loops. This result indicates
that extraordinary loops are rare in real-world programs.

Secondly, we investigate the contributions of different
components of Empc. Empc comprises two main types of
analysis: graph analysis, which is used for the computation
of MPCs, and dependence analysis, which handles infeasible
paths. Since graph analysis is the fundamental high-level
concept of Empc, we begin by evaluating the performance
impact of dependence analysis. To do this, we remove
dependence analysis from the implementation and replace
the method for handling infeasible paths with a dfs selection
strategy. We then conduct experiments on 5 benchmark pro-
grams, repeating each experiment 5 times. Table 5 presents
the comparison results between the original Empc and its
modified version.

In our ablation experiments, integrating dependence
analysis into Empc generally results in an increase in code
coverage for 11 out of 12 benchmark programs, with an
average increase of 16%. This demonstrates that program
dependence analysis plays an important role in Empc, con-
tributing to the observed code coverage improvements. How-
ever, the contribution of our MPC method is even more
significant, as the increase introduced by program depen-
dence analysis is only 16%. Overall, these results suggest
that the primary driver of the code coverage improvement is
the MPC method, which provides the most substantial con-
tribution. In contrast, dependence analysis plays a secondary,
yet supportive, role in enhancing Empc’s performance.

Result 4: Our results empirically support Empc’s de-
sign choices, demonstrating that the MPC method is the
primary contributor, while program dependence plays a
supportive role.

7. Limitations and Future Work

In this paper, we propose a novel approach that leverages
minimum path covers to prioritize paths for symbolic exe-
cution, addressing the path explosion problem. To address
the challenge of infeasible paths at run-time, we incorporate

program dependence to refine path prioritization. In our
evaluation, we compare Empc only with KLEE-based search
strategies because Empc is implemented on KLEE. In the
future, we plan to extend Empc to other symbolic execution
engines, such as angr [76], to evaluate its performance more
broadly. Additionally, we plan to explore the application of
Empc in the field of fuzzing, including using test inputs gen-
erated by Empc as fuzzing seeds to uncover more security
vulnerabilities. We also plan to compare Empc’s effective-
ness with existing fuzzing tools to assess its potential in
improving software testing and vulnerability detection.

8. Related Work

Minimum path cover. Minimum path cover (MPC) is a
classic problem in graph theory. Dilworth [31] and Fulker-
son [32] proved it’s an NP-hard problem for general graphs
but can be done in polynomial time for directed acyclic
graphs. Many algorithms were proposed to compute MPC
based on either maximum matching [32,60] or maximum
flow [60]. MPC has been applied to various fields such as
software testing and programming languages [11,12,48,78],
distributed computing [44] and bioinformatics [65].
Symbolic execution. Symbolic execution is a powerful tech-
nique in software analysis that systematically explores the
execution paths of a program by treating inputs as symbolic
variables instead of concrete values [9,20,22,47,76]. This
technique has enabled an increasing number of applica-
tions [16,26,27,29,38,42,50,67,72]. Research in this field
has focused mainly on improving the scalability and effi-
ciency of symbolic execution tools, particularly in address-
ing challenges such as path explosion, where the number
of execution paths grows exponentially with the size of the
program [9,22].
Concolic execution. Concolic execution combines the con-
crete and symbolic execution of the code under test to
overcome the limitations of purely symbolic approaches
[34,68,69]. By leveraging concrete inputs to guide explo-
ration while using symbolic constraints to systematically
cover program paths, many tools [23,24,28,34,41,57,69,80]
have effectively detected vulnerabilities and generated com-
prehensive test suites. Although powerful, concolic execu-
tion still faces challenges with path explosion and complex
constraints when analyzing large software systems.
Searching strategies tackling path explosion. Researchers
have proposed various strategies to address the path ex-
plosion problem. One common approach involves using
heuristics to prioritize and selectively explore paths that
are more likely to uncover errors, thereby reducing the
resource burden [13,20,55,81]. Another technique, known as
state merging, combines similar execution paths to reduce
the total number of paths [43,51]. Furthermore, integrating
symbolic execution with other program analysis techniques
and modern machine learning methods has proven effective
in pruning infeasible paths early [17,25,73]. Additionally,
advanced constraint-solving techniques aim to solve multi-
ple constraints simultaneously, thereby reducing the burden



on the SMT solver [30,33,45]. Collectively, these methods
contribute to mitigating the path explosion problem, making
symbolic execution a more practical and scalable tool for
software verification and security testing.

9. Conclusion

In this paper, we introduce a new approach Empc to
tackle the path explosion problem in the symbolic execution
technique based on minimum path cover (MPC). MPC
provides an option for runtime path selection in order to
use the least number of paths to maximize code coverage.
This method not only increases code coverage but also
reduces resource usage like memory usage. Moreover, we
add program dependence analysis to handle some infeasible
paths at run-time. We implement Empc on KLEE and show
its effectiveness in increasing code coverage and reducing
memory usage on 12 benchmark programs.
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Appendix A.
Proof of Theorem 1

We first combine the MPCs in G′ and Gsub to construct
a path cover in G. If k ≥ |P sub

m |, we can easily expand
|P sub

m | paths at vsst in P ′
m using the |P sub

m | paths in P sub
m ,

and then the combined path cover Pcom in G with |Pcom| =
|P ′

m|; if k < |P sub
m |, we can first expand k paths at vsst in

P ′
m using the k paths in P sub

m , and then add |P sub
m | − k

paths in P sub
m and expand them into complete paths in G,

so we can get the combined path cover Pcom in G with
|Pcom| = |P ′

m| + |P sub
m | − k. Then we just need to prove

|Pcom| = |Pm|.
Assume the opposite of what we want to prove, which

is |Pcom| ̸= |Pm|. There must be |Pcom| > |Pm| since Pm

is an MPC in G. Suppose there are j paths going through
vss and vst in Pm. There must be j ≥ |P sub

m | since P sub
m is

an MPC in Gsub, so we can get |Pm| ≤ |Pm| − |P sub
m |+ j.

We remove the subgraph Gsub and merge it as a vertex v′sst
in the transformed graph G′. Let the paths in Pm going
through vss and vst go through the merged vertex v′sst, then
we can get a new path cover P ′′ in G′ with |P ′′| = |Pm|.
It’s obvious that there are some identical paths in P ′′ due to
the merged vertex v′sst, and we can remove at least l paths
to make no identical paths appear in P ′′ with 0 ≤ l < j. If
we remove these l paths, we can get a new path cover P ′′′ in
G′ with |P ′′′| = |P ′′|− l = |Pm|− l. If k ≥ |P sub

m |, we have
|Pcom| = |P ′

m|, so we can get |P ′′′| < |P ′
m| − l < |P ′

m|,
which contradicts the assertion that P ′

m is an MPC in G′. If
k < |P sub

m |, we have |Pcom| = |P ′
m|+|P sub

m |−k and then we
can get |P ′′′| < |P ′

m|+|P sub
m |−k−l. It’s obvious that j−l ≤

k since k is the maximum, so we have k+ l ≥ j ≥ |P sub
m |.

Finally, we get |P ′′′| < |P ′
m|+ |P sub

m |−k− l < |P ′
m|, which

also contradicts the assertion of MPC. Thus, there must be
|Pcom| = |Pm|.

Appendix B.
Proof of Theorem 2

Similar to the proof in Appendix A, we can easily
expand |P sub

m | paths at vsst and link vertices in Vst in P ′
m

using the |P sub
m | paths in P sub

m . We still assume the opposite
of what we want to prove, which is |Pcom| ≠ |Pm|. Thus,
we conclude |Pcom| = |Pm|.

Appendix C.
Proof of Theorem 3

Before proving Theorem 3, we propose a lemma: for
each MPC Pm, there must be at least one matching M in
Gb that can be converted to Pm. This is because we can
remove the disjoint vertices of these paths in Pm, and then



TABLE 6: The symbolic arguments in KLEE format for benchmark programs. These symbolic arguments are configured based
on prior works and program-specific usage information.

Program KLEE Symbolic Environment

bc –sym-stdin 20
tic –sym-args 0 2 8 A –sym-files 1 100
make -n -f A –sym-files 1 40
bison –sym-args 0 2 2 A –sym-files 1 100
readelf -a A –sym-files 1 100
strip-new –sym-args 0 2 8 A –sym-files 1 100
nasm –sym-args 0 2 2 A –sym-files 1 100
tiffinfo –sym-args 0 3 8 A –sym-files 1 300
jasper –input A –output B –input-format –sym-arg 3 –output-format –sym-arg 3 –sym-args 0 3 15 –sym-files 2 300 –save-all-writes
transicc –sym-args 0 2 4 A B –sym-files 2 200 –save-all-writes
flvmeta –sym-arg 2 –sym-args 0 2 6 A –sym-files 1 300 –save-all-writes
curl –sym-args 0 4 6 –sym-args 0 1 20

TABLE 7: The number of execution states held by a KLEE instance is recorded at the 3rd, 7th, and 10th hours of execution.
This evaluation is conducted only on programs that are compatible with all baseline search strategies. Reduction*: We exclude
comparisons with dfs due to its specificity. We calculate the proportion of states reduced by Empc relative to the strategy with
the minimum number of states. Non-negative reductions are highlighted in green cells.

Program Time Reduction* Empc bfs dfs* rss rps nurs sgs LEARCH cgsrp covnew md2u cpicnt qc

bc
3h -15.9% 175 355 151 173 287 151 255 180K 2.6K 132K 453 492 220
7h 34.4% 217 772 141 432 528 331 812 184K 9.6K 222K 1.2K 1.4K 1.4K
10h 31.6% 310 1.4K 155 717 633 453 1.3K 187K 16K 221K 1.5K 2.0K 2.0K

tic
3h -935% 238K 595K 499 1.3M 478K 569K 1.3M 1.7M 409K 1.3M 23K 82K 378K
7h -1153% 426K 552K 499 1.2M 418K 516K 1.6M 1.7M 360K 1.2M 34K 86K 504K
10h -1166% 519K 541K 495 1.2M 399K 505K 1.6M 1.7M 360K 1.2M 41K 85K 760K

make
3h -32.4% 4.9K 575K 61 544K 576K 554K 564K 532K 39K 556K 13K 3.7K 111K
7h -79.2% 8.6K 565K 61 486K 565K 549K 529K 440K 127K 517K 21K 4.8K 148K
10h -87.8% 9.2K 560K 61 457K 562K 547K 530K 475K 167K 481K 26K 4.9K 175K

bison
3h -2.1% 146 772 70 2.5K 512 475 3.1K 3.0K 143 2.6K 2.1K 497 335
7h 14.0% 208 1.1K 94 3.3K 760 751 3.9K 3.7K 242 3.7K 2.7K 921 525
10h 34.3% 222 1.3K 105 3.6K 860 882 4.3K 4.4K 338 4.5K 3.3K 1.3K 700

tiffinfo
3h -44.7% 6.8K 53K 241 1.6M 44K 83K 2.1M 2.0M 1.3M 1.6M 31K 74K 4.7K
7h -60% 16K 96K 240 1.6M 70K 133K 2.1M 2.1M 1.4M 1.7M 48K 88K 10K
10h -53.8% 20K 105K 222 1.6M 85K 160K 2.1M 2.1M 1.4M 1.6M 58K 93K 13K

jasper
3h 88.6% 3.3K 632K 27 115K 1.4M 1.2M 101K 160K 156K 128K 29K 90K 350K
7h 58.1% 18K 1.1M 27 182K 1.5M 1.5M 158K 259K 246K 208K 43K 90K 914K
10h 62% 19K 1.2M 27 218K 1.5M 1.5M 191K 313K 296K 221K 50K 93K 1.2M

transicc
3h 62.1% 7.2K 57K 1.5K 1.6M 832K 328K 1.3M 852K 1.6M 1.6M 19K 53K 38K
7h 40% 15K 67K 1.7K 1.4M 1.1M 326K 1.3M 1.4M 1.5M 1.5M 25K 124K 73K
10h 37.9% 18K 70K 1.9K 1.4M 1.1M 325K 1.3M 1.4M 1.5M 1.5M 29K 120K 82K

flvmeta
3h 78.1% 4.6K 192K 264 1.4M 104K 161K 677K 1.9M 441K 1.5M 21K 141K 2.9M
7h 81.9% 5.8K 646K 272 1.4M 163K 264K 873K 1.9M 735K 1.4M 32K 62K 4.5M
10h 83.7% 6.2K 673K 262 1.4M 199K 298K 975K 1.9M 897K 1.4M 38K 95K 4.9M

we get multiple simple paths or isolated vertices, which can
be represented in a matching M . Then assume the opposite
of what we want to prove, that is, there is no maximum
matching that can be converted to Pm. According to the
lemma, we have a matching M that can be converted to Pm.
Ntaofs’s work [60] gives a theorem that provides a largest
incomparable vertex set |Im| = |V |−|Mm|. Thus, we cannot
get a largest incomparable vertex set Im via matchings,
which contradicts the assertion of |Im| = |Pm|. Therefore,
there must be a maximum matching Mm corresponding to
Pm.

Appendix D.
Symbolic Environment for Benchmarks

The KLEE symbolic environment settings in our evalu-
ations are listed in Table 6.

Appendix E.
Evaluation of Execution States

The evaluation results of the number of execution states
are listed in Table 7.



Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

This paper introduces Empc, a symbolic execution ap-
proach to address path explosion by modeling path selection
as a minimum path cover problem on the program’s inter-
procedural control flow graph. When a path in the cover is
deemed infeasible, Empc dynamically adjusts and selects
alternate paths. Implemented using KLEE, Empc boosts
coverage by about 20% (basic blocks) and 24.4% (source
lines), while reducing memory and symbolic state usage by
up to 93.5% and 88.6%, respectively.

F.2. Scientific Contributions

• Creates a New Tool to Enable Future Science.
• Provides a Valuable Step Forward in an Established

Field.

F.3. Reasons for Acceptance

1) The Program Committee appreciated the use of Path
Cover to push forward the state of path prioritization,
as this provides a good theoretical grounding compared
to current techniques, which tend to rely on heuristics.

2) The paper’s commitment to open science and the re-
lease of a prototype was viewed as a significant con-
tribution.
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