arXiv:2505.03451v1 [cs.CR] 6 May 2025

Detecting Quishing Attacks with Machine
Learning Techniques Through QR Code Analysis*

Fouad Trad and Ali Chehab

Electrical and Computer Engineering, American University of Beirut, Beirut,
Lebanon
fat10@mail.aub.edu, chehab@aub.edu.1lb

Abstract. The rise of QR code-based phishing (“Quishing”) poses a
growing cybersecurity threat, as attackers increasingly exploit QR codes
to bypass traditional phishing defenses. Existing detection methods pre-
dominantly focus on URL analysis, which requires the extraction of the
QR code payload, and may inadvertently expose users to malicious con-
tent. Moreover, QR codes can encode various types of data beyond URLs,
such as Wi-Fi credentials and payment information, making URL-based
detection insufficient for broader security concerns. To address these
gaps, we propose the first framework for quishing detection that di-
rectly analyzes QR code structure and pixel patterns without extracting
the embedded content. We generated a dataset of phishing and benign
QR codes and we used it to train and evaluate multiple machine learn-
ing models, including Logistic Regression, Decision Trees, Random For-
est, Naive Bayes, Light GBM, and XGBoost. Our best-performing model
(XGBoost) achieves an AUC of 0.9106, demonstrating the feasibility of
QR-centric detection. Through feature importance analysis, we identify
key visual indicators of malicious intent and refine our feature set by
removing non-informative pixels, improving performance to an AUC of
0.9133 with a reduced feature space. Our findings reveal that the struc-
tural features of QR code correlate strongly with phishing risk. This
work establishes a foundation for quishing mitigation and highlights the
potential of direct QR analysis as a critical layer in modern phishing
defenses.

Keywords: Quishing Detection - QR code analysis- Machine Learning
- Feature Selection

1 Introduction

QR codes have become an integral part of modern digital interactions, facili-
tating seamless access to websites, payments, authentication systems, and other
online services. However, their widespread adoption has also given rise to security
threats, particularly in the form of QR code-based phishing attacks, commonly

* Supported by the Maroun Semaan Faculty of Engineering (MSFEA) at the American
University of Beirut (AUB)

2 F. Trad and A. Chehab

referred to as Quishing [9]. In quishing attacks, cyber criminals exploit QR codes
to deceive users into scanning them, often leading to credential theft, malware
downloads, or financial fraud [14]. Unlike traditional phishing attacks that rely
on deceptive emails or messages with visible URLs, quishing leverages the opaque
nature of QR codes, making it difficult for users to assess their legitimacy before
scanning [16].

While URLs are the most common payload in quishing attacks, QR codes
can encode a variety of data types beyond web links, broadening the attack
surface. They can be used to store Wi-Fi credentials, trigger app deep links,
initiate cryptocurrency transactions, add contact details, share geolocation data,
send SMS messages, schedule calendar events, or even display plaintext phishing
messages. This versatility allows attackers to craft social engineering tactics that
do not rely solely on malicious URLs, further complicating detection efforts.

Existing phishing detection methods focus primarily on analyzing URLs and
website content, often requiring the resolution of the QR code payload. This ap-
proach presents a critical security risk, as accessing the embedded content could
expose users or automated security systems to malicious actions before a threat
is identified. In addition, obfuscation techniques such as URL shorteners, redi-
rections, and encoded payloads further complicate the detection [5]. Moreover,
these techniques are limited to QR codes that embed URLs and do not generalize
to QR codes containing other types of data. These challenges highlight the need
for an alternative approach that can assess QR code security without resolving
its payload.

In this study, we propose the first machine learning framework for quishing
detection that directly analyzes QR code structure and pixel patterns without
relying on URL extraction. Instead of treating QR codes solely as carriers of
encoded text, our method leverages their visual and structural properties to dis-
tinguish between benign and malicious codes. As such, we created a dataset of
QR codes labeled as phishing or benign, and evaluated multiple machine learn-
ing models, including Logistic Regression, Decision Trees, Random Forest, Naive
Bayes, Light GBM, and XGBoost. Our results demonstrate that QR-centric de-
tection is not only feasible but also highly effective, with our best-performing
model (XGBoost) achieving an AUC of 0.9106.

Furthermore, we conducted a feature importance analysis to identify key
visual indicators of malicious intent. By refining our feature set and excluding
non-informative pixels, we further improved detection performance to an AUC
of 0.9133.

This work establishes a foundation for pre-scan quishing mitigation, demon-
strating the viability of direct QR code analysis as a proactive cybersecurity
measure. By eliminating the need to extract or resolve QR payloads, whether
they contain URLs or other data types, our approach strengthens phishing de-
fense strategies and improves security in a world where QR codes are widely
used.

In summary, the main contributions of this paper are as follows:

Detecting Quishing Attacks with ML Techniques 3

Proposing the first machine learning framework for detecting QR code-based
phishing attacks (quishing) by directly analyzing QR code structure and
pixel patterns without extracting or resolving their embedded content.

— Creating a dataset of QR codes (available on |GitHub)) labeled as phishing
or benign, enabling the evaluation of QR-centric detection models.
Evaluating multiple machine learning models, including Logistic Regression,
Decision Trees, Random Forest, Naive Bayes, Light GBM, and XGBoost, to
assess their performance in quishing detection.

— Conducting feature importance analysis on raw QR code pixels to identify
critical visual indicators of malicious intent and reducing the feature set to
improve performance.

The structure of this paper is as follows: Section [2] provides a comprehensive
review of the existing literature on phishing and quishing detection. Section [3]
outlines the experimental setup used to create the Quishing dataset, detailing the
machine learning models developed, the evaluation metrics employed, and the
rationale behind the chosen methodologies. Section [4] presents the experiments
conducted, followed by a discussion of the results. Finally, Section[5]concludes the
paper with a summary of our findings, contributions to the field, and potential
avenues for future research.

2 Related Work

Phishing detection has been a critical area of research in cybersecurity, focusing
predominantly on identifying malicious URLs through various analytical and
machine learning techniques. Traditional approaches to phishing detection have
explored features such as URL lexical characteristics, website content analysis,
and the use of third-party services like blacklists and WHOIS information to
classify URLs as phishing or legitimate. Multiple studies have used machine
learning algorithms to analyze URL features, demonstrating significant success
in identifying phishing attempts [7UTl4].

Further advances have included the implementation of deep learning models,
to analyze the textual features of URLs for improved phishing detection accuracy
[2/T5T0]. These techniques have proven effective in identifying malicious URLSs
by examining their lexical and host-based features and page content to discern
patterns indicative of phishing. Very recently, large language models (LLMs)
have been explored for this task and are achieving state-of-the-art performance
[12/T3UTT].

Despite these advances in phishing detection, the domain of QR code-based
phishing, or "quishing," remains largely unexplored. QR codes present unique
challenges, as they can encode diverse types of information, allowing attackers
to bypass traditional detection mechanisms by embedding malicious content in
various forms. Sharevski et al. were among the first to investigate quishing, which
gained traction during the COVID-19 pandemic [9]. Using a deceptive sign-up for
a COVID-19 digital passport, they found that a majority of the 173 participants
(67%) were willing to use their social media credentials for convenience, despite

https://github.com/fouadtrad/Detecting-Quishing-Attacks-with-Machine-Learning-Techniques-Through-QR-Code-Analysis

4 F. Trad and A. Chehab

the risks. The study highlighted the threat of quishing, but focused primarily on
raising awareness and proposing educational guidelines rather than developing
direct countermeasures to mitigate the risk. A study by Amoah and J.B. [3]
represents one of the few attempts to address quishing. In their approach, QR
codes are first decoded and converted into URLs, which are then subjected to
conventional phishing detection methods. Similarly, Rafsanjani et al. introduced
QsecR, an Android application that extracts the URL from the QRCode and
analyzes it by extracting some static URL features [§]. These approaches, while
innovative, introduce inherent risks by requiring URL resolution, potentially
exposing users to malicious content, and do not exploit the full potential of
direct QR code analysis for phishing detection since they are only limited to
URLs.

Our work addresses this gap by introducing a novel machine learning frame-
work that directly analyzes the visual and structural patterns within QR codes,
bypassing the intermediary step of payload extraction. By focusing on QR code
analysis, we can identify indicators of phishing risk regardless of the type of
data encoded. This method provides a proactive pre-scan defense mechanism
that automatically assesses the safety of QR codes before they are scanned,
thereby enhancing digital security in an era where QR codes serve a multitude
of functions.

3 Experimental Setup

3.1 Dataset

To our knowledge, no publicly available Quishing dataset currently exists. There-
fore, a key contribution of this study is the creation of a Quishing dataset, which
will be made publicly available to researchers. While QR codes can encode a wide
range of payloads, such as Wi-Fi credentials or app links, our dataset focuses
specifically on URL-derived QR codes. This focus is motivated by the availability
of verified labels (phishing/benign) for URLs in existing phishing datasets, which
allows for reliable benchmarking. In contrast, no equivalent datasets currently
exist for non-URL QR payloads (e.g., malicious Wi-Fi configurations), as manual
verification would require physical device interaction or proprietary threat in-
telligence. This dataset represents a practical starting point for QR code-based
phishing detection, providing a foundation for future work that could extend
this approach to other types of payloads. The proposed method is expected to
generalize well to other payload types, as it is based on the direct analysis of
QR code structure rather than the specific content it encodes.

The dataset we created is derived from the PhishStorm dataset [6] by select-
ing 10,000 samples, equally categorized into 5,000 legitimate and 5,000 phishing
URLs. We then used the ’qrcode’ Python library to generate QR codes corre-
sponding to the URLs.

When generating QR codes, we can specify several parameters including:

— Version: An integer from 1 to 40, specifying the number of elements in the
QR Code.

Detecting Quishing Attacks with ML Techniques 5

— Error Correction: A choice among "high’, 'medium’, and ’low’, indicating
the degree of error we can tolerate in the QR Code while still navigating to
the correct link without errors.

— Box Size: The size of an element in pixels (each cell in a QR Code represents

a certain number of pixels).
— Border: The size of the borders.

After investigating the characteristics of our URL data and noting that not
every URL can be encoded using any QR code version, we selected version 13 as
our standard, which was able to encode most of the URLs (9,987 samples). This
choice yields QR codes of a consistent size (69x69 pixels), which is advantageous
for machine learning applications, as it allows for uniform pixel-based feature
extraction and prediction. Moreover, using a single version simplifies the prepro-
cessing pipeline and enhances the comparability of features across samples. The
error correction level was set to "low’, which can tolerate up to 15% loss while still
retrieving the URL correctly. Additionally, the box size was set to 1 (minimiz-
ing computational demands) and the border to 0 (eliminating extraneous pixels).
Although future research may explore varying these parameters to create a more
diversified dataset, this uniform approach serves as an effective starting point in
our investigation. The created dataset can be accessed on GitHub through the
following link: https://github.com /fouadtrad /Detecting-Quishing- Attacks-with-
Machine-Learning-Techniques-Through-QR-Code-Analysis.

Figure (1] shows 10 samples of the generated QR Codes. The dataset was
divided between 80% training and 20% testing. We later performed 10-fold cross-
validation on the training set to tune the hyperparameters of the used models.

Label: 1

Fig. 1. Ten samples of the generated QRCodes

3.2 Models

We employ multiple machine learning models, including Logistic Regression, De-
cision Tree, Naive Bayes, Random Forest, Light GBM, and XGBoost. Because

https://github.com/fouadtrad/Detecting-Quishing-Attacks-with-Machine-Learning-Techniques-Through-QR-Code-Analysis
https://github.com/fouadtrad/Detecting-Quishing-Attacks-with-Machine-Learning-Techniques-Through-QR-Code-Analysis

6 F. Trad and A. Chehab

QR codes adhere to a standardized fixed structure, each QR code image can be
reliably flattened into a uniform array, with every pixel treated as an individ-
ual feature. This consistency enables effective analysis and comparison across
models in a QR code setting. Hyperparameter tuning was performed using a
randomized search with 10-fold cross-validation on the training set. The opti-
mal hyperparameters for each model are summarized in Table [I] to facilitate
reproducibility.

Table 1. Hyperparameters of the chosen models

Model Hyperparameters

Logistic Regression|’C’>: 0.1, ’solver’: ’liblinear’

Decision Tree ’max_depth’: 3, ’min_samples_leaf’: 1

Random Forest ’max_depth’: 20, ’n_estimators’: 100

LightGBM ’learning_rate’: 0.1, ’n_estimators’: 200

XGBoost ’learning_rate’: 0.2, ’n_estimators’: 150
3.3 Metrics

The evaluation of our models relied on several classical classification metrics:

— Accuracy: This metric measures the overall proportion of correctly classified
instances, providing a straightforward assessment of model performance.

— Precision: Precision quantifies the proportion of true positive predictions
among all positive predictions, indicating the model’s ability to minimize
false positives.

— Recall: Also known as sensitivity, recall measures the proportion of actual
positives that are correctly identified by the model, reflecting its capability
to detect positive cases.

— F1-score: As the harmonic mean of precision and recall, the F1-score offers
a balanced evaluation of the model’s performance, particularly in scenarios
where class distribution is uneven.

— Area Under the ROC Curve (AUC): The AUC metric evaluates the
model’s overall ability to discriminate between classes across different thresh-
old settings, providing a comprehensive measure of classification perfor-
mance. It is worth noting that the previous metrics are reported based on
the default classification threshold of 0.5.

4 Experiments and Results

4.1 Experiment 1: Training and testing the models

After identifying the optimal hyperparameters using 10-fold cross-validation, we
trained each model on the full training set and evaluated their performance on
the testing set. Table [2| presents the computed metrics for each model.

Detecting Quishing Attacks with ML Techniques 7

As shown in the results, most models perform well on this task, with the
exception of Naive Bayes, which achieved an AUC of 0.6531, significantly lower
than the other models. All other models achieved an AUC above 0.81, demon-
strating strong discriminatory ability. Among the tested models, XGBoost, Light-
GBM, and Random Forest classifiers exhibit the best performance, with AUC
scores ranging from 0.8908 to 0.9106.

While AUC provides a threshold-independent measure of model performance,
the accuracy and Fl-score at the default 0.5 threshold offer additional insights.
The Light GBM and XGBoost models achieve the highest accuracy, at 0.8293 and
0.8258, respectively, indicating strong overall classification performance. These
models also maintain the highest Fl-scores, at 0.8214 and 0.8184, balancing
precision and recall effectively. However, it is important to note that classification
metrics such as accuracy and Fl-score depend on the chosen threshold. Given
that AUC is relatively high for these models, adjusting the decision threshold
could further optimize the trade-off between precision and recall, particularly
in real-world scenarios where minimizing false positives or false negatives is a
priority.

These results suggest that QR code-based phishing detection using direct
QR analysis is feasible, with tree-based ensemble models such as Light GBM and
XGBoost demonstrating the most promising performance. Further exploration of
threshold tuning could refine the detection process based on specific application
requirements.

Table 2. Performance metrics on the testing set

Model Accuracy|Precision|Recall|F1-Score| AUC
Logistic Regression 0.7983 0.8129 |0.7621| 0.7867 |0.8737
Decision Tree Classifier 0.7578 0.7358 |0.7856| 0.7599 |0.8138
Random Forest Classifier| 0.7993 0.8570 |0.7067| 0.7746 |0.8908

Gaussian NB 0.6376 0.8680 |0.3036| 0.4498 |0.6531
XGBoost Classifier 0.8258 0.8332 |0.8041| 0.8184 [0.9083
LGBM Classifier 0.8293 0.8394 |0.8041| 0.8214 |0.9106

4.2 Experiment 2: Deriving Feature Importance

Based on the results of Experiment 1, we select the top three performing models
(Random Forest, Light GBM, and XGBoost) and analyze their feature impor-
tance. To visualize the impact of individual pixels on the classification decision,
we plot the feature importance values on a 69x69 grid, corresponding to the QR
code size, as shown in Figure [2]

The results reveal that a significant portion of the QR code remains unused
in the prediction process. Large black regions in the feature importance maps
indicate that the majority of pixels contribute little to no information for distin-
guishing phishing from benign QR codes. This suggests that quishing detection

8 F. Trad and A. Chehab

is primarily influenced by specific regions of the QR code rather than its full
structure.

To further illustrate this observation, we provide two additional visualiza-
tions. Figure[3 highlights the pixels considered important by the XGBoost model,
shown in gray, while Figure [highlights the excluded pixels, shown in yellow.
These figures reinforce the finding that only a subset of pixels is relevant to the
classification decision.

Additionally, Figure [5] presents the distribution of feature importance values
for each of the three models. The distribution confirms that the majority of
pixels have an importance value of around zero across all models, while only
a small fraction contributes meaningfully to the decision-making process. This
finding suggests that refining the feature space by focusing on the most relevant
pixels could further enhance the model’s efficiency and performance.

LightGBM Feature Importances on 69x69 Grid XGBoost Feature Importances on 69x69 Grid Random Forest Feature Importances on 69x69 Grid
0 0 0

0.0200

00175

00150

00125

0.0100

00075

0.0050

0.0025

0.0000

Fig. 2. Feature Importance of the top 3 models

Label: 1 Label: 1 Label: 0
o TP y et M R LT 3

: Ay

Fig. 3. Features taken into account when using XGBoost

Detecting Quishing Attacks with ML Techniques 9

Label: 1

Fig. 4. Features not taken into account when using XGBoost

Histogram of LightGBM Feature Importances Histogram of XGBoost Feature Importances Histogram of Random Forest Feature Importances

4000 4000
3500 4000 3500

3000 3000

3000
2500 2500

& 2000 g & 2000
2000
1500 1500

1000 1000
1000

o
10 20 30 a0 50 000 002 004 006 008 0l0 012 0000 0002 0004 0006 0008 0010 0012
Feature Importance Feature Importance Feature Importance

Fig. 5. Feature Importance distribution

4.3 Experiment 3: Feature Selection

In this experiment, we performed feature selection based on the most important
features identified by each of the three best-performing models: Random Forest,
Light GBM, and XGBoost. We then retrained all models using only these selected
features and compared their performance to their original versions without fea-
ture selection. The results, presented in Table [3] show that applying feature
selection consistently improves or maintains model performance. This suggests
that many pixels in the original QR code images are non-informative and do not
contribute to phishing detection.

Among the tested models, Decision Tree is the only one that exhibits no
significant change in performance, which is expected given its inherent ability to
focus on the most relevant features. The highest performance is achieved with
LightGBM, reaching an AUC of 0.9133, further demonstrating the benefits of
using a reduced but more informative feature set.

A particularly notable improvement is observed in Naive Bayes, where AUC
increases from 0.6531 (without feature selection) to as high as 0.8010 when us-
ing Light GBM-based feature selection. This suggests that Naive Bayes, which

10 F. Trad and A. Chehab

relies on strong independence assumptions, benefits significantly from a reduced
feature set that removes irrelevant or noisy pixels. By limiting the input to only
the most important features, the model is less affected by non-informative data,
leading to better performance.

Additionally, the impact of different feature selection methods varies slightly
across models. For instance, Light GBM achieves its highest AUC (0.9133) when
feature selection is based on Random Forest, indicating that the features deemed
important by Random Forest align well with Light GBM’s gradient boosting ap-
proach. This may be due to Random Forest’s ability to capture a diverse set of
relevant features, which LightGBM can then refine further through its boost-
ing mechanism. Similarly, XGBoost shows only slight variations across feature
selection methods while consistently maintaining strong performance, reinforc-
ing its robustness to different feature subsets. The relatively small differences
in performance across feature selection strategies suggest that all three mod-
els are capturing meaningful predictors of phishing risk, further validating the
effectiveness of QR code-based feature selection for this task.

Table 3. AUC Comparison for Each Model With and Without Feature Selection (FS)

AUC AUC AUC AUC

Model (FS Based on|(FS Based on| (FS Based on (No FS)
XGBoost) | LightGBM) |[Random Forest)

Logistic Regression 0.8725 0.8720 0.8738 0.8737
Decision Tree 0.8138 0.8138 0.8138 0.8138
Random Forest 0.8984 0.8966 0.8923 0.8908
Naive Bayes 0.7934 0.8010 0.7540 0.6531
XGBoost 0.9083 0.9104 0.9083 0.9083
LightGBM 0.9121 0.9106 0.9133 0.9106

5 Conclusion and Future Work

In conclusion, This study introduced a novel approach to QR code-based phish-
ing (quishing) detection by directly analyzing QR code structure and pixel pat-
terns without relying on URL extraction. Through machine learning models,
trained on a newly created dataset, we demonstrate that QR-centric detection
is both feasible and effective. Feature selection further improves or maintains
model performance by identifying the most informative regions of the QR code
while filtering out non-essential pixels.

While this work establishes an important foundation, there are several av-
enues for future research. One key direction is to extend the analysis beyond
URL-encoded QR codes. Although URLs are the most common vector for quish-
ing attacks, QR codes can also encode other forms of malicious payloads. Devel-
oping datasets that encompass these variations will enable a broader assessment

Detecting Quishing Attacks with ML Techniques 11

of QR code phishing risks and allow models to generalize to a wider range of
attack strategies.

Another promising direction is the incorporation of deep learning techniques,
particularly convolutional neural networks (CNNs) and vision transformers (ViTs),
which could further enhance performance by capturing complex spatial patterns
within QR codes. While shallow models performed well in this study, deep learn-
ing methods may better exploit subtle pixel-based variations indicative of phish-
ing attempts.

Additionally, while this study operates under controlled conditions, practi-
cal implementation requires evaluating models on QR codes captured in varying
environments, including different lighting conditions, distortions, and physical
printouts. The robustness of QR-based phishing detection systems against ad-
versarial attacks, such as perturbations that deceive machine learning models,
is another critical research area.

Finally, integrating QR code phishing detection into real-world applications is
an essential next step. This could involve developing mobile applications, browser
extensions, or security software that can assess QR codes before they are scanned,
providing users with real-time risk assessments.

By addressing these challenges, future research can further strengthen de-
fenses against QR code phishing, ensuring that detection methods remain ef-
fective against evolving attack techniques. This study provides the groundwork
for such advancements, demonstrating that direct QR analysis is a viable and
valuable addition to modern phishing mitigation strategies.

References

1. Ahammad, S.H., Kale, S.D., Upadhye, G.D., Pande, S.D., Babu, E.V., Dhumane,
A.V., Bahadur, M.D.K.J.: Phishing url detection using machine learning methods.
Advances in Engineering Software 173, 103288 (2022)

2. Aljabri, M., Mirza, S.: Phishing attacks detection using machine learning and deep
learning models. In: 2022 7th International Conference on Data Science and Ma-
chine Learning Applications (CDMA). pp. 175-180. IEEE (2022)

3. Amoah, G.A., Hayfron-Acquah, J.: Qr code security: mitigating the issue of quish-
ing (qr code phishing). International journal of computer applications 184(33),
34-39 (2022)

4. Hannousse, A., Yahiouche, S.: Towards benchmark datasets for machine learning
based website phishing detection: An experimental study. Engineering Applications
of Artificial Intelligence 104, 104347 (2021)

5. Le Page, S., Jourdan, G.V., Bochmann, G.V., Flood, J., Onut, I.V.: Using url
shorteners to compare phishing and malware attacks. In: 2018 APWG Symposium
on Electronic Crime Research (eCrime). pp. 1-13. IEEE (2018)

6. Marchal, S., Francgois, J., State, R., Engel, T.: Phishstorm: Detecting phishing
with streaming analytics. IEEE Transactions on Network and Service Management
11(4), 458-471 (2014)

7. Opara, C., Chen, Y., Wei, B.: Look before you leap: Detecting phishing web pages
by exploiting raw url and html characteristics. Expert Systems with Applications
236, 121183 (2024)

12

10.

11.

12.

13.

14.

15.

16.

F. Trad and A. Chehab

Rafsanjani, A.S., Kamaruddin, N.B., Rusli, H.M., Dabbagh, M.: Qsecr: Secure qr
code scanner according to a novel malicious url detection framework. IEEE Access
(2023)

Sharevski, F., Devine, A., Pieroni, E., Jachim, P.: Phishing with malicious qr codes.
In: Proceedings of the 2022 European Symposium on Usable Security. pp. 160-171
(2022)

Tajaddodianfar, F., Stokes, J.W., Gururajan, A.: Texception: a character/word-
level deep learning model for phishing url detection. In: ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
pp. 2857-2861. IEEE (2020)

Trad, F., Chehab, A.: Large multimodal agents for accurate phishing detection
with enhanced token optimization and cost reduction. In: 2024 2nd International
Conference on Foundation and Large Language Models (FLLM). pp. 229-237.
IEEE (2024)

Trad, F., Chehab, A.: Prompt engineering or fine-tuning? a case study on phishing
detection with large language models. Machine Learning and Knowledge Extrac-
tion 6(1), 367-384 (2024)

Trad, F., Chehab, A.: To Ensemble or Not: Assessing Majority Voting Strate-
gies for Phishing Detection with Large Language Models. In: Intelligent Systems
and Pattern Recognition. pp. 158-173. Springer Nature Switzerland, Cham (2025).
https://doi.org/10.1007/978-3-031-82150-9_13

Vidas, T., Owusu, E., Wang, S., Zeng, C., Cranor, L.F., Christin, N.: Qrishing:
The susceptibility of smartphone users to qr code phishing attacks. In: Financial
Cryptography and Data Security: FC 2013 Workshops, USEC and WAHC 2013,
Okinawa, Japan, April 1, 2013, Revised Selected Papers 17. pp. 52-69. Springer
(2013)

Wang, Y., Zhu, W., Xu, H., Qin, Z., Ren, K., Ma, W.: A large-scale pretrained
deep model for phishing url detection. In: ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1-5. IEEE
(2023)

Yong, K.S., Chiew, K.L., Tan, C.L.: A survey of the qr code phishing: the cur-
rent attacks and countermeasures. In: 2019 7th International Conference on Smart
Computing & Communications (ICSCC). pp. 1-5. IEEE (2019)

https://doi.org/10.1007/978-3-031-82150-9_13
https://doi.org/10.1007/978-3-031-82150-9_13

	Detecting Quishing Attacks with Machine Learning Techniques Through QR Code Analysis

