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Abstract

A private information retrieval (PIR) scheme is a protocol that allows a user to retrieve a file
from a database without revealing the identity of the desired file to a curious database. Given a
distributed data storage system, efficient PIR can be achieved by making assumptions about the
colluding capabilities of the storage servers holding the database. If these assumptions turn out
to be incorrect, privacy is lost. In this work, we focus on the worst-case assumption: full collu-
sion or, equivalently, viewing the storage system virtually as a single honest-but-curious server.
We present CB-cPIR, a single-server code-based computational private information retrieval
(cPIR) scheme that derives security from code-based cryptography. Specifically, the queries are
protected by the hardness of decoding a random linear code. The scheme is heavily inspired
by the pioneering code-based cPIR scheme proposed by Holzbaur, Hollanti, and Wachter-Zeh
in [Holzbaur et al., “Computational Code-Based Single-Server Private Information Retrieval”,
2020 IEEE ISIT] and fixes the vulnerabilities of the original scheme arising from highly probable
rank differences in submatrices of the user’s query. For further validation, we draw comparisons
to the state-of-the-art lattice-based cPIR schemes.

1 Introduction

Private information retrieval (PIR) was first introduced by Chor et al. in [8, 9] with the aim of
enabling users to access data from a database or, more generally, from a distributed storage system
while concealing the identity of the requested information from potentially untrusted servers. A
trivial way to guarantee information-theoretically secure PIR is to download the entire database.
Modern data storage systems may often contain a large number of big (e.g., multimedia) files
and the trivial solution is infeasible in practice. More practical solutions that attempt to incur
minimal communication overhead and related capacity results for information-theoretically secure
PIR schemes are presented in [4,11,18,31–34]. To enable information-theoretic privacy these works
assume that the distributed storage system consists of sufficiently large subsets of non-colluding
servers. In practice, it may be difficult to decide for an appropriate level of collusion protection, and
the more one protects, the more penalty there is in terms of the achievable PIR rates. Moreover,
if too many servers collude, user privacy might be lost. For this reason, considering a single server
or, equivalently, full collusion becomes interesting. In this case, information-theoretic privacy can
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2021, HORIZON-MSCA-2021-DN-01 (ENCODE, grant #101072316). This work was done in part while the second
author was visiting the Simons Institute for the Theory of Computing at the University of California, Berkeley.
A preliminary version of this article was published in the Proceedings of the 2024 IEEE International Symposium on
Information Theory (ISIT) [35].
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only be achieved by downloading all the files. As a more practical alternative, computationally
secure schemes have been examined in several works. Certain schemes, e.g., [14, 21, 22], make
use of computationally hard problems in the realm of classical computers, such as the quadratic
residuosity problem. Such schemes will be rendered insecure when quantum computing matures,
since the underlying hard problems can be efficiently solved using quantum algorithms.

1.1 Related work and contributions

In the realm of post-quantum security, both lattice-based [28] and code-based cryptography [36]
have emerged as promising avenues.

Lattice-based PIR: In [2], an efficient lattice-based computational PIR scheme was proposed.
Although this approach initially appeared robust, a practical vulnerability was revealed in [24],
specifically targeting databases with a limited number of elements. However, such a limitation may
not pose a significant threat, given the prevalent use of databases with a large number of elements.

The introduction of the first fully homomorphic encryption (FHE) scheme in [12] marked a
breakthrough in post-quantum cryptography and cryptography in general. Subsequently, FHE was
leveraged to construct a general PIR scheme in [37]. Several other PIR schemes based on FHE
are presented in [13, 20, 23]. Schemes based on FHE offer computationally secure PIR, but may
often come at the cost of a high computational complexity. In this work, we compare the proposed
CB-cPIR scheme to two state-of-the-art lattice-based PIR schemes — XPIR and SimplePIR — that
address the challenge of high computational complexity.

The XPIR [1] scheme is based on the ring learning with errors problem (RLWE) [25] that com-
bats the problem of high computational costs by utilizing an encryption scheme, which is just an
additively-homomorphic building block of the FHE scheme in [7]. Moreover, polynomial multipli-
cations are optimized using typical number-theoretic tools.

SimplePIR [17] in contrast to XPIR is based on the standard learning with errors (LWE) prob-
lem. The simplicity of LWE-based encryption allows reductions in computational costs by avoiding
the need for polynomial multiplications. Using the weaker assumption of plain LWE comes with
the drawback of high communication cost, which is mitigated by server-side preprocessing and
distribution of a hint, which is reusable over multiple queries.

Code-based PIR: In code-based cryptography, the goal is to use a structured code, e.g. the
McEliece scheme [26] with a binary Goppa code, which is difficult to distinguish from a random
linear code. The security of the scheme is based on the hardness of decoding a random linear code,
which is known to be NP-hard [5].

The construction proposed in [19] introduced the first code-based PIR scheme, referred
to as the HHW scheme throughout this paper. In the HHW scheme, the server is queried using
a matrix comprising intentionally corrupted codewords selected from a random linear code. The
confidentiality of the desired file index is maintained through specifically crafted errors embedded in
the query matrix. Upon receiving the server’s response, decoding exposes the errors, and projection
onto a relevant vector subspace unveils the desired file. As the locations of these errors were initially
picked by the user, they simply need to do erasure decoding, making the scheme feasible. This also
provides the luxury that there is no need for the query code to be a structured code. Hence, the
scheme can genuinely rely on a random code providing the afore-mentioned security guarantees due
to the hardness of the decoding problem.

Notably, the HHW scheme, with carefully chosen parameters, achieves PIR rates comparable
to the computational PIR schemes presented in [2, 37]. For the proposed parameters in [2, Section
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III.4] the computational complexity is seen to be the complexity of matrix multiplications over
the field F260+325. For the HHW scheme with parameters achieving similar retrieval rates , the
computational complexity is approximately equal to the multiplication of matrices of similar size
over a significantly smaller field F229 . Another attractive feature of the HHW scheme lies in its
ability to perform calculations over binary extension fields. Despite its merits, the security of the
HHW scheme was questioned in [6]. The identified vulnerability enables an attacker to discern
the secret by observing rank differences in submatrices of the query; we will refer to this attack as
subquery attack.

In [3] the authors develop a code-based framework, which formalizes several single-server PIR
schemes. In this framework it is seen that any PIR scheme similar to the HHW scheme is susceptible
to the subquery attack. The authors in [10] circumvent this attack by using non-free codes over
rings. These non-free codes are constructed by applying the Chinese Remainder Theorem to codes
that are so-called non-Hensel lifts [10, Section IV, Corollary 7]. This ring-based PIR protocol can
achieve retrieval rates no more than 1/2n, where n determines the security level of the protocol. The
scheme presented in this paper has no such limitation and can therefore outperform the ring-based
scheme in terms of communication costs.

Main contributions: The proposed CB-cPIR scheme resurrects the HHW scheme by providing
a remedy against the subquery attack and consequently to any similarly constructed scheme that is
susceptible to this form of an attack. Furthermore, CB-cPIR preserves all the merits of the HHW
scheme while now also ensuring privacy. Preliminary results were presented at ISIT 2024 [35]. Here,
the following extensions are provided:

• A more comprehensive background on both code-based cryptography and single-server PIR is
given.

• A new attack is identified in Sec. 3.4, and consequently worked around by a suitable choice
of parameters.

• A more rigorous complexity analysis is provided.

• The scheme is extended in Sec. 3.6 to work over a reshaped database (viewed as a t-dimensional
hypercube) in order to provide good rates when the files are small (with respect to the number
of them) and the upload cost cannot be neglected.

• Thorough comparisons to the closest rival schemes (XPIR, SimplePIR) are carried out in Sec.
4, showing that our scheme compares favorably.

Notation: Throughout this paper q is a prime power, and we denote a finite field of size q by Fq

and its multiplicative group by F
×
q = Fq \{0}. The extension field Fqs can be seen as a vector space

of dimension s over Fq. For a set of linearly independent vectors Γ = {γ1, . . . , γv} ⊂ Fqs we denote
by 〈γ1, . . . , γv〉Fq ⊂ Fqs the vector subspace of dimension v over Fq. The corresponding projection
map is denoted by ψΓ : Fqs → 〈γ1, . . . , γv〉Fq .

For a vector x ∈ F
t
q and an ordered set J ⊂ [m] = {1, . . . ,m} of size t we define φJ : Ftq → F

m
q

to be the extension of x with zeroes at indices j 6∈ J . E.g., for J = {1, 3} and m = 5, φJ([x1, x2]) =
[x1, 0, x2, 0, 0]. For a set I ⊆ [n] we denote the complement of this set by Ī = [n] \ I.

We parametrize a linear code over Fq by its length n, dimension k, and minimum Hamming
distance d. A linear [n, k, d]q code is capable of correcting d − 1 erasures or t ≤ ⌊d−12 ⌋ errors. We
may omit q from the notation when clear from context or not directly important. The Hamming
weight of a vector y is defined as the number of nonzero coordinates and denoted by wt(y).
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q size of the base field Fq

s degree of the extension field Fqs over the base field

n length of the code

k dimension of the code

v dimension of the subspace V of Fqs seen as an Fq-linear vector space

w = s− v dimension of the subspace W of Fqs seen as an Fq-linear vector space

δ ≤ (n− k)(s− v) number of columns in a file matrix (level of subpacketization)

m number of files stored on the database

L number of rows in a file matrix

Table 1: Important parameters used in CB-cPIR.

The rest of the paper is organized as follows. In the remaining part of this introductory section,
we will give a brief overview of code-based cryptography by introducing the error-decoding problem
for a random linear code and the classic McEliece cryptosystem built on the known hardness of
this problem. The basic model for computational PIR is also introduced. In Sec. 2, we lay out
the original HHW scheme and recall the observed weaknesses. Sec. 3 then introduces the CB-cPIR
scheme and demonstrates how it circumvents the identified attacks. Some modified and new attacks
are exposed as well, which can also be avoided with appropriate parameter changes. In Sec. 4 we
compare the new scheme to some state-of-the-art baseline works, and Sec. 5 concludes the paper.

1.2 Hardness of decoding a random linear code

The security of the CB-cPIR scheme inherently relies on the assumption that decoding a random
linear code is hard [5].

Let G be an arbitrary, publicly accessible generator matrix for a random linear [n, k, d] code
C ⊂ F

n
q . Then, given a secret message x ∈ F

k
q and a secret error vector e ∈ F

n
q of Hamming

weight wt(e) = t ≤ ⌊d−12 ⌋, both chosen uniformly at random from their respective sample space,
the decoding assumption asserts that for any random vector r ∈ F

n
q we have

y = xG+ e
c≈ r,

where
c≈ denotes computational indistinguishability. This assumption is utilized in a public-key

cryptosystem presented by R. J. McEliece [26], along with the assumption that a certain structured
code is indistinguishable from a random linear code. In our PIR scheme we utilize a genuinely
random linear code and the latter assumption will be redundant.

Remark 1. We often omit the minimum distance d when describing a random [n, k, d] linear code
and simply refer to it as an [n, k] linear code. For sufficiently large q, a random linear code is MDS
with high probability, making the minimum distance d implicit.

McEliece Cryptosystem: The cryptosystem published by McEliece is based on Goppa codes
[15], which are well-known structured algebraic geometry codes. For binary Goppa codes, there is
a fast decoding algorithm given by Patterson [27].

For the key generation, we construct a generator matrix G for an [n, k, d] Goppa code C, which
can correct t ≤ ⌊d−12 ⌋ errors. Then, we sample a random scrambling matrix S and a permutation
matrix P , and publish the public generator matrix G′ = SGP generating a (seemingly random)
linear code with the same parameters as the code C. A user can then encrypt and transmit a
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message x ∈ F
k
q as y = xG′ + e, where e ∈ F

n
q is an error vector randomly generated by the user

with Hamming weight wt(e) = t.
On receiving the transmission from the user, we compute y′ = yP−1 = xSG + eP−1. Noticing

that xSG ∈ C and wt(xP−1) = t, we can then efficiently decode y′ using Patterson’s algorithm
to obtain x′ = xS and invert to obtain the decrypted message x = x′S−1. Guessing the generator
matrix G from the public generator matrix G′ is infeasible due to the astronomical number of choices
for the scrambling matrix S and permutation matrix P . However, if the Goppa polynomial and
evaluation points are known or determined, then P can be determined in polynomial time by the
support splitting algorithm (SSA) [30].

In the context of the CB-cPIR scheme, this is irrelevant since the code can actually be randomly
chosen (as the user only needs to perform erasure decoding). This is in contrast to the structured
Goppa code disguised by the scrambling and permutation matrices. The best known approach
for an attack involves correctly guessing an information set of the given code. This probabilistic
decoding method is described in its most naïve form by Prange’s algorithm [29]. The runtime for
this algorithm is exponential given error vectors with a suitably chosen weight, which will be the
basis of our security assumptions. We give concrete values of the parameters used in Section 3.5.

1.3 Computational private information retrieval

Private information retrieval is the process of downloading a file from a database without revealing
to the database the identity of the desired file.

Database: In the computational setting the considered database is a single server consisting of m
files, which we will represent by a matrix X ∈ F

L×mδ
q . Each file in this database is represented by a

submatrix Xj ∈ F
L×δ
q , where the parameter L describes the size of the file and δ ≤ (n − k)(s − v)

can be considered as the level of subpacketization required by the scheme.

X = X1 X2 X3 · · · Xm L

δ

Figure 1: Illustration of the file matrix X.

Definition 1. Consider a database X ∈ F
L×mδ
q of m files that are stored on a single server as

described above. A computational PIR scheme for such a storage system consists of the following:

• Queries (X,S,P, i) 7→ Qi: For a given index i ∈ [m] generate a query Qi from a set of secret
information S and a set of public information P.

• Response (X,Qi) 7→ Ai: Given a query Qi, the server computes an answer given by Ai = X ·Qi
and transmits it to the user.

• Data reconstruction (Ai,S,P) 7→ Xi: A function which takes as an argument the server
answer Ai and returns the desired file Xi.

Correctness: A PIR scheme is said to be correct if the user can successfully recover the desired file
from the server response.

Security: The database should not be able to deduce any information about the desired file index
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from the user’s query chosen from the set of all possible queries Q. A PIR scheme is said to be
(T, ǫ)-secure if for any computationally constrained adversarial algorithm A : (X,Q)→ [m] running
in time at most T , and for any i, j ∈ [m] we have

|P[A(X,Qi) = i]− P[A(X,Qj) = i]| ≤ ǫ.

That is, any adversary running in time T can distinguish between any two queries Qi and Qj with
advantage at most ǫ.

The rate of a PIR scheme measures its efficiency as the ratio between the size (denoted by | · |)
of the desired file and the total cost of communication. For the protocol to be nontrivial the rate
must be greater than 1/m. That is, it must be more efficient than trivially downloading the entire
database.

Definition 2. The total communication complexity is defined as

Ctotal = upload cost + download cost = |Qi|+ |Ai|.

Definition 3. The rate of a PIR scheme is defined as

RPIR =
size of desired file

Ctotal
=

|Xi|
|Qi|+ |Ai| .

2 Outline of the original HHW PIR scheme

In this section we describe the first code-based computational PIR scheme [19], which we will
henceforth refer to as the HHW scheme. The HHW scheme made use of the assumption that
decoding a random linear code is hard, to query a database consisting of a single server. The
queries are cleverly constructed with a backdrop of codewords from a random linear code and
specifically crafted errors, which will allow the user to efficiently decode the servers response and
correctly reconstruct the file they desire.

The HHW scheme was shown to be vulnerable to a distinguishability attack [6] due to discernible
rank differences in submatrices of the query. In Section 3.4 we circumvent this subquery attack and
fix the HHW PIR scheme. We first we outline the HHW scheme, which will be the basis of the rest
of the paper.

2.1 System model

We are concerned with a single-server data storage containing m files of size L× δ over Fq, where
δ ≤ (n − k)(s − v) and the parameters n, k, s, v are as specified below. The data content on this
server is denoted by X ∈ F

L×mδ
q as specified in Section 1.3.

Queries: To construct the queries, the user samples a set of public information P and a set of
secret information S as follows:

The public information P = {GC} consists of a generator matrix GC of a random linear code
C ⊂ F

n
qs of dimension k sampled uniformly at random from the set of all possible [n, k]qs linear

codes.
Having selected the code C the user samples uniformly at random the following secret information

S = {I,D,Γ, V,W,E,∆}:
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• An information set I of C with |I| = k.

• A matrix D ∈ F
mδ×n
qs such that each row of D is a codeword in C.

• A basis Γ = {γ1, . . . , γs} of Fqs over Fq, and the vector subspaces V = 〈γ1, . . . , γv〉Fq and
W = 〈γv+1, . . . , γs〉Fq .

• A matrix E0 ∈ V mδ×(n−k).

• A full rank matrix ∆0 ∈W δ×(n−k).

We then expand the matrices E0 and ∆0 such that their column support lies off of the chosen
information set I. That is we expand to the matrices E and ∆ given by E = φĪ(E0) ∈ V mδ×n, and
the full-rank matrix ∆ = φĪ(∆0) ∈W δ×n.

Finally, for any desired file index i ∈ [m] the user constructs the query (X,S,P, i) 7→ Qi as

Qi = D + E + emi ⊗∆.

Where emi ∈ F
m
qs is the ith standard basis vector and ⊗ is the matrix Kronecker product. An

illustration of the query matrix is given in Fig. 2.

Qi = D +

n

+E

m
δ

∆

emi ⊗∆

Figure 2: Illustration of the query matrix Qi.

Retrieval: Decompose Qi as the stack of of submatrices Qi1, . . . Q
i
m ∈ F

δ×n
qs . The server upon

receiving the query responds with

Ai = X ·Qi =
[

X1 · · · Xm
]







Qi1
...
Qim






=

m
∑

j=1

Xj ·Qij

=

m
∑

j=1

Xj ·Dj +

m
∑

j=1

Xj ·Ej +Xi ·∆.

The rows of the matrix
∑n

j=1X
j ·Dj lie in C and the rows of

∑n
j=1X

j ·Ej +Xi ·∆ have support

Ī . Therefore by erasure decoding we can obtain Bi =
∑n

j=1X
j ·Ej +Xi ·∆. We can then project

onto the space W and get ψW (Bi) = Xi ·∆. Since ∆ has full rank we can recover the desired file
Xi.
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2.2 Rate of the scheme

Let us next recall the rate achievable by the HHW scheme.
The size of the desired file in bits is |Xi| = δL log(q). The size of the query uploaded by the

user is |Qi| = mδn log(qs). The size of the answer provided by the server, i.e., the download cost
for the user is |Ai| = Ln log(qs). This with definition 3 gives us the rate of the HHW scheme.

Theorem 1. [19, Thm 1] The rate of the HHW scheme is

RPIR =
Lδ log(q)

(mδn + Ln) log(qs)
=

Lδ

ns(mδ + L)
.

Corollary 1. [19, Cor. 1] Assume L >> δm, i.e., the size of the files is large compared to the
number of them and we can safely ignore the upload cost. Then the rate of the scheme is

RPIR ≈
δ

ns
≤ 1− k + v

s (n− k)
n

.

2.3 Security

Information set decoding: One obvious way to attack the HHW scheme is by information set-
decoding the query. Let G be the public generator matrix for the code [n, k]qs linear code C. Then
the information set decoding attack involves guessing the secret information set I and inverting
the full rank matrix GI , which is G restricted to the columns indexed by I. After guessing an
information set the attacker can perform the operation QiI · G−1I · G to obtain the secret matrix
D. The number of guesses required for the attacker to succeed is

(

n
k

)

which -including the cost of
matrix inversion- ultimately gives us the work factor

Wf = k3
(

n

k

)

.

Remark 2. After decoding the query matrix the attacker must additionally distinguish between
errors from the different subspaces V and W . This can be done in polynomial time.

In [19] the authors suggest the parameters n = 100, k = 50 for which the work factor is Wf =
503
(

100
50

)

≈ 2113. These parameters therefore offer 113 bit security in the context of the information
set decoding attack.

However, there might be other forms of attacks, some of which were identified and shown to
have infeasible complexities in [19].

Subquery attack: Despite being resistant to several forms of attack the HHW scheme was shown
to be insecure to a specific form of distinguishability attack due to discernible rank differences in
submatrices of the query.

We describe this subquery attack found in [6]. Consider the submatrices Qi[j] of the received
query where the rows [(j − 1)δ + 1, jδ] of Qi are deleted, j ∈ [m]. It was shown in [6] that we can
decompose

F
n
qs = C ⊕ φĪ(V

n−k) ⊕ φĪ(W
n−k).

Due to this fact the Fq-rank of a submatrix

rk(Qi[j]) = rk(D[j] + E[j]) + rk(ei[j] ⊗∆).

8



For j 6= i, rk(Qi[j]) = rk(D[j] + E[j]) + δ, and rk(Qi[i]) = rk(D[i] + E[i]) ≤ ns− δ.
The attack involves computing the Fq-rank of all m submatrices Qi[j] and discerning the desired

file index due to the low rank of Qi[i]. Discerning the desired file index is only possible if rk(Qi[i]) <
rk(Qi[j]) for all j 6= i, that is, the attack fails if rk(D[j] +E[j]) < ns− 2δ. In [6] the authors prove
that the probability

p := P(rk(D[j] + E[j]) < ns− 2δ)

≤
(

ns− δ
ns− 2δ

)

q

q−δ
2(m−1) ≤ q(δ+1)(ns−2δ)−δ2(m−1).

As long as (δ + 1)(ns − 2δ) < δ2(m − 1) this probability is meaningful. In other words, when

m > 1 + (δ+1)(ns−2δ)
δ2

the attack can discern the desired file index with high probability, thereby
breaking the scheme for an unbounded number of files.

Theorem 2. [6, Thm 3.4] For a given database X containing m > 1 + (δ+1)(ns−2δ)
δ2

files, there
exists an algorithm A : (X,Q)→ [m] running in time O(m2(ns)3) which can recover the desired file
index i from a query Qi constructed as per the HHW PIR scheme with probability at least

1− q(δ+1)(ns−2δ)−δ2(m−1),

where the probability is taken over the randomness of the query generation.

Corollary 2. The HHW scheme is not (T, ǫ)-secure against an adversary running in time T ≥
O(m2(ns)3).

3 The CB-cPIR scheme

Let us now introduce the CB-cPIR scheme, which is a modification of the original HHW scheme. In
the original scheme [19] the secret in the query came from the standard unit vector emi . The attack
in [6] with high probability can reveal this secret due to the fact that the standard unit vector has
low weight.

In the CB-cPIR scheme a query consists of a concatenation of two independent queries con-
structed as prescribed by the HHW scheme, with the key difference now being that the secrets
will be of high weight. This prevents the submatrices of the query from having discernible rank
differences and allows us to circumvent the subquery attack.

The database setup for this scheme remains exactly the same as in the HHW scheme. The
CB-cPIR protocol is described algorithmically in Fig. 4.

3.1 System model

Queries: The user will construct two independent queries as prescribed by the HHW scheme.
As in the HHW scheme for each individual query Qj , where j ∈ {1, 2}, the user samples in-

dependently and uniformly at random a set of public information and a set of secret information.
That is, for each query we have a set of public information Pj = {GCj

} and secret information
Sj = {Ij,Dj ,Γj, Vj ,Wj , Ej ,∆j}. The complete set of public information is then P = P1 ∪P2. And
the complete set of secret information is S = S1 ∪ S2 ∪ {β}. Where β ∈ F

×
q
m

is a vector of full
weight sampled uniformly at random by the user.

9



For any desired file index i ∈ [m], the user then constructs the queries

Q1 = D1 + E1 + v1 ⊗∆1 and Q2 = D2 + E2 + v2 ⊗∆2,

where v1 = β and v2 = β + emi .
Finally the user concatenates these two queries and sends to the server the final query

Qi = [Q1|Q2].

An illustration of the first query is given in Fig. 3.

Q1 = D +

n

+E

m
δ

βm−3∆

β ⊗∆

βm−2∆
βm−1∆
βm∆

β1∆
β2∆
β3∆
β4∆

Figure 3: Illustration of the query matrix Q1.

Retrieval: The server upon receiving the query responds with

Ai = X ·Qi = X · [Q1|Q2] = [X ·Q1|X ·Q2] = [A1|A2].

For each j ∈ {1, 2} we decompose Qj as the stack of the submatrices Q1
j , . . . , Q

m
j ∈ F

δ×n
qs . We then

have

Aj = X ·Qj

=
[

X1 · · · Xm
]







Q1
j
...
Qmj







=
m
∑

k=1

Xk ·Qkj

=

m
∑

k=1

Xk ·Dk
j +

m
∑

k=1

Xk · Ekj +X · (vj ⊗∆j).

The rows of the matrix
∑n

k=1X
k ·Dk

j lie in Cj and the rows of
∑n

k=1X
k ·Ekj +X · (vj ⊗∆j) have

support Ī . Therefore by erasure decoding we can obtain

Bj =

m
∑

k=1

Xk · Ekj +X · (vj ⊗∆j).

We can then project onto the space W and get ψW (Bj) = X · (vj ⊗∆j). Since by construction
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∆j has full rank we can recover Rj = X · (Iδ×δ ⊗ vj). Finally the user can retrieve their desired file

R = R2 −R1

= X · (Iδ×δ ⊗ (v2 − v1))
= X · (Iδ×δ ⊗ emi )
= Xi.

Construct cB-cPIR: the parameters used are n, k, s, v which decide the security of the protocol.
The database consists of m file matrices in F

L×δ
q represented as a matrix X ∈ F

L×mδ
q , where

δ := (n− k)(s − v) is the required level of subpacketization.

SecretivelySample(n, k, s, v)→ S.

• Sample C
$←− Grk(Fn

qs ). ⊲ [n, k]qs random linear code

• Sample D
$←− Cmδ×1. ⊲ matrix of random codewords

• Sample I
$←−

([n]
k

)

. ⊲ random information set

• Sample Γ = {γ1, . . . , γs} $←− BFq (Fqs ). ⊲ random basis of Fqs over Fq

Split Γ and generate subspaces V,W = 〈γ1, . . . , γv〉Fq , 〈γv+1, . . . , γs〉Fq .

• Sample E0
$←− Vmδ×k . ⊲ masking error matrix

Generate E ← φĪ(E0) ∈ Vmδ×n.

• Sample ∆0
$←− {M ∈W δ×k | rkFq (M) = min(δ, k)}. ⊲ desired error matrix

Generate ∆← φĪ(∆0) ∈ W δ×n.

• Return S = {C, I,D,Γ, V,W,E,∆}.
Query(i ∈ [m])→ Q.

• S1 ← SecretivelySample(n, k, s, v)

S2 ← SecretivelySample(n, k, s, v)

• Sample β
$←− F

m
q .

• Generate Q1 ← (D1 + E1 + β ⊗∆1) ∈ F
mδ×n
qs .

Generate Q2 ← (D2 + E2 + (β + emi )⊗∆2) ∈ F
mδ×n
qs .

• Concatenate Q = [Q1|Q2] ∈ F
mδ×2n
qs .

• Return Q.

Answer(Q ∈ F
mδ×n
qs ,X ∈ F

L×mδ
q )→ A.

• Return A = [A1|A2]← X ·Q ∈ F
L×2n
qs .

Recover(A ∈ F
L×n
qs ,S1,S2, i)→ R

• Err1 ← erasureDecodeC1,I1 (A1).

• Err2 ← erasureDecodeC2,I2 (A2).

• R1 ← ∆−1
1 · ψW1

(Err1).

• R2 ← ∆−1
2 · ψW2

(Err2).

• Return R← R2 − R1 ∈ F
L×δ
q .

3.2 Rate of the CB-cPIR scheme

Let us now look into the CB-cPIR scheme in more detail. The size (in bits) of each file in the
database is Lδ log2(q). The size of each query Qi is 2mδn log2(q

s) with response size 2Ln log2(q
s).

11



Theorem 3. The PIR rate of the scheme is

RPIR =
Lδ

2(mδ + L)ns
.

Corollary 3. Assume L >> mδ, i.e., the size of the files is large compared to the number of them
and we can safely ignore the upload cost. Then the rate of the scheme is,

RPIR ≈
δ

2ns
=

1

2

(

1− k + v
s (n− k)
n

)

.

Corollary 4. The decoded response R1 from the query Q1 if stored can be reused for subsequent
private file retrievals. The amortized rate for f private file retrievals will then be

RPIR =
fδ

(f + 1)ns
,

which for an increasing number of files f approaches

lim
f→∞

RPIR =
δ

ns

matching the rate of the HHW scheme as given in Corollary 1.

3.3 Server and user complexity

In this section, we concretely determine the total computational costs incurred by the server and
the user in the private retrieval of a single file from the database.

Server complexity: The server on receiving a query Qi ∈ F
mδ×2n
qs responds with Ai = X · Qi.

The concrete cost of naively multiplying these matrices is 2Lmδns multiplications in Fq.

User complexity: The user complexity for the PIR protocol is divided into two parts, the com-
plexity of generating the query and the complexity of decoding the server response.

• Query generation: The complexity of query generation is dominated by the following steps in
the protocol:

– Generating the random codeword matrix D: This requires mδkns multiplications over
Fq.

– Generating the V noise matrix E: This requires mδkvs multiplications over Fq.

– Generating the W noise matrix ∆: This requires δkws multiplications over Fq.

– Kronecker product: This requires min(m, q)δksmultiplications over Fq. The term min(m, q)
arises from the fact that when q > m there is a pigeon-holing of scalar multiplications in
the Kronecker product.

The above computational costs are incurred twice, once for each part of the query matrix.
The total complexity for query generation is then:

CQgen = 2δks(mn +mv + w +min(m, q)).

12



• Decoding response: The decoding of the response is dominated by the following steps in the
protocol:

– Erasure decoding the response: This involves Lkns multiplications over Fq.

– Projection onto the subspace W : This involves viewing each Fqs element as a vector
representation in terms of our chosen secret basis Γ. This requires Lks2 +Lkw multipli-
cations over Fq.

– Inverting the matrix ∆: This involves Lkδs multiplications over Fq.

The above computational costs are incurred twice, once for each part of the response matrix.
The total complexity to decode the response is then:

CAdec = 2Lk(ns+ s2 + w + δs).

Example 1. Suppose we want to privately retrieve a single file with index i from the server with
elements in F3. We uniformly at random sample a full weight vector β ∈ (F×3 )

m, suppose we sample
β = [1, 1, · · · , 1, 1]. We then have v1 = β and v2 = β + emi = [1, · · · , 1, 2, 1, · · · , 1]. We then sample
the required public and secret information P and S and generate and send the queries

Q1 = D1 + E1 + v1 ⊗∆1, Q2 = D2 + E2 + v2 ⊗∆2.

The server responds with Ai = [A1|A2] = [X · Q1|X · Q2]. Individually decoding the response, the
user is able to retrieve

R1 =
m
∑

k=1

Xk and R2 =
m
∑

k=1

Xk +Xi

and therefore ultimately Xi = R2 −R1, the desired file.
The achieved rate as approximated in Corollary 3 is

R ≈ δ

2ns
.

3.4 Security

Information set decoding: As in the HHW scheme, information set decoding provides an obvi-
ous way to attack this scheme. The work factor Wf = k3

(n
k

)

grows super-polynomially in the input
parameters n, k of the chosen random linear code. Therefore, for a suitable parameter choice, the
scheme is ǫ-secure against a polynomially bounded adversary.

CB-cPIR scheme vs. subquery attack: Let us now see in more detail how this scheme
circumvents the subquery attack in [6].

For the original queries in the HHW scheme [19],

Qi = D + E + ei ⊗∆,

it was shown in [6] that for a desired file Xi, the submatrices of the query have Fq-rank

rk(Qi[j]) = rk(D[j] + E[j]) + δ

for j 6= i and
rk(Qi[i]) = rk(D[i] + E[i]) ≤ ns− δ.

13



These submatrices with high probability have a discernible rank difference, allowing the server to
reveal the desired file index.

Consider the case of the CB-cPIR scheme with queries

Qj = Dj + Ej + vj ⊗∆j.

The submatrices of the query have Fq-rank

rk(Qj[k]) = rk(Dj [k] + Ej [k]) + δ

for all k ∈ [m]. Therefore, the server cannot ascertain the desired file index by computing the
submatrix ranks.

Remark 3. Since the public and secret information are chosen independently and randomly for
each query, the server cannot reconstitute the queries as Q1 +Q2 to give a HHW query in order to
then successfully perform the submatrix rank attack.

CB-cPIR scheme vs. modified subquery attack: A natural way to extend the attack in [6]
to the CB-cPIR scheme could be to compute the Fq-ranks of submatrices Qj [J ], where J ⊂ [m] and
|J | = wt(vj). For all such J we have

rk(Qj [J ]) ≤ (m− wt(vj))δ.

Let I = supp(vj). Then
rk(Qj [I]) = rk(Dj [I] + Ej [I]) ≤ ns− δ.

Otherwise, for J 6= supp(vj),

rk(Qj [J ]) = rk(Dj [J ] + Ej [J ]) + δ ≤ ns.

The support of vj is only discernible by the attacker if rk(Dj [J ] + Ej [J ]) does not shrink too
much with respect to that of I . If we construct vj such that (m−wt(vj))δ < ns− δ then rk(Qj [I])
and rk(Qj [J ]) are indistinguishable. That is, we want vj such that

wt(vj) ≥ m+ 1− 1

2RPIR
.

Remark 4. We can always sample β in a way such that vj satisfies the above inequality. Effectively,
we can sample β such that wt(vj) = m.

Proposition 1. Suppose Q = D + E + v ⊗ ∆ is a part of a CB-cPIR query constructed using a
vector v ∈ F

m
q , where wt(v) < m+1− 1

2RPIR
. Then, for a set J ⊆ [m] \ supp(v) and |J | = wt(v) we

have,

P(rk(Q[J ]) ≤ ns− δ) = P(rk(D[J ] + E[J ]) ≤ ns− 2δ) ≤
(

ns− δ
ns− 2δ

)

q

q−δ
2(m−wt(v)).

Proof. Notice that the rows ofD+E are vectors chosen uniformly at random from U = C ⊕ φĪ(V n−k).
Keeping notation consistent with [6], we represent the set of rows of D[J ] + E[J ] (seen as vectors
of length ns over Fq) by Rows(D[J ] + E[J ]).

The probability we want to compute is hence

14



p := P(∃A ⊂ U ,dim(A) = ns− 2δ | ∀y ∈ Rows(D[J ] + E[J ]), y ∈ A).
By the union bound, we have

p ≤
∑

A∈GrU (ns−2δ)
P(∀y ∈ Rows(D[J ] + E[J ]), y ∈ A)

≤
∑

A∈GrU (ns−2δ)

(m−wt(v))δ
∏

t=1

P(y ∈ A|y ← U)

≤
(

ns− δ
ns− 2δ

)

q

q−δ
2(m−wt(v)),

where GrU (ns− 2δ) denotes the set of (ns− 2δ)-dimensional subspaces included in U .

A rough upper bound for the Gaussian binomial coefficient
(

ns−δ
ns−2δ

)

q
is q(δ+1)(ns−2δ), giving us

p < q(δ+1)(ns−2δ)−δ2(m−wt(v)).

This upper bound is meaningful when (δ+1)(ns−2δ) ≤ δ2(m−wt(v)). That is, an attacker can
distinguish between Q[supp(v)] and Q[J ], where J 6= supp(v), |J | = wt(v), with high probability
when

m− wt(v) ≥
(

δ + 1

δ

)(

1

2RPIR
− 2

)

.

Lemma 1. Let Q = D + E + β ⊗ ∆ be a part of a CB-cPIR query constructed using a vector
β ∈ (F×q )

m. Then there exists an algorithm running in O((q − 1)h) operations over Fq, where

h ≥
(

δ+1
δ

)

(

1
2RPIR

− 2
)

, which can determine the vector β with probability

p > (1− q(δ+1)(ns−2δ)−δ2h)⌈
m
h
⌉

Proof. Let P be a collection of subsets of cardinality h that cover [m], |P| = ⌈mh ⌉. The algorithm
consists of the following: For each subset H = {H1, . . . ,Hh} ∈ P return a vector (if unique)
b̂ = φH(b) ∈ F

m
q where b = (b1, . . . , bh) ∈ (F×q )

h such that

rk(Q− b̂⊗ b−11 Q[[m] \ {H1}]) ≤ ns− δ.

Notice that the matrix Q = Q− b̂⊗ b−11 Q[[m] \ {H1}] is of the form

Q = D′ + E′ + (β − b̂)⊗∆,

where the rows of D′ + E′ are vectors from U = C ⊕ φĪ(V
n−k). Indeed, we have rk(Q) ≤ ns− δ

if supp(β − b̂) = [m] \H.
Otherwise, for supp(β − b̂) 6= [m] \H: by proposition 1. we have rk(Q) ≤ ns− δ with negligible

probability
p < q(δ+1)(ns−2δ)−δ2h.

Therefore, for any H ∈ P the algorithm can determine the h coordinates of β indexed by H with
probability p > 1− q(δ+1)(ns−2δ)−δ2h.
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Jointly for all H ∈ P, the algorithm can determine β with probability

p > (1− q(δ+1)(ns−2δ)−δ2h)⌈
m
h
⌉.

The algorithm involves computing the Fq-rank of ⌈mh ⌉(q − 1)h matrices generated by the choice

of b̂ ∈ F
m
q with support H for each H ∈ P, which amounts to (q − 1)h⌈mh ⌉hm(ns)3 operations over

Fq, the algorithm therefore runs in O((q − 1)h) operations over Fq.

Theorem 4. Let Qi = [Q1 | Q2] be a CB-cPIR query. Then there exists an algorithm running in
O((q − 1)h) operations over Fq which can discern the desired file index i when given as input Qi
with probability

p > (1− q(δ+1)(ns−2δ)−δ2(m−1))(1 − q(δ+1)(ns−2δ)−δ2h)⌈
m
h
⌉.

Proof. The algorithm first determines the vector β ∈ (F×q )
m from Q1 by use of the algorithm in

lemma 1. It can then compute Q = Q2 − β ⊗ β−11 Q2[[m] \ {1}]. The matrix Q is of the form
Q = D′2 + E′2 + (emi )⊗∆2. The original subquery attack [6] can then be performed on this matrix

in O(m2(ns)3) operations in Fq with success probability p > (1 − q(δ+1)(ns−2δ)−δ2(m−1)). The
probability that the algorithm is successful in determining i is the joint probability of success of the
two algorithms employed. The number of operations is dominated by the former algorithm.

Corollary 5. A CB-cPIR query is (T, ǫ)-secure against an adversary running in time T < O((q −
1)h).

Remark 5. Notice that the running time of the above attack is exponential in h, which satisfies the

inequality h ≥
(

δ+1
δ

)

(

1
2RPIR

− 2
)

. To achieve adequate security we can always increase the lower

bound on h at the cost of a reducing the PIR rate of the scheme.

3.5 Parameter choices

We instantiate CB-cPIR with carefully chosen parameters that maximize the PIR rate while ensuring
adequate security against adversaries employing a variety of attacks.

To counteract the attack described in Section 3.4, parameters n, k, s, and v must be chosen to
ensure a sufficiently large lower bound on h, enhancing security. However, increasing this lower
bound leads to a reduction in the PIR rate of the scheme. Alternatively, to achieve a higher rate,
the field size q can be enlarged, increasing the number of possible values for β.

Our choice of the dimension s of the extension field must be sufficiently large to prevent an
attacker from successfully guessing the subspace V or any subspace containing V . From [19, Lem. 1],

we see that the number of guesses required to guess such a subspace is
( s
s−1
)

q
·
( s−v
s−v−1

)−1
q

.

The parameters [n, k] of the random code are chosen to ensure security against an attacker
performing an information set decoding attack.

Increasing the code length n, the field size q or the dimension s of the extension field introduces
higher computational complexity. This is due to the increased cost of arithmetic operations over
the extension field, which the server must perform to generate responses. While larger fields can
enhance security and PIR rate, this trade-off necessitates careful parameter selection to balance
performance and computational overhead in practical implementations.

Table 2 presents carefully selected parameters chosen to ensure privacy, optimize the PIR rate,
and minimize computational costs. These parameters reflect a balance between security and effi-
ciency.
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Parameters Rate (Cor. 3) Security level (in bits)
q s v n k δ RPIR ISD Attack Section 3.4 Subspace Attack

32 32 31 100 50 50 1/128 113 312 155
32 32 30 100 50 100 1/64 113 153 150
216 12 10 100 50 100 1/24 113 175 160

232 − 5 6 4 120 60 120 1/12 133 128 128
232 5 3 100 50 100 1/10 113 128 96

261 − 1 6 2 100 50 200 1/6 113 128 122

Table 2: Parameter choices for CB-cPIR

3.6 Extensions

The PIR scheme we presented is suitable for deployment in cases where the size of the files is much
larger than the number of files stored on the database. In many practical scenarios this may not be
the case. We therefore extend our construction to handle files of smaller size to make it applicable
in other realistic deployment scenarios.

3.6.1 Square database

The first instance of a single server PIR scheme [21] to have nontrivial communication made use of
the “square database” approach. Here a database consisting of m files is reshaped into a

√
m×√m

square matrix of files and stored on the server. The user, who desires the ith file in the database
decomposes the index i ∈ [m] into the pair of coordinates (irow, icol) ∈ [

√
m]× [

√
m]. The user then

builds a query to privately retrieve column icol of the square file matrix. From the retrieved column
the user can then isolate the row irow to obtain their desired file. We can use this simple notion,
and use CB-cPIR on a reshaped, square database to improve rates for files of small size.

In this form of deployment, the user desires, as before a file of size Lδ log2(q). The size of
the query uploaded by the user will be 2

√
mδn log2(q

s). And the size of the server answer will be
2L
√
mn log2(q

s). This, as per corollary 1 gives us the rate

RPIR =
Lδ

2ns
√
m(δ + L)

.

The unextended scheme has communication linear in the number of files in the database, which
when used for retrieval of small files results in a PIR scheme, which is less efficient than trivially
downloading the entire database. In contrast, this version of the scheme has communication sub-
linear in the number of files on the database, allowing for a better than trivial efficiency even in the
case of small files. For example, to retrieve a file of maximum size log2(q) bits the rate of the PIR
scheme is RPIR = 1

4ns
√
m

.

In the following section the idea of decreasing the size of the query is extended by viewing the
database as a t-dimensional hypercube.

3.6.2 Iterative use

When the size of the files is small with respect to the number of files in the database the upload
cost, i.e., the size of the query may dominate the communication cost. We extend the CB-cPIR
scheme to retrieve the desired file after t iterations from a reshaped database, allowing us to reduce
the total upload cost of the scheme.
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Database: The database remains the single server, which is represented by X = [X0 · · ·Xm−1] ∈
F
L×mδ
q . Suppose m = xt for some integers x and t.

Definition 4. Define a re-indexing function Fr : [0 : m− 1]→ [0 : x− 1]t−r+1, which maps

i 7→
(⌊

i

xr−1

⌋

mod x, . . . ,

⌊

i

xt−1

⌋

mod x

)

.

Note that the image of this map has a natural ordering inherited from the natural ordering of
[0 : m− 1].
We now work with the re-indexed database represented by X ′ = [XF1(0) · · ·XF1(m−1)], which can
be imagined as a t-dimensional cube of files.

Definition 5. Define some bijective function

δM : FM×2nsq → F
M 2ns

δ
×δ

q .

Now, suppose the user wants to retrieve the dth file (F1(d) = (d1, . . . , dt)).

Iterations: Initially, we have X ′1 = [X
F1(0)
1 · · ·XF1(m−1)

1 ].

Round r: Define Xr = [X0
r · · ·Xx−1

r ] ∈ F
L( 2ns

δ
)r−1xt−r×xδ

q where Xi
r is the naturally ordered stack

of all files XI ∈ X ′r such that I[1] = i. The user then constructs a query Qdr as prescribed by our
scheme to retrieve Xdr

r . The server then computes the answer Xr ·Qdr .
We can also view Xr as

Xr =













B
Fr(0)
r

B
Fr(xr)
r

...

B
Fr((xt−r−1)xr)
r













.

Where BI
r ∈ F

L( 2ns
δ

)r−1×xδ
q is the naturally ordered vector of all filesX

Fr(j)
r ∈ X ′r such that Fr+1(j) =

I.
The server response is then

Xr ·Qdr =













B
Fr(0)
r

B
Fr(xr)
r

...

B
Fr((xt−r−1)xr)
r













·Qdr =













B
Fr(0)
r ·Qdr

B
Fr(xr)
r ·Qdr

...

B
Fr((xt−r−1)xr)
r ·Qdr













.

At the end of each round, we store statefully on the server

X ′r+1 = [δL( 2ns
δ

)r−1(B
Fr(0)
r ·Qdr) · · ·

· · · δL( 2ns
δ

)r−1(B
Fr((xt−r−1)xr)
r ·Qdr)]

= [X
Fr(0)
r+1 · · ·X

Fr((xt−r−1)xr)
r+1 ] ∈ F

L( 2ns
δ

)r×xt−rδ
q .

After completing ω rounds on the t-dimensional database, the user downloads the final R1 =

X ′ω+1 ∈ F
L( 2ns

δ
)r×xt−ωδ

q .
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Decoding the response: We decode the response over ω rounds, reshaping each round appro-
priately to M × ns before using the Recover function as specified in the CB-cPIR construction in
Fig. 4.
Round r:

Rr+1 = Recover(δ−1(Rr))

= X
(dt−r+1,...dt)
t−r+1 = δ([X

(0,dt−r+1,...dt)
t−r · · ·X(x−1,dt−r+1,...dt)

t−r ] ·Qd−r)

Here, Qj represents the query sent during the jth round, and Q0 is just the identity matrix. After

ω rounds we finally have Rω+1 = X
(dt−ω+1,...dt)
t−ω+1 = X

Fω(d)
t−ω+1, which consists of all files XI such that

the last ω coordinates of I agree with Ft−ω(d). The user can then extract the file XF1(d), which is
the desired file, from the recovered response.

Rate of the iterative scheme: To retrieve a file of size Lδ log2(q) bits we determine the com-
munication costs for the iterative form of deployment of CB-cPIR.

Concretely, for a database viewed as a t-dimensional hypercube, the size (in bits) of each of the
ω uploaded queries is 2xδns log2(q), which amounts to a total upload cost of

Cup = 2xωδns = 2m
1
t ωδns log2(q).

The total download cost is given by the size of the final response R1,

Cdown = L(
2ns

δ
)ωxt−ωδ log2(q) = L(

2ns

δ
)ωm

t−ω
t δ log2(q).

This gives us the PIR rate of the scheme:

RPIR =
Lδ

2m
1
t ωδns+ L(2nsδ )ωm

t−ω
t δ

.

Computational complexity of the iterative scheme: We now concretely determine the total
computational costs incurred by the server and user in the private retrieval of a single file when
using the iterative version of CB-cPIR.

Server complexity: Cumulatively over ω rounds, the concrete cost of multiplying the query

matrices with the statefully stored databases, is 2Lmδns

(

(2ns/δm
1
t )ω−1

(2ns/δm
1
t )−1

)

multiplications in Fq.

User complexity: The user complexity for the PIR protocol is divided into two parts, the com-
plexity of generating the query and the complexity of decoding the server response.

• Query generation: The complexity of query generation is dominated by the following steps in
the protocol:

– Generating the random codeword matrix D: This requires m1/tδkns multiplications over
Fq.

– Generating the V noise matrix E: This requires m1/tδkvs multiplications over Fq.

– Generating the W noise matrix ∆: This requires δkws multiplications over Fq.
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– Kronecker product: This requires min(m1/t, q)δks multiplications over Fq. The term
min(m1/t, q) arises from the fact that when q > m1/t there is a pigeon-holing of scalar
multiplications in the Kronecker product.

The above computational costs are incurred twice, once for each part of the query matrix for
a total of ω queries. The total complexity for query generation is then:

CQgen = 2ωδks(m1/tn+m1/tv + w +min(m1/t, q)).

• Decoding response: The decoding of the response is dominated by the following steps in the
protocol:

– Erasure decoding the response: This involves Lkns
(

∑ω
r=1(

ns
δ )

r−1m
t−r
t

)

= Lm
t−1
t kns

(

(ns/δm
1
t )ω−1

(ns/δm
1
t )−1

)

multiplications over Fq.

– Projection onto the subspaceW : This involves viewing each Fqs element as a vector repre-

sentation in terms of our chosen secret basis Γ. This requires Lm
t−1
t k

(

(ns/δm
1
t )ω−1

(ns/δm
1
t )−1

)

(s2+

w) multiplications over Fq.

– Inverting the matrix ∆: This involves Lm
t−1
t k

(

(ns/δm
1
t )ω−1

(ns/δm
1
t )−1

)

δs multiplications over Fq.

The above computational costs are incurred twice, once for each part of the response matrix
for a total of ω rounds. The total complexity to decode the response is then:

CAdec = 2ωLm
t−1
t k

(

(ns/δm
1
t )ω − 1

(ns/δm
1
t )− 1

)

(ns+ s2 + w + δs).

Remark 6. When the iterative version of the scheme is considered with t = 2 and ω = 1, it coincides
precisely with the case of considering a square database.

4 Comparisons

In this section, we provide a comprehensive analysis of some well-known computational PIR schemes
that leverage the hardness of lattice-based problems in comparison to CB-cPIR, which leverages a
hard problem in coding theory. Our evaluation focuses on three critical aspects: communication
costs, which quantify the amount of data exchanged between the client and server during query
execution; computational complexity, which measures the computational effort required by the
server to generate responses; and the PIR rate, which reflects the efficiency of data retrieval as a
ratio of retrieved data to communication overhead. By systematically comparing these schemes,
we aim to highlight their trade-offs and performance characteristics, offering insights into their
suitability for various practical applications.

Remark 7. In our analysis, when determining the computational complexity, for all schemes we
consider naïve matrix multiplications without any optimizations. Further, we simply count the num-
ber of multiplications over comparable fields/rings for valid comparisons.

Below, we give appropriate parameter choices for XPIR and SimplePIR, for a desirable level of
security.
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Parameters Maximum Plaintext size Ciphertext size Expansion factor
n log(q) Security (in bits) sp sc sp/sc

1024 ≈ 60 97 ≤ 20 Kbits 128 Kbits ≥ 6.4
2048 ≈ 120 91 ≤ 100 Kbits 512 Kbits ≥ 5.12
4096 ≈ 120 335 ≤ 192 Kbits 1 Mbit ≥ 5.3

Table 3: Parameters for XPIR

Database size Parameters Maximum
(in bits) n Modulus q Plaintext modulus p Security (in bits)

226 1024 232 991 128
234 1024 232 495 128
242 1024 232 247 128

Table 4: Parameters for SimplePIR

4.1 XPIR

XPIR [1] is a computational Private Information Retrieval protocol that inherits its security from
Ring Learning with Errors (RLWE), a post-quantum cryptographic problem. The protocol relies
on an additively-homomorphic building block from the fully homomorphic encryption scheme in [7],
enabling computations on encrypted data without decryption. This ensures that the server cannot
infer any information about the user’s query, as it processes the encrypted request directly. Each

query is represented as a polynomial in the ring Rq =
Zq[X]
〈Xn−1〉 , where n decides the security level of

the scheme.
In our comparison, we will consider the XPIR protocol instantiated with the parameters (n, log(q)) =

(1024, 60) as given in the first row of Table 3 against the CB-cPIR protocol instantiated with the
parameters (q, n, k, s, v) = (261−1, 100, 50, 6, 2) as given in the last row of Table 2. These choices of
parameters provide a maximum security of 97 bits in the XPIR protocol, and a maximum security
of 113 bits in the CB-cPIR protocol.

4.1.1 Communication cost and rate

The query sent to the server consists of m ciphertexts each of size sc as determined by the parameter
n of the RLWE homomorphic encryption scheme for a required level of security. This gives us the
upload cost of the scheme Cup = msc.

Suppose the database contains files of size L. The server upon receiving the query splits each
file into L/sp plaintext messages, and performs the appropriate homomorphic operations with the
query. The server then responds with L/sp ciphertexts each of size sc. This gives us the download
cost Cdown = L sc

sp
.

The total cost of communication is then

Ctotal = Cup + Cdown = msc + L
sc
sp
.

The rate of the scheme is

RPIR =
L

msc + L sc
sp

=
Lsp

mspsc + Lsc
.
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Figure 4: Comparison of file size vs. rate for different database configurations

In the figures above, we compare the PIR rate of CB-cPIR with parameters (q, n, k, s, v) =
(261− 1, 100, 50, 6, 2) against the PIR rate of XPIR, with parameters (n, log(q)) = (1024, 60), which
give an expansion factor of sc/sp = 6.4.

In Fig. 4a, we fix the number of files and plot the PIR rates as the file sizes increase. The
results show that the PIR rate of the schemes asymptotically approaches its optimal value. This
occurs because, as file sizes grow, the impact of the upload cost on total communication becomes
negligible. In Fig. 4b, we fix the total database size and examine how the PIR rate changes as
file sizes increase (or equivalently, as the number of files decreases). In both scenarios, we see that
CB-cPIR has favourable communication overhead in comparison with XPIR.

4.1.2 Computational complexity

In this section we concretely determine the computational costs associated with the private retrieval
of a file of size L in Zp using the XPIR protocol. The computational costs in XPIR are dominated

by multiplications of polynomials over the ring Rq =
Zq[X]
〈Xn−1〉 , the authors reduce the complexity

of these multiplications using Number-Theoretic Transform (NTT) for polynomials [16] and using
precomputed Newton coefficients for modular integer multiplications. Similar optimizations can
be used to improve the computational costs associated with multiplications in CB-cPIR. In our
comparison, we do not consider these optimizations and determine computational costs based on
naïve multiplications.

Server complexity: The concrete cost of generating a response is mLn2 multiplications in Zq.

This is a result of m · L multiplications of polynomials over the quotient ring Rq =
Zq[X]
〈Xn−1〉 .

User complexity: The user complexity for the XPIR protocol is divided into two parts, the
complexity of generating the query and the complexity of decoding the server response.

• Query generation: The complexity of query generation is dominated by the computation of
a · s, which requires mn2 operations over Zq.

• Decoding response: The decoding of the response is dominated by the computation of Response·
s, which requires Ln2 operations over Zq.
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Figure 5: Comparison of computational complexity for different file sizes and database
configurations

In the figures above, we compare the computational complexity of CB-cPIR with parameters
(q, n, k, s, v) = (261 − 1, 100, 50, 6, 2) against the PIR rate of XPIR, with parameters (n, log(q)) =
(1024, 60), which give an expansion factor of sc/sp = 6.4. Importantly, the modulus q in both
protocols is comparable in size (≈ 61 bits), which makes our comparisons valid.

In Fig. 5a, we fix the size of the files and examine how the computational complexity changes
as the number of files increases. In Fig. 5b we fix the size of the database and examine how the
computational complexity changes as the number of files increases. In both scenarios, CB-cPIR is
seen to outperform XPIR in terms of computational costs.

4.2 SimplePIR

SimplePIR [17] is a computational PIR protocol that inherits its security from the learning with
errors (LWE) problem. More specifically, the protocol utilizes the secret key version of Regev’s
LWE encryption scheme. Regev’s encryption using a lattice dimension n involves using an LWE
matrix A ∈ Z

m×n
q , a secret value s ∈ Z

n
q , an error vector e of length m sampled from a specific error

distribution, and the message µ ∈ Z
m
p . The message is then encrypted as

Enc(µ) = (A,As + e+ ⌊q/p⌋µ).

In SimplePIR, the hint consists of a one-time download of the product of the database with the
LWE matrix A. This hint can be reused polynomially many times allowing for amortization of the
scheme. The query with respect to a desired file index i ∈ [m] consists of the latter part of the
encryption of the standard unit vector µ = emi , for which the server response is the matrix product
between the query and the database. Note that this protocol uses the “square” approach and m is
replaced by

√
m in the case of the reshaped square database.

The cost of uploading the matrix A is significantly reduced by compression using a pseudorandom
key; therefore, in our analysis we ignore this cost.

In our comparison, we will consider the SimplePIR protocol instantiated with the parameters
(q, p, n) = (232, 495, 1024) as given in the second row of Table 4 against the CB-cPIR protocol
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instantiated with the parameters (q, n, k, s, v) = (232 − 5, 120, 60, 6, 4) as given in the fourth row of
Table 2. These choices of parameters provide a maximum security of 128 bits in both the SimplePIR
and the CB-cPIR protocol.

4.2.1 Communication cost and rate

To query and retrieve a file of size L in Zp, the concrete communication costs are:

• One-time hint download: nL
√
m elements of Zq.

• Per query upload cost:
√
m elements of Zq.

• Server response: L
√
m elements of Zq.

The total cost of communication amortized over t queries is then

Ctotal = nL
√
m+ (L+ 1)t

√
m.

And the amortized PIR rate is

RPIR =
Lt log(p)

(nL
√
m+ (L+ 1)t

√
m) log(q)

.
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Figure 6: Comparison of rate for different database configurations

In the figures above, we compare the PIR rate of CB-cPIR with parameters (q, n, k, s, v) =
(232−5, 120, 60, 6, 4) against the PIR rate of SimplePIR, with parameters (q, p, n) = (232, 495, 1024).
Both protocols when instantiated with the above parameters offer 128-bit security. The SimplePIR
protocol considers a square database and is most appropriately compared with CB-cPIR over a
square database (i.e. t = 2, ω = 1).

The SimplePIR communication costs are amortized over 100 queries. In both scenarios, we see
that CB-cPIR (on a square database) has favourable communication overhead in comparison with
SimplePIR.
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4.2.2 Computational complexity

In this section we concretely determine the computational costs associated with the private retrieval
of a file of size L in Zp using the SimplePIR protocol.

Server complexity: The SimplePIR protocol consists of a offline server preprocessing phase
and an online query phase, the computational costs incurred by the server for these two phases are:

• Preprocessing: This involves the cost of multiplying the matrices DB ∈ Z
L
√
m×√m

p with

A ∈ Z

√
m×n

q , which amounts to 2Lmn operations over Zq.

• Per-query: This involves the cost of multiplying the database with a query Q ∈ Z

√
m×L

q , which
amounts to 2Lm operations in Zq.

User complexity: The user complexity for the SimplePIR protocol is divided into two parts,
the complexity of generating the query and the complexity of decoding the server response.

• Query generation: The complexity of query generation is dominated by the computation of
A · s, which requires L

√
mn operations over Zq.

• Decoding response: The decoding of the response is dominated by the computation of hint · s,
which requires L

√
mn operations over Zq.
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Figure 7: Comparison of computational complexity for different database configurations

In the figures above, we compare the PIR rate of CB-cPIR with parameters (q, n, k, s, v) =
(232−5, 120, 60, 6, 4) against the PIR rate of SimplePIR, with parameters (q, p, n) = (232, 495, 1024).
Importantly, the modulus q in both protocols is comparable in size (≈ 32 bits), which makes our
comparisons valid. The SimplePIR protocol considers a square database and is most appropriately
compared with CB-cPIR over a square database (i.e. t = 2, ω = 1).

In both scenarios, we see that CB-cPIR (on a square database) has lower computational com-
plexity in comparison with SimplePIR.
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5 Conclusions

In this work, we present CB-cPIR, a code-based alternative for computational private information
retrieval. Through a comprehensive comparison with state-of-the-art lattice-based schemes, we show
that CB-cPIR is concretely cheaper in both communication and computational costs. These con-
crete advantages, combined with the scheme’s structural simplicity, make CB-cPIR a practical and
scalable solution for real-world PIR applications. Our results highlight the potential of code-based
cryptography as a compelling direction for efficient computational private information retrieval.

Future work involves building a proof-of-concept implementation of CB-cPIR and exploring
techniques to further reduce costs — for example, by preprocessing the database.
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