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Abstracts

With the popularity of short video platforms in global communication, embedding steganographic

data in audio synchronization streams has become a new type of covert communication means. In

order to cope with the limitations of traditional methods in synchronized steganography

recognition, this paper proposes an audio steganography detection and distributed guidance

instruction reconstruction model based on the short video "Yupan" samples released by the South

Sea Fleet of China on the TikTok platform, which integrates sliding spectrum feature extraction

and intelligent reasoning-driven mechanism. In the method, a 25 ms sliding window combined

with short-time Fourier transform (STFT) is used to extract the main frequency trajectory,

construct the synchronization frame detection model (M1) and set the synchronization frame flag

bit as "FFFFFFFFFFFFFFFFFF80", and further use the structured decoding model (M2) in the

subsequent 32-byte payload to The distributed guidance information field is inferred. It was found

that a sequence of low entropy, repetitive synchronization bytes existed in the audio segment

from 36 to 45 seconds, and the spectral energy distribution was unusually concentrated, which

verified the existence of synchronization frames. Although the structured decoding results do not

restore the semantics of the plaintext, the arrangement of the command fields is highly consistent,

showing that it has the characteristics of military communication protocols. In addition, the

analysis of multi-segment splicing steganography model shows that this mechanism has the

ability of distributed embedding and centralized decoding across videos. In summary, this paper
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verifies the efficient detection performance of sliding spectrum features for synchronized

steganographic signals, and establishes an extensible structural inference framework, which

provides theoretical basis and methodological innovation for steganographic communication

identification and tactical guidance simulation under open platform.
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Audio synchronized steganography detection, sliding spectrum feature extraction, structured

guidance information decoding, intelligent steganography inference model

Chapter I. Introduction

1.1 Background and motivation for the study

With the continuous evolution of steganographic communication technology, steganographic

methods based on audio carriers have gradually received attention. Especially in the context of

highly active short-video communication, the risk of covert transmission of military

communication information through open platforms is increasing.2025, China's South Sea Fleet

released a short-video propaganda video called "Jade Plate" on the international platform of

TikTok. The video features naval equipment and formation cruising, and there may be

cryptographic synchronization signals in the audio stream. Based on this video stream, this study

explores the detection of synchronized steganographic signals and the inference of potential

guidance commands to provide a reference for the analysis of audio security on public platforms.

1.2 Overview of Audio Steganography and Synchronous Stream Steganography

Audio steganography usually utilizes redundant frequency components, phase and amplitude

trimming to hide information. Synchronous stream steganography has higher concealment and

anti-interference properties by continuous high-frequency padding and embedding specific

synchronization flags to mark the starting point of valid data.

1.3 Significance of Distributed Guidance Information in Tactical Communication Systems

Distributed guidance commands are widely used in scenarios such as ship formation and

unmanned system collaboration by hiding them in the synchronization stream and supporting

multi-target and multi-node cooperative control. Accurate detection and inference of such

commands is crucial for securing communication.

1.4 Research objectives and contributions of this paper
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In this paper, based on actual short video audio samples, we propose a synchronized

steganography detection method based on sliding spectral feature extraction and intelligent

inference model, which can effectively detect synchronized frames and simulate and infer the

guided command flow. The main contributions are as follows: analyzing potential military

communication steganography for the first time based on the public data of TikTok short videos;

introducing the sliding local spectrum feature extraction method for audio steganography

detection; designing an automatic detection mechanism for synchronization frames

(FFFFFFFFFFFFFFFFFF80); constructing a simulation model for distributed guidance inference;

and verifying the effectiveness of the method on real test samples.

1.5 Research Problems

In order to systematically reveal the existence of synchronous steganographic signals and distributed

information transmission mechanisms in short video audio streams, this paper focuses on constructing

a set of detection-inference modeling system that integrates signal processing and artificial

intelligence. Specifically, the research work is centered on the following three key issues:

Question 1: How to accurately detect the latent synchronized steganographic signals in short

video audio streams by sliding window spectral feature extraction method?

The problem focuses on identifying the temporal characteristics of embedded frequency-modulated

steganographic frames in a natural audio stream. Considering that the synchronized steganographic

signals have the characteristics of short-time and stable frequency structure, the research needs to

combine the short-time Fourier transform (STFT) with the sliding local statistical judgment strategy to

establish a spectral sliding detection model with high temporal resolution in order to achieve high

accuracy recognition of synchronized signals.

Question 2: How to effectively infer and structurally restore the hidden distributed guidance

instruction information after detecting the synchronous hidden write signal?

This problem looks at modeling the structured decoding of the payload following a synchronization

frame. After a specific synchronization identification bit (e.g., 7×FF+0x80) is successfully detected,

the command fields, including target ID, position information, speed, heading, and opcodes, need to

be extracted and restored from the subsequent 32 bytes of audio data. The research needs to construct

a decoding mechanism for guidance simulation with field alignment, decoding stability and low

redundancy structure loss.
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Question 3: Is it possible to achieve intelligent and highly robust recognition of synchronized

steganographic signals in short video audio streams based on deep learning inference models?

To address the detection challenges under frequency jitter, non-ideal synchronization patterns and

multi-source background noise, the research further explores the construction of deep learning models

based on 1D convolutional networks or Transformer coding structures to directly perform end-to-end

inference of spectral sequences and output probabilistic predictions of the presence of synchronization

signals. The problem concerns the generalization and large-scale deployment feasibility of intelligent

detection systems for steganographic signals.

Through the systematic deconstruction of the above research problems, this paper aims to propose a

synchronized steganography recognition framework covering three phases of detection, decoding and

inference, which provides theoretical support and methodological basis for the intelligent detection

and security assessment of military-grade audio steganography communication under open platform.

Chapter II. Literature review

2.1 Review of Audio Steganography Detection Techniques

Traditional audio steganography detection methods mainly focus on the technical paths of least

significant bit (LSB) analysis, statistical feature extraction and audio fingerprint comparison

(Fridrich & Goljan, 2002; Westfeld, 2001)¹. ². These methods usually assume that steganographic

operations occur mainly in the lower bits at the data encoding level, and thus infer the presence of

hidden information in the audio content through bit statistical deviations or fingerprint feature

changes. However, such methods are prone to detection errors or performance degradation in the

face of interference factors such as high compression, distorted transmission, and noise pollution

in real environments, showing their limitations in terms of lower robustness to natural audio

distortion.

At the technical level, traditional methods are usually based on static sample analysis, i.e.,

extracting feature information within a single or limited number of frames for classification. This

approach has high accuracy in static steganography scenarios, but in streaming environments,

audio signals present continuity, variability, heterogeneity, etc., which makes the traditional static

detection strategy have limited effect in real-time scenarios (Liu et al., 2019)³.

In particular, there is a relative lack of existing research on the detection of synchronized stream

steganography signals. Synchronized stream steganography can both avoid inter-frame difference
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detection and achieve higher steganography under the synchronization mechanism by embedding

secret information in the data stream in a small, continuously changing manner. This tactic

undermines the traditional steganography detection assumption that hidden information leads to

statistical distribution anomalies, thus posing new challenges to detection methods (Liu et al.,

2019)³.

Further, current detection systems exhibit a significant lack of robustness when dealing with high-

frequency padding (high-frequency padding) with subtle hopping variation. For example, high-

frequency padding tends to have little effect on human ear perception, but can effectively hide

steganographic loads, while traditional LSB and simple statistical feature extraction methods are

difficult to capture such variations (Wang et al., 2020)⁴. On the other hand, the weak frequency-

hopping change technique conveys information by fine-tuning the energy distribution of specific

subbands in the frequency domain, which is highly susceptible to be missed by traditional

detection methods based on overall statistics in the time or frequency domains due to the

extremely small modulation (Yang & Huang, 2018)⁵.

To cope with these new steganographic methods, detection methods based on deep learning and

sequence modeling have emerged in recent years. Extracting multi-scale spatio-temporal features

using Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), or Transformer

architecture has become a research direction to enhance the robustness of steganography

detection (Wang et al., 2020; Yang & Huang, 2018)⁴. ⁵.However, the application of these methods

is still in the exploratory stage and still faces many challenges in terms of interpretability,

generalization, and coping with unknown steganography techniques.

In summary, audio steganography detection technology is undergoing a process of transformation

from static sample feature extraction to dynamic streaming feature modeling, which puts forward

higher requirements on the sensitivity, robustness and real-time performance of the detection

technology. In the future, we need to combine deep learning, statistical inference and streaming

signal processing and other multidisciplinary techniques to build a more adaptable steganography

detection framework.

2.2 Synchronized Frame Detection and Anomaly Spectrum Identification

Synchronized frame detection techniques have long relied on the identification of frequency

anomalies and the detection of fixed-periodic patterns.Cvejic and Seppänen argued that the

implantation of steganographic signals tends to cause localized perturbations in the audio
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spectrum, especially in the position of synchronized frames, which can be detected by means of

the short-time Fourier transform (STFT) (Cvejic & Seppänen, 2004⁶). änen, 2004)⁶.⁶ Petitcolas et

al., on the other hand, pointed out that the periodicity feature, although effective in steganography

detection, is highly susceptible to corruption by channel noise and signal compression, which

reduces the reliability of synchronization detection (Petitcolas, Anderson, & Kuhn, 1999)⁷.

However, traditional synchronization detection methods face serious challenges in real-world

applications.Kaur et al. found that background noise, recording equipment distortion, and natural

spectral drift in streaming environments can lead to false detections, especially when there is no

obvious implantation information, and the system may still recognize normal fluctuations as

abnormal signals (Kaur, Singh, & Arora, 2019) ⁸. This phenomenon exposes the poor adaptability

of conventional frequency anomaly detection to changes in the natural environment.

In order to enhance the accuracy of synchronization signal capture, scholars have proposed the

new idea of local spectral analysis (LSA) in recent years.Zhao et al. argued that the sensitivity of

synchronization detection in complex backgrounds can be effectively enhanced by local

frequency band feature extraction with multi-scale sliding window processing (Zhao, Zhu, &

Huang, 2020) ⁹. Instead of relying on the overall spectral energy distribution, the method they

developed dynamically models for tiny frequency subintervals, significantly reducing the noise-

induced error rate.

Further, Al-Haj et al. pointed out that combining local spectral features with an ensemble learning

(ensemble learning) approach can further improve the robustness of simultaneous detection in

high-noise scenarios (Al-Haj, Amer, & Mohammad, 2021) ¹⁰. However, it has also been criticized

that local spectral analysis, despite its improved accuracy, poses the problem of feature dimension

inflation and increased computational overhead, while still being insufficiently adaptable to novel

steganographic modulation methods (Al-Haj et al., 2021)¹⁰.

Taken together, synchronized frame detection is currently undergoing an evolution from static

full frequency domain detection to dynamic local spectral modeling. However, fundamentally, it

is still difficult to fully capture the complex changes in steganographic behavior by relying only

on spectrally localized anomalies. It is necessary for future research to introduce temporal

modeling concepts, such as temporal dynamic learning of local spectral anomalies using

Recurrent Neural Network (RNN), Long Short-Term Memory Network (LSTM), or Transformer

architectures, in order to establish a joint time-frequency synchronous detection system. This
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direction not only improves the detection accuracy, but also promises to significantly enhance the

generalization ability of the system in the face of unseen cryptographic modalities.

2.3 Sliding Sampling and Frequency Feature Engineering

Sliding-window sampling techniques have been widely used in audio signal processing,

especially in speech recognition and music classification tasks, and Rabiner pointed out that by

dividing a continuous audio stream into overlapping time segments, the short-time analysis

technique allows local feature variations to be effectively captured, which greatly improves the

accuracy of modeling dynamic signal features (Rabiner, 1989).¹¹ Lee et al. further argued that the

combination of short-time Fourier transform (STFT) and short-time spectral information can

extract the instantaneous spectral information of audio, which can be used to extract the

instantaneous spectral information of audio. ) ¹¹.Lee et al. further argued that sliding windows

combined with the Short-Time Fourier Transform (STFT) are able to extract transient spectral

information of audio, thereby preserving weak modulation features in complex backgrounds (Lee,

Han, & Lee, 2009) ¹².

In the field of synchronization steganography detection, this combination of sliding sampling and

local frequency feature extraction provides a powerful tool for detecting tiny synchronization

signals.Tzanetakis and Cook have shown that the extraction of features such as short-time

spectral center of mass, bandwidth, and rolloff rate through a sliding window can be effective in

identifying anomalous modulation behaviors in audio signals (Tzanetakis & Cook, 2002)¹³. . This

method overcomes the shortcomings of global spectrum analysis that is sensitive to overall noise

and difficult to detect local cryptographic changes.

However, although sliding sampling greatly improves the granularity and sensitivity of feature

extraction, several limitations remain. First, Cai et al. point out that a fixed-size sliding window

may lead to inadequate feature extraction or information redundancy when dealing with audio

content with drastic changes or irregular tempo (Cai et al., 2021)¹⁴. Second, the unitary treatment

of frequency metrics in feature engineering also limits the detection performance, and relying

only on basic spectral features may not fully reflect the hidden information when composite

modulation or cross-frequency embedding strategies are used for the hidden write signal.

To compensate for these shortcomings, researchers in recent years have proposed new directions

in adaptive sliding window sampling and multi-scale frequency feature engineering. For example,

Sarkar et al. proposed a mechanism to dynamically adjust the sampling window size based on the



8

instantaneous rate of change of the signal to better fit the non-uniform distribution characteristics

of the hidden write signal in audio (Sarkar, Das, & Bandyopadhyay, 2022)¹⁵. Meanwhile,

combining higher-order features such as frequency subband energy distribution, phase continuity,

and spectral sharpness has become an effective means to improve the robustness of synchronized

steganography detection.

In summary, sliding sampling and frequency feature engineering have laid the foundation for

synchronized steganography detection, but it is still difficult to fully cope with the challenges

posed by complex steganography strategies by relying only on static spectral features. Future

research needs to further introduce time-series dynamic learning and feature fusion modeling to

achieve more accurate and dynamic identification and prediction of synchronous steganography.

2.4 Current Research Status of Distributed Guided Inference Modeling

In the field of tactical communication and steganography countermeasures, the problem of

inferring and reconstructing distributed guidance information (DGI) has gradually received

attention in recent years.Dutta et al. pointed out that due to the strong autonomy of nodes in

tactical communication networks and the frequent changes in topology dynamics, the guidance

information tends to exhibit non-centralized, semi-structured, and even weakly coupled

characteristics ( Dutta et al., 2019)¹⁶. This makes the traditional link-centered encryption and

redundant coding strategies difficult to meet the practical needs of guide information

reconstruction and steganography detection.

According to Singh et al. most of the current research still focuses on link encryption and

redundancy coding, which mainly aims to improve the destruction resistance and data integrity of

the communication system, while there is a lack of systematic methods for the inference and

reduction of covert guidance information (Singh, Chatterjee , & Roy, 2020)¹⁷. This limitation

leads to a significant blind spot in the existing defense system when countering higher-order

steganographic threats (e.g., synchronous guidance steganography, frequency-hopping

steganography).

To address the challenge of distributed steganographic guided inference, some studies have

proposed new ideas such as graph inference and distributed belief propagation.Rahman et al.

point out that by modeling the tactical communication network as a dynamic graph and

combining it with local node state updating, implicit guided paths can be achieved without a

global perspective the inference of implicitly guided paths (Rahman, Chen, & Krunz, 2021)¹⁸.
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This approach is able to gradually infer potential synchronous or implicitly written command

links without relying on a central control node.

However, existing distributed inference methods still face multiple challenges. First, Al-Sakran

criticizes that the distributed inference process is highly sensitive to node synchronization and

timestamp consistency, and the inference accuracy degrades rapidly in highly dynamic

environments (e.g., frequency hopping, node out-of-connection) (Al-Sakran, 2019)¹⁹. Second, the

steganographic guide information itself usually employs advanced steganographic strategies such

as perturbative coding or spectral fine-tuning, making methods that rely solely on graph structure

or redundant feature inference have limited accuracy in real-world environments.

In order to break through these bottlenecks, some scholars in recent years have attempted to

combine deep generative models (e.g., Variable Autocoder VAE, Generative Adversarial

Network GAN) with distributed inference, in an attempt to reconstruct steganographic guide

signals under sparse observation conditions (Zhang et al., 2022)²⁰. While this direction

theoretically improves the generalization ability of inference, it also introduces new problems

such as poor model interpretability and high training sample requirements.

In summary, distributed guided inference, as an emerging research direction in tactical

communication security, is shifting from traditional link redundancy protection to dynamic

inference and intelligent reconfiguration. However, in order to realize the effective restoration of

advanced steganographic guidance information, in-depth exploration in heterogeneous feature

fusion, adaptive inference algorithm and real-time reliability verification mechanism is still

needed.

2.5 Chapter Summary

This chapter has systematically reviewed the existing research paths around the key areas of

audio steganography detection, synchronized frame identification, sliding sample feature

extraction and distributed guide inference, and revealed the deep limitations of the current

technology system and future evolution trends based on critical analysis.

First, audio steganography detection technology is at a critical stage of transition from static

sample analysis to dynamic streaming media modeling. Traditional methods rely on low-bit

anomalies and statistical feature deviation detection, which are effective in ideal environments,

but reveal significant robustness and real-time defects in the face of high compression, variant

transmission and synchronized steganography. This phenomenon indicates that traditional static
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statistical modeling alone cannot meet the complex needs of steganography detection in modern

streaming media environments.

Secondly, in terms of synchronized frame detection and spectral anomaly identification, although

local spectral analysis and multi-scale sliding window methods improve the detection sensitivity

in complex noise backgrounds, the existing strategies are still limited by the problems of feature

extraction dimension inflation, aggravated consumption of computational resources, and

insufficient adaptability to new steganography strategies. This dilemma reflects that the idea of

pure frequency domain anomaly modeling is difficult to support the accurate recognition of

steganography in highly dynamic environments, and there is an urgent need to introduce time-

dynamic learning and joint time-frequency modeling system.

Third, sliding sampling and frequency feature engineering provide information capture capability

at micro-granularity for simultaneous steganography detection, but the standard fixed-window

mechanism and a single spectral index extraction method obviously cannot cover the complex

and changeable steganography embedding patterns. The local and static nature of feature

extraction restricts the detection system's comprehensive perception of the spatial distribution of

steganographic behaviors, and in the future, adaptive window adjustment, heterogeneous feature

fusion, and the introduction of higher-order statistics are needed to expand the scope of the

system's response to changes in steganographic strategies.

Finally, distributed guide inference, as an emerging field in tactical communication security, still

mainly stays in the stage of traditional link protection and redundant coding. Although the

introduction of graph inference and distributed belief propagation methods has broadened the

inference path, the accuracy and reliability of the existing inference models are still limited in

dynamic frequency hopping, node disconnection, and extremely sparse environments of

steganographic signals. While deep generative models show potential for sparse guide

reconstruction, they also pose the problems of poor model interpretability and heavy dependence

on training data, suggesting that future inferencing system design needs to achieve a higher level

of balance between intelligence, real-time performance and interpretability.

Overall, this chapter review shows that the field of simultaneous audio steganography detection

and distributed guided inference is undergoing a paradigm shift from rule-based static detection

to a new type of intelligent system that integrates deep learning, dynamic inference and cross-

scale perception. This transition requires not only technological breakthroughs, but also

systematic innovations in algorithm design, feature engineering, inference mechanisms, and
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system architectures to cope with the increasingly complex and volatile steganography threats and

communication security challenges.

Chapter III: Research Methodology and Modeling
This study adopts a hybrid methodology system combining quantitative detection and qualitative

inference to construct a multidimensional research framework integrating signal analysis,

structural decoding and intelligent model inference. At the methodological level, the study starts

with quantitative spectral feature extraction, based on the short-time Fourier transform (STFT)

and sliding window mechanism, to capture high-frequency stable sequences and entropy changes

in short video audio streams, and then identifies suspected synchronized steganographic signals.

This stage emphasizes the objective measurability of the signal and provides a rigorous empirical

foundation through frequency domain energy comparison, byte distribution statistics and

information entropy analysis. After that, the research turns to qualitative structure decoding and

symbol rule reconstruction, constructing the hypothetical syntactic structure of the guidance

instruction through segmented parsing of the 32-byte load after the synchronization frame, and

combining field alignment, naming patterns and protocol analogies to provide interpretive

modeling of the guidance content. In order to break through the limitations of traditional

detection in dynamic environments, the study introduces structured reasoning paradigm, explores

protocol simulation and distributed fragmentation reconstruction mechanism based on finite state

machine, and puts forward the model assumption of "multi-video cooperative-synchronous

signaling reorganization" to strengthen the logic of structural recognition. In addition, the study

proposes scalable deep learning synchronous inference models, including Transformer and 1D-

CNN architectures, to realize end-to-end classification and timing relationship modeling of

spectral sequences, and to expand the intelligent and automated path of synchronous

steganography detection. Overall, the research methodology reflects the exploration of the fusion

of structure recognition and content recognition paradigms, which is both technically verifiable

and theoretically explanatory, and meets the requirements of system modeling in complex

steganography scenarios.

Methodological Framework and Research Procedures

This chapter aims to systematically construct a complete modeling framework for simultaneous

steganography detection and distributed guide inference in audio. Aiming at the problems of

insufficient sensitivity of traditional steganography detection methods in highly dynamic

streaming environments, difficulty in locating synchronization signals, and lack of guide



12

information inference, this paper proposes a comprehensive modeling method that integrates

sliding spectrum feature extraction, patterned synchronization detection, and structured guide

decoding and inference.

The overall method system is divided into three main stages

First, in the audio data preprocessing stage, through the standardized sampling rate, amplitude

normalization and band-pass filtering operations, to ensure that the input signal meets the basic

conditions of the subsequent spectral analysis, and significantly improve the stability and

accuracy of feature extraction.

Second, in the synchronized steganography detection stage, a sliding spectrum detection model

(Model M1) is designed. The model takes the main frequency trajectory extracted by short-time

Fourier transform (STFT) as the core feature, and realizes high-precision recognition of

embedded synchronous steganography signals (e.g., specific pattern frame: 7×FF + 80) through

local window sliding and pattern matching detection strategies, which effectively improves the

sensing ability of short-time microfrequency changes.

Finally, a decoding inference model (Model M2) is constructed in the distributed guide inference

stage. After successfully detecting the synchronization frame, the subsequent payload area is

intercepted and parsed according to the predefined field structure to recover the distributed target

command information hidden in the audio stream. The standardized field decoding and finite state

machine (FSM) control ensure that the inference process is highly reproducible and fault-tolerant.

Overall, the methodological framework proposed in this chapter fully combines the dual

perspectives of spectral signal processing and semantic-level inference reconstruction, forming a

complete technical path from physical layer synchronization signal detection to application layer

guide information restoration. Through refined sliding feature modeling, patterned

synchronization detection and structured inferential reasoning, this method can effectively

improve the detection and identification of audio synchronization steganography in complex

environments, and provides an innovative solution for steganography security monitoring of

audio streams on public platforms.
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Figure3.1Research framework diagram

3.1 Audio data preprocessing and normalization

The audio stream is extracted from the TikTok short video "Yupan", converted to WAV format

using pydub module, and the sampling rate is unified to 44.1kHz, and the amplitude is normalized

to the interval of [-1,1], so as to adapt to the subsequent spectral analysis processing.

3.2 Sliding spectrum feature extraction and synchronization detection model (M1) design

The audio signal is sliding sampled in a window of 25 ms, and the dominant frequency

components within each window are extracted using Fast Fourier Transform (FFT) to form a

time-frequency trajectory sequence for synchronization flow steganography feature extraction.
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In order to achieve accurate localization of weak audio synchronous steganography signals, this

paper constructs a spectral sliding detection model M1, whose core is based on the sliding

window short-time Fourier transform (STFT) and the dominant frequency trajectory analysis,

combined with a specific synchronization frame pattern (seven consecutive stable segments of the

dominant frequency + the characteristic frequency points) to complete the synchronization frame

identification. The model can be formally represented as:

��_����(��) = 1 ����: � + 6 ∈ [�1, �2] ∧ �� + 7 ≈ 2045 ± �
0 otherwise

where ft is the primary frequency of the tth frame and ε is the frequency tolerance window

(default ±20Hz). The model is used as a synchronized frame detector to provide a structural

starting point in the subsequent extraction of guidance information.

Figure3.2 Model M1 Spectral Sliding Detection Flow

Model M1: Spectral Sliding Detection Flow Brief Description

This flowchart illustrates the modeling process for detecting synchronous steganography signals

in short video audio streams (e.g., the "Yupan" sample on the TikTok platform), which consists

of the following phases:

1. Input Audio Signal stage (Input Audio Signal)

Load the audio stream data as the original input for subsequent steganography detection;

Ensure that the audio stream is pre-processed (normalized, band-pass filtered).

2. Sliding Window Segmentation (25ms)
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Segment the audio signal into frames according to a 25 ms sliding window;

Keep the windows overlapping or consecutive to capture short-time localized feature changes.

3. Short-Time FFT and Peak Frequency Extraction (Short-Time FFT and Peak Frequency)

Perform Short-Time Fourier Transform (STFT) on each frame to extract the frequency

component with the largest amplitude;

Generate a continuous sequence of primary frequency traces ft.

4. Construct the Dominant Frequency Sequence ft.

Integrate the dominant frequency values of each time period into a time series;

Provide basic data for subsequent synchronization pattern detection.

5. Synchronization frame pattern detection (Sync Frame Pattern Check)

Pattern matching detection of the main frequency sequence:

7 consecutive frames with stable main frequency;

The 8th frame is close to 2045Hz (tolerance ±ε error);

Detect whether it meets the predefined synchronized steganographic frame characteristics.

6. Sync Frame Detected Output (Sync Frame Detected Yes/No)

Output the judgment result;

If the synchronization frame is detected, then enter the subsequent guidance information

extraction process.

Summarize

Model M1 realizes local feature extraction and pattern determination of audio synchronous

steganography signal; it adopts the pipeline design of sliding-feature-matching-determination,

which meets the dual requirements of efficiency and accuracy in practical applications; this

model provides a key entry point for the subsequent distributed guide inference (Model M2).

3.3 Synchronized Hidden Write Signal Detection Algorithm
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Define the synchronization frame flag bit as seven consecutive 0xFF bytes plus one 0x80 byte,

sliding traversal of the spectral trajectory, through the threshold determination and pattern

matching, to identify the potential synchronization frame steganography starting point in the

audio.

3.4 Distributed guide information structure decoding model (M2) design

After detecting the synchronization frame, the subsequent 32 bytes are intercepted as the

simulation payload area, and the structured parsing and guidance information inference is carried

out according to the six fields of target ID, coordinate X, coordinate Y, speed, heading, and

command code.

In order to decode the latent distributed guidance information after the synchronization frame,

this paper designs the decoding structure model M2, which assumes that the synchronization

frame is immediately followed by 32 bytes of guidance payload, and the structural fields are as

follows, according to the 8 bytes as a unit:

Table 3.1Distributed Guided Information Structure Decoding Model (M2) Design

byte position field name hidden meaning

Byte[0] Target ID 目标识别码

Byte[1-2] Coord X X坐标（高位在前）

Byte[3-4] Coord Y Y坐标（高位在前）

Byte[5] Speed 单位速度

Byte[6] Heading 航向角

Byte[7] Command Code 指令操作码

The decoding function is defined as:

CMDi=Decode(B[i∗ 8:(i+1)∗ 8])for i∈{0,1,2,3}
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The decoding process can be regarded as a deterministic state-transition structure, suitable

for modeling as a finite state machine (FSM).

Figure3.3 Model M2: Distributed Guidance Decoding Flow

Model M2: Distributed Guidance Decoding Flow descriptive

This flowchart systematically shows the modeling process of how to parse the distributed

guidance information hidden in the audio stream after detecting a synchronization frame, which

includes the following stages:

1. Synchronization frame postload extraction (32-Byte Payload)

After a synchronization frame (e.g., 7×FF + 80 mode) is detected in the audio stream, 32

consecutive bytes of data are extracted backwards as the hidden payload;

These 32 bytes are assumed to contain the entire information base for subsequent guidance

instructions.

2. Split into 4 Blocks

Split 32 bytes of data into 4 blocks of 8 bytes each;

Each block corresponds to one guidance instruction independently, which is convenient for

parallel decoding and inference.

3. Block Decoding

Each 8-byte block is internally parsed according to a predefined field format:
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Byte 1: Target ID.

Byte 2-3: X coordinate (Coord X, high priority)

Byte 4-5: Y coordinate (Coord Y)

Byte 6: Speed (Speed)

Byte 7: Heading (Heading)

Byte 8: Command code (Command)

4. Field extraction and structuring (Extract Fields)

Put the parsed fields into a unified data structure;

Keep the guide information complete and standardized for subsequent inference and use.

5. Output structured guidance information (Structured Guidance Information Output)

Encapsulate all the decoded target information, position information and heading speed command

into standardized objects;

It can be used in practical application scenarios such as subsequent target tracking, situational

analysis or combat deduction.

Deep Insight

Streaming decoding mode: adopts block parallel decoding, which can quickly process batch

command data and improve the real-time response capability of the system; standardized field

design: ensures that the guidance information is highly structured after parsing, which is

convenient to be applied to the tactical system; automatic inference interface: provides a standard

input format for the future introduction of AI inference models (e.g., trajectory prediction, target

identification).

Summary

Model M2 is not just a one-time decoding operation, it actually establishes a standardized

distributed guidance information reconstruction pathway, which lays a solid foundation for

intelligent reasoning, situational analysis and even decision support of audio steganography data.

3.5 Illustration of System Modeling Flowchart
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Figure 3-1 shows the complete flow structure of the "Audio Synchronized Steganography

Detection and Distributed Guided Inference Model" constructed in this paper. The front-end

audio input module is responsible for extracting audio streams from public short videos; the

middle part is the dual-core module of sliding spectrum feature extraction and synchronized

frame detection; and the back-end completes the synchronized frame localization and the

structured inference of the guide information. The process has signal-pattern-semantic three-level

inference capability, which is suitable for the task of analyzing short audio steganography from

multiple sources.

Figure3.4 Audio Steganography Detection and Distributed Guided Inference Modeling

Flowchart

3.5.1 Flowchart 3.4 Brief description of the structure

This flowchart demonstrates a complete synchronized steganography detection and command

inference system for audio content for public short video platforms, divided into three major

phases:

Phase 1:Front-end audio input and preprocessing phase

Audio extraction (TikTok 'Yupan' video): extract the audio stream from the TikTok promotional

video "Yupan" released by the South China Sea Fleet;

Audio pre-processing (normalization/filtering): normalize and band-pass filter the audio signal to

focus on the 2-4kHz steganography band.
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Phase 2: Central Steganography Detection Phase

Sliding window spectral feature extraction (25ms FFT): short time Fourier transform using a

25ms sliding window to extract the main frequency trace;

Synchronization frame detection module (7xFF+80 mode): detects the starting point of a specific

steganographic synchronization frame.

Stage 3: back-end guide data parsing and inference stage

Synchronization frame localization: identifying the synchronization frame location in the

bitstream;

Payload extraction (32-byte block parsing): intercepting the data after the synchronization frame;

Command structured inference: parsing into fields such as target ID, coordinates, speed, heading,

command code, etc.

3.5.2 Deep Insight Analysis

Table 3.2: Deep Insight Analysis Table

Insights Analysis note

Insight 1: Spectrum Slide +

Synchronized Pattern Detection

Sliding spectrum amplification fine-tuning and pattern

recognition to locate synchronized frames are the core

breakthroughs in detecting cryptographic writing.

Insight 2: Layered Security-Aware

Architecture

The process is divided into signal processing → pattern

detection → command inference, reflecting the layered

security monitoring logic.

Insight 3: Automated Steganography

Monitoring Framework

The structure can be expanded into an automatically

synchronized frame scanner for cross-video detection.

Insight 4: Adversarial Steganography

Analysis

Structures can integrate AI against steganographic

perturbations and are an expandable basis for advanced

steganographic detection.
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Chapter IV: Experimental Design and Analysis of

Cryptographic Data

4.1 Overview of experimental samples and testing process

The audio samples used in this study come from the short video "Yupan" released by the South

Sea Fleet of China on the TikTok platform. The total length of the video is about 120 seconds, the

format is MP4, the audio sampling rate is 44.1 kHz, and the standard stereo channel encoding is

used. Because of the unnatural frequency variations and modulation traces in the background

audio, it has potential synchronization steganography characteristics, and is therefore selected as

the target object for experimental analysis.The audio was extracted using the FFmpeg tool to

complete the format separation and generate WAV format for subsequent frequency domain

analysis. No obvious recognizable semantics were found during the preliminary listening stage,

but during the spectral observation, there was a non-musical frequency peak concentration in the

2-4kHz band, which was initially presumed to be a modulation signal.

The overall flow of the experiment is divided into six steps:

1. use short-time Fourier transform (STFT) and fast Fourier transform (FFT) to split the audio

stream into frames and locate the frequency peaks;

2. perform sliding window detection and high-pass filtering on the frequency domain anomaly

segments to extract the local suspicious modulation;

3. use customized scripts written in Python to perform bitstream reconstruction and Hex decoding

on the suspicious segments;

4. detect the presence of synchronization identifiers (e.g., 7×FF or 0x80) as the starting point for

potential steganographic synchronization;

5. perform magic number detection and Base64/ASCII attempt decoding on the detection result to

determine whether there is a valid data structure;
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Figure 4.1： Overall flow of the experiment

6. Input the suspected structured information into the distributed guide inference module to

simulate the possible meanings of its command fields.

As shown in Figure 4.1 this process takes into account the spectrum visualization analysis and bit

layer parsing, which provides the technical basis for the subsequent decoding of steganographic

data and structural restoration.

4.2 Analysis of High Frequency and Suspicious Frequency Bands

To identify the presence of modulated steganographic signals in audio, this study focuses on the

2kHz to 4kHz frequency band. This band is often used in natural audio for high-frequency

extensions in background music, but presents unusual spectral features in this sample, including

sustained peak compression, modulation interruptions, and an unusually high number of

frequency-stable segments.

The spectrum analysis techniques used in the experiment include:

Short Time Fourier Transform (STFT): 25 ms per segment in 10 ms steps for observing

frequency traces over time;

Sliding bandpass filter: scanning this high-frequency band in 500 Hz window steps to identify

unnatural modulation frequency bands;
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Main frequency peak trajectory extraction: for observing the presence of repeated frequency

marking behavior in steganographic frames;

Frequency domain energy distribution statistics: for comparing the difference in spectral density

and slope of change between normal and suspect bands.

Figure 4.2：Spectrogram with Hidden Signal Region

As shown in the spectrum Figure 4.2, the audio signal is analyzed in the frequency domain based

on the Short Time Fourier Transform (STFT) technique. The spectrum takes time as the

horizontal axis (unit: second), frequency as the vertical axis (unit: Hz), and the color depth

indicates the energy intensity (unit: dB). The overall energy distribution of the background in the

figure is uniform, showing the typical characteristics of low-energy background noise, and no

obvious strong energy region is seen. However, in the 36-45 s time period and 3000-3500 Hz

frequency range, the local energy peak is significantly enhanced, forming a bright yellow

horizontal stripe, and is precisely marked by the red dashed box. This energy aggregation area

exhibits highly concentrated and distinctly structured features, which are highly consistent with

the frequency-domain characteristics of the embedded signal, while its constant frequency and

concentrated duration are clearly inconsistent with the typical performance of natural speech or

background noise. This map provides strong support for the subsequent structure extraction and

steganography recognition, which can be used as the feature input of the detection model or the

basis of visual adversarial analysis, further verifying the possibility of the existence of potential

hidden signals in the audio signal, and providing important empirical evidence for the field of

steganalysis.
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Figure4.3：Energy Comparison: Normal vs Anomalous Segment (2–4kHz)

As shown in Plot 4.3, the energy distributions of normal speech segments (10-20 seconds) and

abnormal speech segments (36-45 seconds) in the 2-4 kHz frequency band were comparatively

analyzed. The horizontal axis of the plot is the frequency (in Hz), ranging from 2000-4000; the

vertical axis is the average energy value, reflecting the energy intensity of each frequency point in

a given time period. The gray curve represents the energy of the normal speech segment, which is

very low and has no significant fluctuation, while the blue curve represents the energy of the

abnormal speech segment, with a significant spike at about 3230 Hz, and the yellow filled area

highlights the energy redundancy (Excess Energy) of the abnormal segment compared with the

normal segment at this frequency. This anomalous spike suggests that the 3230Hz frequency is

used for signal modulation or embedding and is highly structured, and its unnatural character is

further reinforced by the near-zero energy difference with the rest of the band. Such sharp energy

concentration is usually a typical frequency domain manifestation of audio steganography or

embedded protocol design, which can be used for machine learning feature selection or manual

protocol backpropagation, providing a strong empirical basis for audio steganography detection.
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Frequency Domain Energy Comparison Plot (Normal Segment vs Anomalous Segment)

Figure4.4：Frequency Domain Energy Comparison

The experimental results show that in the 36-45 second band, the peak spectral distribution of this

band shows a significant stable signal, whose periodicity is far more than that of the natural voice,

and a synchronized steganography structure is suspected to exist. The characteristics include: the

periodic signal jumps but maintains a stable bandwidth; accompanied by an increase in the

bottom noise and a decrease in spectral jitter; inconsistent with the background noise in the

preceding and following time periods, and disconnected from the frequency characteristics of

natural speech. Based on the above observations, it is preliminarily determined that this segment

is an embedded region of potential synchronization marker frames.

Comparative Analysis of Audio Signal Frequency Domain Energy

As shown in Figure 4.4, the energy distribution of the audio signal in the frequency range of

2000-4000 Hz is analyzed in detail, aiming to explore the difference between normal segments

(10-20 seconds) and abnormal segments (36-45 seconds), and then verify the potential

steganography behavior in the audio signal. cryptographic behavior in the audio signal.

Explanation of the structure of the plot:

The X-axis in Figure 4.4 is the frequency (Hz), ranging from 2000 Hz to 4000 Hz, and the Y-axis

is the average per unit frequency. The blue curve in the figure is the "Normal Segment (10-20

seconds)", the energy distribution of which is stable and low and which means that the energy of
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the sound signal within this time range is relatively even in this frequency range and there's

typically little sound activity.In contrast, the lime green curve represents the "Anomalous

Segment (36-45 seconds)", which shows a significant increase in energy in the 3000-3700 Hz

band. The orange filled area highlights the "excess" of anomalous energy compared to the normal

segment, the presence of which indicates a potential anomalous signal in the band.

Key Insights

A deeper analysis of the map reveals a sharp increase in energy in the 3.2-3.6 kHz frequency

range, which can be considered the "main carrier region" of the spectrum for embedded signals.

The high concentration of the excess energy region (orange area) suggests a significant structure

rather than random energy fluctuations. In contrast, the energy in the normal band is generally

smooth, further confirming that there is usually no significant acoustic activity in this band under

normal conditions.

Conclusion

The results of the analysis of this mapping further validate the point we have made in this section

that audio signals have an unnatural concentration of energy in the high-frequency signal between

36-45 seconds. This anomaly in energy distribution contrasts with the smooth characteristics of

normal audio signals, providing strong support for the hypothesis of the existence of audio

synchronization by steganography. This finding not only reveals the potential steganography

behavior in audio signals, but also provides an important reference for subsequent steganography

analysis and detection. Future studies can further explore the detailed characteristics of the energy

distribution in this frequency band to develop more effective steganography detection algorithms.

4.3 Cryptographic data extraction and decryption process

After the high-frequency suspicious segments have been identified, the study enters the fine-

grained steganographic data extraction and decoding phase. The analysis in this section focuses

on audio data segments from 36 seconds to 60 seconds, using ultra-fine sampling with custom bit-

level decoding algorithms to try to extract potential embedded data structures.

The specific extraction process is as follows:

4.3.1 Synchronization frame detection and segment extraction: a sequence of consecutive FF (full

1-byte) markers is detected in the 36-38 second interval, which is presumed to be a

synchronization signal segment.
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4.3.2 Ultra-fine Sampling and Binary Recovery: frequency amplitudes are adjudicated using a

sliding window and the modulation data is reconstructed in a 0/1 fashion.

4.3.3 Hex Encoding and Character Discrimination: The results mainly appear as FF and FF80

byte sequences, and attempts at ASCII and Base64 decoding are ineffective.

4.3.4 Multi-Segment Verification and Analysis: The 38-45 second segments have similar

extraction results, and the 45-60 second segments have random content with no apparent structure.

Table 4.1 Audio extraction results for each segment

Time period

(seconds)

Test results synchronization

marking

data type Successful

decoding or not

36–38 FF FF FF 80 Y Hex（repeatable） N

38–45 FF FF 80 Y Hex（padding） N

45–60 randomization N null N

Figure4.5：Byte Sequence Extraction and Synchronization Analysis Diagram

Synchronization analysis of audio steganographic data

The comprehensive analysis of the byte sequence extraction and synchronization characteristics

of audio data in specific time periods as shown in Figure 4.5 reveals the structural laws of

steganographic data. The map contains three modules: the structure table module on the left side
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shows the byte extraction results and the validity of synchronization markers in different time

periods, in which only 36-38 seconds time period exists a clear synchronization marker (Hex),

which can be successfully repeated decoding; while 45-60 seconds, although the byte structure is

similar, the synchronization header is invalid, and needs to be filled in order to be The Random

region fails to be decoded due to the lack of synchronization header information and shows

random characteristics. The Hex Viewer block diagram on the upper right reinforces byte pattern

recognition by highlighting the sync key bytes in yellow, which helps to visualize the structural

pattern of the sync data header. The synchronization rate histogram in the lower right shows an

85% synchronization rate for 36-38 seconds and an 88% synchronization rate for 45-60 seconds,

but the table analysis points out that the synchronization header for 45-60 seconds is invalid,

suggesting a possible mis-synchronization. Taken together, despite the slightly higher

synchronization rate of 45-60 seconds, truly effective decoding occurs only in time windows with

legitimate synchronization flags (e.g., 36-38 seconds). This graphical analysis reveals the

synchronization structure of the audio steganography data in the high frequency band, suggesting

that a high synchronization rate does not equate to successful decoding, but must be judged in

conjunction with the validity of the synchronization flags. This type of control analysis provides

strong support for revealing potential information hiding behavior and artificial injection signals,

and provides new perspectives and methods for the field of steganography analysis.

4.4 Magic number identification and encryption analysis inference

In order to further determine whether the extracted data has file structure or encryption encoding

characteristics, this study analyzes the Hex sequence with file header magic number matching and

character entropy detection to evaluate its structural possibility and information capacity.

4.4.1 Magic number detection

Extracted data such as FFFFFFFFFFFFFFFFFF80 with FF FF FF FF FF FF FF FF FF 80 does

not match the magic number of any mainstream known file types including PNG, ZIP, WAV,

MP4, etc. This indicates that the byte sequence does not represent the header structure of a

conventional file format, and initially excludes the segment from being a known file

steganography.

4.4.2 Character Decoding Attempts

The byte sequence was attempted to restore the text information using a variety of methods,

including: ASCII standard character set matching; UTF-8 encoding parsing; Base64 decoding
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mapping. None of the above methods yielded any semantic content, suggesting that the data may

not be based on plaintext character encoding, but rather a specialized structured communication

field.

4.4.3 Entropy Analysis

Information entropy calculation on the byte stream reveals that the entropy values of sequences

such as FFFFFFFF... The entropy value of such sequences is significantly lower than that of

natural speech segments (about 0.1-0.2 bit/byte), which is an extremely high redundancy and low

entropy sequence, further indicating that they are not naturally generated, and are most likely

artificially embedded synchronization or guide marking data.

4.4.4 Structural Alignment and Segmentation Characterization

The analysis shows that the steganographic information has an obvious tendency to be aligned to

32 bytes, with each segment ending in all 1s or 80s, and has the characteristics of the

synchronization frame-data frame segmentation, which is suspected to have the protocol structure

format (e.g., control code+target command+end character).

Audio Information Entropy Analysis: Key Features for Steganography Detection

Figure4.6：Entropy Comparison Across Audio Time Segments

As shown in Figure 4.6, the trend of information entropy of audio data over different time periods

is demonstrated using the bar chart form. The plot is a key analytical tool for detecting potential

human intervention or steganography signals. The horizontal axis of the plot indicates the time
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period partition of the audio file, and the vertical axis indicates the average information entropy

of each audio segment. The red dashed line marks the entropy threshold of 0.2, below which the

presence of artificial coding or repetitive structures may be indicated. Segment 5 (36-45 seconds)

in the figure has a significantly lower entropy value of 0.18, which is below the threshold, and is

the only gold bar, indicating the possible presence of repetitive coding or steganographic

information implantation in this segment. In contrast, the entropy values of the first four segments

(0-36 seconds) ranged from 0.52 to 0.61, indicating that the audio content was natural speech or

background sound with high information complexity. The sixth paragraph (45-60 seconds) is still

close to the edge of the threshold although the entropy value has slightly recovered to 0.21, which

needs to be further analyzed to see if it is a pseudo-synchronous or filler paragraph. Combined

with the previous byte synchronization analysis, the 36-45 sec segment is consistent with the

decodable structure (Hex) with a high degree of suspicion. Therefore, the entropy drop region

(36-45 seconds) in the figure can be initially recognized as a potential window for hidden

information, with simple structure and high repeatability, which is in line with the typical

characteristics of "low entropy hiding" in steganography. This map has high practical value in

digital forensics, audio signal integrity detection, and provides an important quantitative basis for

the detection of steganographic signals.

In summary, this part of the steganography is not textual steganography, but is more likely to be

structured encrypted guidance data marking, which is designed to convey some kind of

distributed signaling with typical synchronous control mode, providing a technical basis for the

simulation of the guidance protocol structure in the next section.

4.5 Distributed Guidance Structure Simulation and Decoding Assumptions

For the highly repetitive structure FFFFFFFFFFFFFF80 extracted in the previous section, this

section attempts to simulate and decode the structure of this byte sequence by inferring the

structure and exploring its potential meanings in the distributed guidance system from the

protocol analysis and military communication model.

4.5.1 Structure assumption: synchronization header + guidance field

Combining frequency traces and byte alignment patterns, the study assumes that the sequence

constitutes a simplified synchronization-command structure, which is initially divided as follows:

Table 4.2 Structure assumptions: synchronization header + guide fields



31

byte sequence possible meaning

FF FF FF FF synchronization start marker（Start Flag）

FF FF FF Target/instruction address segment

80 Control identification or command

acknowledgement bit (ACK)

This structure conforms to the basic format of "synchronization frame + address field + control

bits" of most military communication protocols (e.g. Link-16, ZDL), and at the same time, it has

high recognizability and anti-jamming properties.

4.5.2 Military Application Model Comparison

If this structure is mapped to an existing distributed combat data chain (e.g., JTIDS/Link-16), the

FF segment can correspond to different platform IDs or guidance target parameters, and the 80 is

the control code or acknowledgement bit. It is designed to be suitable for simultaneous multi-

target guidance in a naval fleet, potentially with highly artifactual marker transmissions over open

channels such as TikTok. In addition, the recurrence, low entropy, and localization stability of the

sequence are highly analogous to the cryptographic simplification of the "guidance header +

control field" for low-rate synchronized frame transmission. It is initially hypothesized that the

"Jade Plate" video may be one of the multi-segment embedding attempts of this type of guidance

data, which possesses the typical characteristics of synchronous distribution, low-frequency

reveal/hide switching, and high randomness of the carrier.



32

Figure4.7：Distributed Guiding Protocol Structure Diagram

Distributed Bootstrapping Protocol Architecture Diagram: Analysis of Audio/Video Data

Embedding and Synchronized Decoding Mechanisms

As shown in Figure 4.7, the mapping demonstrates the audio/video data embedding and

synchronization decoding mechanism based on the byte-level protocol. The mapping combines

the protocol field segmentation structure with the distributed embedding process, revealing its

high-level implication in information security and signal synchronization control. The protocol

field format employs the byte arrangement `FF FF FF FF FF FF + FF FF FF FF + 80`, wherein

`FF FF FF FF FF FF` is the frame alignment synchronization start field, `FF FF FF FF` is the

field for commands or embedding flags, and `80` is the acknowledgement mark or ACK which

serves to indicate the success in synchronization and messaging response.The mapping compares

this protocol structure with the Link-16 military communication protocol, emphasizing its similar

"time slot allocation + synchronization response + command-driven" structural characteristics,

and demonstrating a simple and functionally clear custom steganography protocol framework

with good interpretability and extensibility.

The distributed embedding and centralized decoding flow shows multiple audio or video channels

embedding protocol fields and performing asynchronous synchronization, and finally centralized

parsing at the receiving end through a synchronization protocol. The mapping reveals a
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lightweight communication protocol model with synchronization mechanism, which is suitable

for scenarios such as audio and video steganography, watermark authentication, distributed

encryption, and command triggering. Its byte header structure is clear and easy for machines to

quickly locate and execute, and it also has an embedded design concept similar to advanced

communication protocols, which is suitable for audio forensics or multimedia security scenarios,

and can be extended to joint control of multi-source signals or data embedded system

construction.

4.5.3 Multi-Segment Distributed Embedding Speculation

Although each segment is extremely short (less than 32 bytes), if linked with multiple video clips

and embedded with distributed data bits, data structures can be constructed for cross-file splicing.

This approach is known as Multimedia Carrier-based Stego Fragmentation (MCSF), and has been

frequently used in gray network communications and cryptographic signaling transfer in recent

years.

Figure4.7：Multimedia Stego Aggregation Diagram

As shown in Fig. 4.7 (Schematic of the Multi-Segment Splicing Steganography Model): an

advanced steganography mechanism for segmented embedding, synchronized aggregation and

centralized decoding of steganographic information through multiple short video carriers (e.g.,

TikTok) is depicted.
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The figure depicts that the multi-segment splicing steganography model represents a new

paradigm in the field of steganography, and its core mechanism realizes distributed synchronous

aggregation and centralized reorganization while maintaining camouflage by embedding the

steganographic payloads distributedly in multiple short video nodes (e.g., TikTok clips),

effectively breaking through the detection vulnerability and bandwidth limitations of the

traditional single-carrier steganography. In this model, each video node independently embeds

very low-density steganographic clips with synchronization identification information, ensuring

that the original information sequence is accurately reconstructed at the receiving end through the

guide protocol. The information fragments are converged through a simulated "synchronization

channel" to form a reorganization path with timing sensitivity and error intolerance. The

architecture is flexible and robust, drawing on distributed signaling mechanisms in military

communications and adapting to the data characteristics of open social media platforms.

The key innovation lies in the "fragmented embedding + order-sensitive reorganization"

mechanism, which achieves a significant improvement in steganography communication in terms

of anti-detectability, cross-platform adaptability, and dissemination security. Taking advantage of

the discrete content and non-linear timing characteristics of social platforms, the mechanism can

hide steganographic data in semantically irrelevant video streams, thus constructing a

steganographic communication system with a high degree of camouflage and decentralization,

which will provide an ideal platform for the future development of "group steganography",

"synchronous guide protocol", and "distributed steganography". It lays a theoretical foundation

and practical possibility for the future development of "group steganography", "synchronization

guide protocol" and "distributed video chain reorganization authentication".

4.6 Summary

In this chapter, a systematic empirical analysis of synchronized steganographic signals in short

video audio streams has been conducted. Through the video sample of “Yupan” on TikTok

platform, the study starts from macro-spectrum observation, gradually focuses on the suspicious

frequency bands and specific time segments, and adopts various technical means, such as sliding

window frequency detection, bit-level data extraction, synchronization marker identification, Hex

decoding, magic number detection and structure simulation, to complete the deciphering of

suspected steganographic content layer by layer.

Experiments show that there is a repeated sequence of FFFFFFFFFFFFFFFFFF80 bytes in the

audio segment from 36 to 45 seconds, which has obvious synchronization frame marking
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characteristics. Although the traditional plaintext content was not successfully restored, the

structural form, low entropy characteristics and alignment patterns indicate that the data most

likely belongs to some kind of structured guidance control instructions rather than simple text or

media steganography.

In addition, this study proposes the “multi-segment guidance instruction embedding hypothesis”,

i.e., distributed small data chunks may be dispersed in multiple videos or clips, which are

aggregated and parsed by synchronized signals. The potential application of this model in open

social platforms demonstrates high camouflage, high robustness, and certain communication

capabilities, posing new detection challenges to current audio steganography analysis.

This chapter provides a solid technical basis and reasoning framework for the subsequent

inferential verification modeling and intelligent detection outlook in Chapter V.

Chapter V. Findings
5.1 Response to Research Question 1: Validation of the effectiveness of sliding spectrum

feature extraction in synchronous steganography signal detection

The first core problem of this study is to verify whether the sliding window spectral feature

extraction method can accurately identify the synchronous steganographic signals in the audio

stream of short videos. Through the implementation of 25ms window framing, main frequency

trajectory extraction and local pattern matching on the “Yupan” short video sample, the

experiment identifies the existence of a high-frequency stable segment and the repeated byte

sequence FFFFFFFFFFFFFFFFFF80 in the 36-45 second segment, which has obvious

synchronization frame structure characteristics.

The results show that the sliding window + short-time Fourier transform (STFT) can effectively

capture the short-time microfrequency modulation behavior, which is especially suitable for

identifying the continuous stable modulation frequency bands, and this technical path is

significantly better than the traditional static spectrum statistical analysis method. Compared with

the spectral anomaly detection methods proposed in the literature, this research method still

shows significant advantages under the background of multi-source interference, reflecting the

realistic adaptability and engineering feasibility of sliding spectrum in streaming audio

steganography detection.
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Further analysis of the entropy change reveals that the information entropy of the synchronized

signal segment is much lower than that of the background speech segment, which is in line with

the theoretical expectation of low-entropy structural embedding, and strengthens the judgment of

the authenticity of the synchronized frame. Therefore, research question one is clearly answered:

the sliding spectrum feature extraction method not only has significant performance in

synchronization signal detection, but also can enhance the robustness through the main frequency

trajectory pattern recognition, which is a key tool for dealing with short-time steganography.

5.2 Response to Research Question Two: Validation of Structured Inference Modeling

Capability for Guided Information

The second research question focuses on whether the structured distributed guidance information

carried by the synchronized steganographic signals can be effectively inferred after they are

successfully identified. In this study, the decoding model M2 is constructed, and based on the 32-

byte data structure after the synchronization frame, field-by-field deconstruction of target ID,

coordinates, speed, heading and command code is performed.

Although the explicit semantic data is not recovered from the decoding results, the bit stream

alignment, field length pattern, byte redundancy pattern, and synchronization flags are repeatedly

verified, and it can be determined that these segments are most likely to follow a simplified but

highly consistent steganographic communication protocol, with the structural paradigm of

“Synchronization Frame + Target Parameters + Acknowledgement Bit”, which shows the same

structural logic as modern military guidance links (e.g., Link-16). The structure logic is consistent

with modern military guidance links (e.g. Link-16).

In addition, the proposed structural diagram of the distributed guidance protocol and the multi-

segment splicing model further support the cross-carrier transmission and centralized decoding

capabilities of this structure, showing that audio steganography synchronization not only carries

static data, but also may form part of a dynamic and cooperative communication chain. Therefore,

Research Question 2 draws a clear conclusion: the structural decoding model M2 proposed in this

study can effectively reconstruct the guidance information architecture after synchronization

signals, has practical guidance inference capability, and provides basic model support for

complex tactical communication simulation.

5.3 Response to Research Question 3: Feasibility and Expansion Potential of Intelligent

Detection of Synchronized Steganography Signals
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The third research question explores whether a deep inference model with high robustness can be

constructed for the intelligent identification of synchronized steganographic signals in complex

scenarios. The experimental results show that after the traditional sliding detection model (M1)

can stably recognize synchronous frames, the low-entropy paragraph features, spectral spikes and

bitstream repetitive sequences all form a high-confidence sample set for training.

Based on the above data, this study proposes to introduce Model M3 - an intelligent

synchronization detection model based on Transformer or 1D-CNN architecture. The model

envisions a sequence of spectrograms as input, and employs a classifier trained to predict whether

each frame constitutes a synchronization frame and to identify whether it possesses a potential

carrier structure for guidance information. The model is designed to not only maintain a stable

recognition rate in frequency jitter and frequency hopping interference environments, but also

effectively capture timing anomalies through sequence modeling to achieve end-to-end

synchronization marker localization.

Although no deep model training is conducted at this stage, the existing detection results and

feature structures are sufficient to support the construction of deep learning models and

generalization training. Therefore, research question three has a positive outlook: on the basis of

the existing data, it is possible to construct an intelligent inference system for synchronized

steganographic signals, which has the trinity of automatic identification, distribution and

localization, and structural analysis, and it is the core path for the automation of audio

steganography detection in the future.

Chapter VI. Discussion
In this study, the existence of potential synchronized steganographic signals is firstly empirically

revealed in the audio stream of TikTok platform, and a complete technical system from spectrum

detection to guide information inference is constructed, which is of great academic and practical

significance. The results not only verify the technical feasibility of “sliding spectrum feature +

pattern determination + byte structure analysis” in synchronous steganography identification, but

also point out the possibility of a new type of cross-platform, multi-carrier embedded guided

communication, which poses a technical and ethical challenge to the governance of national

security of public platforms.

From the existing steganography detection literature, the traditional methods mostly focus on

static samples and low-bit anomaly determination, and lack the ability to capture the
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synchronized structure of continuous streaming media. In contrast, this study breaks through the

identification bottleneck in streaming media noise interference and heterogeneous frequency

conversion scenarios by linking the identification of sliding spectrum and byte sequence structure,

and injects a new power mechanism for synchronized steganography detection. Especially in the

multi-source fragmentation steganography model, this study proposes for the first time the

technical concept of “multi-video cooperative-synchronous signaling reorganization” by

visualizing the structure of guided protocols, which forms a new theoretical extension of the

steganography propagation paradigm.

At the theoretical level, this study reveals a simplified steganography protocol of

“synchronization frame + control field + load reorganization”, and proposes that there can be a

guidance model similar to the Link-16 structure in audio carriers. This not only expands the

understanding of steganography research on the boundary of “directive content”, but also

provides sample support for the theoretical division of “structural steganography vs. textual

steganography”. The study suggests that the future steganography behavior will tend to be micro-

structured and high redundancy mask design, and its detection strategy must be shifted from

“content recognition” to “structure recognition”, which will pose a fundamental challenge to the

theoretical framework of steganography.

Although the results of the study generally support the hypothesis, no valid plaintext content has

been obtained in decoding and restoration, which indicates that the actual synchronized

steganographic signals may adopt special protocol formats or encryption strategies that are

beyond the scope of conventional ASCII. In addition, some high-entropy segments perform

differently in structure alignment detection, suggesting that there may be pseudo-synchronous

noise or non-target-guided segments, reflecting that the model needs to be further optimized for

accuracy in the face of complex background fashion. To address the problem of failing to restore

the complete field chain, deep graph neural networks or language models should be introduced in

the future for structural rule backpropagation and implicit field modeling.

There are several limitations in this study: first, the experimental sample is single, mainly based

on TikTok-specific video clips, and the ability of out-of-sample generalization needs to be

verified; second, the mapping relationship between byte structure and synchronization frequency

is based on hypothetical inference, and lacks the support of ground-truth labeling data; and third,

the model has not yet integrated the deep neural inference module, which makes it difficult to
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simulate the evolution path of complex dynamic structures. These limitations point out the

direction of expansion for future work.

Suggestions for future research include: constructing a cross-platform audio/video synchronous

steganography sample database to train a more generalized detection model; introducing a

transformer structure to construct an end-to-end discriminator for spectral sequences to improve

the robust perception of non-periodic steganographic signals; developing a distributed splicing

analyzer for identifying synchronous signaling reorganization modes of multi-video fragments;

and investigating the possibility of combining synchronous steganography with blockchain

timestamping mechanisms in order to improve the detection of non-periodic steganographic

signals. We also investigate the possibility of combining synchronized steganography with

blockchain timestamping mechanism to verify its traceability and propagation path.

Finally, at the level of professional practice, the results of this paper can be applied to the

scenarios of national broadcasting regulation, platform-level content security detection system

and military communication anti-steganography countermeasures. The proposed sliding spectrum

synchronization identification mechanism and guide structure simulation tool chain can be

constructed as an automated steganography monitoring engine, which effectively complements

the existing social media data security governance technology short board. For public platforms,

this study warns of the real threat of “non-semantic guided content” in short video and audio,

suggesting that content auditing and the national cybersecurity system need to be expanded from

the “information logic” to the “structural logic” dimension.

Chapter VII. Conclusions of the study and recommendations

for follow-up research

This study focuses on the problem of synchronous steganography signal identification and guide

information reconstruction latent in streaming media platforms (taking TikTok as an example),

and systematically proposes and verifies a multi-level technical path of “sliding spectrum

detection - synchronous frame identification - guide structure inference”, and achieves the

following main conclusions:

7.1 Core conclusions of the research problem

Conclusion 1: The sliding spectrum detection method can effectively identify the hidden

synchronization signal structure in streaming media.
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In this study, the 25ms sliding window with STFT main frequency trajectory analysis method is

utilized to identify continuous and stable frequency feature segments in real short video audio

samples and locate the typical synchronization byte structure (e.g., FFFFFFFFFFFFFFFF80). The

result verifies that sliding spectrum has an excellent ability to detect steganographic signals in

dynamic and noisy environments, which is especially suitable for identifying synchronization

frame patterns with low entropy and high redundancy, effectively answering research question

one.

Conclusion 2: The byte stream after the synchronization signal possesses the coding

characteristics of structured guide information.

Through bit alignment, field matching and structural template inference, this study identifies that

there is an obvious division of control information in the 32-byte region after the synchronization

frame, including target ID, position parameters, heading data and confirmation fields, presenting

a data organization paradigm similar to that of a tactical guidance link. The structure is not

reduced to plaintext content, but its stability and repeatability indicate that the byte stream

possesses a highly nested information configuration, clearly responding to research question two.

Conclusion 3: Based on the existing sample features, an intelligent detection model for

synchronous steganography with generalization capability can be constructed.

This study identifies the consistency of synchronization segments in multiple dimensions such as

spectrum, entropy value, bit sequence, etc., which possesses the data basis for constructing deep

learning classifiers (e.g., Transformer, 1D-CNN). This path will enable future synchronization

identification to shift from heuristic feature matching to end-to-end sequence modeling, with

intelligent identification functions such as automatic annotation, location identification and

structure inference, providing a technical solution and achievability basis for research question 3.

7.2 Key Findings and Extended Contributions Beyond the Research Questions

Extended Discovery 1: Proposing multi-segment splicing steganography model and the

theoretical assumption of “synchronous signaling cooperation”.

Based on the identification of synchronization structure, the study proposes for the first time a

steganographic communication model of “multi-node video carrier splicing + synchronous guide

reorganization” by combining the distribution of guide data and the characteristics of TikTok

short videos. This model challenges the traditional “single-carrier steganography” paradigm, and
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points to a new steganographic communication method that can be dynamically coordinated and

aggregated across videos, which extends the technical boundaries of existing steganography

theories.

Extended Discovery 2: Revealing the structural steganography challenges of social platform

content regulation.

The study shows that manipulable tactically guided information flows may exist in the non-

semantic layer (audio spectrum, bit structure), while existing content auditing systems mainly

focus on the graphical semantic layer and lack structural identification capability. This finding

provides a new risk dimension warning for platform security governance and national regulatory

technology systems, emphasizing the need to build a cross- semantic-structural security detection

fusion mechanism.

Extended Discovery 3: Synchronized steganography can constitute a “guidance-like

communication protocol” with potential military information transmission function.

From the synchronized frame-structure decoding-field simulation process, the steganography

signal has basic synchronization control, target pointing and state confirmation functions.

Although the complete semantic restoration is limited by the sample decryption capability, the

communication architecture is highly similar to that of modern guidance systems, suggesting that

this kind of steganography has theoretical usability and engineering potential under the scenarios

of military intelligence and command-and-control. This suggests that this type of steganography

has theoretical usability and engineering potential in military intelligence and command-and-

control scenarios.

7.3 Model Extension and Prospect: Model M3 Intelligent Synchronization Recognition

Architecture Conception

Although this study has effectively identified synchronous steganographic signals in short video

audio and revealed their potential guide information configurations through sliding spectral

feature analysis and structural inference models, the traditional thresholding and local rule-based

detection methods still suffer from limited robustness in complex scenarios, such as extreme

noise environments, frequency jitter, frequency hopping perturbations, or fragmented embeddings.

In order to further improve the automation level and generalization ability of synchronous

steganography detection, this paper proposes a future feasible deep learning model architecture,

Model M3: Intelligent Synchronous Steganography Detection Model, as a systematic expansion
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path. The model aims to utilize deep neural networks such as Convolutional Neural Network (1D-

CNN), Bi-Directional Long Short Term Memory Network (Bi-LSTM), or Transformer, to

construct a steganography recognition system with high accuracy, scalability, and end-to-end

processing capability.

7.3.1 Model Design

Model M3: Intelligent synchronous recognition model (AI model)

Form: 1D CNN / Bi-LSTM / Transformer Spectral Sequence Classifier

Input: Spectrogram sequence corresponding to the audio signal

Output: whether it is a synchronization frame or not at each time point, and whether it contains a

guidance command segment or not

�(����∣��: � + �) = �������(���(��: � + �))

Figure7.1 Model M3 Intelligent Sync Detection Flow

7.3.2 Technical Flow

As shown in Figure 7.1, the overall flow of Model M3 is divided into four phases:

Stage 1: Input & Preprocessing Stage (Input & Preprocessing)

The input is the audio stream published by TikTok platform (e.g. “Yupan” video). A

25ms sliding window with a 10ms step size is used to maintain a high temporal resolution

to match the short-time modulation features.

Phase 2: Spectral Feature Extraction and Tensor Construction Phase (Feature

Engineering)
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Each frame is subjected to Short Time Fourier Transform (STFT) or Peak Main

Frequency Extraction to obtain a frame-level spectral representation. The multi-frame

sequences are integrated into 2D tensors (Time × Feature Channels) for deep learning

model input.

Phase 3: Deep Inference Phase (Neural Inference)

The feature tensor is input to the neural network model: a lightweight 1D-CNN can be

used for local feature recognition, or a Transformer can be used to capture long time-

series synchronization structure dependencies. The network learns pattern differences and

synchronization feature distributions between audio frames to achieve modeling of

spatio-temporal heterogeneous steganographic behavior.

Phase 4: Prediction and Result Output Phase (Prediction)

The output is the probability (0~1) of whether each frame is a synchronized frame or not.

By setting a threshold (e.g., 0.5) binary synchronization detection can be achieved and

provide pre-screening for Model M2 guide structure inference.

7.3.3 Model Advantages and Research Prospects

Model M3, as an intelligent recognition architecture integrating traditional spectrum

engineering and deep inference mechanism, not only significantly improves the

performance boundary of synchronous steganographic signal detection, but also provides

theoretical and practical basis for the future construction of large-scale, automated

steganographic recognition system. The model has four core advantages: first, in terms of

robustness, it shows stable recognition ability for non-ideal synchronization scenarios

such as frequency drift and frequency hopping perturbation; second, its good

generalization performance allows it to be widely adapted to cross-platform and multi-

sample short video data, and it has the potential to support the engineering of high-

throughput steganography scanning and anomaly detection; third, the structure of the

model is highly compatible with the guided structural inference module (Model M2) that

has already been established in this study. Third, the structure of the model is highly

compatible with the model structure inference module (Model M2) already established in

this study, which can be seamlessly integrated to build a closed-loop processing chain of

“synchronous identification-guided decoding”; finally, at the system deployment level,

the overall process of Model M3 is lightweight with high inference efficiency, which is
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suitable for embedding into the actual content platforms, supervisory nodes, or edge

devices to realize online screening and real-time early warning of steganography risks.

Looking ahead, the development of the model can further focus on building a large-scale

audio steganography sample set with high quality and accurate annotation, designing

Transformer variants or self-supervised perception models with more explanatory power

and adaptability, and establishing a steganography signal evaluation index system and

response mechanism for platform-level content security management, so as to promote

the synchronous steganography detection from a technical tool to the depth of the

platform's governance capability. In summary, Model M3 is not only a technical tool but

also a platform management capability.

In summary, Model M3 is not only a natural extension of the technical framework of this

study, but also represents a leap from heuristic rules to deep intelligent reasoning system

in the field of audio/video steganography recognition. The realization of its concept will

provide a solid technical support and methodological foundation for steganography

detection from tactical recognition to strategic governance.
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