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Abstract—Machine learning (ML)-based intrusion detection
systems (IDS) are vulnerable to adversarial attacks. It is crucial
for an IDS to learn to recognize adversarial examples before
malicious entities exploit them. In this paper, we generated
adversarial samples using the Jacobian Saliency Map Attack
(JSMA). We validate the generalization and scalability of the
adversarial samples to tackle a broad range of real attacks on
Industrial Control Systems (ICS). We evaluated the impact by
assessing multiple attacks generated using the proposed method.
The model trained with adversarial samples detected attacks
with 95% accuracy on real-world attack data not used during
training. The study was conducted using an operational secure
water treatment (SWaT) testbed.

Index Terms—Adversarial samples, Cyber physical systems,
Industrial control system (ICS) security, Sensors and actuators,
JSMA.

I. INTRODUCTION

Industrial control systems (ICS) comprise a significant
portion of any state or nation’s critical infrastructure (CI).
Examples of such systems include water treatment plants and
electric power grids, where an ICS regulates the physical
processes. The physical processes consist of two primary parts:
monitoring and controlling. The monitoring part maintains
processes and ensures they are operating properly by measur-
ing various signals acquired from sensors. The controlling part
handles processes and makes decisions that enable actuators
to perform actions [1].

ICS and their modules were previously thought to be safe
against cyber-attacks since they ran on proprietary hardware,
software, and air-gapped networks that were not connected
to the internet [2]. However, as connectivity with the internet
provides online access and monitoring functionalities, it has
led to the necessity of connecting ICS components to other
networks, subsequently contributing to the digitalization of
industrial systems [2].

Given their applicability, these systems have become a
tempting target for attackers. Since these systems regulate real-
world processes, cyber-attacks on them could have serious
consequences for the ecosystems in which they are used, as
well as for end-users [3]. As a result, it is evident that the
security concerns of such systems are a serious global issue,

and it is necessary to design robust systems to defend against
cyber-attacks. Various security methods have been proposed
for traditional IT systems, but applying them to ICS systems
is complex since ICS devices have limited resources. They
contain outdated systems and devices that do not support
advanced safety mechanisms. Alternatively, security solutions
such as passive monitoring of process data appear to be
promising [4].

As a corollary, there has been a significant rise in research
into ICS-tailored intrusion detection systems (IDS). These IDS
monitor network or sensor data for attacks and anomalies that
could impact ICS. Machine learning has seen a remarkable
increase in use and integration with IDS due to its accuracy
in detecting attacks [5]. Unfortunately, the emergence of such
systems has opened up a new attack vector, i.e., trained
models can be targeted as well. Adversarial Machine Learning
(AML) involves launching attacks on machine learning-based
IDS models by exploiting flaws in the trained models, such
as ’blind spots” among training examples. Specifically, by
introducing minor perturbations to data points not seen during
training, it is possible to cross decision boundaries and classify
data into different classes. As a consequence, the model’s
performance may suffer when encountering previously unseen
data points, leading to an increase in misclassifications. AML
can be used to manipulate data received via actuators and other
devices. In the context of ICS, this is done by introducing
perturbations that cause attack data to be categorized as
normal, thereby evading the IDS. This could result in late
detection of an attack, information leakage, financial loss, etc.

In the current study, we assess the effectiveness of ad-
versarial samples generated using machine learning against
cyber-attacks on a water treatment plant [6]. This work uses
the secure water treatment (SWaT) (December 2015) attacked
dataset [7] to generate adversarial samples using Jacobian
saliency map attack (JSMA). By utilizing JSMA, we can more
accurately assess the effectiveness of the adversarial samples.
Although the adversarial samples are generated using attack
data, however, this attack data was never used directly in
training the machine learning classifiers. Therefore, the result
of such a trained model with high accuracy is an indication
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of the usefulness of adversarial sample generation techniques,
in attack detection. In this paper, we utilize a real-world
SWaT attack dataset to provide a more realistic evaluation of
our solution’s performance under different machine learning
classifiers with varying accuracy.

The main contributions of our paper are as follows:

« This paper presents an approach to generate synthetic ad-
versarial samples using JSMA. It also highlights that the
JSMA which was originally designed for image media,
could be extended to generate adversarial samples for
time series data. In particular, our approach is significant
in understanding the potential weaknesses in current ML
algorithms, particularly in security-sensitive applications.

o To validate our approach, we conducted various ex-
periments demonstrating the practical effectiveness of
synthetic adversarial samples against ML-based IDS. Our
results show a significant decrease in the detection rate
of the IDS when exposed to these adversarial samples,
underscoring the critical need for enhanced security mea-
sures in ML-based approaches.

The remaining sections of this paper are organized as
follows. Section II highlights the related work. Section III
gives a brief overview of the water treatment control systems.
Section IV presents our proposed ML framework for anomaly
detection in the SWaT system. Then, we apply our framework
to a real-world SWaT system. We evaluate the performance
of ML models and showed the results in Section V. Finally,
Section VI concludes the paper and offers insights for future
research.

II. COMPARISON WITH RELATED WORK

The majority of research on adversarial machine learning
has focused on the computer vision area. However, we believe
it is important to extend prior work to other domains, including
cyber-physical systems, which are vulnerable to real-world
attacks [8]. A study reported in [9] used machine learning
to generate attack patterns for an operational water treatment
plant. They used the same SWaT attack dataset that we
have used in our proposed study. They employed Association
Rule Mining (ARM) to generate a large number of attack
patterns for SWaT. These attack patterns can later be used as
a dictionary for signature-based anomaly detection. However,
our proposed study creates perturbations in the attack data. The
perturbed attack data is used to create more robust supervised
machine learning models for anomaly detection. The literature
related to attacker models for ICS and model-based tools
for SWaT risk assessment is described in the subsequent
subsection.

A. Attacker Models for ICS

According to [10], adversarial samples were generated using
three distance metrics: Lo, Lo, and L,. These samples were
created using limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS), fast gradient sign method (FGSM), and
JSMA, utilizing the modified National Institute of Standards
and Technology (MNIST) database and Canadian Institute

for Advanced Research (CIFAR) datasets. In a recent study,
the authors generated adversarial examples using an upgraded
projected gradient descent (PGD) and an upgraded Carlini and
Wagner (C&W) method. The authors claim that both proposed
algorithms required less time to generate adversarial examples
[11].

B. Model-based Tools for SWaT Risk Assessment

Besides the computer vision domain, various techniques
have been used for generating adversarial samples in the
cybersecurity domain. In [12], the authors generated adver-
sarial samples using popular adversarial deep learning attack
methods, such as JSMA, FGSM, and Carlini Wagner (CW),
with modern IDS datasets (UNSW-NB15 and Bot-IoT). The
study reported in [13] generated adversarial samples using
FGSM against condition-based maintenance (CBM) capabil-
ities, evaluating the performance of a CBM system under
attack.

When attacking an autoencoder IDS, the authors in [4]
generated adversarial ICS attacks by substituting original data
with readings within the normal sensor range. Although each
sensor reading could be replaced from an arbitrary initial value
to a value within the normal range, the perturbation applied
in this method could be significantly large. Using the SWaT
dataset, the authors in [14] introduced stealthy poisoning
during the training phase to avoid detection in the test phase.
They developed attacks for a residual signal threshold-based
detector using seven attacks from the dataset.

A new adversarial attack method, called the Selective and
Iterative Gradient Sign Method, was proposed in [15], which
required less time compared to the basic iterative method
(BIM). The authors in [16], [2], and [17] evaluated long
short-term memory (LSTM) networks for detecting cyber-
physical attacks in the SWaT infrastructure, achieving an
optimal LSTM with an F1 score of 0.80.

III. SWAT VULNERABILITIES AND ATTACK DATA
A. SWaT Testbed

The SWaT plant is an operational testbed available at
the Singapore University of Technology and Design (SUTD)

Fig. 1: An overview of real-time SWaT system.
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Fig. 2: Mlustration of SWaT testbed [18].

[19]. A pictorial view of SWaT is shown in Figure 1. It
can produce five gallons of treated water per minute. SWaT
is a distributed control system (DCS) that consists of six
stages, as shown in Figure 2. Each stage comprises a group
of sensors and actuators, totaling 51 sensors and actuators.
The sensors measure physical properties such as the water
flow rate in pipes, the water level in tanks, and pressure.
Moreover, chemical monitoring sensors calculate a range of
properties, including water conductivity, oxidation-reduction
potential, and pH level. The actuators regulate the flow rate of
water and chemical dosing. The six stages of SWaT, from P1
to P6, are summarized in Figure 2.

o P1: ensures that the raw water tank has adequate water
to supply the other processes.

o P2: responsible for guaranteeing the quality standards of
water.

o The water is then sent to P3, once it has reached the
required purity. In this stage, an ultra-filtration (UF)
system with a fine filtration membrane removes any
leftover unwanted items in the water.

o All leftover chlorine is removed through dechlorination
using ultraviolet (UV) rays in P4. The next step is to
minimize the number of inorganic contaminants in the
water.

o The water in P4 is then pumped into PS5 for reverse
osmosis (RO).

o The treated water is then distributed in P6.

B. SWaT Attack Data

A large number of researchers have used the SWaT testbed
to examine cyber-attacks and their defense mechanisms for
ICS [9], [20]-[24]. The SWaT dataset [7] was generated by
running the plant continuously for eleven days. During the

first seven days, the plant was operated in a normal state.
In the remaining four days, a total of 36 different attacks
were performed on the SWaT testbed. The duration and
goals of these attacks varied, with several attempting to cause
underflow/overflow conditions in water treatment tanks, while
others aimed to break pipes and stop filtration processes. The
attacked points, according to the type of attack and stage, are
presented in [25]. One such attack targeted the level sensor
LIT-101 of Stage P1, where the goal was to overflow the tank
by manipulating the values of the LIT-101 sensor and turning
off the pump P-101 [26].

For instance, in Fig. 3a, the water level readings from sensor
LIT301 clearly show the water consumption pattern from the
tank. It illustrates the daily water consumption, where normal
pumping events occur to fill the tank. The threshold must be
maintained within the specified range. However, due to the
cyber attack, the water level fell below the lower limit, posing
a critical risk that requires immediate mitigation, as illustrated
in Fig. 3b.

By analyzing the water level data, if an attack lowers the
readings, it could falsely trigger (1) the pump to operate and
(2) increase the risk of overflow. This inevitably results in more
pumping events, leading to increased energy consumption. It
is essential to monitor the float level and identify any false
positives or false negatives. Similarly, in the case of the flow
meter in Fig. 4, the attack data reveals significant variations in
flow, which can lead to potential malfunctions. In the following
section, we propose an ML framework that uses attack data
while incorporating adversarial sampling.

C. Threat Model for Water Treatment Plant

In this section, we formalize the types of attacks launched
on our secure water treatment testbed (SWaT) as explained



above. Essentially, the attacker’s model encompasses the at-
tacker’s intentions and capabilities. The attacker may choose
its goals from a set of intentions [27], including performance
degradation, disturbing a physical property of the system, or
damaging a component. These goals include under-flowing
and over-flowing the water tank, bursting pipes, intentionally
wasting water by passing it to the drain, and unnecessarily
reducing the water in the tank.

It is assumed that the attacker knows the system dynamics
and the control inputs and outputs. We consider a strong
adversary who is able to launch both cyber and physical
attacks. In an ICS, sensors, actuators, and PLCs communicate
with each other via communication networks. An attacker can
compromise these communication links in a classic Man-in-
The-Middle (MiTM) attack [28]-[30], for example, by breaking
into the link between sensors and PLCs. Besides false data
injection in sensor readings via the cyber domain, an adversary
can also physically tamper with a sensor to drive an ICS
into an unstable state. Sensors can be connected to remote
input/output units via wired and wireless connections. A cyber
attacker can remotely spoof sensor readings without needing
physical access.

Data Injection Attacks: For data injection attacks, it is consid-
ered that an attacker injects or modifies the real sensor mea-
surements. The attacker’s goal is to deceive the control system
by sending incorrect sensor measurements. In this scenario, the
level sensor measurements are increased while the actual tank
level remains unchanged. This makes the controller think that
the attacked values are true sensor readings, causing the water
pump to keep working until the tank is empty, which can lead
to the pump burning out. The attack vector can be defined as,
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Where y;, is the sensor measurement, ¥, is the sensor mea-
surement with the attacked value, and dy, is the bias injected by
the attacker. We can obtain a similar expression for an actuator
attack as well.

IV. APPLICATION OF ADVERSARIAL MACHINE LEARNING
USING JSMA

Machine learning (ML) models are subject to adversar-
ial attacks, where the attacker modifies input data to cause
misclassification. An adversarial sample is carefully designed
to disrupt the performance of a machine learning classifier.
The attacker creates malicious inputs to fool the machine
learning algorithms during the test phase [31]. This is one
of the techniques in Adversarial Machine Learning (AML).
Designing and developing robust ML-based algorithms to
resist cyber-attacks is also part of this technique [32].

Specific characteristics of the attack model, the adversary,
and the defenses are described in relevant research on AML.
According to [33], such an attack has three primary charac-
teristics. The attacker’s capability is referred to as influence,
which might be causative or exploratory, i.e., changing the
input training data and learning classifier decisions after send-
ing instances to the classifier. Security violation is the second
property, which includes integrity, availability, and privacy.
The third property is the attack’s specificity: indiscriminate
(the goal is to fail the classifier across a wide range of classes)
and targeted (the goal is to fail the classifier for a specific
instance). There are two types of potential attacks described
by the threat models: black-box attacks, where the attacker
is unaware of the model, and white-box attacks, where the
attacker has knowledge of the model.

Adversarial samples can be generated using various ap-
proaches. The complexity, speed of generation, and perfor-
mance of these methods vary. Manual perturbation of input
data points is a naive method of creating such samples. How-
ever, manual perturbations are slower to develop and analyze
than automated techniques. The Jacobian-based Saliency Map
Attack (JSMA) was introduced by Papernot et al. in [31]. The
authors used JSMA for image recognition tasks. In the current
study, we have used it to generate adversarial samples for time
series data composed of different sensors and actuators of the
SWaT.



The JSMA approach uses saliency maps to generate per-
turbations. The saliency map identifies the important features
of input data for classification; if these features are changed,
the target values will most likely be classified differently. A
percentage of (6) is perturbed using (7), i.e., the noise. The
model then determines whether the introduced noise has led to
misclassification by the targeted model. If the model’s perfor-
mance is unaffected by the noise, a new collection of features
is chosen, and a new cycle begins until a saliency map that
can generate the adversarial samples emerges. The technique
acquires the Jacobian matrix as described in equation 2, where
1 is the input component and j is the class derivative for input

sample z.
OF () OF;(x)
ox axl Y
0 i 2800 <
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Here, z; represents the i-th feature of the input sample z.
In eq 3 the saliency map is calculated, the input is iteratively
modified by selecting the feature x; with the highest saliency
score as described in eq 4. Here, € is the perturbation step
size that is chosen to be small enough to maintain a gradual
change in the perturbation.

In Equations (2) and (3), F represents the output of
the penultimate layer (related to the output of the softmax
layer) [34]. The perturbation is selected, and the method
is iterated until the target is misclassified or the maximum
number of perturbed features is reached. If this fails, the
algorithm proceeds to the next feature, which is then added
to the perturbed sample. For instance, the authors in [34]
achieved a 97% adversarial success rate while modifying
only 4.02% of the input features per sample. This procedure
requires complete knowledge of the design and parameters of
the target model [31].

V. EXPERIMENTAL SETUP

We have used CleverHans V.3.0.0 library to generate the ad-
versarial samples more specifically to implement JSMA [35].
The Tensorflow V.1.14.0 [36], and Keras V.2.0.0 [37] were
used for the pre-processing, experimental evaluations, and
analysis. Our study is based on a binary classification problem
as the SWaT dataset comprises two classes i.e., attack or
normal. Based on this we trained multiple models using var-
ious algorithms. Here we have summarized the experimental
evaluation for the top three algorithms i.e., Classification And
Regression Trees (CART), Random Forest (RF), and Gradient
Boosting Classifier (GBC).

A. Data Pre-processing

It is crucial to structure the dataset in the pre-processing
step, especially for supervised machine learning. To transform
nominal values into numerical values, we used label encoding.
For instance, in the SWaT dataset [7], the target label has
two nominal values, namely attack and normal, which need
to be mapped into their respective numerical values, with
normal and attack mapped to 0 and 1, respectively. Since the
dataset contains features with different distributions, min-max
normalization was applied to all features after label encoding.
For min-max normalization, 0 and 1 were chosen as the
minimum and maximum range, respectively.

B. Adversarial Sample Generation

We used two publicly available SWaT datasets. There are 51
attributes in the SWaT datasets. Among these attributes, 25 are
related to sensor readings and the remaining 26 are related to
actuator readings. The first SWaT dataset was collected during
the normal operation of the plant, which we refer to as the
normal dataset. This dataset contains 410,400 transactions and
was collected at a frequency of one transaction per second.
The second dataset was collected by performing 36 attacks at
different time instances. We refer to this dataset as the attack
dataset. This dataset contains 449,919 transactions and was
also collected at a frequency of one transaction per second.
The attack dataset contains 53,900 anomalous and 396,019
normal transactions. We used the attack dataset to generate
the adversarial samples using JSMA. The Cleverhans library
was used for the implementation of JSMA. A Multi-Layer
Perceptron (MLP) was chosen as the pre-trained underlying
model for the generation of adversarial samples. We generated
112,480 adversarial samples using the proposed approach.

C. Supervised Model Training using Adversarial Samples

The 112,480 adversarial samples generated earlier were
merged with the SWaT normal dataset, which contains 410,400
transactions. Therefore, the merged dataset contains 522,880
transactions. This merged dataset was used to train the su-
pervised models. In particular, we used CART, RF, and GBC
for this purpose. Among these algorithms, CART is a simple
decision tree algorithm, while RF and GBC are ensemble
algorithms that use decision trees. The ensemble algorithms
build a collection of classifiers and take a vote from each clas-
sifier’s predictions to classify new data points [38]. The main
purpose of training these models is to test the effectiveness of
generative adversarial samples on attack detection. Therefore,
we evaluated the performance of the trained models on the
SWaT attack dataset. The complete process of adversarial
sample generation, model training, and evaluation is described
in Figure 5.

D. Results

The performance of the previously trained models was
tested using the SWaT attack dataset. The results are shown
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TABLE I: Results from various modern ML classifiers.

Classifier Accuracy Precision Recall
Worst | Average | Best | Worst | Average | Best | Worst | Average | Best
CART 0.88 0.90 0.95 0.88 0.90 0.94 0.99 0.99 0.99
RF 0.88 0.88 0.88 0.88 0.88 0.88 1.0 1.0 1.0
GBC 0.95 0.95 0.95 0.95 0.95 0.95 1.0 1.0 1.0
TABLE II: FPR and F1-Score for various modern ML classifiers.
Classifier FPR F1-Score
Worst | Average | Best | Worst | Average | Best
CART 0.99 0.80 0.41 0.94 0.95 0.97
RF 1.0 1.0 1.0 0.94 0.94 0.94
GBC 0.37 0.37 0.37 0.97 0.97 0.97
TABLE II: Confusion Matrix of CART, RF, GBC
Worst Score Average Score Best Score
Predicted Class — Predicted Class — Predicted Class —
True Class | Normal | Attack True Class | Normal | Attack True Class | Normal | Attack
CART Normal 395935 84 Normal 395935 84 Normal 395954 65
Attack 53854 46 Attack 53854 46 Attack 21927 31973
RF Normal 396019 0 Normal 396019 0 Normal 396019 0
Attack 53900 0 Attack 53900 0 Attack 53900 0
GBC Normal 396019 0 Normal 396019 0 Normal 396019 0
Attack 20236 33664 Attack 20178 33722 Attack 19840 34060

in Tables I, II, and III. The SWaT attack dataset is highly im-
balanced, with normal-class samples far outnumbering attack-
class samples. Therefore, accuracy alone can be misleading.
Instead, we evaluated the proposed technique using additional
metrics such as precision, recall, false positive rate (FPR), and
F1-Score. All these metrics are defined in the following.
Where True Positive (TP) represents the attack instances that
are correctly classified as attack. The True Negative (TN)
represents the normal instances that are correctly classified
as normal. The False Positive (FP) represents the normal
instances that are incorrectly classified as attack. The False
Negative (FN) represents the attack instances that are incor-
rectly classified as normal. The TP, FP, TN, and FN form the
confusion matrix of the ML classifier. Note that in calculating
the F1 score and accuracy, we determine the true positive (TP),
false positive (FP), true negative (TN), and false negative (FN)
at a trace level:

o True Positive: A faulty trace that is flagged instances

that are correctly classified as normal.

False Positive: Either a normal trace that is flagged as
faulty or a faulty trace that is flagged as faulty before the
time of occurrence of the fault.

True Negative: represents the attacked instances that are
correctly classified as attacked.

False Negative: A faulty trace that is not flagged as
faulty.

We have presented three scenarios: worst, average, and best
case for accuracy, precision, recall, FPR, and F1-Score for
each classifier, as shown in Tables I and II. Accuracy repre-
sents the overall performance of the classifier. CART and GBC
achieved a maximum accuracy of 95%. However, the average
scores of both classifiers differ, with CART at 90% and GBC
at 95%. As mentioned earlier, the current problem is class
imbalance; therefore, accuracy alone is not sufficient to assess
the performance of classifiers. We also calculated the precision
and recall of all the classifiers. Precision here represents the



performance of classifiers in identifying the normal instances
in the dataset, while recall represents the identification of
normal instances with respect to the total normal instances
in the dataset. There is a trade-off between precision and
recall. For this purpose, we use another metric, the Fl-score,
which is the harmonic mean of precision and recall. Improving
the Fl-score helps maintain the balance between precision
and recall. Additionally, we calculated the false positive rate
for each classifier, as a high rate of false positives makes
the IDS impractical for real-world applications. For an in-
depth evaluation of the classifiers’ performance, the confusion
matrices of each classifier are given in Table III.

From the confusion matrix of RF in Tables I and II, it is
evident that the classifier was unable to differentiate between
attack and normal instances. Consequently, it classified all
attack instances as normal, even though its accuracy is 88%.
The confusion matrix of CART in Table III shows that its per-
formance was better than RF in detecting attack instances. The
confusion matrix of GBC in Table III shows that it performed
better than CART not only in detecting attacks but also in
classifying normal instances. These results highlight that the
examples generated by JSMA proved useful in improving the
accuracy of detectors without needing to be trained on attack
data.

VI. CONCLUSIONS

In this paper, we assessed the quality of the malicious
data created by the JSMA attack method, using the SWaT
dataset as a testbed. Although JSMA was originally designed
to create perturbations for image data, it was successfully
exploited for time series data. Machine learning classifiers
often lack sufficient data to defend against attacks. Our results
show that the proposed approach improves the performance
of these classifiers against previously unseen attacks. Future
work will focus on enhancing the robustness of IDS against
a wider range of adversarial attacks. This includes exploring
other adversarial attack methods and developing more sophis-
ticated defense mechanisms. Additionally, we plan to extend
our evaluation to other ICS datasets to further validate the
effectiveness of our approach. Investigating the integration of
ML-based IDS with other security measures in ICS will also
be a key area of future research.
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