Towards a standardized methodology and dataset for evaluating LLLM-based digital
forensic timeline analysis

Hudan Studiawan®*, Frank Breitingerb, Mark Scanlon®

“Department of Informatics, Institut Teknologi Sepuluh Nopember, Indonesia
b Institute of Computer Science, University of Augsburg, Augsburg, Germany
¢Forensics and Security Research Group, School of Computer Science, University College Dublin, Ireland

Abstract

&) Large language models (LLMs) have seen widespread adoption in many domains including digital forensics. While prior research

(O has largely centered on case studies and examples demonstrating how LLMs can assist forensic investigations, deeper explorations

(\J remain limited, i.e., a standardized approach for precise performance evaluations is lacking. Inspired by the NIST Computer
Forensic Tool Testing Program, this paper proposes a standardized methodology to quantitatively evaluate the application of LLMs

(O for digital forensic tasks, specifically in timeline analysis. The paper describes the components of the methodology, including the

2 dataset, timeline generation, and ground truth development. Additionally, the paper recommends using BLEU and ROUGE metrics
for the quantitative evaluation of LLMs through case studies or tasks involving timeline analysis. Experimental results using
ChatGPT demonstrate that the proposed methodology can effectively evaluate LLM-based forensic timeline analysis. Finally, we
discuss the limitations of applying LLMs to forensic timeline analysis.

Keywords: LLM evaluation, Forensic timeline, Large language models, ChatGPT, log2timeline/Plaso

[cs.CR]

1. Introduction

Forensic investigations often require the reconstruction of
a timeline of events and activities related to a digital de-
vice or users (Hargreaves and Patterson, 2012). Such time-
lines can provide valuable insights into various criminal activ-
ities, including malware, brute-force attacks, or attacker post-
exploitation activities. The timeline analysis process is com-
plex and time-consuming, particularly when dealing with large
amounts of digital data from multiple sources. Traditional
methods for timeline analysis are based on manual analysis,
(\J] which can be subjective and prone to errors, and can lead to
missing critical information (Studiawan et al., 2020).

The development of large language models (LLMs), such as
>< OpenATI’s GPT-3 (Brown et al., 2020) has opened up many pos-
sibilities, including in digital forensic research. The model has
been implemented in the ChatGPT application and instantly
gained many users (Buchholz, 2023). LLMs have shown re-
markable performance in various natural language processing
tasks, including language generation and question-answering.
Leveraging these capabilities, natural language processing tech-
niques can be applied to digital data sources to analyze temporal
information and investigate timelines of events. Other studies
also suggest that artificial intelligence should provide more as-
sistance in forensic investigation (Hall et al., 2022; Studiawan
et al., 2019).

505.03100v1

V:

*Corresponding author
Email addresses: hudan@its.ac.id (Hudan Studiawan),
frank.breitinger@uni-a.de (Frank Breitinger), mark.scanlon@ucd.ie
(Mark Scanlon)

Preprint submitted to Elsevier

An editorial article by Scanlon et al. (2023b) discusses the in-
creasing demand for expert digital forensic analysts and the po-
tential use of LLMs such as ChatGPT in this domain. They em-
phasize the importance of maintaining the “Al-assisted inves-
tigation” and “human-in-the-loop”” mantras when using LLMs
in digital forensics. The article suggests that LLMs could lead
to a new career specialization of digital forensic prompt engi-
neers. Wickramasekara et al. (2025) provides a comprehensive
overview of where LLMs may assist digital forensics.

In addition, various studies explored the application of LLMs
in digital forensics. For instance, (Scanlon et al., 2023a) as-
sessed ChatGPT’s impact on tasks such as understanding ar-
tifacts, evidence searching, and anomaly detection. Although
ChatGPT shows promise in several low-risk forensic applica-
tions, concerns arise about evidence security and the model’s
occasional inaccuracies. Experts must exercise caution and
have a deep understanding of the subject to effectively use
ChatGPT in forensic scenarios. Furthermore, ChatGPT has
been explored for digital evidence investigations (Henseler and
van Beek, 2023), virtual forensic assistants (Dinis-Oliveira and
Azevedo, 2023), and report writing (Michelet and Breitinger,
2024). Based on our literature review, existing work in this area
has not discussed standardized evaluation for LLM-based digi-
tal investigation.

Contribution. The contributions of this paper are as follows:

1. This paper proposes a standardized methodology to quan-
titatively evaluate the performance of LLMs in forensic
timeline analysis tasks, such as event summarization.

2. This study presents a case study of forensic timeline anal-
ysis using LLM, e.g., ChatGPT.

June 9, 2025

https://arxiv.org/abs/2505.03100v1

3. We created forensic timeline datasets and ground truth
from Windows 11 using Plaso and these are publicly avail-
able! for research and education purposes.

The remainder of the paper is organized as follows: Sec. 2
provides related research. Sec. 3 describes the proposed ap-
proach for standard methodology and quantitative evaluation
for LLM-based timeline analysis. Sec. 4 presents the case study
that demonstrates the application of the proposed method and a
discussion of the results. Finally, Sec. 5 concludes this study.

2. Related work

2.1. Forensic tool testing and validation

To effectively validate digital forensic tools and methods, a
proper validation test plan should include laboratory use in the
real world, controlled internal tests based on scientific princi-
ples, and peer review. Brunty (2023) provides an overview
of the foundational scientific aspects of forensic validations
and describes the recommended steps to conduct a forensically
sound validation method.

The Computer Forensics Tool Testing (CFTT) Program at
NIST aims to establish a methodology for testing computer
forensic tools, including developing specifications, test proce-
dures, and criteria (NIST, 2019). The program helps to en-
sure the reliability of forensic software tools, helping tool mak-
ers, users, and interested parties. CFTT methodology involves
breaking down forensic tasks into discrete functions and creat-
ing test methodologies for each.

Hughes and Karabiyik (2020) discuss the need for rigorous
validation practices in digital forensics to establish accuracy
and reliability. They highlight challenges in developing statis-
tical confidence for forensic tools, such as the lack of reference
data, validation methods, and precise definitions of measure-
ment. The authors propose a method for generated data proce-
dures, virtual machine-based validation, and empirical models
to guide the analysis.

Another study discusses the challenges of scientifically vali-
dating digital forensic evidence (Arshad et al., 2018). The au-
thors emphasize the lack of standard datasets, formal testing
procedures, and established error rates. Horsman (2019) ex-
amines the challenges of ensuring reliability in digital forensic
tools. The paper discusses the lack of standardized validation
methods and the issues of transparency from software vendors.
A survey of practitioners reveals widespread concerns about
tool reliability and a need for improved testing standards and
error rate reporting.

The related study on tool testing and validation shows a re-
search gap where we need a method to evaluate and validate
LLMs as tools in digital forensics. This paper aims to fulfill
this need specifically for the task of forensic timeline analysis.

"https://zenodo.org/blinded_for_review

2.2. Forensic timeline analysis

Forensic timeline analysis involves reconstructing the se-
quence of events and activities related to a user or a system.
Therefore, a variety of artifacts, such as browsing history, log
files, or file metadata, are being parsed, and relevant informa-
tion is extracted (Palmbach and Breitinger, 2020). The analy-
sis of the timeline analysis is then conducted using tools and
data visualization techniques (Inglot and Liu, 2014). If tools
do not yield expected results, a manual examination of data
sources may be required. However, this approach can be time-
consuming, labor-intensive, and prone to errors.

Timeline generation tools, such as log2timeline/Plaso, Au-
topsy, and Magnet AXIOM, can automate the timeline analysis
process to some extent by extracting relevant temporal infor-
mation from digital data sources. However, these tools are lim-
ited by the quality of the extracted data and may not be able to
capture all relevant events and activities from acquired artifacts
(Studiawan et al., 2022a).

The approach by Hargreaves and Patterson (2012) can au-
tomatically reconstruct or summarize high-level events from
low-level events. Previous techniques focus on extracting times
from a disk image into a timeline, which can produce several
million “low-level” events (e.g., file modification or Registry
key update) for a single disk. In contrast, this approach can au-
tomatically reconstruct high-level events (e.g. connection of a
USB stick) from this set of low-level events. The knowledge
representation model presented in Chabot et al. (2014) allows
a semantically rich representation of events related to the inci-
dent. It includes the identification of correlated events that can
highlight valuable information for the investigators.

The construction of a timeline array using time informa-
tion from web browser log files is one way to perform foren-
sic timeline analysis (Nalawade et al., 2016). Different data
types of timelines that can be constructed from web browser
artifacts such as web history, cache, cookie, download history,
and search term timelines. Furthermore, Bhandari and Jusas
(2020) propose an abstraction-based approach to reconstruct a
timeline of events and artifacts. The method enhances the rel-
evance of the timeline by reconstructing it into four levels of
depth, from general to specific, to reduce complexity and ex-
tract information.

The use of deep learning techniques, e.g., autoencoders, im-
proves anomaly detection in a forensic timeline by establishing
a baseline for normal activities (Studiawan and Sohel, 2021).
Another tool, namely DroneTimeline, constructs a timeline
from a drone device and considers time extracted not only from
file metadata, but also from various source artifacts of a drone
or its control devices (Studiawan et al., 2022b).

2.3. LLMs for digital forensics

In the case of LLM application for digital forensics, Henseler
and van Beek (2023) discuss how ChatGPT can assist investi-
gators by writing structured queries, summarizing and evaluat-
ing large volumes of communication data, and analyzing search
results. The authors highlight that ChatGPT can transform nat-
ural language queries into structured formats, summarize and

https://zenodo.org/blinded_for_review

= - Q

Define timeline analysis tasks Build ground truth Define evaluation
and prompt design dataset metrics

Figure 1: The proposed methodology for quantitative evaluation of LLM-based
timeline analysis

visualize chat logs to reveal key relationships. The study notes
limitations, such as hallucinations and the need for expert guid-
ance. Another work explores the potential of using LLMs, e.g.,
ChatGPT and Llama, to assist in the generation of forensic re-
ports in digital investigations (Michelet and Breitinger, 2024).
The authors assess the ability of LLMs to automate parts of the
report writing process, focusing on sections such as the intro-
duction, items received, methodology, and results. They found
that while ChatGPT performs well and generates relatively ac-
curate drafts, Llama struggles with accuracy and completeness.
The results show that LLM outputs still require proofreading
and corrections.

Dinis-Oliveira and Azevedo (2023) also explore the poten-
tial and challenges of using ChatGPT in forensic sciences. The
authors highlight the advantages of ChatGPT, such as assist-
ing forensic professionals in drafting reports, analyzing foren-
sic data, performing literature searches, and serving as a vir-
tual forensic assistant. However, the paper also raises concerns
about the ethical and legal challenges associated with using Al
in this field, such as credibility issues, inaccuracies, plagiarism,
and the risk of overreliance on Al in judicial decisions.

Finally, Scanlon et al. (2023a) describes the potential appli-
cations of ChatGPT and LLMs in digital forensics. The authors
assess how ChatGPT can assist in various forensic tasks, such
as identifying digital artifacts, generating code for forensic ac-
tivities, and detecting anomalies in logs. LLMs present chal-
lenges including issues with hallucinations, inaccuracies, and
limitations when dealing with sensitive data. The study shows
that ChatGPT can be a useful tool for investigators when used
with caution, but human expertise remains essential to ensure
reliability in forensic investigations.

The application of LLMs in digital forensics has the potential
to enhance investigators’ capabilities to handle digital evidence
and help solve cases with greater accuracy. However, it is im-
portant to remember that LLMs are not a replacement for hu-
man expertise, but rather a valuable tool that complements and
assists forensic professionals. Therefore, we need a methodol-
ogy and a dataset to evaluate LLMs as a forensic tool, particu-
larly for timeline analysis, as discussed in this paper.

3. Proposed methodology

To assess the performance of an LLM for timeline analysis,
several aspects are important as depicted in Fig. 1. We must
define one or more tasks (Sec. 3.2) that we expect the LLM to
perform. This involves designing a prompt to interact with the
system, such as summarizing events into high-level insights or
identifying indicators of compromise. In addition, a ground-
truth dataset is needed that can be used to assess the outcome

of an LLM (Sec. 3.3). Lastly, evaluation metrics are required
that allow us to compare the ground truth with LLM output
(Sec. 3.1). While starting with the tasks may seem natural,
we recommend beginning with the evaluation metric, as it de-
fines the required output, which in turn influences the task and
prompt.

3.1. Evaluation metrics

For the evaluation, we decided to use BLEU (Bilingual
Evaluation Understudy) and ROUGE (Recall-Oriented Under-
study for Gisting Evaluation). They were selected due to their
widespread acceptance and established methodologies in ma-
chine translation and summarization. These metrics provide a
way to quantify the quality of generated text and allow for com-
parisons across different models and tasks.

3.1.1. BLEU - Bilingual Evaluation Understudy

BLEU assesses the quality of machine-generated outputs
by comparing them to human-curated reference texts (ground
truth) (Papineni et al., 2002). The score focuses on how accu-
rately and completely the machine or LLM has replicated the
human ground truth. It is calculated as follows:

N
BLEU = BP x exp(wy, log p,,) @))]

n=1

where p, is the precision for each n-gram, w, is the weight
for each n-gram, and BP is the brevity penalty (BP). BP is de-
signed to penalize generated text that is too short. The idea is
that shorter text might artificially increase precision, but may
not capture the full meaning of the original text. The brevity
penalty is calculated as:

BP = 1 ife>r @)
et ife < r

where c is the length of the candidate (machine) translation and
r is the reference length.

3.1.2. ROUGE — Recall-Oriented Understudy for Gisting Eval-
uation

ROUGE is a collection of metrics designed to evaluate au-
tomatic summarization and machine translation systems (Lin,
2004). It primarily focuses on the quality of the output gener-
ated by these systems. In our case, the essence of ROUGE is
to provide a quantitative measurement of the quality of an au-
tomatically generated text from an LLM by comparing it with
reference data or ground truth created by humans.

ROUGE includes several metrics, each serving a unique pur-
pose in evaluating text. Two of the key metrics are ROUGE-N
and ROUGE-L. ROUGE-N assesses the overlap of n-grams be-
tween the machine-generated text and the reference, where 7 is
1 and 2 in our experiments. ROUGE-L focuses on the longest
common subsequence (LCS) between the LLM-generated n
and the reference.

ROUGE-N is based on the n-gram overlap between the
machine-generated text and the reference as follows:

Zse{Reference] Zn—grames Countyach (n'gram)

ROUGE-N =
ZSE{Reference} Zn—grames Count(n‘gram)

where Countpgen(n-gram) is the count of n-grams in
the machine-generated text that matches the ground truth.
Count(n-gram) is the count of n-grams in the ground truth.
On the other hand, ROUGE-L evaluates the LCS between the
machine-generated text and the reference as follows:

Z.YE{Reference] LCS(S’ MaChine)
Z se{Reference) Length(N)

where LCS(s, Machine) refers to the length of the LCS be-
tween the system-generated text and the reference s. Finally,
Length(s) is the length of the reference text. For both BLEU
and ROUGE, the higher the score, the better. We implemented
both metrics using HuggingFace evaluate library (Hugging
Face, 2024a,b). Note that we evaluate the text from LLM’s
answer that is generated in a downloadable file, not from the
text-based responses.

ROUGE-L = 4)

3.1.3. Considerations

Achieving high BLEU and ROUGE scores requires a signif-
icant overlap between the LLM’s output and our ground truth
data, where ‘overlap’ means identical wording. These metrics
do not assess meaning but only textual similarity. For example,
the sentences ‘He is 25° and ‘He was born in 2000” would yield
low scores despite conveying the same information. There-
fore, we must ensure the LLM returns data in a specific for-
mat, which we also use in our ground truth. To achieve this, we
designed tasks that are largely deterministic (solvable by tra-
ditional software) and provided examples within the prompt to
guide the LLM. In the future, we plan to explore fine-tuning
an LLM, which could enhance user experience. However, this
study focuses on feasibility, and fine-tuning is beyond its scope.

3.2. Common tasks for forensic timeline analysis

Given the considerations and in order to quantitatively eval-
uate the capabilities of an LLM, we selected the following four
tasks:

1. Running grep for specific terms, i.e., assess how well the
LLM handles a straightforward task such as running grep.

2. Rule-based anomaly detection, i.e., looking for patterns
that could also be identified using rules, such as multiple
failed login attempts, could mean a brute-force attack.

3. Event summarization, i.e., combining several low-level
events into a more meaningful event, such as if events A
and B are found (low-level), this means a new user was
created (meaningful event).

4. Exploratory data analysis.

Tasks have been carefully chosen to be realistic but also al-
low for validation, e.g., for running grep we can develop our
own grep expression. Note that only the first three tasks re-
quire a ground truth. With respect to the prompts, we follow the

prompt style of Scanlon et al. (2023b) and the OpenAl prompt
engineering guides (OpenAl, 2024b). More details are provided
in the subsequent sections.

3.2.1. Prompts for running grep of specific terms

This task simulates a simple grep command to ensure that
it can handle basic tasks without making critical errors. The
example prompts are shown below:

1. “I am a forensic investigator. I need to find these
terms: \b[A-Za-z0-9_\\:.]+\.exe\b in the given CSV
file to get all entries related to executable files (.exe).
The CSV file is a forensic timeline generated from the
log2timeline/Plaso tool.”

2. “For your references, the grep command is:
“\b[A-Za-z0-9_\\:.]+\.exe\b” timeline.csv.”

3. “Do not include the first line of the file containing column
names. Include all columns in the results, not only the
message column. Export the results into plain text.”

grep -E

The prompt asks an LLM to replicate the functionality of a
grep command, which is commonly used to search for patterns
in the text. The goal is to search the CSV file for all entries that
contain executable files with the .exe extension. In total, five
terms need to be found, the system is expected to identify these
entries and save the results in plain text format. In addition, we
ask the system to exclude the header row and include all column
values in the results. This task checks whether the LLM can
effectively search through the forensic timeline using a regular
expression to filter out relevant entries.

3.2.2. Prompts for rule-based anomaly detection

The goal of this task is to enable more natural queries against
the timeline. This simulates providing a timeline and then ask-
ing about specific aspects, such as ‘Have there been failed login
attempts?’ or ‘Was registry.exe executed?” Rather than posing
these queries one by one, we opted to include multiple elements
of interest in a file (keyword list), which the user uploads. This
approach effectively cross-references a keyword list with the
CSV-based timeline.

Specifically, we provide the following prompt: ‘I am a foren-
sic investigator. Read this list of keywords to find suspicious
events.” The user uploads a keyword list, allowing the system
to focus on specific patterns or terms that may indicate abnor-
mal or anomalous behavior within the timeline.

As we require the output in a specific format, the uploaded
file is in reality a JSON file which includes elements of the
prompt (event) as well as what to look for (keyword). This
helps the LLM to detect suspicious events in a timeline CSV
file. Note, the keyword is extracted from the message column
from the timeline data, i.e., it exists in the timeline CSV. The
event is our own creation.

{

"event": "Registry launch with prefetch file",
"keyword": "Prefetch [REGEDIT.EXE] was executed"

The LLM is expected to return a JSON-formatted response
that includes the timestamp of the detected event (datetime),
the name of the matched event (event), the keyword that trig-
gered the match (keyword), and the full log message (message)
from the timeline. This structured format facilitates automated
comparison with ground truth data and supports downstream
forensic analysis. This format also maintains consistency and
interpretability to allow for an accurate evaluation using BLEU
and ROUGE. An example output structure is shown below:

[{
"datetime": "2023-12-27T00:37:14.609465+00:00",
"event": "Registry launch with prefetch file",
"keyword": "Prefetch [REGEDIT.EXE] was executed",
"message": "Prefetch [REGEDIT.EXE] was executed -
run count 3 path hints: \\WINDOWS\\REGEDIT.EXE
hash: 0x246AC210 volume: 1 [serial number:
0x5CE1DF5A device path: \\VOLUME{01dal82ce1985a
64-5celdfba}]"

H

3.2.3. Prompts for event summarization

A user action (high-level event) of causes many entries in a
timeline (low-level events). This tasks looks at the possibility
to summarize low-level tasks to high-level tasks. To solve this
task without fine-tuning, we provide a code (a python library)
that can be used (executed) by the LLM.

The interaction between the user and ChatGPT is outlined in
Fig. 2. We provide a persona, such as stating a role (e.g., foren-
sic investigator), including detailed information about the task
(e.g., event type or data format), and offer additional tools to
improve accuracy. These steps help the system to manage re-
sponses more accurately. The prompt uses a space delimiter to
provide suitable spacing to separate key pieces of information.

In the third-to-last box (“Specify steps to run an event sum-
marization”), the user outlines the exact procedure for summa-
rizing events. This involves uploading the CSV file, selecting
the type of event (such as “last-shutdown”), and executing the
summarization using the given libraries. The expected return
value for this task is as follows:

{IIOII: {
"id": 1002,
"date_time_min":
"date_time_max":

"2023-12-26 00:34:47.890403+00:00",
"2023-12-26 00:34:47.890403+00:00",

"evidence_source": "[9707 / 0x25eb] Provider identifier:
{...} Source Name: Microsoft-Windows-Shell-Core Strings:
[’msedge.exe\" --no-startup-window --win-session-start’]

Computer Name: WinDev2311Eval Record Number: 2249
Event Level: 4",

"type": "Process Creation",

"description": "Process creation of ’msedge.exe’",

"category": "Windows",

"plugin": "EVT-WinEVTX-winevtx",

"files": "NTFS:\\Windows\\System32\\winevt\\Logs\\
Microsoft-Windows-Shell-Core’40perational.evtx",

"keys": {

"Windows Event ID": "9707",
"Windows Event ID (hex)": "Ox25eb",
"Executable name": "msedge.exe"
1,
"supporting": { ... },
"trigger": { ... }
Yoo}

3.2.4. Prompts for exploratory data analysis

Lastly, we explore the potential of LLMs for exploratory data
analysis (EDA) which allows gaining valuable insights into the
dataset as a whole. For instance, EDA may help investigators
grasp the structure, distribution, and key features. It may also
enable the identification of patterns and relationships between
events, such as how user behaviors might be interconnected. In
addition, it facilitates the visualization of temporal data, which
is an important aspect of timeline analysis. Using diagrams
such as histograms and heatmaps, investigators can acquire a
clearer understanding of trends and cycles in the data. These
visualizations pinpoint periods of interest and aid in the identi-
fication of suspicious activities for further investigation.

The example EDA prompt is: “Explore patterns of event oc-
currences based on the datetime field per second (e.g., bus-
iest times, significant gaps), use a bar chart. Write the
hour:minute:second in the x axis”. An LLM will generate a
Python code to create the bar chart, and we can download the
chart as a PNG file.

3.3. Ground truth

To assess the quality of output (LLM response), we require
a ground truth dataset, i.e., documentation of the underlying
dataset (Gobel et al., 2023; Breitinger and Jotterand, 2023). A
peculiarity in our scenario is that we need the ground truth in
a specific format so that it is comparable with the output of an
LLM (automated). Specifically, there is no easy way to com-
pare a disk image or its corresponding timeline against the LLM
output. Consequently, the underlying dataset must be converted
into a text-based format (ground truth), allowing and automated
comparison with the LLM output.

To accomplish this, we first must create a dataset (Sec. 3.3.1)
where the creation process is documented or recorded. Next,
we generate a timeline of the disk image (Sec. 3.3.2) which
serves as an input for the LLM. Lastly, using the documentation
and timeline, we manually create the expected outcome which
represents our ground truth (Sec. 3.3.5 to 3.3.3).

3.3.1. Scenario and dataset generation

The first step was to create a dataset as no appropriate dataset
was available. The procedure is illustrated in Fig. 3 and the
dataset is shared through Zenodo. Our test bed was a Win-
dows 11 machine within a virtual environment simulating reg-
ular computer usage. All activities were recorded using screen
capture (video) and therefore are documented (written notes).

The scenario follows a sequence of opening applications,
downloading software, and accessing websites. The user be-
gins by opening the Edge browser and then navigates to Bing.
They perform a search query for “Mozilla Firefox download”
on Bing and visit Mozilla’s official website to download the
Firefox browser. After that, the user opens the File Explorer
to navigate the downloaded installer. The user runs the Firefox
installer and opens the newly installed Firefox browser. After-
ward, they navigate to Google, perform a search related to SQL
injection, and open a tutorial on the W3Schools website. The
session ends with a system shutdown, indicating that the user
has completed all activities.

Provide a persona ~_

Include details ——

User:

[file] dftpl-0.0.1-py3-none
| am a forensic investigator.

| need to summarize high level events from the "message" column of a CSV (comma-separated
value) file from the log2timeline plaso using the dftpl tool. This tool will help us to summarize
events. Install dftpl in your virtual environment using the given python wheel file.

- Provide additional tool to obtain more accurate answers
-any.whl

ChatGPT:

The dftpl tool has been successfully installed in the environment.

You can now use it to summarize high-level events from the "message" column of your CSV file.

Let me know how you'd like to proceed with the analysis or if you need help running specific commands using dftpl [’] F—

Processing /mnt/data/dftpl-0.0.1-py3-none-any.whl

i-n.stalling collected packages: dftpl
Successfully installed dftpl-0.0.1

Requirement already satisfied: pytest in ./.local/lib/python3.11/site-packages (from dftpl==
Requirement already satisfied: PyYAML in ./.local/lib/python3.11/site-packages (from dftpl==0.0.

N
1\
Let's first install the provided Python wheel file using pip
Ipip install /mnt/data/dftpl-0.0.1-py3-none-any.whi g:;“:ﬁ;yé?svance
STDOUT/STDERR
Defaulting to user installation because normal site-packages is not writeable (/

0.0.1) (6.2.5)
1) (6.0.2)

User:
this is the script of dftpl.

... the rest of Python code ...

import dftpl.analyzers.web.GoogleSearch as GoogleSearch
import dftpl.analyzers.web.BingSearch as BingSearch
import dftpl.analyzers.web.WebVisits as WebVisits

_— Space delimiter to clearly distinct
informationand an example

\ Provide a Python code example

ChatGPT:

Thank you for providing the script for using dftpl. Here's a step-by-step breakdown of how you can use this script
to summarize high-level events from the "message" column of your CSV file:

User:
[file] timeline.csv

summarize events in this CSV file using dftpl with last-shutdown event type

Specify steps to run an event summarization

ChatGPT:
from the following link:
Download Summarized Shutdown Events JSON

N
Let me know if you need further assistance! -] }——

The events have been successfully summarized using the "last-shutdown" event type. You can download the results

_— This file is downloaded and evaluated

ChatGPT Advance
data analysis

from dftpl.reader.CSVReader import CSVReader
;E-Define input and output paths

input_path = /mnt/data/14-shutdown.csv'
event_type = 'last-shutdown'

Main function logic

print('Reading CSV file ...")
reader = CSVReader(input_path)

... the rest of Python code ...

Let's first set up the script with the provided CSV file and output paths, focusing on the 'last-shutdown' event type.
import dftpl.analyzers.windows.LastShutdown as LastShutdown

from dftpl.timelines.LowLevelTimeline import LowLevelTimeline

output_path = /mnt/data/summarized_shutdown_events.json’

\ ChatGPT generates a Python code
to accurately answer the question

Figure 2: A conversation sample between an investigator and ChatGPT. Note that the prompt should be accurate following the OpenAl prompt engineering guides

3.3.2. Timeline generation

To generate the timeline, we ran log2timeline/Plaso (Metz
et al., 2024) on the vmdk file. The tool (Plaso) analyzes all
known artifacts? and compiles them into a single unified time-
line. By default, the tool processes all partitions from a vmdk
file and generates a Plaso storage file (*. plaso, a database file)
containing the forensic timeline. To convert plaso file to a
CSV timeline file, we ran psort.

3.3.3. Ground truth for Task 1: Running grep for specific
terms

Building the ground truth is straightforward as we only have

to manually run grep on the dataset and take note of the output.

ZPlaso consists of various parsers for different artifacts. Artifacts unknown
to Plaso are ignored.

B — [g] —— 4

Windows 11 Enterprise Play in VMWare
(Evaluation) Fusion

Run several activities,
e.g., Google search

E) «——vVvmMDK «——

Building the
forensic timeline

Save the
VMDK file

Record time and activities
as ground truth

Figure 3: Building ground truth for LLM evaluation

This was done for the following five keywords:

1. RegisteredApplications: obtaining events related
registered applications in Windows registry.

2. (OneDrive|OneDrive\.exe): finding events related to
Microsoft OneDrive application.

3. \b[A-Za-z0-9_\\:.]+\.exe\b: looking for all entries
related to executable files (.exe).

4. 4616 /: finding Windows event ID 4616 which related to
system time change without regex.

5. \[4616 / 0x1208\].*Microsoft-Windows-Security
-Auditing.*svchost.exe: finding Windows event ID
4616 with regex.

The command to generate this ground truth is grep -E
keyword timeline.csv, where -E indicates that extended
regular expressions are being used with the grep command.

3.3.4. Ground truth for Task 2: Rule-based anomaly detection

The second ground truth requires matching keywords (or
phrases) with events. We create the keywords as a rule-based
approach by first checking the date and time of the event we
performed earlier in the Windows test-bed. Next, we manually
look for related entries in the timeline CSV file. Once we find
the relevant entry, such as registry launch, we extract the key-
words linked to the event. Finally, we format these keywords
into a JSON format as shown below:

{
"event": "Registry launch with prefetch file",

"keyword": "Prefetch [REGEDIT.EXE] was executed"

In the evaluation, we can ask questions in natural language
because the event and the keyword the LLM searches for are
already defined. Unlike an event summarization task, no script
or library is provided, and the LLM handles the matching on
its own. These keywords collected are a useful technique to
identify suspicious events in the forensic timeline. There are
seven keywords in total and the full list of keywords in JSON
format is available on Zenodo.

3.3.5. Ground truth for Task 3: Event summarization

Event summarization aims at combining low-level events to
obtain high-level events based as proposed by Hargreaves and
Patterson (2012). Forming the ground truth was accomplished
by implementing the dftpl tool® as described by the authors.
Given a CSV timeline, our prototype can extract certain high-
level events and return a JSON file. There are eight predefined
events, grouped into three categories:

1. Web: Google search, Bing search, and web visit

2. Windows: last shutdown, process creation, and program
opened

3. User activity: file download, and recent file access

We chose JSON because it is human-readable, making it
easier for investigators to interpret and manually validate re-
sults. JSON also facilitates straightforward comparison with
evaluation metrics due to its structured nature for efficient pars-
ing. Moreover, its compatibility with various programming lan-
guages and tools further supports automation and quantitative
evaluation in forensic analysis workflows.

3nttps://github.com/studiawan/dftpl

To create the high-level events, we ran the dftpl
command as follows: dftpl -i timeline-input.csv -o
summarization-output.json -t last-shutdown, where
-i is a Plaso CSV file, -o is the output (in JSON), and -t
specifies the event of interest. The -t option can be omitted
to summarize multiple events. The list of high-level events was
then manually validated that it was correct.

A sample output is provided in Fig. 4 and includes the fol-
lowing high-level activities:

1. id: A unique identifier for the event, which is a number
that differentiates this event from others.
2. date_time_min: The earliest possible timestamp for when
the event could have occurred.
3. date_time_max: The latest possible timestamp for when the
event could have occurred.
4. evidence_source: Refers to the Plaso message that pro-
vides information about the event.
5. type: The nature of the event, such as Google Search, File
Download, or any other high-level event type.
6. description: A human-readable explanation or summary
of the event.
7. category: A higher-level classification or tag for filtering
or organizing events.
8. plugin: Identifies the Plaso plugin used to parse the source
file from which the event was extracted.
9. files: Refers to the file(s) related to the event, such as the
log file, binary file, or any other data source.
10. keys: Stores additional key-value pairs related to the event,
such as specific attributes or metadata.
11. supporting: Stores a list of five low-level events before and
after the main event for context.
12. trigger: Refers to the reasoning artifact or piece of evi-
dence that caused the event to be recognized.

4. Experimental results and analyses

This section details the experimental settings, along with the
analysis, results, and discussion of our case study.

4.1. Experimental settings

We used the version of log2timeline/Plaso which was the
Docker image version 20230717. The target operating system
was Microsoft Windows 11 Enterprise. The OS was sourced
from the Microsoft Developer Network, specifically the evalua-
tion virtual machine (VM) version 2311 (Microsoft Developer,
2024). For virtualization, we opted for VMWare Fusion 13.5.0.
For the LLM, we selected ChatGPT-40, one of the most ad-
vanced models available at the time of writing this paper. To
facilitate containerized environments, we use Docker Desktop
version 4.22.1 (118664).

The extracted full timeline is too large to be handled by Chat-
GPT due to token limitations. Consequently, we only provided
ChatGPT with about 2000 lines of Plaso entries as a timeline
of interest. We have experimented with different sizes (e.g.,
1000, 2000, 3000 lines) and found 2000 lines to be a manage-
able amount that balances input size and processing efficiency.

https://github.com/studiawan/dftpl

"o |
"id": 1002,
"date_time_min": "2023-12-26 00:48:16.151380+00:00",
"date_time_max": "2023-12-26 00:48:16.151380+00:00",

Record Number: 1896 Event Level: 4",
"type": "Shutdown time",
"description™: "Windows shut down",

"EVT-WInEVTX-winevtx",

"keys": {
"Windows Event ID": "1074",
"Windows Event ID (hex)": "0x0432"

h

"supporting": {
"before™: [{ ... }],
“after": [{ ... }]

"irigger": {..}

"evidence_source": "[1074 / 0x0432] Provider identifier: {b0aa8734-56f7-41cc-b2f4-de228e98b946}
Source Name: User32 Strings: ['C:\\\Windows\\\\System32\\\\RuntimeBroker.exe (WINDEV2311EVAL)' 'WINDEV2311EVAL'
'Other (Unplanned)' '0x0' 'power off' None 'WINDEV2311EVAL\\\User'] Computer Name: WinDev2311Eval

"NTFS:\Windows\\System32\\winevt\\Logs\\System.evtx",

Figure 4: An example of a ground truth for the event summarization task in JSON format

4.2. Timeline analysis with ChatGPT

The Advanced Data Analysis feature of ChatGPT, previously
called Code Interpreter, is now integrated into ChatGPT ver-
sions 4 and 4o (OpenAl, 2024a). This feature allows users
to analyze data and interpret code directly within the platform.
This enhances the user experience by supporting data uploads,
where users can write, test, and execute code seamlessly. The
supported file formats include text, image files, PDFs and Word
documents, code or other data files, as well as audio and video.
In this study, we used the CSV file generated by Plaso. Once the
data is uploaded, we can use the prompts to instruct ChatGPT
to read or analyze the timeline.

We employ ChatGPT in two scenarios: with and without ad-
ditional knowledge. In the first scenario, we provided ChatGPT
with specific information related to the task, such as a library
for event summarization (Sec. 3.3.5) or a list of keywords to
detect suspicious activities (Sec. 3.3.4). In the latter scenario,
we did not provide any additional information and relied solely
on ChatGPT'’s existing language model to analyze the timeline.

4.3. Results and analysis

To quantitatively evaluate ChatGPT for forensic timeline
analysis, we developed four tasks, including ground-truth data.
For example, the event summarization task has 14 event types,
the rule-based anomaly detection task has seven rules, and the
search task for specific terms has five keywords. Note that the
exploratory data analysis task does not have evaluation metrics
because there is no ground truth data for this task.

A sample result of the given prompts and the ChatGPT an-
swers is depicted in Fig. 2. The evaluation results for the used
datasets are shown in Table 1 where the metric values represent
the mean values for each task.

4.3.1. Results of running grep for specific terms

It is important to note that when asked to search for specific
terms, ChatGPT does not run the grep command. Instead, it
generates Python code to perform the search. The results of
this task are shown in Table 1. The results indicate that Chat-
GPT performs this task effectively, especially when provided

with additional knowledge, i.e., the corresponding grep com-
mand. Without additional knowledge, the BLEU score is 0.847,
and both ROUGE-1 and ROUGE-L are 1.000. The results sug-
gest that the system accurately identifies specific terms most
of the time, but with minor variations that affect the BLEU
score. With additional knowledge, the BLEU, ROUGE-1, and
ROUGE-L scores all reach 1.000 and they demonstrate that the
model can perfectly match the specific terms when it has more
context or knowledge about the data. These findings imply that
the performance of ChatGPT in conducting targeted searches is
enhanced when it is given relevant prior information. There-
fore, it produces consistent and fully accurate results.

ChatGPT can detect all entries correctly when provided with
additional knowledge or information. However, the grep out-
put from ChatGPT does not contain commas, whereas the
ground truth does, as the timeline is a comma-separated file.
Additionally, the model’s output has extra spaces that are not
present in the original data.

Furthermore, it gives inconsistent output when no additional
knowledge is provided. In several cases, it only produces in-
complete results, displaying only the “message” column with-
out including all other columns. In other instances, it provides
the correct values for all columns of the CSV file. When we ob-
tained inconsistent responses, we clicked the “Refresh” button
and it would generate the correct ones.

4.3.2. Results of rule-based anomaly detection

As mentioned in Sec. 4.2, there are two scenarios: one with
additional knowledge and one without. In the case without ad-
ditional knowledge, the prompt is slightly different because it
does not include instructions to read the uploaded keywords
file. In this task, we can instruct ChatGPT to format the an-
swers in a specific format, such as JSON. The prompt would
be “Format your answer using this JSON format:” and we can
give an example format as follows:

{
"datetime": "datetime_here",
"event": "event_name_here",
"keyword": "keyword_here",

Table 1: Evaluation results of various tasks given to ChatGPT for forensic timeline analysis

Task BLEU ROUGE-1 ROUGE-2 ROUGE-L Mean score
Without additional knowledge

Event summarization (single) 0.077 0.192 0.129 0.136 0.134
Event summarization (multiple) 0.001 0.171 0.120 0.132 0.106
Rule-based anomaly detection 0.147 0.144 0.075 0.141 0.127
Run grep for specific terms 0.847 1.000 1.000 1.000 0.962
With additional knowledge

Event summarization (single) 0.999 1.000 1.000 1.000 1.000
Event summarization (multiple) 0.743 0.786 0.786 0.786 0.775
Rule-based and anomaly detection 0.945 0.997 0.996 0.997 0.984
Run grep for specific terms 0.847 1.000 1.000 1.000 0.962

Event Occurrences per Second

250

Number of Events
" ~N
Q S
=) 3

=
S
3

Figure 5: A bar chart generated by ChatGPT in exploratory data analysis task.

"message": "message_from_logs_here"

}

Moreover, we instruct the system to export all results to a
downloadable file, with “I need all entries of suspicious entries.
Export to a JSON file for all of the results”.

In the task of rule-based anomaly detection without addi-
tional knowledge, the performance was poor: The BLEU score
is 0.147, and the ROUGE scores range from 0.141 to 0.192, in-
dicating that the model’s output is different significantly from
the expected output. The keywords generated by ChatGPT are
as follows: ‘delete’, ‘clear’, ‘wipe’, ‘remove’, ‘malware’, and
‘unauthorized’. These low scores reflect minimal overlap be-
tween the system’s output and the expected results, both in
terms of individual words and word sequences. However, it
is important to note that these evaluation metrics are based on
word matching and do not account for semantic similarity. Al-
though the wording used by ChatGPT may differ from the pre-
defined ground truth, the underlying interpretation or intent of
the result may still be forensically relevant or correct.

In contrast, the results improve when additional knowledge
is provided. Specifically, the BLEU score rises to 0.945 and
the ROUGE scores increase to nearly perfect values (ranging
from 0.996 t0 0.997). This means that generated outputs closely
match the expected results. This highlights the importance of
providing context or specialized knowledge to improve perfor-
mance in more complex forensic analysis tasks.

Even with additional information or knowledge, ChatGPT
can still make mistakes. The errors are mainly due to dif-

ferences in how characters are escaped. For example, the
ground truth uses two backslashes to escape regular expres-
sions (regex), while ChatGPT’s output uses four backslashes
to escape the “\” character.

4.3.3. Results of event summarization

Event summarization comprises two scenarios: summarizing
a single event or multiple events. Summarizing a single event
means the method extracts one specific event from the provided
timeline, such as a Google search (full list see Sec. 3.3.5). Con-
sequently, multiple events mean the LLLM is tasked with sum-
marizing all defined events.

Our research indicates that ChatGPT uses a virtual environ-
ment to run Python code when responding to user prompts. This
means we can install the dftpl Python wheel installer within
that virtual environment. To respond to the user prompts, Chat-
GPT generates Python code as shown in Fig. 2. For example, if
the parser example is designed to work for all supported events,
ChatGPT can summarize a specific event, such as the last shut-
down event on Windows. One can click the ‘[>_]’-button to
view the generated Python source code. Thus, experienced in-
vestigators may validate the code and with it the answer. Fi-
nally, the results can be downloaded in a JSON format and this
file will be quantitatively evaluated based on the ground truth
from Sec. 3.3.5.

The result of event summarization on single and multiple
events without additional knowledge shows a low performance,
with a BLEU score of 0.077 indicating limited precision in
generating a summarization that closely matches the expected
events. The ROUGE-1 score of 0.192 suggests that around
19.2% of single words in the generated output matched the ref-
erence, while the ROUGE-2 score of 0.129 shows even lower
overlap in bigrams (two-word sequences). The ROUGE-L
score of 0.136 reflects a moderate match in terms of the longest
sequence of matching words. However, we conclude that with-
out additional knowledge, the system cannot accurately sum-
marize events.

In contrast, the result for a single event with additional
knowledge, i.e., using the dftpl library, shows near-perfect
performance, with a BLEU score of 0.999 and ROUGE-1,
ROUGE-2, and ROUGE-L scores, all at 1.000. This indicates
that the ChatGPT output almost exactly matched the reference
in terms of precision, word overlap, and sequence structure.

The high scores suggest that, with additional knowledge, the
system was able to mimic the expected results. The reason is
that we gave a Python library that can summarize events based
on the method described in Hargreaves and Patterson (2012)
to ChatGPT (Fig. 2). Although we did not explicitly instruct
ChatGPT to follow a particular order, the ground truth output
produced by the dftpl library is chronologically ordered by
timestamp. For the multiple event summarization task, the eval-
uation scores were lower because ChatGPT generated the cor-
rect events but in a different order than the ground truth. The
beginning of the file displays timestamps that increase or re-
main the same, indicating a mostly sorted order. Similarly, the
end of the file follows a chronological pattern. However, the
middle sections break this order, with some events appearing
earlier than preceding ones. This discrepancy in ordering af-
fected the BLEU and ROUGE scores, which are sensitive to
the sequence of words or structures. Importantly, while the or-
der differed, the extracted content was sometimes semantically
correct and forensically valid. Future work may include imple-
menting order-invariant evaluation metrics or normalizing the
output order before comparison to address this issue.

4.3.4. Results of exploratory data analysis

This section aims to explore how ChatGPT can assist
forensic investigators in identifying patterns or anomalies
within large timelines through exploratory data analysis (EDA).
Specifically, we evaluate the model’s ability to generate useful
visualizations that support investigative tasks. The example of
a generated bar chart is shown in Fig. 5. The chart shows the
number of events occurrences per second within a specific time
range, where each bar corresponds to a second in the format:
hour:minute:second. The data reveal variability in event activ-
ity, with most seconds seeing between 50 and 150 events. How-
ever, there is a noticeable spike at 00:45:55, where the event
count exceeds 250 which indicates a sudden surge in activity
during that particular second. The concentration of events at
specific seconds may point to important actions or incidents that
require further investigation, especially during periods of rela-
tively low activity that are punctuated by intense bursts (Studi-
awan and Sohel, 2021).

Another chart generated by ChatGPT using Python is a
heatmap shown in Fig. 6. The heatmap illustrates the flow of the
event sequence, showing the transitions between various types
of events based on their timestamps. The rows represent the
current event types, while the columns represent the next event
types, with each cell indicating how often a specific event type
is followed by another. The color intensity, as shown by the
legend, reflects the frequency of these transitions, with darker
shades showing more frequent sequences. The heatmap high-
lights common flows in the event timeline and provides valu-
able insight into which events tend to trigger others. Therefore,
it can help to understand the sequences of events within the
forensic timeline analysis.

Key patterns can be observed in this visualization. For exam-
ple, ‘Metadata Modification Time’ transitions into itself 1079
times, suggesting that it frequently repeats or is followed by
itself in the sequence of events. There are also noticeable tran-

10

Event Sequence Flow: Transitions Between Event Types

Content Modification Time- 3 14 52 0 0 96 1 1000

Creation Time- 28 17 29 0 0 118 0

800
Last Access Time- 40 39 63 1 0 98 0

= 600
Last Time Executed- 0 0 1 0 0 0 0

Current Event

Last Visited Time- 0 0 0 0 2 2 0

Metadata Modification Time- 95 123 96 0 2

-200

Previous Last Time Executed - 0 0 0 0 0 1 0

e
NS N S &€ < &
o o o e o @
© g° & <& & © &
N 2 < e 3¢ R e
& & ¥ & &S &
& & A & & A
O 53 X 2 O g
\/ 2 v W e
& P > g
& %
& & =
o b 3©
C \‘\e &

Next Event

Figure 6: A heatmap generated by ChatGPT for event sequence flow

sitions from ‘Creation Time’ to ‘Metadata Modification Time’
(118 times) and from ‘Last Access Time’ to ‘Metadata Modifi-
cation Time’ (98 times).

The heatmap reveals typical patterns in the event timeline by
showing how certain events frequently follow others. This visu-
alization helps investigators better understand the sequence and
relationship between events during forensic timeline analysis.
In short, EDA can be done by a human investigator, but using
ChatGPT can help speed up this manual work.

4.4. Discussion

Overall quantitative evaluation. Without additional knowl-
edge, tasks such as ‘Event summarization (single)’ and ‘rule-
based anomaly detection” have mean scores of 0.134 and 0.127,
respectively, indicating limited accuracy. However, ‘run grep
for specific terms’ achieves a much higher mean score of 0.962,
suggesting that ChatGPT can handle search for specific terms
relatively well even without prior information. With additional
knowledge, mean scores improve across all tasks. Single event
summarization tasks achieved a perfect mean score of 1.000,
while the multiple one obtained 0.775. The results demonstrate
inconsistent accuracy scores, even when provided with relevant
context. The mean score for the rule-based anomaly detection
task also increases to 0.984. The consistent mean score of 0.962
for “run grep for specific terms” shows that the task is already
handled effectively regardless of additional knowledge. In the
grep task, providing prior information does not lead to further
improvement.

CSV file size of a forensic timeline. While ChatGPT is adver-
tised as being capable of handling CSV files up to SOMB in
size*, we found that in practice, it struggles to process files of

‘https://help.openai.com/en/articles/
8983719-what-are-the-file-upload-size-restrictions

https://help.openai.com/en/articles/8983719-what-are-the-file-upload-size-restrictions
https://help.openai.com/en/articles/8983719-what-are-the-file-upload-size-restrictions

that size. Throughout our experiments, we observed that Chat-
GPT could successfully analyze smaller CSV files, but when
attempting to work with larger files (10MB or more), the model
often encountered errors or failed to provide results. This dis-
crepancy suggests that, despite the claims in the documentation,
there are practical limitations when analyzing larger datasets,
likely due to resource constraints or the tokens complexity in-
volved in processing such large volumes of data.

5. Conclusion and future work

The proposed methodology and dataset have demonstrated
its potential for quantitative evaluation of timeline analysis us-
ing LLMs. Using the proposed standardized methodology and
dataset, researchers can apply and expand the test and evalu-
ation of LLM-based forensic timeline analysis. By employ-
ing the advantages of natural language processing on LLMs,
e.g., ChatGPT, the presented case studies show that it can assist
in analyzing events and temporal information from a forensic
timeline. It also provides valuable information for forensic in-
vestigators, particularly in the task of exploratory data analysis.
However, based on the quantitative evaluation, ChatGPT per-
forms worse than a rule-based approach or a regular expression-
based approach accompanied by a human investigator.

For future work, we plan to undertake the task of developing
custom LLMs specifically trained on digital forensic data and
associated tasks. In addition, we will explore the use of other
commercial LLM services such as Google Gemini and Claude
to evaluate the robustness of our approach. In addition, to ad-
dress concerns about the confidentiality of digital evidence, we
plan to deploy open-source LLMs, such as LLaMA (Touvron
et al., 2023) and Mixtral (Jiang et al., 2024) on a local device.
By keeping the forensic timeline on the local computer, we aim
to avoid the need to upload sensitive data to cloud-based LLM
services, thus ensuring the privacy of the investigation.

Acknowledgments

We would like to thank Christopher Hargreaves for his valu-
able comments and feedback.

References

Arshad, H., Jantan, A.B., Abiodun, O.I., 2018. Digital forensics: Review of
issues in scientific validation of digital evidence. Journal of Information
Processing Systems 14, 346-376.

Bhandari, S., Jusas, V., 2020. An abstraction based approach for reconstruction
of timeline in digital forensics. Symmetry 12, 104.

Breitinger, F., Jotterand, A., 2023. Sharing datasets for digital forensic: A
novel taxonomy and legal concerns. Forensic Science International: Digital
Investigation 45, 301562.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al., 2020. Language mod-
els are few-shot learners. Advances in Neural Information Processing Sys-
tems 33, 1877-1901.

Brunty, J., 2023. Validation of forensic tools and methods: A primer for the dig-
ital forensics examiner. Wiley Interdisciplinary Reviews: Forensic Science
5,eld74.

Buchholz, K., 2023. One million users: Threads shoots past one million user
mark at lightning speed. https://www.statista.com/chart/29174/
time-to-one-million-users/.

11

Chabot, Y., Bertaux, A., Nicolle, C., Kechadi, M.T., 2014. A complete formal-
ized knowledge representation model for advanced digital forensics timeline
analysis. Digital Investigation 11, S95-S105.

Dinis-Oliveira, R.J., Azevedo, R.M., 2023. ChatGPT in forensic sciences: A
new Pandora’s box with advantages and challenges to pay attention. Foren-
sic Sciences Research 8, 275-279.

Gobel, T., Baier, H., Breitinger, F., 2023. Data for digital forensics: Why a dis-
cussion on “how realistic is synthetic data” is dispensable. Digital Threats:
Research and Practice 4, 1-18.

Hall, S.W., Sakzad, A., Choo, K.K.R., 2022. Explainable artificial intelligence
for digital forensics. Wiley Interdisciplinary Reviews: Forensic Science 4,
el434.

Hargreaves, C., Patterson, J., 2012. An automated timeline reconstruction ap-
proach for digital forensic investigations. Digital Investigation 9, Supplem,
S69-S79.

Henseler, H., van Beek, H., 2023. ChatGPT as a copilot for investigating digital
evidence, in: Proceedings of the Third International Workshop on Artificial
Intelligence and Intelligent Assistance for Legal Professionals in the Digital
Workplace, pp. 58—69.

Horsman, G., 2019. Tool testing and reliability issues in the field of digital
forensics. Digital Investigation 28, 163—175.

Hugging Face, 2024a. Metric: bleu. https://huggingface.co/spaces/
evaluate-metric/bleu.

Hugging Face, 2024b. Metric: rouge. https://huggingface.co/spaces/
evaluate-metric/rouge.

Hughes, N., Karabiyik, U., 2020. Towards reliable digital forensics inves-
tigations through measurement science. Wiley Interdisciplinary Reviews:
Forensic Science 2, e1367.

Inglot, B., Liu, L., 2014. Enhanced timeline analysis for digital forensic inves-
tigations. Information Security Journal: A Global Perspective 23, 32-44.
Jiang, A.Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C.,
Chaplot, D.S., Casas, D.d.l., Hanna, E.B., Bressand, F., et al., 2024. Mixtral

of experts. arXiv:2401.04088 .

Lin, C.Y., 2004. ROUGE: A package for automatic evaluation of summaries,
in: Text Summarization Branches Out, pp. 74-81.

Metz, J., Gudjonsson, K., White, D., et al., 2024. log2timeline Plaso: Super
timeline all the things. https://github.com/log2timeline/plaso.
Michelet, G., Breitinger, F.,, 2024. ChatGPT, Llama, can you write my re-
port? An experiment on assisted digital forensics reports written using (lo-
cal) large language models. Forensic Science International: Digital Investi-

gation 48, 301683.

Microsoft Developer, 2024. Get a Windows 11 development en-
vironment. https://developer.microsoft.com/en-us/windows/
downloads/virtual-machines/.

Nalawade, A., Bharne, S., Mane, V., 2016. Forensic analysis and evidence
collection for web browser activity, in: 2016 International Conference on
Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp.
518-522.

NIST, 2019. Computer Forensics Tool Testing Program (CFTT).
https://www.nist.gov/itl/ssd/software-quality-group/
computer-forensics-tool-testing-program-cftt.

OpenAl, 2024a. Data analysis with ChatGPT. https://help.openai.com/
en/articles/8437071-data-analysis-with-chatgpt.

OpenAl, 2024b. Prompt engineering. https://platform.openai.com/
docs/guides/prompt-engineering.

Palmbach, D., Breitinger, F., 2020. Artifacts for detecting timestamp manipula-
tion in ntfs on windows and their reliability. Forensic Science International:
Digital Investigation 32, 300920.

Papineni, K., Roukos, S., Ward, T., Zhu, W.J., 2002. BLEU: A method for
automatic evaluation of machine translation, in: Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, pp. 311—
318.

Scanlon, M., Breitinger, F., Hargreaves, C., Hilgert, J.N., Sheppard, J., 2023a.
ChatGPT for digital forensic investigation: The good, the bad, and the un-
known. Forensic Science International: Digital Investigation 46, 301609.

Scanlon, M., Nikkel, B., Geradts, Z., 2023b. Digital forensic investigation in
the age of ChatGPT. Forensic Science International: Digital Investigation
44,301543.

Studiawan, H., Ahmad, T., Santoso, B.J., Pratomo, B.A., 2022a. Forensic time-
line analysis of i0S devices, in: 2022 International Conference on Engineer-
ing and Emerging Technologies (ICEET), pp. 1-5.

https://www.statista.com/chart/29174/time-to-one-million-users/
https://www.statista.com/chart/29174/time-to-one-million-users/
https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/rouge
https://github.com/log2timeline/plaso
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://help.openai.com/en/articles/8437071-data-analysis-with-chatgpt
https://help.openai.com/en/articles/8437071-data-analysis-with-chatgpt
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering

Studiawan, H., Ahmad, T., Santoso, B.J., Shiddiqi, A.M., Pratomo, B.A.,
2022b. DroneTimeline: Forensic timeline analysis for drones. SoftwareX
20, 101255.

Studiawan, H., Sohel, F., 2021. Anomaly detection in a forensic timeline with
deep autoencoders. Journal of Information Security and Applications 63,
103002.

Studiawan, H., Sohel, F., Payne, C., 2019. A survey on forensic investigation
of operating system logs. Digital Investigation 29, 1-20.

12

Studiawan, H., Sohel, F.,, Payne, C., 2020. Sentiment analysis in a forensic
timeline with deep learning. IEEE Access 8, 60664—-60675.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Roziere, B., Goyal, N., Hambro, E., Azhar, F, et al., 2023. Llama: Open
and efficient foundation language models. arXiv:2302.13971 .

Wickramasekara, A., Breitinger, F., Scanlon, M., 2025. Exploring the potential
of large language models for improving digital forensic investigation effi-
ciency. Forensic Science International: Digital Investigation 52, 301859.

	Introduction
	Related work
	Forensic tool testing and validation
	Forensic timeline analysis
	LLMs for digital forensics

	Proposed methodology
	Evaluation metrics
	BLEU – Bilingual Evaluation Understudy
	ROUGE – Recall-Oriented Understudy for Gisting Evaluation
	Considerations

	Common tasks for forensic timeline analysis
	Prompts for running grep of specific terms
	Prompts for rule-based anomaly detection
	Prompts for event summarization
	Prompts for exploratory data analysis

	Ground truth
	Scenario and dataset generation
	Timeline generation
	Ground truth for Task 1: Running grep for specific terms
	Ground truth for Task 2: Rule-based anomaly detection
	Ground truth for Task 3: Event summarization

	Experimental results and analyses
	Experimental settings
	Timeline analysis with ChatGPT
	Results and analysis
	Results of running grep for specific terms
	Results of rule-based anomaly detection
	Results of event summarization
	Results of exploratory data analysis

	Discussion

	Conclusion and future work

