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Abstract—Background: Large language models (LLMs) are in-
creasingly deployed via open-source and commercial frameworks,
enabling individuals and organizations to self-host advanced
AI capabilities. However, insecure defaults and misconfigura-
tions often expose LLM services to the public Internet, posing
significant security and system engineering risks. Aims: This
study aims to unveil the current landscape of public-facing
LLM deployments in the wild through a large-scale empirical
study, focusing on service prevalence, exposure characteristics,
systemic vulnerabilities, and associated risks. Method: We con-
ducted an Internet-wide measurement to identify public-facing
LLM deployments across 15 frameworks, discovering 320,102
services. We extracted 158 unique API endpoints, grouped into
12 functional categories based on capabilities and security risks.
We further analyzed configurations, authentication practices,
and geographic distributions, revealing deployment trends and
systemic issues in real-world LLM system engineering. Results:
Our study shows that public LLM deployments are rapidly
growing but often insecure. Among all endpoints, we observe
widespread use of insecure protocols, poor TLS configurations,
and unauthenticated access to critical operations. Security risks,
including model disclosure, system leakage, and unauthorized
access, are pervasive, highlighting the need for secure-by-default
frameworks and stronger deployment practices. Conclusions:
Public-facing LLM deployments suffer from widespread security
and configuration flaws, exposing services to misuse, model
theft, resource hijacking, and remote exploitation. Strengthening
default security, deployment practices, and operational standards
is critical for the growing self-hosted LLM ecosystem.

Index Terms—large language models, LLM, LLM deployment,
empirical study

I. INTRODUCTION

The rapid adoption of large language models (LLMs),
driven by prominent models such as the GPT series from
OpenAI [33] and DeepSeek’s open-source variants [1], has
profoundly reshaped the landscape of artificial intelligence
(AI) applications. Once confined primarily to research labs
and industrial environments, these models have increas-
ingly become accessible to the general public, fueling
a widespread trend towards self-hosted and open-source
deployments [18]. The availability of user-friendly tools and
vibrant community ecosystems [42], [43], [38] has empowered
individual enthusiasts, small enterprises, and developers to in-
dependently deploy and customize powerful language models
for various personal and professional purposes, such as cre-
ative writing and content creation [21], software development
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and maintance [17], financial analysis and automated invest-
ment assistance [48]and personal productivity tools, greatly
enriching their daily digital experiences. However, as barriers
to LLM deployment continue to fall, more deployments occur
without rigorous security considerations, exposing users and
organizations to new operational and security risks.

Among these concerns, the OWASP Top 10 for LLM Appli-
cations 2025 [13] identifies several risks that deserve particular
attention during deployment, including sensitive information
disclosure, unbounded consumption, and supply chain risks.
These risks are especially relevant in self-hosted and open-
source scenarios, where models, APIs, and supporting in-
frastructure are often exposed to the public internet without
sufficient protection. These deployment challenges highlight
not only the security concerns of LLM applications but also
broader software engineering issues around system configura-
tion, exposure management, and operational robustness.

Open-source frameworks commonly used for self-hosted
LLM deployments often suffer from insecure default settings
and misconfigurations, exposing sensitive interfaces to the
public Internet without adequate protection and significantly
enlarging the attack surface. Such services can be easily
discovered via common asset-discovery tools like FOFA [9],
Shodan [26], and ZoomEye [41]. For instance, Ollama [42], a
framework widely utilized for deploying local LLM services,
exposes RESTful APIs publicly by default without authentica-
tion, enabling unauthorized operations such as model deletion,
theft, GPU resource hijacking, and critical remote code ex-
ecution (e.g., CVE-2024-37032 [30]). Furthermore, publicly
maintained platforms aggregating openly accessible Ollama
services [4] exacerbate the issue. Similarly, OpenWebUI [43],
commonly integrated alongside Ollama for enhanced inter-
action capabilities, has suffered from vulnerabilities allow-
ing arbitrary file uploads (CVE-2024-6707 [31]), potentially
facilitating remote command execution. Additionally, Com-
fyUI [11], known for its plugin-rich environment supporting
diffusion-based generation tasks, has experienced multiple
severe plugin-related security issues, including unauthorized
remote code execution, arbitrary file access, and serialization
vulnerabilities. Together, these vulnerabilities highlight the
urgent need for stronger security awareness and practices in
open-source LLM deployments.

Motivated by these observations, we conduct a large-scale
empirical analysis to systematically assess the prevalence and
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Fig. 1: Overview of the Empirical Analysis Pipeline.

characteristics of public-facing LLM deployments. Our overall
analysis pipeline is illustrated in Figure 1. We identify and
analyze 320,102 LLM services across the Internet, spanning
15 popular deployment frameworks. From these, we extract
158 unique API endpoints, which we group into 12 func-
tional categories based on their capabilities and associated
security risks. Our study analyzes the geographic and net-
work distribution of LLM deployments, uncovers widespread
insecure configurations such as unauthenticated inference and
model enumeration, and provides practical recommendations
for developers and operators. The findings expose widespread
security and deployment flaws, highlighting the need for
secure-by-default designs and improved operational practices.
Our artifacts related to this study are publicly available at
https://anonymous.4open.science/r/Public-LLM-Services.

Our main contributions are as follows:

• Large-Scale Empirical Study: We identify 320,102
publicly accessible LLM services, providing the first
empirical evidence of their global presence, deployment
patterns, and exposure characteristics.

• Exposure and Security Risk Analysis: We systemati-
cally analyze 158 unique API endpoints, categorize them
into 12 functional groups, and uncover systemic vul-
nerabilities in open-source LLM deployments, including
model disclosure, system leakage, unauthorized access,
vulnerabilities, and sensitive content generation.

• Practical Recommendations: We provide actionable
guidance for secure-by-default design and deployment,
grounded in empirical findings and targeting developers,
framework maintainers, and operators.

II. BACKGROUND AND RELATED WORK

A. LLM Deployment Paradigms and Tooling

Deploying LLMs in real-world environments involves a
multi-layered stack encompassing computation, scalable serv-
ing, user interaction, and developer support. This stack broadly
consists of four key components. Inference Engines. In-
ference engines execute LLM computations across diverse
hardware. Optimized systems like vLLM [44] and Hugging
Face Transformers leverage techniques such as continuous
batching, KV cache optimization, and operator fusion to im-
prove throughput and latency [25]. Tools like LLM-Pilot [23]
enable benchmarking and configuration across different envi-
ronments. Model Serving Frameworks. Serving frameworks
manage hosting, request routing, and scaling. Systems like Ray
Serve [20] and Ollama [42] support flexible deployment across
cloud and edge platforms [7], [5]. Split-based deployment
further distributes model components to balance performance
and privacy [6]. Application User Interfaces. User-facing
applications integrate LLMs via conversational interfaces,
RAG pipelines, and autonomous agents. Frameworks like
LangChain and ChatGPT plugins simplify this integration but
also introduce risks such as indirect prompt injection [45],
[19]. Developer Tools and Ecosystems. Developer tools sup-
port fine-tuning, evaluation, and maintenance. Libraries such
as DeepSpeed, Hugging Face PEFT, and LoRA enable efficient
model adaptation [18], [37], while tools like TestGen-LLM [3]
automate engineering workflows. Specialized accelerators are
also emerging to meet large-scale inference demands [12], [7].
Despite growing modularity and accessibility, little is known
about how LLM deployments are configured and exposed in
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TABLE I: Publicly Exposed LLM Deployment Frameworks Discovered via FOFA (As of April 20, 2025).

Category Framework Description Key Feature Count

Inference Engines

vLLM [44] High-throughput, memory-optimized inference service title/vLLM; port=8000 6,077
llama.cpp [14] C/C++ quantized inference engine title/llama.cpp; port=8080 4,234
GPT4All [2] Local GPT model runtime exposing REST endpoint title/GPT4All; port=8080 2,572
Llamafile [35] Single-file GPT execution tool title/Llamafile; port=8080 39

Model Serving
Ollama [42] Cross-platform CLI for local LLM API service header/Ollama; port=11434 155,423
AnythingLLM [38] Local knowledge base integration with LLM API title/AnythingLLM; port=3000 3,766
Ray Serve [20] Scalable microservice framework with autoscaling title/Ray Serve; port=8000 365

Application UIs

Open WebUI [43] Ollama/GPT-API Web dashboard title/Open WebUI; port=8080 37,242
Jan [40] Interactive local chat UI title/Jan; port=3000 28,445
NextChat [10] Local ChatGPT-style interface title/chatgpt-next-web; port=3000 25,883
ComfyUI [11] Visual workflow builder for LLM and image pipelines title/ComfyUI; port=8188 15,219
Gradio [39] Python toolkit for shareable LLM web demos title/Gradio; port=7860 9,729
Text Generation Web UI [32] Generic LLM Web interface title/text-generation-webui; port=7860 2,051

Developer Tools Jupyter Notebook [22] Interactive Python notebook environment body/Jupyter Notebook 24,531
FastAPI/Swagger UI [36] Auto-generated API docs and interactive endpoints title/FastAPI; port=8000 4,526

Total 320,102

practice. To bridge this gap, we conduct the first large-scale
analysis of publicly accessible LLM services in the wild.

B. Security Challenges in LLM Deployment

Large-scale LLM deployments introduce security challenges
across networking, authentication, input handling, and re-
source management layers. A common risk stems from acci-
dental exposure, where open ports or permissive configurations
allow unrestricted access to LLM services. Measurements
of Internet-facing deployments [45] reveal widespread mis-
configurations, leading to unauthorized interactions, resource
abuse, and data leakage. Authentication weaknesses further
exacerbate these risks. Pesati et al. [34] found that many
public LLM services lack proper authentication or rely on
fragile mechanisms, exposing them to prompt manipulation,
session hijacking, and privilege escalation. Input manipulation,
particularly prompt injection, presents another critical threat.
Indirect injections, where malicious inputs are embedded in
external content, can subvert model behavior without user
awareness [45], [15], [19]. Attackers can exploit LLM inte-
grations with web tools, APIs, or retrieval systems to trig-
ger unauthorized actions or leak data [27], [8]. Multi-tenant
serving architectures introduce side-channel vulnerabilities.
Sharing Key-Value (KV) caches among users, as in vLLM,
can leak cross-tenant information. Attacks like PROMPT-
PEEK [47] demonstrate that adversaries can reconstruct other
users’ prompts by analyzing cache access patterns. Further-
more, integrating LLMs with plugins, autonomous agents, and
retrieval-augmented generation (RAG) pipelines significantly
expands the attack surface [46], [49], [24]. Vulnerabilities in
these systems can lead to data poisoning, unauthorized API
calls, and model evasion. Surveys [50], [16] highlight that
LLM-based agents are especially prone to security and privacy
threats due to their complex interactions with external systems.
Motivated by these risks, we systematically investigate real-
world LLM deployments to uncover prevalent insecure prac-
tices and highlight critical gaps in existing security postures.

III. METHODOLOGY

Figure 1 outlines our four-step methodology for analyzing
LLM deployments in the wild. We first select representative
deployment frameworks (§ III-A), then discover publicly ac-
cessible instances via FOFA (§ III-B), probe their APIs to
collect metadata (§ III-C), and finally analyze their configura-
tions and security posture (§ III-D).

A. Target Framework Selection

To structure our measurement and ensure broad coverage
across the LLM deployment stack, we selected representa-
tive frameworks spanning four functional categories, based
on the typical architecture of real-world LLM deployments:
inference engines, model serving frameworks, application user
interfaces (UIs), and developer tools. Inference engines (e.g.,
vLLM [44], llama.cpp [14]) handle local model execution
optimized for performance. Model serving frameworks (e.g.,
Ollama [42], Ray Serve [20]) expose scalable APIs. Applica-
tion UIs (e.g., Open WebUI [43], Jan [40], ComfyUI [11])
provide user-facing interfaces, while developer tools (e.g.,
Jupyter Notebook [22], FastAPI [36]) facilitate development
workflows and integration. Frameworks were selected based
on popularity in open-source communities, ease of deploy-
ment, documentation availability, and the distinctiveness of
their network exposure characteristics. In total, we studied 15
widely-used frameworks, summarized in Table I.

B. Asset Discovery via FOFA

We use FOFA, a widely adopted Internet-wide asset search
engine that indexes IP addresses, domains, and service meta-
data [9], to discover public-facing LLM deployments at scale.
We constructed a feature catalog for each tool, capturing its
unique network-level characteristics, to detect these deploy-
ments via FOFA. These features include default service ports
(e.g., port 11434 for Ollama), page titles or HTML keywords
(e.g., title=‘‘Open WebUI’’), HTTP response headers
(e.g., ‘‘Ollama is running’’), and, where available,



favicon hashes or known API paths, as shown in Table I.
Based on this catalog, we designed custom FOFA query
expressions using the platform’s advanced syntax. For in-
stance, services like Ollama were identified using queries
such as app=‘‘Ollama’’ && port=‘‘11434’’, while
FastAPI-based deployments were located using expressions
like title=‘‘FastAPI’’ || body=‘‘FastAPI’’)
&& (port=‘‘8000’’ || port=‘‘8080’’.

To improve coverage and reduce false positives, we refined
these queries iteratively. This process involved testing against
known deployment samples, consulting official documentation,
and manually validating a representative subset of results.
In particular, we examined rendered landing pages, HTTP
headers, and available API metadata to confirm the identity
of suspected services. As of April 20, 2025, we had identified
320,102 publicly accessible LLM-related services across 15
representative deployment tools, as shown in Table I. These
include 155,423 instances of Ollama, 37,242 of Open WebUI,
28,445 of Jan, and 6,077 of vLLM, among others. These
results form the foundation for the subsequent phases of our
study, including endpoint probing and configuration analysis,
as described in § III-C and § III-D.

TABLE II: API Categories in Exposed LLM Services.

Category Function #

Text & Chat Gen Text and chat completions (OpenAI-style) 23
Embedding Gen Generate vector embeddings from text 9
Image & Audio Image generation, editing, speech-to-text, TTS 32

Model Ops Load, list, delete, and inspect models 28
File Ops Upload, download, or delete general files 19

Knowledge/RAG Upload and query knowledge bases for RAG 3
Fine-tuning Tasks Create fine-tuning jobs and upload training data 10
Session & Kernel Manage Jupyter sessions, kernels, and clusters 16

Task Queue Submit tasks, monitor queues, and job scheduling 3
System Config Get system status, API version, and configuration 6

Moderation Check Content safety and moderation checks 5
App Deployment Deploy or manage LLM apps (e.g., Ray Serve) 4

Total 158

C. API Endpoint Probing

We extracted 158 API endpoints from the official documen-
tation of 15 widely used LLM deployment frameworks. These
endpoints span many functionalities, including model manage-
ment, file access, kernel and session management, and appli-
cation deployment. As summarized in Table II, the endpoints
are organized into 12 functional categories. For instance,
endpoints under the Text/Chat category enable OpenAI-style
text generation (e.g., /v1/chat/completions), while
the Model Control group provides access to model life-
cycle operations such as loading or deleting models (e.g.,
/models/delete). Several endpoints were found to ex-
pose potentially sensitive actions, including file uploads,
session control, and even server-side code execution in
certain configurations. Using these extracted paths, we con-
structed full URLs by combining them with the network
locations of previously discovered LLM services. Probing
was conducted via HTTP(S) requests, and all responses

were collected and stored for further analysis. Rather than
attempting a comprehensive crawl of all known services,
the probing process was designed to focus on identifying
insecure deployment practices across representative samples.
Sampling was performed within each LLM service category
to ensure statistical validity. For each category, we selected
services based on a 95% confidence level and a 5% margin of
error. This approach allowed us to reduce probing overhead
while maintaining representative coverage across deployment
types. The resulting dataset provides a comprehensive view of
exposed API functionalities and their response behaviors in
real-world deployments.

D. Configuration and Security Analysis

Following endpoint probing, we analyzed the returned API
responses to assess the configuration and security posture
of exposed LLM services. Each response was mapped to a
unified schema capturing five key fields: deployment frame-
work, endpoint category, endpoint path, response type (e.g.,
success, denial, error), and potential security relevance. This
schema enabled consistent comparison across frameworks with
heterogeneous designs and naming conventions. The analysis
focused on endpoint responsiveness under unauthenticated
access, functional exposure across 12 categories, and the
presence of risky operations such as model management,
file access, and code execution. By aggregating normalized
responses across representative samples, we identified com-
mon patterns of misconfiguration, authentication gaps, and
inconsistent access control enforcement.

IV. RESULTS

This section presents the results of our Internet-wide em-
pirical analysis of public LLM services. We report the overall
exposure, deployment characteristics, configuration patterns,
and security risks observed in the collected dataset.

A. General Statistics

We conduct a series of foundational statistical analyses to
provide a comprehensive overview of the public landscape of
self-hosted LLM services. These analyses aim to uncover the
global deployment scale, organizational involvement, domain
exposure, deployment surfaces, and security postures, forming
a basis for deeper security investigations.

1) Global and Organizational Deployment Trends: We
analyze 320,012 exposed LLM service endpoints, aggregating
their origin by country and associated hosting organization.
Figure 2 illustrates this landscape with two pie charts summa-
rizing the top contributors by country and organization.
Geographic Centralization. As shown in Figure 2a, the
United States is by far the dominant origin of public LLM
services, with 111,728 instances, more than twice the count
of the second-largest country, China (56,593). Other prominent
contributors include Germany, Japan, and Singapore. This im-
balance highlights a pronounced centralization of deployment
activity within technologically advanced nations, likely driven
by both cloud infrastructure maturity and early AI adoption.
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Fig. 2: Global Landscape of Public LLM Deployment.

Notably, the “Others” category still accounts for over 53,000
instances, suggesting that self-hosted LLMs are also gaining
traction in the broader global community, albeit in smaller
clusters. This distribution hints at a growing democratization
of LLM capabilities, though one is still heavily shaped by
infrastructure access and national regulatory frameworks.
Organizational Dominance and Long Tail. As shown in
Figure 2b, a few major providers dominate public LLM
deployments. Amazon alone hosts 88,257 instances, followed
by Cloudflare, Akamai, and Microsoft. This concentration is
not coincidental: these cloud and CDN providers offer highly
accessible and scalable infrastructure, often with free-tier or
pay-as-you-go models, making them attractive to both individ-
ual developers and small organizations. In many cases, LLM
frameworks are also preconfigured for platforms like AWS
or Cloudflare Workers, further lowering deployment barriers.
Interestingly, a long-tail distribution persists: over 100,000
services are hosted by entities categorized as “Others”. This
indicates that a substantial number of deployments originate
from smaller cloud vendors, university networks, hobbyist
servers, or edge nodes. While this decentralization reflects
the democratization of LLM deployment, it also introduces
significant heterogeneity in operational practices.

This uneven deployment landscape creates a strategic asym-
metry: while centralized platforms enable efficient patching
and policy enforcement, the fragmented long tail poses
significant challenges due to inconsistent security practices.
Attackers can exploit this imbalance by focusing on a few
high-density targets, whereas defenders must cope with a much
broader and less predictable surface.

2) High-Traffic Domains and Service Concentration: More
than 210,000 exposed LLM services lack valid domain as-
signments, representing a significant portion of the overall
deployment landscape. This reflects widespread deployment
without proper DNS configuration or certificate binding, likely
resulting from incomplete setup processes or reliance on
default settings in automated toolchains. These services are
typically accessible only via IP address and represent a con-
siderable portion of deployments with poor post-deployment
hygiene, weakening traceability and trust mechanisms.

Beyond these unassigned cases, certain domains are as-
sociated with an unusually high number of LLM instances.
As shown in Figure 3, domains such as nellasushi.es,
mysuccess.be, and human-rights-law.eu each host

thousands of services. This level of repetition is uncommon
in conventional web deployments and suggests that these
domains serve as default endpoints in automated or templated
hosting environments. Two factors support this interpretation.
First, services under the same domain frequently share a small
number of IP addresses, indicating centralized hosting or large-
scale reuse of identical deployment images. For instance, 6,206
instances under nellasushi.es are served by two IPs.
Second, deployment metadata1 reveals a consistent reliance
on a limited set of frameworks such as ComfyUI, Jan, and
vLLM, often in their default configurations. These patterns
point to widespread use of prebuilt containers or orchestration
scripts. Such concentration has both operational advantages
and security implications. Focusing remediation efforts on a
few high-frequency domains could reduce exposure at scale.
However, any misconfiguration or compromise within these
clusters could simultaneously affect thousands of end-
points. Moreover, the repeated use of domain names, IPs,
and certificates erodes the reliability of trust models and
complicates service attribution.
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Fig. 3: High-Traffic Domains by Number of LLM Services.

3) Server Stack Composition: Public LLM services are
predominantly hosted using familiar and widely adopted
server stacks. As shown in Table III, the most common
configuration is Ubuntu + nginx, with versions such as
nginx/1.18.0 and 1.24.0 being particularly prevalent.
Apache-based deployments are also observed, primarily on

1Supplemental heatmap available at https://anonymous.4open.science/r/
Public-LLM-Services.
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Fig. 4: Distribution of LLM Services Across Ports by Deployment Framework.

Debian or generic Unix systems, while Microsoft IIS ac-
counts for only a small fraction, reflecting a strong bias
toward Linux-based environments. However, a substantial
number of services lack complete environment metadata. Over
50,000 instances do not report a valid operating system,
and more than 90,000 specify only generic server identifiers.
These incomplete configurations likely arise from container-
ized or scripted deployments where base image information
is obscured. While such approaches streamline deployment,
they also reduce observability and hinder vulnerability as-
sessment. Some configurations also raise potential security
concerns. Instances running outdated server versions (e.g.,
nginx/1.14.0, apache/2.4.29) may expose known
vulnerabilities if not properly patched [29], [28]. Lightweight
servers such as Uvicorn and TornadoServer, though
efficient, often lack default hardening and are more prone to
insecure defaults. The prevalence of opaque and minimalist
setups further complicates automated auditing and increases
uncertainty in assessing the broader exposure surface.

TABLE III: Top OS–Server Deployment Combinations in
Exposed LLM Services.

OS Server Count Percentage Share in OS

ubuntu nginx/1.18.0 (ubuntu) 7,242 42.84% 53.23%
ubuntu nginx/1.24.0 (ubuntu) 3,659 21.65% 26.9%

windows microsoft-iis/10.0 567 3.35% 50.04%
ubuntu apache/2.4.52 (ubuntu) 545 3.22% 4.01%
debian apache/2.4.62 (debian) 457 2.70% 44.63%
ubuntu apache/2.4.41 (ubuntu) 420 2.48% 3.09%
ubuntu nginx/1.14.0 (ubuntu) 389 2.30% 2.86%
ubuntu apache/2.4.29 (ubuntu) 357 2.11% 2.62%
unix apache/2.4.62 (unix) 218 1.29% 26.42%

ubuntu apache/2.4.58 (ubuntu) 194 1.15% 1.43%
ubuntu nginx/1.26.0 (ubuntu) 194 1.15% 1.43%
debian apache/2.4.25 (debian) 139 0.82% 13.57%
unix apache/2.4.57 (unix) 122 0.72% 14.79%

windows microsoft-iis/8.5 119 0.70% 10.5%
unix apache/2.4.63 (unix) 117 0.69% 14.18%

ubuntu nginx/1.10.3 (ubuntu) 112 0.66% 0.82%
windows microsoft-iis/7.5 101 0.60% 8.91%

4) Communication Security and Port Exposure: The com-
munication security of public LLM services varies signifi-
cantly across ports and deployment frameworks. As shown in
Figure 5, a large fraction of services either lack TLS entirely
or use outdated versions. Port 443, typically associated with
HTTPS, is the most secure, with over 13,000 instances using
TLS 1.3 and only 2 instances using TLS 1.0. However, this
is not the norm across other ports. Overall, nearly 129,811
services are still accessible via plain HTTP, accounting
for over 40% of the measured endpoints. This reflects a
broad lack of transport encryption across the LLM service
ecosystem. Notably, a large number of services on ports such
as 11434, 3000, and 8888 lack TLS support. These ports are
commonly associated with frameworks including Open Web
UI, Jan, and Ollama, as shown in Figure 4. For instance, over
32,000 services on port 11434 and nearly 14,000 on 8080 lack
any TLS configuration. Even when TLS is present, a non-
trivial portion still relies on deprecated versions such as TLS
1.0 and 1.2, which expose services to downgrade attacks and
known cryptographic vulnerabilities.
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Fig. 5: TLS Version Distribution Across Ports (Log Scale).

The widespread use of non-standard ports, often with weak
or missing encryption, highlights a broader issue: many LLM
frameworks prioritize ease of deployment over secure defaults.



This creates a communication surface that is both predictable
and exposed. Attackers can scan for specific ports tied to
popular frameworks and exploit weak encryption to intercept
or tamper with LLM outputs. These findings highlight the need
for stronger default security in deployment tools, especially in
TLS enforcement and port hardening. Without it, even well-
intentioned self-hosted setups remain vulnerable by design.

5) Certificate Reuse and Identity Management: TLS cer-
tificate metadata associated with public LLM services re-
veals widespread reuse and misconfiguration, especially in
certificate subject fields. As illustrated in Figure 6, common
names (CNs) such as localhost and generic domain la-
bels (e.g., nellasushi.es, mysuccess.be) appear fre-
quently, while a significant number of entries are simply
marked as nan, indicating missing or unparsable certificate
subject fields. Quantitative analysis supports this observation.
Over 210,000 services use localhost or nan as the certifi-
cate subject CN, and many others share identical organization
names across hundreds or thousands of instances. While some
reuse is expected in containerized or replicated environments,
the scale observed here suggests a lack of certificate man-
agement hygiene. This undermines the integrity of TLS-based
identity validation, as the same certificate may appear in
unrelated deployments or across unaffiliated IP ranges.

Issuer fields show strong centralization, with certificates
mostly issued by Cloudflare, Let’s Encrypt, and
ZeroSSL, often via automated pipelines. However, they are
often paired with missing or generic subject metadata, weak-
ening endpoint authenticity. TLS fingerprinting analysis via
ja3s values reveals limited diversity, with a few signatures
covering most services. This suggests many deployments use
default TLS configurations, making them more vulnerable
to fingerprint-based traffic correlation or blocking. Together,
these patterns expose a weak identity layer in the self-hosted
LLM ecosystem, undermining encryption’s role in both con-
fidentiality and endpoint authentication.

Takeaway 1: Public LLM deployments are expanding
rapidly but exhibit systemic security weaknesses. Among
320,012 endpoints, over 40% use plain HTTP, more than
210,000 have missing or generic TLS metadata, and a
few providers (e.g., Amazon, Cloudflare) dominate global
exposure. Long-tail deployments across smaller networks
add inconsistency and unpredictability. These findings high-
light the urgent need for secure-by-default frameworks,
better certificate management, and standardized operational
practices for the self-hosted LLM ecosystem.

B. API Responsiveness Analysis

Building on the exposure landscape, we examine API re-
sponsiveness across frameworks, coverage of functional cate-
gories, and the structure of per-endpoint results.

1) Framework-Level API Responsiveness: Across exposed
LLM deployments, we observe substantial variation in API
responsiveness. As shown in Table IV, frameworks like Ol-
lama and Llamafile respond to over 80% of unauthenticated

Fig. 6: Distribution of Reused TLS Certificate Subject CNs.

API requests, suggesting permissive default configurations and
minimal access control. In contrast, widely used platforms
such as Open WebUI, Jan, and Text Generation WebUI exhibit
responsiveness rates below 2%, indicating either frontend-
only exposure or stricter backend protection. FastAPI and
AnythingLLM are excluded due to the lack of standardized
APIs. FastAPI serves as a generic backend framework with
fully customizable endpoints, while AnythingLLM exposes
inconsistent interfaces across deployments, often relying on
UI interactions. Both lack the structural consistency required
for comparable measurement.

TABLE IV: Responsiveness of Different LLM Deployment
Frameworks.

Framework # Resp. Sample Population Resp. Rate

Ollama 309 384 155,423 80.47%
Open WebUI 2 381 37,242 0.52%

Jan 5 380 28,445 1.32%
NextChat 1 379 25,883 0.26%

Jupyter Notebook 53 379 24,531 13.98%
ComfyUI 42 375 15,219 11.20%

Gradio 60 370 9,729 16.22%
vLLM 10 362 6,077 2.76%

llama.cpp 36 353 4,234 10.20%
GPT4All 13 335 2,572 3.88%

Text Generation Web UI 2 324 2,051 0.62%
Ray Serve 1 188 365 0.53%
Llamafile 29 36 39 80.56%

The HTTP status codes returned by these services reflect
their underlying security posture. While some services return
200, exposing full functionality, many respond with 401
(unauthorized), 403 (forbidden), or 404 (not found), indicating
authentication checks, access restrictions, or endpoint obfusca-
tion. A smaller number return 5xx errors, suggesting unstable
or misconfigured services. We also observe a notable number
of 400 Bad Request responses, mainly from Gradio-based
deployments. These indicate that the service is reachable but
the API is undocumented, unsupported, or not intended for
direct programmatic use, consistent with Gradio’s focus on
interactive UIs rather than formal APIs. These response pat-
terns reveal implicit security mechanisms across frameworks.



TABLE V: API Functionality Coverage Across LLM Deployment Frameworks.

Framework Text/Chat Gen Embed Gen Img/Audio Model Ops File Ops RAG Fine-tune Sess./Kernel Task Queue Sys Config Moderation App Deploy

Ollama 2 / 21 1 / 1 8 / 8 1 / 1
OpenWebUI 0 / 2 0 / 1 1 / 2 0 / 1 0 / 3

Jan 2 / 2 1 / 1 6 / 6 2 / 2 2 / 2 2 / 2 1 / 1
NextChat 0 / 2 0 / 1 0 / 6 1 / 2 0 / 2 0 / 2 0 / 1

Jupyter Notebook 0 / 6 0 / 13 1 / 1
ComfyUI 1 / 1 1 / 2 2 / 2 1 / 2 1 / 2 1 / 1 1 / 1 1 / 1

Gradio 0 / 1 0 / 1 0 / 2 1 / 2
vLLM 1 / 2 1 / 1 0 / 6 0 / 2 2 / 2 1 / 2 0 / 1

llama.cpp 4 / 5 1 / 1 1 / 2 1 / 1
GPT4All 2 / 2 1 / 2

Text Gen WebUI 2 / 3 1 / 1 6 / 6 3 / 4 2 / 2 1 / 2 1 / 1
Ray Serve 1 / 3
Llamafile 0 / 2 0 / 1 0 / 6 1 / 2 0 / 2 0 / 2 0 / 1

1 Each cell shows “successful / total” API endpoints in that category (e.g., 2 / 2 means all responded successfully).

High responsiveness is often associated with frameworks that
expose APIs by default and lack built-in protection, whereas
lower responsiveness generally corresponds to more defensive
configurations. Notably, a non-trivial portion of services re-
spond with structured denial (401/403), suggesting that some
frameworks implement basic safeguards even when deployed
in public environments.

2) Functional Coverage of Exposed Endpoints: The func-
tionality exposed through open API endpoints reveals not only
the intended capabilities of LLM frameworks but also the
extent to which internal operations are externally accessible,
whether intentionally or not. As shown in Table V, the degree
of exposure varies substantially across both frameworks and
functionality categories. Some frameworks expose broad func-
tionality: for instance, Jan and llama.cpp each respond to over
10 distinct endpoints across text generation, embedding, file
operations, and fine-tuning. ComfyUI returns valid responses
for 11 categories, including session and queue management,
reflecting its interactive, stateful design. In contrast, frame-
works like OpenWebUI and Text Generation WebUI expose
few usable endpoints despite implementing many, suggesting
stricter access controls or incomplete external integration.
Across frameworks, the most commonly exposed functionality
is text and chat generation, observed in 11 out of 13 frame-
works. Model operations (e.g., listing and loading models) are
also frequently reachable in 8 frameworks. However, sensitive
features like fine-tuning, moderation, and knowledge base
querying remain rare; for instance, only Jan and vLLM expose
fine-tuning endpoints, and OpenWebUI supports RAG but
with no responsive endpoints. The observed exposure patterns
reveal trade-offs between usability and security. Frameworks
intended for local or development use often leak internal
APIs by default without authentication or isolation, while
production-oriented systems show tighter surface control. Even
endpoints related to queue status or system configuration,
while not critical, can still cause unintended exposure of
internal system states.

3) Per-Endpoint Result Representation: All API responses
are first normalized into a unified schema capturing deploy-
ment framework, endpoint category, endpoint path, response
type, and potential security relevance. This abstraction enables
consistent analysis across frameworks with differing designs

TABLE VI: Responsiveness of Ollama API Endpoints.

Category Endpoint Function # Resp. Resp. Rate1

Text/Chat Gen /api/generate Text Completion 220 57.29%
/api/chat Chat Completion 220 57.29%

Embedding /api/embeddings Generate Embedding 10 2.60%

Model Ops

/api/tags List Local Models 289 75.26%
/api/pull Pull Model 256 66.67%
/api/push Push Model 208 54.17%
/api/delete Delete Model 109 28.39%
/api/copy Copy Model 80 20.83%
/api/show Show Model Info 36 9.38%
/api/create Create Model 33 8.59%
/api/running List Loaded Models 9 2.34%

System Config /api/version Get Ollama Version 9 2.34%

Note: Based on 384 sampled LLM service invocations.

and naming conventions. Based on this schema, we analyze
Ollama as a representative case. Table VI summarizes endpoint
responsiveness across 384 observed invocations. Text and
chat completion endpoints responded in 57.29% of cases.
While often active, their partial availability suggests exposure
conditioned on runtime state or configuration, potentially
leaking system behavior to unauthenticated clients. The em-
bedding endpoint was accessible in only 2.60% of attempts.
Though rarely enabled, its occasional exposure still poses
risk, as embedding vectors may support inference attacks even
in limited contexts. Model management endpoints showed
uneven availability. Listing local models was frequently pos-
sible (75.26%), likely due to its role in coordination. Pull
and push operations were moderately available (66.67%,
54.17%), while destructive actions like delete, copy, and create
responded in fewer than 30% of cases, suggesting partial
lockdowns, though enforcement remains inconsistent. System-
level endpoints, including version and runtime model queries,
responded in under 3% of cases. This likely reflects hardening
efforts, but their occasional exposure highlights the need for
stricter endpoint visibility controls. The results highlight that
in Ollama deployments, many endpoints, including those that
expose model metadata, are accessible without authentication,
allowing unauthorized users to retrieve sensitive information
and revealing a critical lack of access control.



Takeaway 2: Our findings reveal widespread security weak-
nesses in real-world LLM deployments. A large portion of
services, such as Ollama and Llamafile, allow over 80% of
unauthenticated API requests, exposing critical operations
like text generation and model management (e.g., 75.26%
model listing success). Even when frameworks appear re-
strictive, inconsistencies and partial exposures persist. This
indicates that current deployment practices lack systematic
access control and minimal exposure principles, leaving
many services vulnerable to unauthorized access, informa-
tion leakage, and misuse.

C. Security and Risk Analysis

As shown in Table VII, this section systematically analyzes
potential security risks in LLM deployment frameworks. Each
subcategory combines observed cases with deeper security
insights to reveal not only surface-level exposures but also
underlying attack vectors and systemic vulnerabilities.

1) Model Information Disclosure: Model information dis-
closure is among the most prevalent security risks across
LLM deployment frameworks, as indicated in Table VII. For
example, the /show endpoint can reveal detailed model meta-
data, while the /history endpoint may leak prior inference
workflows, outputs, and fine-tuning traces, compromising user
privacy and exposing proprietary data. Notably, in Ollama, the
/api/tags endpoint exhibits an exceptionally high exposure
rate of 70.57%, highlighting the severity of this risk even in
widely adopted deployment platforms. The /embeddings
endpoint (1.87% exposure) in ComfyUI further illustrates
this problem by exposing the list of loaded textual inver-
sion embeddings, such as Bad-Hands-XL, inadvertently re-
vealing deployment purposes. Similarly, in llama.cpp, the
/v1/models endpoint may disclose detailed model informa-
tion, including the actual deployment paths of .gguf model
files, significantly amplifying the risk of targeted attacks.
Such leakage not only facilitates customized attacks but also
heightens the risks of model exploitation, prompt injection,
and unauthorized access. In severe cases, attackers could
reconstruct user intents, manipulate outputs, or compromise
the deployment’s integrity and confidentiality.

2) Hardware and System Configuration Disclosure: Dis-
closure of system configuration details further enlarges the
attack surface by providing adversaries with valuable in-
telligence about the underlying environment. ComfyUI’s
/system_stats endpoint (4.53%) reveals operating system
types, total and available memory, GPU specifications (e.g.,
RTX 4090 with 24GB VRAM), and ComfyUI version infor-
mation. Such granular system insights enable attackers to craft
hardware-specific resource exhaustion attacks, such as GPU
memory flooding, or identify platform-specific vulnerabilities
(e.g., Windows NT kernel exploits). Alarmingly, among in-
stances exposing /system_stats, 41.28% were found to
be publicly accessible via --listen 0.0.0.0 without any
authentication mechanisms. When combined with the presence
of high-performance GPUs, such exposures create ideal con-

ditions for unauthorized resource exploitation, including GPU
hijacking, cryptocurrency mining, large-scale model inference,
or persistent backdoor implantation.

3) Unauthorized Access and Resource Abuse: Unautho-
rized access and resource abuse represent direct threats to the
availability and stability of deployed services. Endpoints such
as /queue (1.07%) and /prompt (3.20%) allow unauthen-
ticated users to submit inference tasks or monitor system load.
The ability to observe task queues enables attackers to perform
real-time load sensing, identifying idle periods when resource-
draining or prompt injection attacks can be launched with
minimal resistance. Furthermore, submitting crafted prompt
graphs to /prompt without authentication exacerbates the
risk: attackers could overload the system with computationally
expensive tasks, rapidly depleting GPU memory and causing
service outages (denial-of-service attacks). By continuously
monitoring queue states, attackers can also infer operational
patterns over time, improving the precision and persistence of
their abuse strategies. In the absence of fine-grained access
control and rate-limiting, such systems remain highly vulner-
able to long-term degradation and operational hijacking.

4) Vulnerabilities and Reverse Engineering: The exposure
of internal modules and metadata creates direct opportuni-
ties for vulnerability discovery and reverse engineering. In
platforms like ComfyUI, endpoints such as /extensions
(9.33%) and /object_info (1.60%) reveal detailed infor-
mation about installed nodes, system structure, and behaviors.
With such insights, attackers can reconstruct internal work-
flows, pinpoint critical components like PythonEvalNode,
and exploit weaknesses such as insecure APIs or insuf-
ficient validation. Nodes handling external communication
(e.g., GeminiAPINode) may leak API keys, while backend
modules (e.g., cm-api.js) expose surfaces for command
injection. Similar risks arise in another framework. Jupyter
Notebook instances exposing the /api endpoint disclose
version data (e.g., “5.5.0”), allowing attackers to link targets
to known vulnerabilities, including unauthorized API access,
unauthenticated WebSocket RCE, and token bypass. Finger-
printing deployments and mapping them to public exploits
significantly accelerates attack development. Passive metadata
collection can quickly escalate into full system compromise,
underscoring the critical risks of seemingly minor exposures.

5) Sensitive Content Generation: Sensitive content gener-
ation presents a significant risk, particularly in deployments
lacking robust input validation and output moderation. Plat-
forms such as Ollama and Text Generation WebUI expose end-
points that accept custom prompts or generation parameters,
which attackers can exploit to induce the production of offen-
sive, illegal, or otherwise sensitive outputs. In Ollama, LLMs
often labeled as “uncensored”, can be manipulated through
crafted prompts to bypass moderation controls. Similarly, in
Text Generation WebUI, insufficient prompt sanitization may
allow adversarial inputs to elicit harmful responses or extract
proprietary system behaviors. If prompt histories, session
contexts, or interaction logs are improperly secured, attackers
can retrieve past prompts and outputs to refine injection



TABLE VII: Risk Categorization (Min ∼ Max Percentage) of Different LLM Deployment Frameworks.

Framework Model Info Disclosure System Config Disclosure Unauthorized & Abuse Vulnerabilities & Reverse Sensitive Content Gen

ComfyUI 1.87% ∼ 6.67% 4.53% 1.07% ∼ 3.20% 1.60% ∼ 9.33% 3.20%
Ollama 2.08% ∼ 70.57% – 4.95% ∼ 38.02% – 45.31% ∼ 45.57%

Text Gen WebUI 0.31% 0.31% – – 0.31%
GPT4All 2.40% – – – –

Llamacpp 4.53% 2.27% – – –
Llamafile 16.57% – – – –

Jupyter Notebook – – – 13.19% –
1 Each cell shows the observed minimum ∼ maximum percentage of API endpoints posing the corresponding risk category. If minimum equals maximum,

only a single value is shown. “–” indicates no relevant risk observed. Detailed case rates for ComfyUI endpoints are summarized in Table VIII.

TABLE VIII: Security Risk Exposure of ComfyUI Endpoints.

Security Risk API Endpoint # Cases Case Rate1

Model Information Disclosure /embeddings 7 1.87%
/history 25 6.67%

System Configuration Disclosure /system_stats 17 4.53%

Unauthorized & Resource Abuse /queue 4 1.07%
/prompt 12 3.20%

Vulnerabilities & Reverse /object_info 6 1.60%
/extensions 35 9.33%

Sensitive Content Generation /prompt 12 3.20%
1 Based on analysis of 375 sampled ComfyUI endpoints. # Cases and Case

Rates indicate confirmed security risks..

strategies and escalate misuse. Such manipulations may cause
reputational harm, legal exposure, and regulatory penalties. As
scrutiny of AI-generated content grows, securing the content
generation pipeline is essential to mitigating systemic risks.

Takeaway 3: Security risk analysis shows that model
information disclosure, system leaks, unauthorized access,
vulnerabilities, and sensitive content generation are preva-
lent across LLM deployment frameworks, though unevenly.
Notably, frameworks like ComfyUI expose endpoints across
all major risk categories, indicating broad and systemic
weaknesses. The persistence of such exposures indicates
that insecure deployment practices are widespread, and
securing LLM systems demands rethinking default con-
figurations, strengthening access controls, and minimizing
exposure surfaces beyond patching individual flaws.

V. DISCUSSION

A. Root Causes of Interface Exposure

The widespread exposure of LLM deployment interfaces
stems from a combination of insecure defaults, weak boundary
enforcement, and operational misunderstandings. Many frame-
works are designed with the assumption of a trusted local
environment, where binding to “localhost” is seen as sufficient.
However, in practice, deployments often occur in container-
ized or multi-user settings, where services are inadvertently
exposed to broader networks without authentication or access
control. This risk is amplified by a usability-first design
culture. To simplify prototyping, many tools expose powerful
endpoints by default and provide minimal guidance on secur-

ing them. Documentation often emphasizes quick interaction
through HTTP APIs but overlooks the security implications
of commands related to model loading, prompt submission, or
file manipulation. When authentication options exist, they are
frequently disabled by default or poorly documented. Another
key factor is the insufficient separation between user-level
interactions and system-level control. Endpoints that allow
prompt execution, plugin loading, or system inspection are
often directly accessible without input validation or role-
based restrictions. In extensible platforms, dynamically loaded
modules operate without sandboxing, creating opportunities
for privilege escalation or internal reconnaissance. Finally,
interface exposure is exacerbated by limited user awareness.
Developers and deployers often assume that local services
are inherently secure, ignoring risks introduced by container
networking, port forwarding, or LAN visibility. Without mon-
itoring or audit mechanisms, these oversights can lead to
persistent vulnerabilities and external abuse.

B. Recommendations and Best Practices

Improving the security posture of local LLM frameworks
requires coordinated efforts across tooling, usage, and com-
munity practices.
Tool developers: enforce secure defaults and restrict ex-
posure. Developers of LLM-serving frameworks should adopt
secure-by-default principles as a baseline. All interfaces should
bind to the local loopback address unless explicitly configured
otherwise, and sensitive endpoints involving model manage-
ment, file access, or system inspection should require authen-
tication or confirmation even in local testing environments.
Debugging interfaces and metadata endpoints should remain
disabled by default and only be exposed through deliberate
configuration. In extensible platforms that support third-party
modules or scripts, execution should be sandboxed, and plugin
behavior must be scoped and controlled to prevent arbitrary
access or privilege escalation. Documentation must empha-
size the presence of security-critical endpoints, provide clear
guidance for enabling authentication and authorization, and
promote best practices during local or production deployment.
Security features should be surfaced rather than buried as
optional configurations.
System deployers: treat local interfaces as externally
reachable. Operators deploying LLM systems must treat every
interface, even those running locally, as potentially accessible



to untrusted users, especially in shared-host, containerized,
or local network environments. Interfaces should be explic-
itly reviewed and minimized, unnecessary endpoints disabled,
and authentication mechanisms activated wherever available.
Networking configurations must be handled with caution.
Container networking, port forwarding, and cross-device ac-
cessibility can expose services far beyond what is intended.
Interfaces that handle prompt submission, queue monitoring,
or tool invocation must be closely audited and protected
against misuse or overuse. Regular security testing should be
incorporated into deployment pipelines, including automated
scans for exposed interfaces and simulated jailbreak attempts.
Logging mechanisms should be comprehensive enough to sup-
port post-incident analysis and real-time anomaly detection.
Community stakeholders: promote secure deployment
norms. As LLM frameworks transition rapidly from re-
search prototypes to production-grade systems, the surround-
ing ecosystem must keep pace by establishing a culture
of secure deployment. Insecure defaults in upstream tools
often propagate downstream without scrutiny, increasing the
systemic risk of widespread vulnerabilities. The community
should actively develop and maintain secure deployment tem-
plates, configuration checklists, and audit frameworks tailored
to LLM-serving use cases. Public repositories should annotate
models and frameworks with deployment guidance, security
metadata, and interface descriptions to help users apply safe
configurations. More broadly, deployment security should be
treated on par with performance and usability, supported by
transparency, disclosure, and community-led testing.

C. Limitation

Deployment Framework Coverage. Our study focuses on a
limited set of LLM deployment frameworks. We analyzed ma-
jor platforms such as ComfyUI, Ollama, and Text Generation
Web UI. Nevertheless, the insecure practices identified, includ-
ing sensitive data exposure, unauthorized access, and resource
abuse, reflect systemic issues common to LLM deployments.
These risks are not limited to the studied frameworks and are
broadly applicable across the ecosystem.
Sampling Coverage. Given the identification of over 320,000
exposed services, exhaustive probing would have imposed un-
due load on platform servers. To ensure ethical sampling while
maintaining statistical rigor, we adopted a 95% confidence
level with a 5% margin of error. Although representative, our
sample may not capture certain rare or customized environ-
ments, which future work could further explore.

D. Ethical Considerations

All activities are carefully designed to minimize impact
and respect the privacy of service operators. We probe only
publicly accessible endpoints using non-destructive, read-only
API requests, without attempting to bypass authentication, ac-
cess private data, or exploit vulnerabilities. Sensitive findings
are handled responsibly following coordinated vulnerability
disclosure practices when appropriate. The study follows insti-

tutional and legal ethical guidelines for Internet research and
collects no personally identifiable information.

VI. CONCLUSION

This work presents a comprehensive view of the current
landscape of public-facing LLM deployments, offering the
first large-scale empirical evidence across 320,102 services
spanning 15 frameworks. Our analysis highlights both the
rapid expansion and decentralization of self-hosted LLM
ecosystems and the widespread presence of security risks,
including model disclosure, system configuration leakage,
unauthorized access and resource abuse, vulnerabilities, and
sensitive content generation. These findings reveal critical
gaps between deployment practices and security requirements.
Moving forward, we will extend our study with temporal anal-
ysis of deployment trends and more detailed assessments of
security and operational risks in real-world LLM ecosystems.

REFERENCES

[1] D. AI, “Deepseek llm,” https://github.com/deepseek-ai, 2025.
[2] N. AI, “Gpt4all,” https://github.com/nomic-ai/gpt4all, 2024.
[3] N. Alshahwan, J. Chheda, A. Finogenova, B. Gokkaya, M. Harman,

I. Harper, A. Marginean, S. Sengupta, and E. Wang, “Automated
unit test improvement using large language models at meta,” in
Companion Proceedings of the 32nd ACM International Conference on
the Foundations of Software Engineering, ser. FSE 2024. New York,
NY, USA: Association for Computing Machinery, 2024, p. 185–196.
[Online]. Available: https://doi.org/10.1145/3663529.3663839

[4] Anonymous, “Awesome free ollama,” https://freeollama.oneplus1.top,
2024.

[5] A. Bambhaniya, R. Raj, G. Jeong, S. Kundu, S. Srinivasan, M. Elavazha-
gan, M. Kumar, and T. Krishna, “Demystifying platform requirements
for diverse llm inference use cases,” arXiv preprint arXiv:2406.01698,
2024.

[6] G. Chen, Z. Qin, M. Yang, Y. Zhou, T. Fan, T. Du, and Z. Xu,
“Unveiling the vulnerability of private fine-tuning in split-based
frameworks for large language models: A bidirectionally enhanced
attack,” in Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 2904–2918.
[Online]. Available: https://doi.org/10.1145/3658644.3690295

[7] L. Chen, Y. Wu, C. Wen, S. Wang, L. Zhang, B. Yu, Q. Sun, and
C. Zhuo, “An agile framework for efficient llm accelerator development
and model inference,” in Proceedings of the 43rd IEEE/ACM
International Conference on Computer-Aided Design, ser. ICCAD ’24.
New York, NY, USA: Association for Computing Machinery, 2025.
[Online]. Available: https://doi.org/10.1145/3676536.3676753

[8] J. Y. F. Chiang, S. Lee, J.-B. Huang, F. Huang, and Y. Chen, “Why are
web ai agents more vulnerable than standalone llms? a security analysis,”
arXiv preprint arXiv:2502.20383, 2025.

[9] W. H. Community, “Fofa: Cyberspace asset search engine,” https://fofa.
info/, 2024.

[10] N. Contributors, “Nextchat,” https://github.com/ChatGPTNextWeb,
2024.

[11] C. Developers, “Comfyui,” https://github.com/comfyanonymous/
ComfyUI, 2024.

[12] F. Firouzi, S. S. R. Nakkilla, C. Fu, S. Banerjee, J. Talukdar, and
K. Chakrabarty, “Llm-aid: Leveraging large language models for rapid
domain-specific accelerator development,” in Proceedings of the 43rd
IEEE/ACM International Conference on Computer-Aided Design, ser.
ICCAD ’24. New York, NY, USA: Association for Computing
Machinery, 2025. [Online]. Available: https://doi.org/10.1145/3676536.
3697135

[13] O. Foundation, “Owasp top 10 for llm applications 2025,” https://genai.
owasp.org/resource/owasp-top-10-for-llm-applications-2025/, 2024.

[14] G. Gerganov, “llama.cpp,” https://github.com/ggerganov/llama.cpp,
2024.

https://github.com/deepseek-ai
https://github.com/nomic-ai/gpt4all
https://doi.org/10.1145/3663529.3663839
https://freeollama.oneplus1.top
https://doi.org/10.1145/3658644.3690295
https://doi.org/10.1145/3676536.3676753
https://fofa.info/
https://fofa.info/
https://github.com/ChatGPTNextWeb
https://github.com/comfyanonymous/ComfyUI
https://github.com/comfyanonymous/ComfyUI
https://doi.org/10.1145/3676536.3697135
https://doi.org/10.1145/3676536.3697135
https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/
https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/
https://github.com/ggerganov/llama.cpp


[15] K. Greshake, S. Abdelnabi, S. Mishra, C. Endres, T. Holz, and
M. Fritz, “Not what you’ve signed up for: Compromising real-
world llm-integrated applications with indirect prompt injection,” in
Proceedings of the 16th ACM Workshop on Artificial Intelligence
and Security, ser. AISec ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 79–90. [Online]. Available:
https://doi.org/10.1145/3605764.3623985

[16] F. He, T. Zhu, D. Ye, B. Liu, W. Zhou, and P. S. Yu, “The emerged
security and privacy of llm agent: A survey with case studies,” arXiv
preprint arXiv:2407.19354, 2024.

[17] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo,
D. Lo, J. Grundy, and H. Wang, “Large language models for
software engineering: A systematic literature review,” ACM Trans.
Softw. Eng. Methodol., vol. 33, no. 8, Dec. 2024. [Online]. Available:
https://doi.org/10.1145/3695988

[18] X. Hou, Y. Zhao, and H. Wang, “The next frontier of llm ap-
plications: Open ecosystems and hardware synergy,” arXiv preprint
arXiv:2503.04596, 2025.

[19] F. Huq, J. P. Bigham, and N. Martelaro, “What’s important here?:
Opportunities and challenges of llm in retrieving information from web
interface,” R0-FoMo: Robustness of Few-shot and Zero-shot Learning in
Large Foundation Models, 2023.

[20] A. Inc., “Ray serve,” https://docs.ray.io/en/latest/serve/index.html, 2024.
[21] T. Isachenko and S. Bhuiyan, Generative AI with local LLM. Timur

Isachenko, 2024.
[22] P. Jupyter, “Jupyter notebook,” https://jupyter.org/, 2024.
[23] M. Lazuka, A. Anghel, and T. Parnell, “Llm-pilot: Characterize and opti-

mize performance of your llm inference services,” in SC24: International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2024, pp. 1–18.

[24] A. Li, Y. Zhou, V. C. Raghuram, T. Goldstein, and M. Goldblum,
“Commercial llm agents are already vulnerable to simple yet dangerous
attacks,” arXiv preprint arXiv:2502.08586, 2025.

[25] B. Li, Y. Jiang, V. Gadepally, and D. Tiwari, “Llm inference serv-
ing: Survey of recent advances and opportunities,” arXiv preprint
arXiv:2407.12391, 2024.

[26] S. LLC, “Shodan: The search engine for internet-connected devices,”
https://www.shodan.io/, 2024.

[27] F. Mohammad Ali Pour and M. Rashidi, “Web llm attacks: Unveiling
the future of cyber threats,” Available at SSRN 5049058, 2024.

[28] NIST National Vulnerability Database, “Apache http server 2.4.29
vulnerabilities,” https://nvd.nist.gov/vuln/detail/CVE-2019-0211, 2024.

[29] ——, “Nginx 1.14.0 vulnerabilities,” https://nvd.nist.gov/vuln/detail/
CVE-2019-20372, 2024.

[30] N. V. D. (NVD), “Cve-2024-37032: Ollama remote code execution
vulnerability,” https://nvd.nist.gov/vuln/detail/CVE-2024-37032, 2024.

[31] ——, “Cve-2024-6707: Openwebui arbitrary file upload vulnerability,”
https://nvd.nist.gov/vuln/detail/CVE-2024-6707, 2024.

[32] oobabooga, “Text generation web ui,” https://github.com/oobabooga/
text-generation-webui, 2024.

[33] OpenAI, “Introducing openai o3 and o4-mini,” https://openai.com/index/
introducing-o3-and-o4-mini, 2025.

[34] N. Pesati, “Security considerations for large language model use: Imple-
mentation research in securing llm-integrated applications,” Available at
SSRN 4962370, 2024.

[35] C. Project, “Llamafile,” https://github.com/Mozilla-Ocho/llamafile,
2024.

[36] S. Ramı́rez, “Fastapi/swagger ui,” https://fastapi.tiangolo.com/, 2024.
[37] M. Shetty, Y. Chen, G. Somashekar, M. Ma, Y. Simmhan, X. Zhang,

J. Mace, D. Vandevoorde, P. Las-Casas, S. M. Gupta, S. Nath,
C. Bansal, and S. Rajmohan, “Building ai agents for autonomous
clouds: Challenges and design principles,” in Proceedings of the 2024
ACM Symposium on Cloud Computing, ser. SoCC ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 99–110.
[Online]. Available: https://doi.org/10.1145/3698038.3698525

[38] A. Team, “Anythingllm,” https://github.com/Mintplex-Labs/
anything-llm, 2024.

[39] G. Team, “Gradio,” https://www.gradio.app/, 2024.
[40] J. Team, “Jan,” https://github.com/janhq/jan, 2024.
[41] K. . Team, “Zoomeye: Cyberspace search engine,” https://www.

zoomeye.org/, 2024.
[42] O. Team, “Ollama,” https://ollama.com, 2024.
[43] O. W. Team, “Open webui,” https://github.com/open-webui/open-webui,

2024.

[44] vLLM Team, “vllm,” https://github.com/vllm-project/vllm, 2024.
[45] F. Wu, S. Wu, Y. Cao, and C. Xiao, “Wipi: A new web threat for llm-

driven web agents,” arXiv preprint arXiv:2402.16965, 2024.
[46] F. Wu, N. Zhang, S. Jha, P. McDaniel, and C. Xiao, “A new era in llm

security: Exploring security concerns in real-world llm-based systems,”
arXiv preprint arXiv:2402.18649, 2024.

[47] G. Wu, Z. Zhang, Y. Zhang, W. Wang, J. Niu, Y. Wu, and Y. Zhang, “I
know what you asked: Prompt leakage via kv-cache sharing in multi-
tenant llm serving,” in Proceedings of the 2025 Network and Distributed
System Security (NDSS) Symposium. San Diego, CA, USA, 2025.

[48] Q. Xie, D. Li, M. Xiao, Z. Jiang, R. Xiang, X. Zhang, Z. Chen, Y. He,
W. Han, Y. Yang et al., “Open-finllms: Open multimodal large language
models for financial applications,” arXiv preprint arXiv:2408.11878,
2024.

[49] H. Yao, H. Shi, Y. Chen, Y. Jiang, C. Wang, Z. Qin, K. Ren, and
C. Chen, “Controlnet: A firewall for rag-based llm system,” arXiv
preprint arXiv:2504.09593, 2025.

[50] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A survey on
large language model (llm) security and privacy: The good, the bad, and
the ugly,” High-Confidence Computing, p. 100211, 2024.

https://doi.org/10.1145/3605764.3623985
https://doi.org/10.1145/3695988
https://docs.ray.io/en/latest/serve/index.html
https://jupyter.org/
https://www.shodan.io/
https://nvd.nist.gov/vuln/detail/CVE-2019-0211
https://nvd.nist.gov/vuln/detail/CVE-2019-20372
https://nvd.nist.gov/vuln/detail/CVE-2019-20372
https://nvd.nist.gov/vuln/detail/CVE-2024-37032
https://nvd.nist.gov/vuln/detail/CVE-2024-6707
https://github.com/oobabooga/text-generation-webui
https://github.com/oobabooga/text-generation-webui
https://openai.com/index/introducing-o3-and-o4-mini
https://openai.com/index/introducing-o3-and-o4-mini
https://github.com/Mozilla-Ocho/llamafile
https://fastapi.tiangolo.com/
https://doi.org/10.1145/3698038.3698525
https://github.com/Mintplex-Labs/anything-llm
https://github.com/Mintplex-Labs/anything-llm
https://www.gradio.app/
https://github.com/janhq/jan
https://www.zoomeye.org/
https://www.zoomeye.org/
https://ollama.com
https://github.com/open-webui/open-webui
https://github.com/vllm-project/vllm

	Introduction
	Background and Related Work
	LLM Deployment Paradigms and Tooling
	Security Challenges in LLM Deployment

	Methodology
	Target Framework Selection
	Asset Discovery via FOFA
	API Endpoint Probing
	Configuration and Security Analysis

	Results
	General Statistics
	Global and Organizational Deployment Trends
	High-Traffic Domains and Service Concentration
	Server Stack Composition
	Communication Security and Port Exposure
	Certificate Reuse and Identity Management

	API Responsiveness Analysis
	Framework-Level API Responsiveness
	Functional Coverage of Exposed Endpoints
	Per-Endpoint Result Representation

	Security and Risk Analysis
	Model Information Disclosure
	Hardware and System Configuration Disclosure
	Unauthorized Access and Resource Abuse
	Vulnerabilities and Reverse Engineering
	Sensitive Content Generation


	Discussion
	Root Causes of Interface Exposure
	Recommendations and Best Practices
	Limitation
	Ethical Considerations

	Conclusion
	References

