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Abstract—We present CHOKE, a novel code-based hybrid
key-encapsulation mechanism (KEM) designed to securely and
efficiently transmit multiple session keys simultaneously. By
encoding n independent session keys with an individually secure
linear code and encapsulating each resulting coded symbol using
a separate KEM, CHOKE achieves computational individual
security – each key remains secure as long as at least one
underlying KEM remains unbroken. Compared to traditional
serial or combiner-based hybrid schemes, CHOKE reduces
computational and communication costs by an n-fold factor.
Furthermore, we show that the communication cost of our
construction is optimal under the requirement that each KEM
must be used at least once.

I. INTRODUCTION

Public-key cryptography is computationally expensive and
inefficient for encrypting large amounts of data [1]. To address
this, key encapsulation mechanisms (KEMs) are used to se-
curely transmit session keys for symmetric-key cryptography
[2]. The process involves a transmitter (Alice) using the
recipient’s (Bob) public key to encrypt a randomly generated
session key, producing a ciphertext. The recipient decrypts
this ciphertext with their private key to retrieve the session
key. This session key, now securely shared, is used within
a symmetric cryptosystem, which is far more efficient for
encrypting and decrypting large volumes of data. This method
leverages the security of public-key cryptography for key
exchange while benefiting from the speed and efficiency of
symmetric encryption.

Current widely deployed KEMs are vulnerable to quan-
tum attacks [3], [4], making them unsafe in a future where
quantum computers become operational. Consequently, there
is an urgent need for quantum-resistant KEMs to safeguard
cryptographic systems against these emerging threats. How-
ever, many quantum-resistant algorithms are relatively new and
have not undergone the extensive scrutiny of traditional (non-
quantum secure) cryptographic algorithms [5]. Table I summa-
rizes the current status of selected KEMs that were proposed
during the NIST Post-Quantum Cryptography (PQC) standard-
ization process as of April 2025. In particular, CRYSTALS-
Kyber has been officially selected and standardized [6]. Classic
McEliece, BIKE, and HQC are alternate finalists and remain
under evaluation in Round 4 [7]–[9]. SIKE as well was an
alternate candidate proposed in Round 4 [10], but has since
been broken via an efficient key-recovery attack [11].
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Fig. 1. KEM schemes: Serial Encapsulation (top, see Example 1) compared
to CHOKE (bottom, see Example 3).

Algorithm Status Cryptographic Type Ref.

CRYSTALS-Kyber Standardized Lattice-based (MLWE) [6]
Classic McEliece Alternate finalist Code-based (Goppa) [7]
BIKE Alternate finalist Code-based (QC-MDPC) [8]
HQC Alternate finalist Code-based (LPN-style) [9]
SIKE Broken (2022) [11] Isogeny-based (SIDH) [10]

TABLE I
SELECTED KEMS FROM THE NIST PQC PROJECT (AS OF APRIL 2025).

To address this uncertainty, there has been a demand for hy-
brid key exchange algorithms [12]. These algorithms combine
quantum-resistant KEMs with traditional, well-established
KEMs. This approach provides a safety net, allowing users to
benefit from the potential security of post-quantum algorithms
while retaining the longer lived reliability of traditional cryp-
tosystems. Hybrid systems are particularly valuable in contexts
where regulatory requirements, such as FIPS compliance,
mandate the continued use of traditional algorithms [13].
For users concerned about the future threat of retroactive
decryption, also known as “Harvest now, decrypt later”, where
adversaries can currently store encrypted data now which
they might potentially decrypt later after a cryptographic
breakthrough, hybrid key exchange offers a practical interim
solution.

The primary goal of a hybrid key exchange mechanism is
to establish a session key that remains secure as long as at
least one of the component key exchange methods remains
unbroken. A straightforward approach to achieving security in
a hybrid key exchange mechanism is to concatenate KEMs
together. In this scheme, the security of the session key is
ensured as long as at least one KEM remains unbroken.
However, this method multiplies the computational cost by
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the number of KEMs utilized, as it requires encrypting the
data once with each KEM.

In this paper, we present CHOKE (Code-based Hybrid
Optimal Key Exchange), an efficient hybrid key encapsulation
mechanism designed to transmit multiple session keys simulta-
neously. The protocol operates by encoding each session key
into a linear combination using an individually secure code
and encapsulating each encoded part with its corresponding
KEM. This guarantees individual secrecy, as the adversary
learns nothing about any single session key provided at least
one KEM remains secure.

Our main contributions are as follows:

• In Theorem 1, we analyze the computational cost of
CHOKE and show an n-fold reduction compared to con-
ventional hybrid schemes. Specifically, CHOKE requires per-
forming only one encapsulation and decapsulation per KEM,
regardless of the number of session keys.
• In Theorem 2, we determine the exact communication
cost of CHOKE, showing that the total bandwidth is the
sum of ciphertext lengths from each KEM. Furthermore, in
Theorem 3, we prove this cost is optimal under the assumption
that session keys are incompressible and that each KEM must
be invoked at least once to securely encapsulate all the keys.
• In Theorem 4, we prove the security of CHOKE using
a simulation-based approach, showing that an adversary who
breaks all but one of the underlying KEMs learns no informa-
tion about any individual session key.
• In Section VI, we discuss potential security risks associ-
ated with related-key attacks. While CHOKE guarantees that
individual session keys remain secure if at least one KEM
is unbroken, breaking certain KEMs allows an adversary to
learn linear combinations of keys. Therefore, we highlight
the necessity of employing symmetric-key encryption schemes
robust against related-key attacks, such as AES, when using
keys transported by CHOKE.

A. An Example with Two KEMs

To show how our protocol works we compare it with two
other schemes, simple concatenation, and the KEM Combiners
scheme of [14].

Consider Alice wants to send two session keys, k1, k2 ∈ Fd
q

chosen uniformly at random, to Bob. Because of regula-
tions, Bob must utilize a traditionally approved public-key
encryption scheme KEM1.1 But because of his concerns about
the future of quantum computing he also wants to utilize a
post-quantum scheme KEM2. For each KEMi we denote the
encapsulation function by KEM.enci : Fdi

q × Pi → Fℓi
q , the

decapsulation function by KEM.deci : Fℓi
q × Si → Fdi

q , the
public key by pki ∈ Pi and the private key by ski ∈ Si. We
assume anyone can know the public keys, but only Bob knows
the private keys.

1To simplify our presentation, we assume throughout that we are working
over a finite field Fq of sufficiently large size.

Example 1. (Serial Encapsulation). Alice encapsulates the
session key ki with KEM2 and then encapsulates that with
KEM1 to obtain the ciphertexts

c1 = KEM.enc2(KEM.enc1(k1, pk1), pk2),

c2 = KEM.enc2(KEM.enc1(k2, pk1), pk2),

which are then sent to Bob.
Bob utilizes the private key ski to decapsulate the two

session keys,
k1 = KEM.dec1(KEM.dec2(c1, sk2), sk1)

k2 = KEM.dec1(KEM.dec2(c2, sk2), sk1).

• Security: In order to obtain either key, k1 or k2, the
adversary must break both KEM1 and KEM2.
• Computation cost: Each key must be encapsulated twice.
Thus, the computational cost is that of performing two KEM1

operations plus two KEM2 operations.
• Communication cost: Alice transmits the two outer cipher-
texts (c1, c2) produced by KEM1. Each ciphertext lies in Fℓ1

q ,
so the total bandwidth is 2ℓ1 symbols of Fq .

Example 2. (KEM Combining). Alice generates four random
symbols p1, p2, p3, p4. The session keys are created utilizing
a pseudorandom function, k1 = PRF(p1, p2) and k2 =
PRF(p3, p4). Alice performs the following encapsulations

c1 = KEM.enc1(p1, pk1), c2 = KEM.enc2(p2, pk2),

c3 = KEM.enc1(p3, pk1), c4 = KEM.enc2(p4, pk2),

and sends c1, c2, c3, c4 to Bob.
Bob decapsulates the four ciphertexts
p1 = KEM.dec1(c1, sk1), p2 = KEM.dec2(c2, sk2),

p3 = KEM.dec1(c3, sk1), p4 = KEM.dec2(c4, sk2),

to obtain p1, p2, p3, p4 and reconstructs the session keys k1 =
PRF(p1, p2) and k2 = PRF(p3, p4).
• Security: To recover a session key, say k1, an adversary
must obtain both p1 and p2. Each block is protected by a
different KEM, so breaking a single KEMi is insufficient.
• Computation Cost: The scheme performs two KEM1 and
two KEM2 operations – the same computational complexity
as in Example 1. However, all four can execute in parallel.
Hence, the time complexity is reduced to one encapsulation
(or decapsulation) of the slower KEM, rather than the sum of
all four.
• Communication cost: Alice sends four ciphertexts, (c1, c3)
produced by KEM1 and (c2, c4) produced by KEM2. Hence
the total bandwidth is 2ℓ1 + 2ℓ2 symbols of Fq , whereas the
serial construction of Example 1 needs only 2ℓ1 symbols.

Example 3. (CHOKE). Alice concatenates the two session
keys K = [k1, k2] into a vector and multiplies it with a public
generator matrix G =

(
1 1
2 1

)
∈F2×2

qu , obtaining

X = KG = [k1 + k2, k1 + 2k2] = [X1, X2].

Then, she encapsulates each linear combination and sends the
ciphertexts to Bob:
c1 = KEM.enc1(X1, pk1), c2 = KEM.enc2(X2, pk2).



Fig. 2. Visual comparison of computational operations for transporting two session keys using the three hybrid KEM schemes described in the Introduction.
The left side represents encapsulation operations at Alice (sender), and the right side represents decapsulation operations at Bob (receiver). Block sizes illustrate
relative computational costs (not to scale). Even in this basic scenario, CHOKE reduces encapsulation and decapsulation operations by half compared to the
other two schemes. Generalizing to n session keys, CHOKE requires only n encapsulations and decapsulations, whereas the other methods require n2.

Bob decapsulates

X1 = KEM.dec1(c1, sk1), X2 = KEM.dec2(c2, sk2),

and recovers the original session keys [k1, k2] = G−1X .

• Security: Both ciphertexts are required to reconstruct K. If
an adversary breaks one KEM he learns a linear combination
of the session keys. In Theorem 4 we show that this reveals no
information about any individual session key, i.e., each session
key ki is computationally indistinguishable from a uniform
random one.
• Computation Cost: The scheme performs a single KEM1

and KEM2 operation – halving the computation cost when
compared with the schemes in Examples 1 and 2.
• Communication Cost: Only two ciphertexts are sent—c1 of
length ℓ1 and c2 of length ℓ2. The total bandwidth is therefore
ℓ1 + ℓ2 symbols of Fq . This is less than both the symbols
required by the serial scheme of Example 1 and by KEM
Combining in Example 2.

B. Related Work

Secret sharing was originally proposed by Blakley and
Shamir as a technique for safeguarding cryptographic keys.
Karnin et al. [15] extended this concept by showing that
when sharing multiple cryptographic keys simultaneously,
performance can be significantly improved through the notion
of individual security [16], where each key remains indepen-
dently secure. Individual security has since been successfully
applied across diverse communication and storage domains.
Notable examples include single communication links [17],
broadcast channels [18]–[21], multiple-access channels [22],
[23], networks and multicast communications [24]–[26], alge-
braic security schemes [27], [28], terahertz wireless systems
[29], angularly dispersive optical links [30], and distributed
storage systems [31]–[35]. Individual security ensures that
an eavesdropper obtaining any limited subset of the shared
information learns no useful information about each message

individually, although they may acquire some insignificant,
controlled leakage about combinations of the messages.

Our work builds upon the framework proposed by Cohen
et al. [36], where Hybrid Universal Network-Coded Cryptog-
raphy (HUNCC) was introduced to enhance the efficiency
of cryptographic systems through partial encryption. Our
scheme can be viewed as a specialized instance of HUNCC
tailored explicitly for transmitting cryptographic keys, where
we instead utilize full encryption for each coded symbol. If
certain underlying KEMs become compromised, the security
assurances of our scheme directly parallel those established by
HUNCC under analogous partial encryption conditions. In this
paper, we also introduce a new proof of security using the real-
world/ideal-world (simulationist) paradigm, which can readily
extend to provide an alternative, simulation-based security
proof for the general HUNCC framework [37].

II. SECURITY DEFINITIONS

In this section we introduce security definitions we utilize
in the paper. All honest parties and adversaries are modeled
as probabilistic algorithms whose running time is bounded by
a polynomial in the global security parameter κ.

Definition 1 (Negligible function). A function f : N → R≥0

is negligible if for every constant c > 0 there exists N such
that for all κ > N , f(κ) < κ−c.

Definition 2 (Probabilistic polynomial-time (PPT)). An al-
gorithm is probabilistic polynomial-time (PPT) if its running
time is bounded by a polynomial in the length of its input.

A key encapsulation mechanism (KEM) enables two parties
to securely establish a session key over an insecure channel.

Definition 3 (Key Encapsulation Mechanism over Fq).1 Fix
a security parameter κ ∈ N and let q = q(κ) be a prime
power bounded by poly(κ). For integers d = d(κ) and ℓ =
ℓ(κ) define the key space K = Fd

q and the ciphertext space
C = Fℓ

q . A key–encapsulation mechanism (KEM) is a triple



of PPT algorithms KEM = (KEM.gen,KEM.enc,KEM.dec)
with public/secret key sets P and S that satisfy:

1) Key generation: (pk, sk)← Gen(1κ).
2) Encapsulation: given pk ∈ P and a uniformly random

session key m ∈ K, output c := KEM.enc(m, pk) ∈ C.
3) Decapsulation: given sk ∈ S and c ∈ C, output m′ :=

KEM.dec(c, sk) ∈ K.
Correctness: There exists a negligible function negl(·) such
that for every κ,

Pr
[
KEM.dec

(
KEM.enc(m, pk), sk

)
= m] ≥ 1− negl(κ).

We now formalize the standard IND-CPA security notion a
real-vs-ideal experiment.

Definition 4 (IND-CPA security via real/ideal experiments).
Fix a KEM with key space K = F d(κ)

q and ciphertext
space C = F ℓ(κ)

q . We say that KEM is indistinguishable
under a chosen-plaintext attack (IND-CPA) if for every PPT
distinguisher D there exists a negligible function negl(κ) such
that, for all security parameters κ and for all m,m′ ∈ K, the
two experiments below differ in D’s acceptance probability by
at most negl(κ).

Real experiment Realm(κ)

1) (pk, sk)← KEM.gen(1κ);
2) c← KEM.enc(m, pk);
3) output D(c, pk).

Ideal experiment Idealm′(κ)

1) (pk, sk)← KEM.gen(1κ);
2) c∗ ← KEM.enc(m′, pk);
3) output D(c∗, pk).

Formally,∣∣Pr[D(Realm(κ)) = 1]− Pr[D(Idealm′(κ)) = 1]
∣∣ ≤ negl(κ).

In Theorem 4 we show that if all KEMs in CHOKE’s
algorithm besides one are compromised, no information is
leaked about any individual key. The proof works by showing
that a computationally bounded adversary cannot distinguish
between that setting and an information-theoretically secure
setting with individual security.
Definition 5 (Individual security). An encoding of n indepen-
dent uniform messages M1, . . . ,Mn into outputs X1, . . . , Xn

is individually secure if for every subset of at most n− 1 out-
puts, say (Xi1 , . . . , Xin−1), and for each index j ∈ {1, . . . , n},

I
(
Mj ; Xi1 , . . . , Xin−1

)
= 0,

where I(·; ·) denotes the mutual information.

III. CHOKE ALGORITHM

We now present our construction, CHOKE, as Algo-
rithm 1. In our setting, Alice wants to send n session keys
k1, . . . , kn to Bob. Bob has n key encapsulation mechanisms
KEM1, . . . ,KEMn with corresponding public and private keys
(pk1, sk1), . . . , (pkn, skn). The public keys are made public.

Algorithm 1 CHOKE: Code-based Hybrid KEM
Key generation at Bob

1: for i← 1 to n do
2: (pki, ski)← KEM.geni
3: end for
4: publish (pk1, . . . , pkn)

Encapsulation at Alice
5: Input: session keys K = [k1, . . . , kn] ∈ Fn

q

6: X ← K ·G ▷ G is the public generator matrix
7: for i← 1 to n do
8: ci ← KEM.enci(Xi, pki)
9: end for

10: send (c1, . . . , cn) to Bob

Decapsulation at Bob
11: for i← 1 to n do
12: Xi ← KEM.deci(ci, ski)
13: end for
14: K ← G−1 ·X ▷ recover [k1, . . . , kn]
15: return K

Encapsulation: Alice concatenates the session keys into a
vector K = [k1, . . . , kn] and multiplies it with a public
generator matrix G of an individually secure code to obtain
KG = [X1, . . . , Xn]. Then, she encapsulates each linear
combination into the ciphertext ci = KEM.enci(Xi, pki) and
sends it to Bob.

Decapsulation: Bob decapsulates each ciphertext ci to obtain
Xi = KEM.deci(KEM.enci(Xi, pki), ski) and then recovers
the session keys [k1, . . . , kn] = G−1[X1, . . . , Xn].

IV. PERFORMANCE

In this section, we analyze both the computation and com-
munication cost of CHOKE. Moreover, we show that CHOKE
achieves an optimal communication cost.

A. Computation Cost

Theorem 1 (Computation Cost). Let KEM1, . . . ,KEMn be
the mechanisms used in CHOKE, and denote by Ei and Di

the computational cost of calling KEM.enci and KEM.deci,
respectively. Then, the computational cost at Alice and Bob is∑n

i=1 Ei and
∑n

i=1 Di, respectively.

Proof. Algorithm 1 encapsulates each coded block Xi once
and decapsulates the corresponding ciphertext ci once. Hence
KEMi is invoked exactly one time for encapsulation and one
time for decapsulation.

In both alternative hybrids every one of the n session keys
is handled by all underlying mechanisms: once when Alice
encapsulates the key and once when Bob decapsulates it. In
the Serial Encapsulation scheme (exemplified in Example 1)
every mechanism KEMi is executed n times across the n keys,
giving Alice a total cost of

n∑
j=1

n∑
i=1

Ei = n

n∑
i=1

Ei, and Bob a cost of n
n∑

i=1

Di.



The KEM-Combining construction (exemplified in Example 2)
performs its encapsulations in parallel rather than in series, yet
it still invokes each KEMi once per key; hence its transmit-side
and receive-side costs are the same as in the serial scheme,
namely n

∑n
i=1 Ei and n

∑n
i=1 Di.

Since CHOKE protects all n keys with a single invocation
of each mechanism, only

∑n
i=1 Ei and

∑n
i=1 Di encapsulation

and decapsulation operations are performed by Alice and Bob
respectively. Thus CHOKE achieves an n-fold reduction in
computational effort at both ends of the channel compared
with either conventional hybrid approach.

B. Communication Cost

Theorem 2 (Communication cost). Let KEM1, . . . ,KEMn be
the mechanisms used in CHOKE, and let Fq

ℓ
i be the output

space of each KEM.enci. Then, the communication cost of
CHOKE is

∑n
i=1 ℓi bits.

Proof. Algorithm 1 outputs the tuple (c1, . . . , cn) with each
|ci| = ℓi and transmits it once.

In the Serial Encapsulation scheme (exemplified in Exam-
ple 1) every session key is encapsulated by the outermost
mechanism KEM1; consequently Alice emits n ciphertexts,
each of length at most ℓmax := maxi ℓi, so the communi-
cation volume is nℓmax bits. The KEM-Combining scheme
(exemplified in Example 2) is more demanding. Because each
key is protected by all mechanisms, the sender must transmit
n ciphertexts for every KEMi, giving a total of n

∑n
i=1 ℓi bits.

CHOKE, by contrast, needs only the
∑

i ℓi bits stated in
Theorem 2. Thus its bandwidth is strictly smaller than that of
KEM-Combining by a factor of ≈ n, and it never exceeds the
serial scheme’s cost.

We now show that CHOKE achieves optimality in terms
of communication cost. Specifically, we demonstrate that any
hybrid KEM scheme that securely encapsulates n independent
session keys and invokes each KEMi at least once must
transmit at least as many symbols as CHOKE does, namely∑n

i=1 ℓi symbols of Fq .

Theorem 3 (Optimality of CHOKE). Let KEM1, . . . ,KEMn

be mechanisms whose ciphertext lengths are ℓ1, . . . , ℓn. Con-
sider a hybrid protocol that, on input a tuple of session keys
k1, . . . , kn ∈ K, must invoke each KEMi at least once. Then,
the protocol must transmit at least

∑n
i=1 ℓi symbols of Fq .

Proof. By correctness, Bob must obtain each ciphertext ci ∈
Fℓi
q exactly as produced by KEMi.enc, since KEMi.dec may

fail on any other string. Hence the message M that Al-
ice sends in the protocol must allow Bob to recover the
tuple (c1, . . . , cn) without error. Formally, the map E :
(c1, . . . , cn) → M implemented by the protocol must be
injective. Otherwise, two distinct ciphertext tuples would be
mapped to the same M , and Bob could not determine which
tuple to decapsulate, contradicting correctness.

Because E is injective, |M | (the number of Fq symbols
in M ) must be at least the length of the concatenation
c1 ∥ . . . ∥ cn, which equals

∑n
i=1 ℓi. Therefore every correct

protocol that invokes each KEM once necessarily transmits at
least

∑n
i=1 ℓi symbols.

V. SECURITY

We now show that CHOKE retains the desired hybrid KEM
property, namely that if all but one of the underlying KEMs are
compromised, the adversary learns no information about any
individual session key. Our proof uses a standard simulation-
based argument [38]: we demonstrate that no computationally
bounded adversary can distinguish between CHOKE’s cipher-
texts and an idealized scenario in which the ciphertexts achieve
information-theoretic individual security.

Theorem 4 (Individual key IND security). Suppose KEMi is
IND-CPA secure. Then in the CHOKE protocol, even if an
adversary Eve breaks all KEMs except for KEMi, no PPT
distinguisher can learn any information about any individual
session key ki except with negligible probability in the security
parameter κ.

Proof. We prove the claim by a standard real-vs-ideal simu-
lation argument. Fix any PPT adversary Eve. Let (k1, . . . , kn)
be the uniformly random session keys and let

X = G [k1; . . . ; kn] = (X1, X2, . . . , Xn),

be the coded linear combinations.
Without loss of generality, suppose that Eve breaks all the

KEMs but the first one. Then, in the real execution, Eve’s view
is Real =

(
c1, X2, . . . , Xn

)
, where c1 = KEM.enc1(X1, pk1).

Define an ideal execution in which Eve instead sees Ideal =(
c∗1, X2, . . . , Xn

)
where c∗1 = KEM.enc1(0, pk1). Because

KEM1 is IND-CPA secure, for every PPT distinguisher D there
is a negligible function negl(κ) such that∣∣Pr[D(Real) = 1]− Pr[D(Ideal) = 1]

∣∣ ≤ negl(κ).

In particular this holds for any adversary Eve attempting to
distinguish the two executions.

We observe that in the ideal execution c∗1 is independent
of X1, . . . , Xn. Since G is individually secure, it follows that
I
(
ki; Ideal

)
= 0 for every i = 1, . . . , n. Thus, Eve gains no

information about any individual key in the ideal world. But
by the IND-CPA bound above, Eve’s view in the real world is
computationally indistinguishable from her view in the ideal
world. Therefore, Eve’s advantage in learning any information
about any individual ki in the real view is at most negl(κ).

VI. CHOKE AND RELATED-KEY ATTACKS

In CHOKE, if an underlying KEM is compromised, even
though no information about any individual key is leaked, the
adversary learns linear combinations of the session keys. When
these session keys are subsequently used in symmetric-key
encryption schemes, the exposure of linear relationships be-
tween the keys can potentially make the encryption vulnerable
to related-key attacks [39].

Although modern symmetric-key encryption schemes, such
as AES, are explicitly designed to be robust against related-key
attacks [40]–[42], there have been theoretical scenarios where



knowledge of key relationships increased the adversary’s suc-
cess probability [43], [44].

This vulnerability is not unique to CHOKE; it also arises
in other multi-secret sharing protocols. Multi-secret sharing
schemes inherently leak correlations between secrets, similarly
exposing the system to related-key attacks. Therefore, when
deploying CHOKE, it is crucial to ensure that the symmetric
encryption scheme utilizing the transported keys is resilient to
related-key attacks.
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