
ar
X

iv
:2

50
5.

02
49

3v
1

 [
cs

.C
R

]
 5

 M
ay

 2
02

5

Dynamic Graph-based Fingerprinting of In-browser
Cryptomining
Tanapoom Sermchaiwong #

The Hong Kong University of Science and Technology, Hong Kong, China

Jiasi Shen #

The Hong Kong University of Science and Technology, Hong Kong, China

Abstract
The decentralized and unregulated nature of cryptocurrencies, combined with their monetary value,
has made them a vehicle for various illicit activities. One such activity is cryptojacking, an attack
that uses stolen computing resources to mine cryptocurrencies without consent for profit. In-browser
cryptojacking malware exploits high-performance web technologies like WebAssembly to mine
cryptocurrencies directly within the browser without file downloads. Although existing methods
for cryptomining detection report high accuracy and low overhead, they are often susceptible to
various forms of obfuscation, and due to the limited variety of cryptomining scripts in the wild,
standard code obfuscation methods present a natural and appealing solution to avoid detection. To
address these limitations, we propose using instruction-level data-flow graphs to detect cryptomining
behavior. Data-flow graphs offer detailed structural insights into a program’s computations, making
them suitable for characterizing proof-of-work algorithms, but they can be difficult to analyze
due to their large size and susceptibility to noise and fragmentation under obfuscation. We
present two techniques to simplify and compare data-flow graphs: (1) a graph simplification
algorithm to reduce the computational burden of processing large and granular data-flow graphs
while preserving local substructures; and (2) a subgraph similarity measure, the n-fragment inclusion
score, based on fragment inclusion that is robust against noise and obfuscation. Using data-flow
graphs as computation fingerprints, our detection framework PoT (Proof-of-Theft) was able to
achieve high detection accuracy against standard obfuscations, outperforming existing detection
methods. Moreover, PoT uses generic data-flow properties that can be applied to other platforms
more susceptible to cryptojacking such as servers and data centers.

2012 ACM Subject Classification Software and its engineering → Dynamic analysis; Security and
privacy → Web application security

Keywords and phrases software security, cryptocurrency, malware detection, dynamic analysis,
data-flow graph

Acknowledgements We would like to thank Sizhe Zhong and Jingyi Chen for their valuable feedback.

1 Introduction

A cryptocurrency is a decentralized peer-to-peer digital exchange system that functions as a
currency without a central authority [51]. The absence of a central governing body and the
promise of freedom and resistance to censorship have led to widespread initial adoption of
cryptocurrencies. Combined with the speculative nature of the market, this has created an
enormous growth in demand [16]. The staggering increase in the monetary value of many
cryptocurrencies in recent years has made cryptomining a potential source of revenue derived
from computing power [24]. In some cases, stolen computing resources are used to generate
profits through unauthorized mining. The use of unauthorized computational power to
mine cryptocurrency without consent is called cryptojacking, and this attack happens on
all scales of computing systems, from large data centers to small personal platforms such
as web browsers and IOT devices [4], [67]. As recently as 2024, instances of cryptojacking
attacks have caused significant monetary damages to organizations such as the United States

mailto:tanapoom.se@gmail.com
mailto:sjs@cse.ust.hk
https://arxiv.org/abs/2505.02493v1

2 Dynamic Graph-based Fingerprinting

government [60] and many financial institutions [42].
In-browser cryptojacking has been described as a recently emerged type of fileless malware

that is difficult to detect in the traditional framework of malware detection [14]. Recent
studies have demonstrated the prevalence of in-browser cryptojacking on popular websites
based on their analyses of top-ranking websites [23], [53], [68], [71]. In-browser cryptojacking
have been enabled partially by new technologies such as WebAssembly (Wasm) [73] and
WebWorkers [50], which were introduced to facilitate high-performance applications to run
on web browsers, delivering cryptominers filelessly through scripts on a webpage. In fact,
previous works showed that most of these miners are implemented in Wasm [43]. Popular
services such as CoinHive facilitated this process by providing mining scripts and mining
pools as an alternative method of revenue generation for websites, and although the CoinHive
service was shut down in 2019, multiple studies indicate that in-browser cryptojacking is still
prevalent in the wild [23], [53], [68].

To prevent theft of computing resources, various techniques have been proposed to detect
and prevent cryptominers from running in browsers. These include traditional methods such
as domain name blocking and keyword blacklists [33], [37], [32], as well as those involving more
advanced analysis such as semantic instruction counting [72], [8], [15], CPU, memory, and
network traffic monitoring [61], [36], [38], and static approaches based on machine learning
and deep learning [55], [62]. Although existing detection methods report high accuracy,
they are often susceptible to obfuscation [7], [30], [72]. For example, proxies, dynamically
generated domain names, and encrypted WebSocket communication can render blacklists
and network-based detection methods ineffective. Statistical distributions of the instruction
count can be skewed by performance throttling and the insertion of spurious instructions.
CPU and memory event monitoring are susceptible to noise from other processes or web
pages [28]. Deep learning-based approaches such as those proposed by MINOS [55] and
WASim [62] have been shown to perform poorly on obfuscated and diversified binaries [30],
[7]. These obfuscations are easy to apply with access to the source code, thereby restricting
the usefulness of prior approaches due to how straightforward they are to bypass. There
remains a large gap in detecting obfuscated miners effectively.

Cryptomining in a single browser is often too slow to generate profit since the probability
of calculating the correct hash in a reasonable amount of time is minuscule, and the solution
is usually to mine cryptocurrency as a part of a larger pool, where profit from any correctly
mined hash is shared among the participants. This suggests that in-browser cryptojacking is
only possible on economies of scale, and numerous studies support this hypothesis, indicating
that a large majority of in-browser cryptomining scripts originate from a limited number of
services (e.g., CoinHive, CoinImp, JSECoin) which provide the necessary infrastructure such
as the mining scripts and pool [68], [71], [38]. The small diversity of cryptominers deployed
on a large number of platforms makes obfuscation an attractive solution to evade detection.
Therefore, there is a need for better detection methods of obfuscated cryptomining malware.

In this paper, we propose PoT (Proof-of-Theft), a new approach to detect obfuscated
cryptomining malware based on the following key insights. Fundamentally, a cryptominer
performs calculations to validate transactions on the blockchain. In most proof-of-work
schemes, this entails repeated hashing of a block of data to generate a hash satisfying an
arbitrary but difficult property [51]. This repetitive computation is an intrinsic property
of a proof-of-work scheme. To characterize the computations performed by an algorithm,
instruction-level data-flow graphs provide a structured and comprehensive view of computa-
tion that is difficult to manipulate. We hypothesize that the data-flow graphs provide us
with a direct view of a cryptominer’s core characteristic. Moreover, code obfuscators are

T. Sermchaiwong et al. 3

known to operate within certain boundaries [46], suggesting that there are a limited number
of transformations they can make to the data-flow properties of a program.

Instruction-level data-flow graphs are difficult to compare due to their sizes and susceptib-
ility to noise and fragmentation. To enable their use in cryptomining detection, we propose a
set of graph analysis techniques consisting of: (1) a graph simplification algorithm to generate
computation fingerprints from data-flow graphs; and (2) a subgraph similarity measure
to search for malicious behavior in fingerprints. We demonstrate that PoT outperforms
the state-of-the-art in cryptominer detection under various obfuscations. To the best of
our knowledge, this study is the first to utilize instruction-level data-flow graphs in either
detecting cryptominers or software classification in general, and while we implement our
algorithms and perform the experiments on the WebAssembly platform for web browsers, our
theoretical framework for data-flow graph analysis and computation detection uses generic
data-flow properties that can be applied to other platforms more susceptible to cryptojacking
such as servers and data centers.

In summary, this paper makes the following three major contributions:
We present a novel algorithm to simplify large repetitive data-flow graphs that pre-
serves local substructures, enabling large and granular data-flow graphs to be used in
cryptomining detection.
We introduce a new subgraph similarity measure, n-fragment inclusion score, to compare
graphs based on inclusion that is resilient against noise, fragmentation, and obfuscation.
We implement and evaluate PoT for detecting WebAssembly cryptominers on a sample of
29 real-world web applications, 6 cryptominers, and 30 obfuscated cryptominers, showing
the effectiveness of instruction-level data-flow graphs in obfuscation resistant detection of
cryptojacking.

2 Background and Motivation

In this section, we present key concepts that are essential for the remainder of the paper, as
well as the motivation behind our methodology. First, we provide an overview of proof-of-work
cryptocurrencies and how they motivate our analysis. We give a brief review of the current
literature on cryptominer detection and the role of resource graphs in malware detection to
demonstrate the need for a better detection framework. Finally, we explain key details of
the WebAssembly binary format and the data-flow graphs we collect using dynamic analysis.

2.1 Cryptomining and Proof-of-Work Schemes
To ensure the validity of transactions and prevent malicious agents from compromising the
integrity of the blockchain, a consensus mechanism is employed by cryptocurrency systems
to validate the authenticity of new transactions [51]. This consensus mechanism involves
multiple users validating the ownership and transfer of currency, ensuring that one may only
spend the currency in their possession. The ownership information necessary for validation
exists transparently on the public ledger in the blockchain. To prevent a single actor from
creating a false consensus by using multiple nodes to validate an invalid transaction, a
validator (miner) is required to provide proof that they possess a certain amount of resource
which acts as a form of artificial cost or barrier to entry. The three most ubiquitous proofs
are as follows.

Proof of Work. The miners are asked to perform a resource intensive computation that is
easy to verify. This proof presents a barrier of entry by requiring each validation to be
backed by a certain amount of computing resources.

4 Dynamic Graph-based Fingerprinting

Proof of Stakes. The validators are chosen in proportion to the amount of currency they
hold.
Proof of Retrievability. The validators must prove that they can store a large piece of
data intact and able to retrieve it at will. The proof creates a barrier of entry by requiring
a large storage capacity.

To incentivize users and stakeholders to participate in securing the blockchain, miners are
given a reward for each block they successfully validate. In proof-of-work schemes, this is
commonly referred to as cryptomining, and the compensation for successful block validations
generates revenue for the miner.

A recent study shows that proof-of-work cryptocurrencies dominate over 57% of the
market share [6]. Our study focuses on such schemes, where computing resources can be
used to generate revenue, as is central to cryptojacking. The computationally intensive
task required to verify a block usually involves calculating a cryptographic hash function
on the transaction data combined with a randomized value until a hash with an arbitrary
but difficult property is found. For example, the Bitcoin [54] currency requires miners to
compute a sha2 hash that is numerically smaller than the network’s difficulty target [3].

Several proof-of-work algorithms have been proposed to solve different challenges faced
by decentralized currencies. A major issue faced by early cryptocurrencies, such as Bitcoin,
is that the hash function used to validate blocks favors performance on application-specific
integrated circuits (ASICs) and GPUs, leading to the consolidation of mining power in
large-scale farms and discouraging average users from mining due to the inefficiency of using
a consumer CPU, possibly threatening the decentralized nature of the blockchain network [18].
Later cryptocurrencies adopt hashing functions, for instance yescrypt [57] and CryptoNight
[21], with ASIC and GPU resistant properties such as memory-hardness, where a memory
bottleneck diminishes the computational efficiency of ASICs and GPUs. Cryptocurrencies
designed for consumer CPUs such as Monero [49], MintMe [48], and other CryptoNight coins
have been the common currencies used for in-browser cryptojacking [68], [19], as they are
the most efficient currencies to mine in Wasm.

A fundamental characteristic of most proof of work algorithms used in cryptocurrency
systems is an extensive amount of repetitive and artificial computation. For example, the
Bitcoin mining algorithm is a simple search problem where the random nonce represents
the search space, and each search operation requires a nontrivial computation of the sha2
hash function. In a data-flow graph where each execution of an instruction represents a
unique vertex, redundant computations emerge as repeated subgraphs representing the same
computation performed many times. This key insight allows us to compress the graph into a
much smaller form while preserving local semantics of a program.

2.2 Cryptojacking Detection
Numerous studies have proposed highly accurate detection systems to address cryptojacking
malware. These systems utilize one or more of the following program features: network
behavior, resource and performance metrics, semantic instruction count, and the program
binary file. We discuss these systems in the following section.

Network Behavioral Detection. Several network detection methods have been proposed
for large-scale and platform-independent detection of cryptojacking. Caprolu et al. [13] and
Pastor et al. [59] proposed the use of network flow features (i.e. packet sizes and inter-arrival
time) to classify and detect cryptominers which communicate with a mining pool. MineCap
[56] presented a similar idea using super-incremental learning to reduce the training burden.

T. Sermchaiwong et al. 5

XMR-Ray [63] proposed more refined network-flow features specific to the Stratum pool
mining protocol, and employed one-class classification techniques to allow the model to be
trained using only mining traffic.

While these systems report good detection rates and scalability, they are limited to the
specific mining pool protocol on which they were trained. The authors of XMR-Ray noted
that hand-crafted obfuscations and deviations from the expected protocol can affect the
detection rates of these methods. Upgrading or deviating from a mining pool protocol is a
much easier task than changing the underlying cryptomining algorithm, which requires a
revision to the blockchain protocol, and hence network-based detection methods require less
effort to evade.

Resource and Performance Metrics. Researchers have proposed cryptomining detection
based on CPU, memory, and other resource consumption metrics. These methods employ side
channels to detect the secondary effects of proof-of-work computations. Wu et al. [75] and
Gomes and Correia [28] proposed machine learning classification of cryptominers based on
CPU usage metrics. DeCrypto Pro [47] introduced a more comprehensive set of performance
counters for classification by reading processor, memory, and disk metrics. Outguard [39]
and CoinSpy [36] included network features and information from the JavaScript engine,
such as execution time, compilation time, and garbage collection statistics, in addition to raw
performance data. Gangwal and Conti [26] proposed a magnetic side-channel by profiling
magnetic field emission of a processor during cryptomining.

The authors of these studies noted a few drawbacks of using performance metrics and side
channels to detect cryptojacking. Namely, these systems are sensitive to noise resulting from
external processes running concurrently. They also require administrator privileges to monitor
performance counters and system-level events. In addition, miners can restrict their behavior
by throttling or performing arbitrary tasks concurrently to manipulate performance metrics.
Coinspy [36] and Outguard [39] attempt to alleviate these drawbacks by incorporating both
network and performance metrics.

Semantic Instruction Count. The results of Seismic [72] indicate that cryptomining
behavior and proof-of-work algorithms can be differentiated at the semantic instruction level.
Their findings highlight the significance of a few binary instructions such as and, xor, and
shr in cryptominers. Based on this observation, they proposed a detection method based on
the statistical distribution of instructions in dynamically collected execution traces. Carlin
et al. [15] performed a similar analysis by training machine learning models on opcode
distribution. MineSweeper [43] hand-crafted algorithm-specific signatures using instruction
count analysis. MineThrottle [8] refined this approach by profiling only a small number of
frequently executed blocks of code and checking the distribution of instructions within these
blocks.

The detection of cryptominers based on instruction counts can be easily circumvented by
inserting spurious operations to skew the distribution of instructions. While MineThrottle
[8] tries to address this issue by profiling only frequently executed code blocks, blocks can
be duplicated to hide their true frequency or divided into smaller blocks to dilute the
incriminating instructions. The method we propose in this paper is built on the foundation
of semantic instruction distribution, but we also incorporate the structure of data-flow to
improve the robustness of our detection method.

Binary File Analysis. Romano and Wang [62] proposed WASim, a classification method

6 Dynamic Graph-based Fingerprinting

of WebAssembly binaries using features extracted from Wasm binary files such as function
sizes, export types, file attributes, and other metadata. The features are used to train several
machine learning models for classification. The authors of MINOS [55] discovered that
WebAssembly cryptojacking binaries often look similar when represented directly as grayscale
images and proposed a convolutional neural network classifier on image representations of
the binaries. Although they report high detection rates, this method is not robust because
the WebAssembly binary format contains sections with debugging information which can
grow arbitrarily large, allowing the image data to be modified arbitrarily. Cabrera-Arteaga
et al. [12] and Harnes and Morrison [30] demonstrated that MINOS is also vulnerable to
multiple forms of obfuscation, which is supported by our experimental results.

The body of prior work indicates that there is yet room for improvement in cryptojacking
malware detection that is resilient against obfuscation and evasion.

2.3 Resource Graphs in Malware Detection
Resource graphs provide rich information on the behavior of a program, and as such, a large
body of work exists on the use of graphs in detecting malicious software. Hu et al. [34]
designed a system called SMIT which uses approximate graph edit distances of function-call
graphs to compute the K nearest neighbors in a malware database. Although they concluded
that function-call graphs are less susceptible to obfuscations, many tools have since been
developed to perform sophisticated transformations on functions [20], [35]. Kinable et al.
[41] proposed similar techniques to cluster call-graphs using approximate edit distance and
density-based clustering (DBSCAN).

Park et al. [58] defined the similarity measure maximal common subgraph that is used
to classify system call graphs by comparing them to those generated by malicious software.
The normalized similarity of two graphs is the ratio between the size of the maximal shared
subgraph and the larger of the two graphs. Although this concept of similarity resembles the
subgraph similarity we propose in this paper, our measure focuses on smaller fragments of
the subgraph to be more resistant to fragmentation and computationally feasible on large
graphs. Hisham et al. [1] utilized graph algorithmic properties such as density, shortest
path, diameter, radius, and other centrality measures to construct features from control flow
graphs, which are classified using machine learning. Yamaguchi et al. [77] introduced a novel
representation of source code called code property graph, which merges abstract syntax trees,
control flow graphs, and program dependence graphs into a single structure. The combined
data structure can be mined effectively to discover vulnerabilities and other properties of the
program.

Later works also adopted deep learning techniques to classify resource graphs. For
example, Gao et al. [27] demonstrated the effectiveness of graph convolutional networks in
detecting android malware based on their API usage graphs. Anderson et al. [2] presents
the only study we know of that uses instruction-level resource graphs to classify malicious
software behavior. They use the adjacency of instructions in a dynamic execution trace to
construct a Markov chain of assembly instructions, which are classified using graph kernels
and machine learning.

The body of existing work on the usage of resource graphs in malware detection fails to
address the challenges of detecting obfuscated cryptojacking malware. High-level system-
call and API usage graphs do not provide much insight into the numerical computation
of cryptominers. Furthermore, function call graphs and control flow graphs are trivially
obfuscated using standard obfuscators such as Tigress [20] and OLLVM [35].

T. Sermchaiwong et al. 7

At the instruction level, resource graphs grow significantly larger, making them much
more challenging to analyze. The difficulty in utilizing instruction traces lies in simplifying
massively granular information in a meaningful way and comparing the extracted features
effectively. The method proposed by Anderson et al. [2] to analyze instruction traces captures
only the adjacency of instructions rather than the underlying data flow, which could be
vulnerable to instruction reordering and speculative execution. Most importantly, the Markov
chain representation does not effectively convey local substructures in the data-flow graphs,
making it difficult to uncover superimposed computation. The current literature lacks a way
to effectively simplify instruction-level data flow graphs and compare them effectively. The
techniques we proposed in this paper allow us to exploit these graphs which have never been
explored in malware detection.

Finally, machine learning techniques are less suitable than fingerprinting methods due to
the limited diversity of cryptominers [68, 71] and mining algorithms [6]. The results of Tekiner
et al. [68] suggest that the large number of mining samples used in prior machine learning
studies are most likely duplicate cryptominer samples originating from a small number of
service providers mining a few select cryptocurrencies. In the remainder of this study, we
propose a method of simplifying large graphs while preserving repetitive local features. We
also define a novel notion of subgraph similarity that captures local graph properties and
is resistant to obfuscation. Our paper represents the first step in comprehensively utilizing
instruction-level data-flow graphs in cryptominer detection.

2.4 WebAssembly

WebAssembly (Wasm) is a low-level bytecode format designed to run at near-native per-
formance on a wide variety of systems. It aims to complement JavaScript by providing a
platform for deploying high-performance software on the web, as well as providing a portable
compilation target for higher-level languages such as C and C++ [29]. While WebAssembly
has seen gradual adoption into the mainstream [25], [17], recent studies indicate that it is still
largely used for illicit purposes such as obfuscation and cryptomining [52], [40]. WebAssembly
presents an exciting future for delivering fast and energy-efficient applications through the
web, but more studies need to be conducted on its security implications and mitigation.

A Wasm binary takes the form of a module which contains functions, globals, tables, and
memories, that can be exported and imported to integrate with JavaScript environments.
WebAssembly operates as a stack machine, meaning that a function consists of a sequence
of instructions that manipulate values on an operand stack, popping argument values and
pushing results to the stack, as opposed to register machines which perform operations on
registers. An example WebAssembly snippet and the corresponding data-flow graph are
presented in Figure 1. The details of our instrumentation and data-flow collection methods
are described in Section 5.

3 Threat Model

In this study, we consider malicious web pages which mine cryptocurrency in the background.
We assume that the majority of the proof-of-work algorithm is implemented in WebAssembly,
which is the case for most cryptojacking scripts in the wild based on previous studies [38], [52],
[43]. The attacker may mine with or without a pool, and protocol communications may be
subject to any obfuscation. The web page may employ throttling or perform arbitrary tasks
concurrently, and the WebAssembly binary may be subjected to standard code obfuscation

8 Dynamic Graph-based Fingerprinting

Figure 1 A short WebAssembly function in text format alongside its data-flow graph.

and anti-analysis transformations. We assume that the detector has full access to the browser
and is able to collect instruction traces of all WebAssembly execution.

4 Graph Analysis

Our analysis is motivated by the observation that proof-of-work algorithms perform extensive
amounts of repetitive and artificial computation. In data-flow graphs of dynamic single
assigned variables, redundant computations emerge as regular substructures, allowing us to
compress the graph into a much smaller form while preserving local semantics by combining
these structures until there is little to no repetition remaining. Since the graphs represent
computation at a very low abstraction level, we hypothesize that it should also maintain a
degree of similarity between equivalent programs, even under obfuscation. First, we introduce
our method of simplifying large graphs based on the aforementioned observations, then
we define a new subgraph similarity measure capable of discovering similarities between
seemingly different graphs of equivalent programs.

The overall approach we take in detecting cryptominers is to maintain a database of
cryptominer fingerprints generated from their data-flow graphs. The fingerprints are simplified
versions of the original graphs. To test a sample for malicious behavior, we compare the
sample’s fingerprint with the known cryptominer fingerprints in our database using a subgraph
similarity measure to determine whether a cryptominer fingerprint is a subset of the sample’s
behavior.

4.1 Instruction Level Data-Flow Graphs in WebAssembly
By treating each execution of a WebAssembly instruction as a distinct variable and capturing
the flow of data between them, we create a directed acyclic graph with no multi-edges where
the runtime variables are single-assigned. This graph represents the flow of data between
executions of instructions in the program. The directed acyclic property is used throughout
our design. To reduce the instrumentation overhead and computation load, we may record
only data-flow into certain instructions of interest in the domain of our malware. Based on
the results of Wang et al. [72], the use of three binary instructions, and, shr, and xor, is
characteristic of cryptomining behavior. We elect to instrument only these three instructions
to reduce computational burden in comparing graphs.

4.2 Fingerprinting Through Graph Simplification
The data-flow graph we collect is necessarily large in order to capture a complete representation
of a program’s behavior. Figure 2a shows a 100 instruction snapshot of the recorded data

T. Sermchaiwong et al. 9

(a) CryptoNight (b) emcc-obf
substitution

(c) Tigress function
split and flatten

(d) Tigress
encode arithmetic

(e) Simplified
CryptoNight

(f) Simplified emcc-
obf substitution

(g) Simplified
Tigress function
split and flatten

(h) Simplified
Tigress encode

arithmetic

Figure 2 (CryptoNight data-flow graphs) The images show visualizations of the data-flow
graphs of the CryptoNight POW algorithm in its original and simplified forms and under different
obfuscations. Figure (a) shows the original graph, while (b) to (d) show three obfuscated versions.
Figures (e) to (h) show the simplified versions of (a) to (d). Vertices highlighted red, green, and
blue represent and, xor, and shr instructions respectively. While other instructions are not traced,
they may still appear as data origin in the graph represented by the uncolored vertices.

flow from a CryptoNight mining algorithm. This snapshot considers the three instructions
of interest that are executed within the time frame and records the data flow into them.
Although the graph is massive, we recognize repeated patterns in the graph which correspond
to the iterations of the mining algorithm. In order to generate a fingerprint of a program’s
data flow, we propose a graph simplification technique that exploits these repetitions to
create a compact signature that captures the instruction-level behavior of a program. The key
idea in our approach is to merge isomorphic substructures located at the same depth within
the graph until we have a minimal representation of the data flow. First, we formally define
the repeated substructures, and then we introduce a random walk-based approximation to
efficiently compute the simplification.

▶ Definition 1 (Rooted Subgraph). Let G = (V, E) be a directed acyclic graph. A subgraph
S ⊆ G is a rooted subgraph if there exists v ∈ V (S) such that every vertex in S is reachable
from v. This v is unique when G is acyclic and is called the root of the subgraph. S is
maximal if it is the largest subgraph with root v.

The isomorphic maximal rooted subgraphs represent repeated substructures that we want
to eliminate in the simplified graphs, but isomorphic subgraphs might appear at different
locations in the program that are semantically different. To preserve this distinction, we
introduce the notion of depth which describes where a rooted subgraph S is located within
the graph G and refrain from merging subgraphs located at different depths. Note that the
depth of a rooted subgraph is an external property of S inside the graph G and is not related
to its construction.

▶ Definition 2 (Depth). The depth of a vertex v ∈ V (G) is the number of edges on the
longest path in G that ends in v. The depth of a rooted subgraph in G is the depth of the root

10 Dynamic Graph-based Fingerprinting

(a) (b) (c) (d) (e)

Figure 3 A step-by-step reduction of the CryptoNight graph. The root vertices of isomorphic
subgraphs are highlight and merged at each step.

vertex of the subgraph in G.

Intuitively, the depth of a rooted subgraph contains information about the location and
sequence of the corresponding instruction in the program that should be preserved in the
simplified graph. Figure 3a shows many maximal isomorphic rooted subgraphs located at
the same depth in the CryptoNight algorithm with the roots highlighted. These subgraphs
represent the same computation carried out in different iterations of the algorithm. Finally,
we iteratively merge all maximal isomorphic rooted subgraphs with distinct roots of the
same depth until we reach a fixed point. Note that there is effectively no difference between
merging the entire subgraph and only merging the roots since we merge until reaching a
fixed point. Figure 3 shows this process on a smaller version of the CryptoNight graph. The
graph shown in Figure 3a shows the center and a few branches of the large circular structure
seen in the original CryptoNight graph in Figure 2a. Figure 3e is related to Figure 2e but
not exactly the same due to the approximation method we introduce in the next section.

4.2.1 Approximation Through Backward Random Walks
The process of simplifying the graph requires us to search for isomorphic subgraphs in large
data-flow graphs. While a naive algorithm may perform exact subgraph matching, it would
be intractable because the subgraph isomorphism problem is NP-complete [22]. For reference,
the graphs in our experiment have up to 1000 nodes and 2000 edges. To reduce the complexity
of the simplification process, we introduce an approximate algorithm that simplifies graphs
using backward random walks. Intuitively, when walking backwards randomly on a graph
starting from a random vertex, the probability of a specific vertex being visited is largely
dependent on the structure and size of its descendants. By computing the probability of a
random backward walk visit, we get an approximate characterization of the maximal rooted
subgraph of a vertex.

▶ Definition 3 (Backward Random Walk). A backward walk is a sequence of vertices

P = {v1, v2, ..., vk|vi ∈ V (G) for 1 ≤ i ≤ k}

such that there exists an edge e = vi+1 → vi for 1 ≤ i ≤ k − 1, and vk has no incoming edge.
The backward walk visits vertices in the opposite direction of the edges (i.e. v1, v2, ..., vk).

Since the graph is acyclic, each vertex is visited at most once per backward walk. Denote
P (v) the probability that a vertex v ∈ V (G) is visited in a backward random walk. The
following lemma establishes a connection between the backward random walk and the
maximal rooted subgraphs.

T. Sermchaiwong et al. 11

▶ Lemma 4. Let G be a directed acyclic graph with no multi-edges. The probability that a
vertex v ∈ V (G) is visited in a random backward walk is

P (v) = 1
|V (G)| +

∑
vc∈C(v)

1
|I(vc)|P (vc)

where C(v) denotes the set of children vertices of v in the directed graph and |I(vc)| denotes
the number of incoming edges into vc.

The intuition behind Lemma 4 is that, given that a backward walk W contains v, either:
(1) v is the first vertex in the backward walk; or (2) the backward walk visits a child of v then
proceeds (backward) to v itself. Therefore, the probability of visiting v can be decomposed
to the probability that its children will be visited.

Proof. Consider a backward random walk W . Let E0 denote the event that v is the first
vertex in the backward walk W . Denote vc1 , vc2 , ..., vcM

∈ C(v) the children vertices of v. Let
Ei for 1 ≤ i ≤M denote the event that the backward walk visits vci

and then v consecutively.
Then the event that v ∈W is

E(v ∈W) = E0 ∪
M⋃

i=1
Ei

In other words, v is in W if and only if W starts with v, or W visits a child of v and proceeds
to v. It is clear that E0 is mutually exclusive to every Ei where i ̸= 0. Moreover, every Ei

for 1 ≤ i ≤ M is mutually exclusive, since if two Ei and Ej are true for i ̸= j, the graph
would contain a cycle. So that

P (v ∈W) = P (E0) +
M∑

i=1
P (Ei) = 1

|V (G)| +
∑

vc∈C(v)

1
|I(vc)|P (vc)

◀

Lemma 4 implies that the probability that a vertex is visited in a random backward walk
is characterized entirely by its maximal rooted graph. We state this formally in the next
theorem.

▶ Theorem 5. Let H1, H2 ⊆ G be maximal isomorphic rooted subgraphs such that every
pair of isomorphic vertices in H1 and H2 contains the same number of incoming edges in G.
Then the roots v1 ∈ H1 and v2 ∈ H2 have the same probability of being visited in a random
backward walk.

To prove this theorem, we need the following short lemma.

▶ Lemma 6. Every path of the longest length in a maximal rooted subgraph H ⊆ G contains
the root vertex.

Proof. Let P = {v1, v2, ..., vn} be an arbitrary path in H such that the root vertex v is
not in P . Since v is the root, there exists a path P ′ from v to v1. Since H is acyclic, P ′

cannot intersect P , otherwise we can form a cycle. Therefore, we can form a new path by
concatenating P ′ and P which is longer than P and contains v, proving the lemma. ◀

Proof of Theorem 5. We proceed by induction on the length N of the longest path in H1
and H2.

12 Dynamic Graph-based Fingerprinting

Base: When N = 0, H1 and H2 are singleton graphs. Thus

P (v1) = P (v2) = 1
|V (G)|

Induction: Since H1 and H2 are isomorphic, the sets C(v1) and C(v2), the children of
the corresponding root vertices, are also isomorphic. Consider two isomorphic children
c1 ∈ C(v1) and c2 ∈ C(v2). Each of these two vertices induce a maximal rooted subgraph
H ′

1 and H ′
2 which are also isomorphic. Moreover, H ′

1 and H ′
2 are subgraphs of H1 and

H2 which do not contain the roots v1 and v2, thus, the longest path in H ′
1 and H ′

2 is at
most N − 1 by Lemma 6. By the induction hypothesis, P (c1) = P (c2) for all isomorphic
pair, c1 ∈ C(v1) and c2 ∈ C(v2). Finally, since we assume that every pair of isomorphic
vertices in H1 and H2 contains the same number of incoming edges in G, |I(c1)| = |I(c2)|
as well for such pairs. Therefore,

P (v1) = 1
|V (G)| +

∑
c1∈C(v1)

1
|I(c1)|P (c1) = 1

|V (G)| +
∑

c2∈C(v2)

1
|I(c2)|P (c2) = P (v2)

◀

Approximate Simplification Algorithm

Theorem 5 tells us that much of the structural information of the subgraphs are embedded in
the roots in a backward random walk. Although it is possible that distinct non-isomorphic
maximal rooted subgraphs may coincide with the same root vertex probability, or that
isomorphic subgraphs may result in different root probabilities if some of the vertices
have different numbers of incoming edges, we expect this to happen rarely in the type of
computation graphs that we are working with. It is justifiable by Theorem 5 that we can
approximately merge all maximal isomorphic rooted subgraphs by combining all vertices
with the same random backward walk probabilities. As it does not matter whether we merge
the entire subgraph or just the root, the process is straightforward. Algorithm 1 details
the overall process. Figure 2e shows the result of applying Algorithm 1 to the CryptoNight
graph. More examples of simplified graphs are shown in Figure 4.

Quality of Approximation

Although it is difficult to give a general bound for the approximation, we can show the
tightness of the bound for small graphs by constructing and enumerating all approximately
simplified and exactly simplified graphs. The construction is given by the following definition.

▶ Definition 7. Let GN be a directed acyclic graph with maximum vertex depth N . Denote
Si the set of all vertices of depth N − i in GN . We construct GN as follows:

S0 has a single vertex which contains no outgoing edges.
Si contains vertices which point to any combination of vertices with higher depth, or
equivalently vertices in

⋃i−1
j=0 Sj. It follows that |Si| = |P (

⋃i−1
j=0 Sj)| where P denotes the

power set. The power set P (
⋃i−1

j=0 Sj) are the sets of children of each element of Si.

Figure 5 shows the construction of G3. Note that |S3| = 2048 and |S4| = 22059. The next
theorems show that GN contains all approximately simplified graphs and exactly simplified
graphs of maximum depth N .

▶ Theorem 8. Let H be a directed acyclic (exact) simplified graph of maximum depth N .
Then H ⊆ GN .

T. Sermchaiwong et al. 13

(a) btc (b) eth (c) zny (d) cn (e) wmp (f) xmr

(g) boa (h) bullet (i) chocol-
atekeen

(j) ffmpeg (k) sandspiel (l) sqlgui

Figure 4 (Simplified Graphs of Miners and Non-miners) The images show the simplified
graphs of the cryptominers in the first row and 6 real-world web applications in the second row.
The details of these samples are listed in Table 1 and Table 2. Vertices highlighted red, green,
and blue represent and, xor, and shr instructions respectively. While other instructions are not
traced, they may still appear as data origin in the graph represented by the uncolored vertices. The
corresponding original graphs can be found in Appendix A.

Proof. Consider a directed acyclic simplified graph H with maximum vertex depth N . Note
that all vertices of depth n can only have children of depth at least n + 1. It follows that at
depth N , every rooted subgraph is a singleton, thus there can only be one vertex of depth
N since H is simplified. Therefore S0 has a single vertex which contains no outgoing edges,
satisfying the first condition of GN . Moreover, since every vertex can only have children of
greater depth, the second condition of GN is satisfied. Thus, H ⊆ GN ◀

▶ Theorem 9. Let H be a directed acyclic approximately simplified graph of maximum depth
N . Then H ⊆ GN .

Proof. The proof is mostly the same as that of Theorem 8. The only difference is that all
vertices of depth N must have the same backward random walk probabilities since they have
no outgoing edges, thus they must all be merged, and so |S0| = 1, proving the theorem. ◀

Denote H4 the set of all subgraphs H ⊆ G4 with |V (H)| ≤ 80. Denote A4 the set of all
approximately simplified graphs A with depth at most 4 and |V (A)| ≤ 80. Denote E4 the
set of all (exact) simplified graphs E with depth at most 4 and |V (E)| ≤ 80. By the two
theorems above, A4 ⊆ H4 and E4 ⊆ H4. Using Definition 7, we can construct the elements
of H4. By random sampling H4, we can show that about 90% of all H ∈ H4 are also in
A4. Each element of H4 also contains an average of 6.7 isomorphisms between maximal
rooted subgraphs. These numbers are computed by inspecting a large random sample of
H4. Intuitively, this means that, for small graphs, the approximate simplification is close to
the exact simplification. Conversely, since 90% of all H ∈ H4 are in A4, and E4 ⊆ H4, it is
highly likely most exact simplified graphs are fixed points for the approximate algorithm,
implying that the approximate simplifying algorithm will arrive at a non-trivial solution.
These bounds are relevant since almost all graphs in our experiment satisfy the condition of
having depth at most 4 and at most 80 vertices.

Grouping Vertices

While the true probability of visiting a vertex in a random backward walk can be computed,
we chose to give an approximation by performing the random backward walk a large number

14 Dynamic Graph-based Fingerprinting

Figure 5 Visualization of G3 in Definition 7

of times to tolerate noises in the graph. Since this approximation contains slight variations
from the true value, we need a method to group vertices which are close in probability.
Suppose that we execute the random backward walk N times, the number of times a vertex v

is visited is a binomial distribution Mv ∼ B(N, P (v)). Therefore, we can use known binomial
confidence intervals to cluster the frequencies given by the random backward walk. In our
implementation, we chose to use simple mean shift clustering [64] on the frequencies of the
vertices to achieve a similar result.

Algorithm 1 Approximate Graph Simplification
Input Large graph G
Output Simplified graph G

1: Do random backward walks to approximate the probability P(v)
2: for d = 0 to max depth in G do
3: S ← All vertices of depth d in G
4: C = {S1, S2, ..., Sn} ← Cluster S by P(v) using mean shift clustering
5: G ← merge all vertices of the same label within the same cluster
6: end for

4.3 Comparing Graph Fingerprints
Once we have generated a database of malicious graph fingerprints, we proceed to check
whether a sample program contains malicious behavior. Equivalently, the sample program’s
fingerprint must be checked for traces of any malicious subgraphs. To achieve this, we require
a subgraph similarity measure with the following characteristics:

Able to identify the existence of shared local behavior corresponding to short sections of
computation.
Tolerates fragmentation and noise in the target super-graph which may appear naturally
or due to obfuscation.
Performs well on medium to large graphs.

In practical scenarios, there are many sources which may introduce noises to the data-flow
graph that we collect. Since we capture only a brief slice of the program, two traces of the same
program may capture slightly different parts of the computation. More importantly, various
obfuscation techniques can change or remove instructions and flow control, dramatically
changing certain parts of the graph. Figure 2 shows the graphs of the CryptoNight mining
algorithm along with three of its obfuscated versions. Large disparities can be seen in the
graphs due to insertion, deletion, and fragmentation as a result of the transformations applied
to the cryptominer code. The disparities suggest that global similarity measures such as graph
edit distance are unsuitable for comparing instruction-level data-flow graphs. The ability

T. Sermchaiwong et al. 15

Algorithm 2 Approximate n-FISG(H)
Input H, G, n, k
Output approximate n-FISG(H)

1: score ← 0
2: for i = 1 to k do
3: S ← random connected subgraph of H with n edges
4: if S ⊆ G then
5: score ← score + 1
6: end if
7: end for
8: return score/k

to tolerate noisy graphs is an important consideration in constructing a robust similarity
measure.

4.3.1 Localized Fragment Similarity
A natural way to check whether a graph contains the behavior described by another graph is
to look for the existence of small substructures of one graph in the other. Intuitively, we
are comparing many small fragments in both graphs to search for similar segments. This
idea has been employed successfully in data mining and graph databases through indexing
methods based on small graph fragments [65], [74], [69]. Inspecting small fragments gives us
a local view of graph similarity, while being tolerant of fragmentation and noise. Moreover,
searching for small subgraphs in a large graph can be done efficiently through approximations
[11], [10], [9]. Based on this, we define a simple n-fragment inclusion score as a subgraph
similarity measure.

▶ Definition 10 (n-fragment inclusion score). The n-fragment inclusion score of a graph
H in G, denoted n-FISG(H), is the probability that an arbitrary connected subgraph H ′ ⊆ H

containing exactly n edges is a subgraph of G.

Approximation

In order to both avoid enumerating larger graphs and tolerate faulty results in subgraph
matching, we approximate the n-FIS score by randomly testing the inclusion of a large
number k of connected n-edge subgraphs. Algorithm 2 describes an approximate n-FIS score
in detail. For our detection algorithm, we chose based on evaluation n = 5 as a compromise
between locality and robustness, and k = 500 as a good stopping point. In order to test for
subgraph inclusion, we use an open source approximate subgraph matching tool, ArcMatch
[11].

Finally, we test whether a sample is malicious by computing its n-FIS score against the
malicious fingerprint database. Given a fingerprint graph G of a sample, we compute the
approximate n-FISG(H) for each malicious fingerprint H in the database. The existence of
at least one score surpassing a threshold implies that the sample contains malicious behavior.

5 Implementation

Our implementation of PoT focuses on software running through WebAssembly. To generate
data-flow graphs, we instrument programs using the open-source WebAssembly dynamic

16 Dynamic Graph-based Fingerprinting

analysis tool Wasabi [44]. We use the Wasabi taint analysis framework to generate traces of
data flow during execution and filter only three instructions of interest, and, shr, and xor.

The Wasabi analysis framework allows us to insert hooks into the programs and provide
call-back functions for every executed instruction. We use these call-backs to record a
trace of relevant instructions, their operands, and their results. To trace the data flow of a
WebAssembly program which operates as a stack machine, we maintain a shadow stack to
track the origin of each operand. Each time an instruction pushes onto the operand stack,
the shadow stack stores which instruction the value originated from. Using the information
tracked in the shadow stack, we are able to log the flow of data between instructions as edges
between the operands and result of each instruction. A visualization of an example execution
trace is shown in Figure 1. The data-flow trace is collected through the debug console as a
list of data-flow edges, and the vertices in the trace are identified by the instruction that
pushed the respective value onto the stack. We process this trace into the dynamic single
assignment form by separating each variable into distinct generations each time it is written.
Finally, we output the graph as a list of edges.

Although PoT only instruments three most relevant instructions to cryptomining, we note
that the analysis and collection of data-flow traces can be extended to more instructions, which
may be relevant when considering other platforms that are more complex than WebAssembly.

PoT performs the following process to detect cryptomining. Given pre-processed data-flow
graphs G of a sample and H of a known miner, they are simplified into fingerprint graphs G′

and H ′ using Algorithm 1. Next, we compute 5-FISG′(H ′) using Algorithm 2 with k = 500
iterations. Scores are classified as malicious or benign on the basis of a static threshold. We
present the reported scores and the empirical decision boundary in the evaluation section.

External Libraries

We use the Wasabi framework to instrument and perform taint analysis on WebAssembly
binaries [44]. We use the scikit-learn library to compute the mean shift clusters in Algorithm 1.
The approximate subgraph matching in Algorithm 2 is performed using the ArcMatch library
[11].

6 Evaluation

In this section, we evaluate the following research questions.
RQ1 How effective is Algorithm 1 in simplifying large graphs?
RQ2 How effective is PoT in identifying cryptominers in the presence of obfuscation?

6.1 Experimental Setup
We ran our experiments on an 8 core AMD Ryzen 6900HX processor with 16gb memory. To
evaluate our research questions, we collected a WebAssembly dataset consisting of 29 real-
world web applications, 6 open-source cryptominers, and generated 30 obfuscated cryptominer
samples through different obfuscations. We instrument Wasm binaries with a fork of the
Wasabi framework developed by the authors of Wasm-R3 [5] at the commit version 6836ccd.

Cryptominers

We collected a sample of six open source C and C++ miners from GitHub by searching for
keywords using GitHub’s search engine, e.g. “wasm”, “webassembly”, and “cryptominer”.
These searches returned 6 results after filtering out those which do not provide C or C++

T. Sermchaiwong et al. 17

Table 1 List of WebAssembly cryptominer samples used as evaluation targets.

Name URL Currency Algorithm
btc https://github.com/kinshukdua/cryptominer Bitcoin sha2
eth https://github.com/Rachel-Hu/wasm-miner Ethereum ethash
zny https://github.com/ohac/cpuminer Bitzeny yescrypt
cn https://github.com/andrehrferreira/cryptonight-hash any CryptoNight coins CryptoNight v1
wmp https://github.com/notgiven688/webminerpool any CryptoNight coins CryptoNight v4
xmr https://github.com/jtgrassie/xmr-wasm Monero CryptoNight v1

Table 2 List of real-world non-miner WebAssembly web applications used in the evaluation.

Name URL Domain
boa https://boajs.dev/boa/playground Programming
bullet https://magnum.graphics/showcase/bullet Simulator
chocolatekeen https://www.jamesfmackenzie.com/chocolatekeen Video game
factorial https://www.hellorust.com/demos/factorial/index.html Mathematics
ffmpeg https://w3reality.github.io/async-thread-worker/examples/wasm-ffmpeg/index.html Media
figma https://www.figma.com Graphics
filament https://google.github.io/filament/webgl/demo_suzanne.html Graphics
funkykarts https://www.funkykarts.rocks/demo.html Video game
hydro https://cselab.github.io/aphros/wasm/hydro.html Simulator
imageconvolute https://takahirox.github.io/WebAssembly-benchmark/tests/imageConvolute.html Benchmark
jqkungfu http://jqkungfu.com Programming
jsc https://mbbill.github.io/JSC.js/demo/index.html Programming
mandelbrot http://whealy.com/Rust/mandelbrot.html Graphics
ogv-opus https://brooke.vibber.net/misc/ogv.js/demo Media
ogv-vp9 https://brooke.vibber.net/misc/ogv.js/demo Media
onnx https://microsoft.github.io/onnxjs-demo/# ML
pacalc http://whealy.com/acoustics/PA_Calculator/index.html Mathematics
parquet https://google.github.io/filament/webgl/parquet.html Graphics
rfxgen https://raylibtech.itch.io/rfxgen Utility
rguiicons https://raylibtech.itch.io/rguiicons Utility
rguilayout https://raylibtech.itch.io/rguilayout Utility
rguistyler https://raylibtech.itch.io/rguistyler Utility
riconpacker https://raylibtech.itch.io/riconpacker Utility
rtexpacker https://raylibtech.itch.io/rtexpacker Utility
rtexviewer https://raylibtech.itch.io/rtexviewer Utility
sandspiel https://sandspiel.club Video game
sqlgui http://kripken.github.io/sql.js/examples/GUI Programming
sqlpractice https://www.sql-practice.com Programming
wasm-astar https://jacobdeichert.github.io/wasm-astar Benchmark

source code and those which do not compile. We could not use binary samples in previous
works due to the lack of functional boilerplate code to execute the WebAssembly. Moreover,
the obfuscators that we use in the experiment require C and C++ source code for miners,
which are detailed in the next section. The summary of these miners are detailed in Table 1.

Obfuscation Methods

To evaluate effectiveness against obfuscation, we found three publicly available obfuscators
supporting WebAssembly which were used in previous works on WebAssembly obfuscation
[12], [30]: Tigress [20], emcc-obf [30], and wasm-mutuate [12]. We found that wasm-mutate
generates buggy binaries that crash at runtime due to being outdated, and many Tigress
obfuscations do not work when applied alongside Wasabi instrumentation. We made the best
attempt at applying the following obfuscations to as many of our sample miners as possible.

Tigress. [20] (Version 4.0.10) Tigress is a source-to-source C obfuscator that has been
shown to be effective in software protection [66] and evading cryptominer detection [30].
We apply the following tigress obfuscations to three of the miners which successfully ran
with Tigress and Wasabi instrumentation applied.

https://github.com/kinshukdua/cryptominer
https://github.com/Rachel-Hu/wasm-miner
https://github.com/ohac/cpuminer
https://github.com/andrehrferreira/cryptonight-hash
https://github.com/notgiven688/webminerpool
https://github.com/jtgrassie/xmr-wasm
https://boajs.dev/boa/playground
https://magnum.graphics/showcase/bullet
https://www.jamesfmackenzie.com/chocolatekeen
https://www.hellorust.com/demos/factorial/index.html
https://w3reality.github.io/async-thread-worker/examples/wasm-ffmpeg/index.html
https://www.figma.com
https://google.github.io/filament/webgl/demo_suzanne.html
https://www.funkykarts.rocks/demo.html
https://cselab.github.io/aphros/wasm/hydro.html
https://takahirox.github.io/WebAssembly-benchmark/tests/imageConvolute.html
http://jqkungfu.com
https://mbbill.github.io/JSC.js/demo/index.html
http://whealy.com/Rust/mandelbrot.html
https://brooke.vibber.net/misc/ogv.js/demo
https://brooke.vibber.net/misc/ogv.js/demo
https://microsoft.github.io/onnxjs-demo/#
http://whealy.com/acoustics/PA_Calculator/index.html
https://google.github.io/filament/webgl/parquet.html
https://raylibtech.itch.io/rfxgen
https://raylibtech.itch.io/rguiicons
https://raylibtech.itch.io/rguilayout
https://raylibtech.itch.io/rguistyler
https://raylibtech.itch.io/riconpacker
https://raylibtech.itch.io/rtexpacker
https://raylibtech.itch.io/rtexviewer
https://sandspiel.club
http://kripken.github.io/sql.js/examples/GUI
https://www.sql-practice.com
https://jacobdeichert.github.io/wasm-astar

18 Dynamic Graph-based Fingerprinting

Encode Arithmetic - Replace integer arithmetic with more complex expressions,
encoded with Mixed Boolean Expressions
Function Splitting and Flattening - Splits functions into smaller fragments and
removes structured control flow.

emcc-obf. [30] emcc-obf is an obfuscator based on Obfuscator-LLVM [35] and the
Hikari project [31]. It is implemented as middle-end passes in the LLVM toolchain. It
was demonstrated to be effective in preventing reverse engineering [45] and cryptominer
detection [30]. We chose the following four obfuscations which have been shown in [30] to
be effective against cryptominer detection.

Bogus Control flow - Inserting spurious basic blocks and conditional jumps with
opaque predicates.
Control Flow Flattening - Removes structured control flow. Similar to Tigress
flattening obfuscation.
Basic Block Splitting - Splits LLVM basic blocks into multiple blocks.
Substitute Instructions - Replaces arithmetic and boolean expressions with equival-
ent but more complex expressions, similarly to Tigress encode arithmetic obfuscation.

Some of these obfuscation significantly changes the structure of the data-flow graph as
shown in Figure 2. Therefore, it is challenging to compare the graphs, and traditional metrics
such as graph edit distance are ineffective. Our results show that the n-fragment inclusion
score is able to effectively compare these graphs.

Non-miners

To test the ability to differentiate between mining and non-mining behavior, we evaluated
our method against a sample of real-world WebAssembly web applications presented by Baek
et al. [5]. This data set contains a wide variety of web applications from the Made with
WebAssembly list [70]. We exclude samples which do not run for various reasons, e.g. Wasm
binaries that contain unsupported extensions for Wasabi, runtime errors with Wasabi, web
apps that do not generate a graph, and dead links. In total, we tested 29 real-world Wasm
web applications.

To clarify the differences between our benchmarks and Wasm-R3, we included six more
programs (filament, imageconvolute, ogv-opus, ogv-vp9, onnx, sqlpractice) and excluded
four programs (fib, game-of-life, multiplydouble, multiplyint). Note that “pathfinding” and
“guiicons” in wasm-r3 are named “wasm-astar” and “rguiicons” in our table. To account
for these differences, we tested all the evaluation targets presented in the Wasm-R3 paper,
including those that failed their experiments. The programs that failed their evaluation
but functioned properly for our Wasabi analysis are imageconvolute, onnx, sqlpractice, and
ogv (which contains ogv-opus and ogv-vp9 for audio and video decoding demos). We added
“filament” to our experiments due to the lack of variety of graphics benchmarks in Wasm-R3
and the importance of graphics computations. Filament is a popular open-source graphics
engine developed by Google and has over 18,000 stars on GitHub. Finally, we excluded the
four programs because they produced empty data flow graphs with our Wasabi analysis, and
it is difficult to ensure whether this is due to a Wasabi bug or the nature of the program
itself. They would be trivially classified as non-miners regardless. We note that we used a
fork of the Wasabi framework by the Wasm-R3 authors since it is already an improvement
over upstream in terms of compatibility. The details of our samples are presented in Table 2.
For each website, we manually instrument Wasm binaries and inject them back into the
website using Google Chrome developer tools.

T. Sermchaiwong et al. 19

Table 3 A table of graph sizes for the all benchmark samples. The number of vertices and edges
before and after reduction are given, as well as the percent reduction.

sample |V| |E| |V’| |E’| -|V|% -|E|%
btc 119 202 18 27 -84.9% -86.6%
zny 1034 2002 14 22 -98.6% -98.9%
cn 1326 2002 8 9 -99.4% -99.6%
eth 1207 2002 114 276 -90.6% -86.2%
wmp 1045 2002 11 15 -98.9% -99.3%
xmr 1324 2002 5 5 -99.6% -99.8%
btc-emccobf-boguscf 1037 2002 15 21 -98.6% -99.0%
btc-emccobf-flatten 1033 2002 15 22 -98.5% -98.9%
btc-emccobf-split 1031 2002 14 20 -98.6% -99.0%
btc-emccobf-substitute 1065 2002 39 80 -96.3% -96.0%
btc-tigress-encodearith 1063 2002 21 39 -98.0% -98.1%
btc-tigress-splitflatten 1018 2002 13 18 -98.7% -99.1%
zny-emccobf-boguscf 1111 2002 39 77 -96.5% -96.2%
zny-emccobf-flatten 1022 2002 65 139 -93.6% -93.1%
zny-emccobf-split 1018 2002 12 17 -98.8% -99.2%
zny-emccobf-substitute 1067 2002 22 56 -97.9% -97.2%
zny-tigress-encodearith 1066 2002 16 42 -98.5% -97.9%
zny-tigress-splitflatten 1021 2002 71 153 -93.0% -92.4%
cn-emccobf-boguscf 1336 2002 7 7 -99.5% -99.7%
cn-emccobf-flatten 1325 2002 6 6 -99.5% -99.7%
cn-emccobf-split 1326 2002 8 9 -99.4% -99.6%
cn-emccobf-substitute 2191 2002 98 264 -95.5% -86.8%
cn-tigress-encodearith 1252 2002 9 12 -99.3% -99.4%
cn-tigress-splitflatten 1283 2002 7 10 -99.5% -99.5%
eth-emccobf-boguscf 1212 2002 117 295 -90.3% -85.3%
eth-emccobf-flatten 1217 2002 119 316 -90.2% -84.2%
eth-emccobf-split 1212 2002 101 242 -91.7% -87.9%
eth-emccobf-substitute 1505 2002 100 417 -93.4% -79.2%
wmp-emccobf-boguscf 1049 2002 11 12 -99.0% -99.4%
wmp-emccobf-flatten 1046 2002 11 15 -98.9% -99.3%
wmp-emccobf-split 1039 2002 6 5 -99.4% -99.8%
wmp-emccobf-substitute 1044 2002 12 16 -98.9% -99.2%
xmr-emccobf-boguscf 1296 2002 16 30 -98.8% -98.5%
xmr-emccobf-flatten 1325 2002 7 8 -99.5% -99.6%
xmr-emccobf-split 1324 2002 5 5 -99.6% -99.8%
xmr-emccobf-substitute 2194 2002 101 301 -95.4% -85.0%
boa 1032 2002 13 16 -98.7% -99.2%
bullet 179 202 16 25 -91.1% -87.6%
chocolatekeen 104 202 7 6 -93.3% -97.0%
factorial 1030 2002 17 27 -98.3% -98.7%
ffmpeg 1110 1972 36 87 -96.8% -95.6%
figma 652 1270 12 19 -98.2% -98.5%
filament 1046 2002 9 15 -99.1% -99.3%
funkykarts 1006 2002 7 5 -99.3% -99.8%
hydro 1072 1878 27 63 -97.5% -96.6%
imageconvolute 1005 2002 5 4 -99.5% -99.8%
jqkungfu 1005 2002 5 4 -99.5% -99.8%
jsc 1019 2002 19 29 -98.1% -98.6%
mandelbrot 1003 2002 3 2 -99.7% -99.9%
ogv-opus 1126 1998 21 40 -98.1% -98.0%
ogv-vp9 1139 1888 11 16 -99.0% -99.2%
onnx 1008 2002 3 2 -99.7% -99.9%
pacalc 1090 2002 130 311 -88.1% -84.5%
parquet 1046 2002 9 15 -99.1% -99.3%
rfxgen 1032 2002 11 14 -98.9% -99.3%
rguiicons 1057 2002 14 20 -98.7% -99.0%
rguilayout 1041 2002 8 9 -99.2% -99.6%
rguistyler 1041 2002 7 7 -99.3% -99.7%
riconpacker 1030 2002 22 52 -97.9% -97.4%
rtexpacker 1062 2002 11 16 -99.0% -99.2%
rtexviewer 1061 2000 9 12 -99.2% -99.4%
sandspiel 1014 2002 10 13 -99.0% -99.4%
sqlgui 1205 1840 36 69 -97.0% -96.2%
sqlpractice 884 1712 8 8 -99.1% -99.5%
wasm-astar 1095 2002 34 67 -96.9% -96.7%

Baseline Comparisons

We compare our work with three previous publications which represents the state-of-the-art
in cryptominer detection: MINOS [55], Minesweeper [43], and WASim [62]. Among recent
works on cryptominer detection, these were the few with working and publicly available
artifacts.

MINOS. MINOS detects cryptomining using a convolutional neural network classifier on
gray-scale image representations of WebAssembly binaries [55]. The authors of MINOS
reported high detection and low false positive rates, though it has been shown that binary
diversification can effectively evade MINOS [12]. We use a re-implementation of MINOS by
Cabrera-Arteaga et al. [12] which has been re-trained in Cryptic Bytes [30] using a larger
dataset.

20 Dynamic Graph-based Fingerprinting

0 50 100 150
0

200

400

600

Number of Samples Completed
T

im
e

(s
ec

on
ds

)

Simplified Graph
Original Graph

Figure 6 (Ablation Study of Analysis Time with and without Simplification) Comparison
of analysis times with and without graph simplification is presented. For the original graphs, this
is the time to compute Algorithm 2 (n-FIS score). For simplified graphs, the time includes both
Algorithm 1 and Algorithm 2.

Minesweeper. Minesweeper detects cryptominer binaries using a set of heuristics based
on static and intrinsic features of cryptomining code [43]. The authors created a set of
fingerprints for cryptographic functions by counting cryptography-related instructions and
operations. WASM binaries are classified as either being a general cryptominer based
on the overall instruction count, or as a CryptoNight miner based on the existence of
specific cryptographic primitives, including the following cryptographic functions: Keccak
(Keccak 1600-516 and Keccak-f 1600), AES, BLAKE-256, Groestl-256, and Skein-256. These
cryptographic primitives are also identified by the distribution of their instruction types.

WASim. [62] WASim proposed a classification method for WebAssembly binaries using
features extracted from Wasm binary files such as function sizes, export types, file attributes,
and other metadata. WASim provides four different machine learning models to classify
WASM binaries into 11 different categories, including cryptominers. These classifier models
include neural network, support vector machine, random forest, and naive Bayes models.

6.2 RQ1: The Effectiveness of Graph Simplification
To demonstrate the effectiveness of our graph simplification algorithm, Table 3 shows the
reduction in the number of vertices and edges in the graphs of our benchmark samples.
Across all 65 graphs in the benchmark, we achieve an average of 97.3% reduction in vertex
count and 96.5% reduction in edge count. The ablation study in Figure 6 shows a significant
reduction in the computation time for the n-FIS score even though ArcMatch has been shown
to be scalable with respect to the number of vertices and edges [11].

Table 4a and Table 4b show the n-FIS scores between each pair of cryptominers in the
sample with and without graph simplification, respectively. The scores change only slightly
for most entries, except for eth, which has a much more complex and less reducible graph
than the other samples. The larger simplified graph of eth, which contains more than 10
times the number of edges and vertices of other samples, would make it much more prone
to contain other fingerprints as a subgraph due to its size and complexity. Although the
algorithm preserves structural information and connectivity, combining repeated subgraphs
means that we lose most information about the frequency of the substructures, yet the scores
demonstrate that this structural information is enough to differentiate between different
species of miners in our sample. The detection results in Table 7 show that the complete

T. Sermchaiwong et al. 21

Table 4 (Simplified and Unsimplified Miners Pairwise n-FIS Scores) Pairwise comparison
of 5-FIS score between the miner samples with and without graph simplification. The miner in each
row is checked whether it contains the miner in each column as subgraphs. Scores above 0.5 and
0.65 are highlight in light red and dark red respectively.

(a) Simplified Miners Pairwise n-FIS Scores
miner btc zny cn eth wmp xmr
btc 0.915 0.249 0.091 0.119 0.57 0.209
zny 0.121 0.929 0.163 0.057 0.275 0.207
cn 0.023 0.154 0.817 0.037 0.035 0.94
eth 0.823 0.277 0.074 0.972 0.916 0.171
wmp 0.233 0.098 0.03 0.027 0.94 0.188
xmr 0.031 0.097 0.709 0.029 0.01 1.0

(b) Unsimplified Miners Pairwise n-FIS Scores
miner btc zny cn eth wmp xmr
btc 0.851 0.236 0.151 0.221 0.484 0.184
zny 0.251 0.867 0.183 0.173 0.453 0.206
cn 0.13 0.36 0.756 0.145 0.022 0.743
eth 0.551 0.265 0.143 0.943 0.577 0.145
wmp 0.138 0.201 0.162 0.03 0.83 0.225
xmr 0.118 0.303 0.855 0.161 0.011 0.821

framework of PoT achieves better accuracy and f1 score compared to PoT without graph
simplification, demonstrating that this minimal structural information is not only sufficient,
but also amplifies the uniqueness of cryptominer data-flow graphs.

6.3 RQ2: The Effectiveness of PoT
To demonstrate the effectiveness of PoT and the n-fragment inclusion score, we test its ability
to distinguish cryptomining behavior in the presence of obfuscation, as well as differentiate
between miners and non-miners. Table 4a shows the n-FIS score of the miner samples
against themselves. The scores reflect clear differences between the different species of
miners. We observe that cn and xmr both perform the same variant of the CryptoNight
algorithm and therefore share mutually high inclusion score. Note that the inclusion scores
are not necessarily symmetric, as seen with wmp and eth. Although both algorithms use
the keccak family of hashing algorithms as a component, they perform additional work to
achieve memory-hardness [21, 76]. We hypothesize that the additional work performed by
wmp distinct from eth does not include the three instrumented instructions and, xor, and
shr, giving the impression that the work performed by wmp is a subset of eth.

The first six rows of Table 5 shows the performance of our baselines in the six miner
samples. MINOS and Minesweeper are able to recognize all six samples as cryptominers,
while the four models provided by WASim struggle to identify our samples.

6.3.1 Effectiveness Against Obfuscation
The first half of Table 5 shows the detection results of the six baselines in the obfuscated
miner samples. Among these, Minesweeper achieved the highest sensitivity at 94.4%, followed
by WASim naive Bayes, and MINOS. Although MINOS was able to detect all of our original
samples as cryptominers, it struggles to identify the obfuscated samples, especially under
function splitting and control flow flattening obfuscations.

The first half of Table 6 shows the n-FIS score of each obfuscated miner against the
original miners. In the last column we present the PoT detection results at 0.65 score
threshold for any match in the miner database. At this threshold, only 1 obfuscated sample
is missed, with a sensitivity of 96.6%. The similarity trends present in Table 4a are also

22 Dynamic Graph-based Fingerprinting

Table 5 (Baseline vs. All Benchmark Samples) Baseline detection results for miners,
obfuscated miners, and non-miners. 1 and 0 represent malign and benign results respectively. The
columns show results for MINOS, Minesweeper, WASim neural network, WASim random forest,
WASim support vector, and WASim naive bayes classifiers from left to right.

miner obf strat minos mswp wsnn wsrf wssv wsnb
zny - - 1 1 0 0 0 1
cn - - 1 1 1 1 0 0
btc - - 1 1 0 0 0 1
eth - - 1 1 0 0 0 1
wmp - - 1 1 0 1 0 0
xmr - - 1 1 1 0 0 0
btc emccobf boguscf 0 1 0 0 0 1
btc emccobf flatten 0 1 0 0 0 1
btc emccobf split 0 1 0 0 0 1
btc emccobf substitute 0 1 0 0 0 1
btc tigress encodearith 0 1 0 0 0 1
btc tigress splitflatten 1 1 0 0 0 1
zny emccobf boguscf 1 1 0 0 0 1
zny emccobf flatten 0 1 0 0 0 1
zny emccobf split 0 1 0 0 0 1
zny emccobf substitute 1 1 0 0 0 1
zny tigress encodearith 1 1 0 0 0 0
zny tigress splitflatten 0 1 0 0 0 1
cn tigress encodearith 1 1 0 1 0 0
cn tigress splitflatten 0 0 0 0 0 0
cn emccobf boguscf 1 1 0 1 0 0
cn emccobf flatten 1 0 0 1 0 0
cn emccobf split 1 1 1 1 0 0
cn emccobf substitute 0 1 1 1 0 0
eth emccobf boguscf 0 1 0 0 0 1
eth emccobf flatten 1 1 0 0 0 1
eth emccobf split 0 1 0 0 0 1
eth emccobf substitute 1 1 0 0 0 1
wmp emccobf boguscf 1 1 0 1 0 0
wmp emccobf flatten 1 1 0 1 0 1
wmp emccobf split 1 1 0 1 0 0
wmp emccobf substitute 1 1 0 1 0 1
xmr emccobf boguscf 1 1 0 1 0 0
xmr emccobf flatten 0 1 0 0 0 0
xmr emccobf split 1 1 1 0 0 0
xmr emccobf substitute 0 1 1 0 0 0

nonminer obf strat minos mswp wsnn wsrf wssv wsnb
boa - - 0 1 0 0 0 1
bullet - - 0 1 0 0 0 1
chocolatekeen - - 1 1 0 0 0 0
factorial - - 0 0 0 0 0 0
ffmpeg - - 0 1 0 0 0 1
figma - - 0 1 0 0 0 0
filament - - 0 1 0 0 0 1
funkykarts - - 0 1 0 0 0 1
hydro - - 0 1 0 0 0 1
imageconvolute - - 1 1 0 0 0 0
jqkungfu - - 0 1 0 0 0 0
jsc - - 0 1 0 0 0 1
mandelbrot - - 1 1 0 1 0 0
ogv-opus - - 0 1 0 1 0 1
ogv-vp9 - - 0 1 0 0 0 0
onnx - - 0 1 1 1 0 0
pacalc - - 1 1 0 0 0 0
parquet - - 0 1 0 0 0 1
rfxgen - - 0 1 0 0 0 1
rguiicons - - 0 1 0 0 0 1
rguilayout - - 0 1 0 0 0 1
rguistyler - - 0 1 0 0 0 1
riconpacker - - 0 1 0 0 0 1
rtexpacker - - 0 1 0 0 0 1
rtexviewer - - 0 1 0 0 0 1
sandspiel - - 1 1 0 0 0 1
sqlgui - - 0 1 0 0 0 1
sqlpractice - - 0 1 0 0 0 1
wasm-astar - - 0 1 0 0 0 0

T. Sermchaiwong et al. 23

Table 6 (Benchmark Samples n-FIS scores) The 5-FIS scores showing the inclusion of each
original miner fingerprint (columns) inside each benchmark sample (rows) is shown. The last column
shows the detection result for a 0.65 5-FIS score threshold in any column. Cells above 0.5 and 0.65
scores are highlighted in light red and dark red respectively.

miner obf strat btc zny cn eth wmp xmr ≥0.65
btc emccobf boguscf 0.903 0.267 0.081 0.072 0.57 0.177 1
btc emccobf flatten 0.695 0.301 0.092 0.082 0.55 0.187 1
btc emccobf split 0.653 0.256 0.081 0.073 0.534 0.193 1
btc emccobf substitute 0.846 0.326 0.475 0.217 0.773 0.453 1
btc tigress encodearith 0.777 0.451 0.527 0.162 0.733 0.601 1
btc tigress splitflatten 0.733 0.275 0.093 0.058 0.671 0.193 1
zny emccobf boguscf 0.197 0.821 0.187 0.613 0.519 0.161 1
zny emccobf flatten 0.224 0.783 0.211 0.619 0.499 0.154 1
zny emccobf split 0.145 0.821 0.157 0.069 0.545 0.064 1
zny emccobf substitute 0.38 0.911 0.674 0.269 0.896 0.759 1
zny tigress encodearith 0.38 0.307 0.511 0.059 0.804 0.598 1
zny tigress splitflatten 0.266 0.739 0.189 0.631 0.705 0.217 1
cn emccobf boguscf 0.03 0.106 0.647 0.04 0.04 0.951 1
cn emccobf flatten 0.031 0.092 0.748 0.044 0.024 1.0 1
cn emccobf split 0.038 0.151 0.836 0.039 0.029 0.945 1
cn emccobf substitute 0.945 0.777 0.824 0.896 0.877 0.88 1
cn tigress encodearith 0.029 0.197 0.792 0.063 0.087 0.735 1
cn tigress splitflatten 0.027 0.181 0.966 0.047 0.146 0.985 1
eth emccobf boguscf 0.81 0.271 0.129 0.97 0.912 0.165 1
eth emccobf flatten 0.801 0.358 0.057 0.967 0.886 0.099 1
eth emccobf split 0.801 0.339 0.068 0.967 0.909 0.181 1
eth emccobf substitute 0.957 0.919 0.203 0.971 0.879 0.209 1
wmp emccobf boguscf 0.195 0.069 0.015 0.023 0.858 0.109 1
wmp emccobf flatten 0.195 0.089 0.023 0.025 0.836 0.163 1
wmp emccobf split 0.126 0.02 0.0 0.015 0.344 0.0 0
wmp emccobf substitute 0.233 0.106 0.029 0.027 0.935 0.146 1
xmr emccobf boguscf 0.23 0.383 0.815 0.203 0.615 0.878 1
xmr emccobf flatten 0.032 0.129 0.817 0.06 0.04 0.948 1
xmr emccobf split 0.027 0.092 0.714 0.042 0.04 1.0 1
xmr emccobf substitute 0.961 0.718 0.81 0.909 0.889 0.876 1

nonminer obf strat btc zny cn eth wmp xmr ≥0.65
boa - - 0.017 0.214 0.309 0.005 0.011 0.415 0
bullet - - 0.082 0.162 0.021 0.023 0.449 0.169 0
chocolatekeen - - 0.062 0.091 0.0 0.001 0.497 0.0 0
factorial - - 0.34 0.447 0.378 0.034 0.639 0.533 0
ffmpeg - - 0.366 0.558 0.382 0.069 0.573 0.569 0
figma - - 0.016 0.192 0.398 0.001 0.009 0.369 0
filament - - 0.033 0.143 0.526 0.005 0.014 0.597 0
funkykarts - - 0.014 0.031 0.017 0.002 0.015 0.061 0
hydro - - 0.138 0.377 0.373 0.033 0.412 0.539 0
imageconvolute - - 0.007 0.013 0.011 0.0 0.021 0.073 0
jqkungfu - - 0.005 0.013 0.007 0.0 0.02 0.065 0
jsc - - 0.058 0.244 0.239 0.006 0.347 0.291 0
mandelbrot - - 0.009 0.033 0.0 0.0 0.064 0.0 0
ogv-opus - - 0.164 0.486 0.362 0.031 0.427 0.551 0
ogv-vp9 - - 0.1 0.37 0.494 0.018 0.119 0.602 0
onnx - - 0.005 0.014 0.008 0.0 0.013 0.065 0
pacalc - - 0.048 0.271 0.385 0.014 0.019 0.525 0
parquet - - 0.033 0.081 0.492 0.003 0.02 0.576 0
rfxgen - - 0.025 0.225 0.411 0.001 0.018 0.604 0
rguiicons - - 0.061 0.201 0.379 0.029 0.306 0.543 0
rguilayout - - 0.001 0.009 0.017 0.0 0.008 0.095 0
rguistyler - - 0.0 0.01 0.02 0.0 0.014 0.103 0
riconpacker - - 0.037 0.297 0.369 0.01 0.015 0.553 0
rtexpacker - - 0.059 0.113 0.019 0.004 0.473 0.093 0
rtexviewer - - 0.061 0.115 0.013 0.005 0.463 0.099 0
sandspiel - - 0.201 0.189 0.323 0.014 0.101 0.568 0
sqlgui - - 0.115 0.425 0.377 0.028 0.449 0.525 0
sqlpractice - - 0.031 0.107 0.359 0.004 0.01 0.352 0
wasm-astar - - 0.319 0.433 0.371 0.115 0.467 0.549 0

24 Dynamic Graph-based Fingerprinting

Table 7 Summary of performance metrics of all tested detection methods.

Method Accuracy Sensitivity Specificity Precision f1-score
PoT 98.3% 96.7% 100.0% 100.0% 98.3%
PoT (no simplify) 93.2% 93.3% 93.1% 93.3% 93.3%
MINOS 70.8% 61.1% 82.8% 81.5% 69.8%
Minesweeper 53.8% 94.4% 3.4% 54.8% 69.4%
WASim nn 52.3% 16.7% 96.6% 85.7% 27.9%
WASim rf 58.5% 33.3% 89.7% 80.0% 47.1%
WASim svm 44.6% 0.0% 100.0% N/A 0.0%
WASim nb 46.2% 55.6% 34.5% 51.3% 53.3%

present in the obfuscated miner samples, with some exception. Of interest is the instruction
substitution obfuscation performed by emcc-obf, which consistently raises the subgraph
similarity scores for all the miner fingerprints, across all obfuscated samples. The graphs of
CryptoNight with and without substitution obfuscation, shown in Figure 2b and Figure 2a
respectively, suggests that the variety of substituted instructions creates a complex enough
graph to contain the behavior patterns of all other miners.

6.3.2 False Positives
Finally, we evaluate the performance of the detection methods against a sample of real-world
WASM web applications to test for false positives. The results for the baselines are shown in
the second half of Table 5. Although WASim neural network, random forest, and support
vector machine classifiers all have high specificity of 100%, 96.6%, and 89.7%, respectively,
they also classify the majority of malicious samples as benign. Minesweeper on the other
hand classifies almost everything as malicious, getting a 3.4% specificity.

The second half of Table 6 shows the n-FIS scores and the results for the 0.65 detection
threshold for non-miners. Although we achieve a specificity of 100% at this threshold, we
observe that the similarity scores are high for the xmr miner due to the simplicity of its
data-flow graph. From this, it would be reasonable to apply different detection thresholds
for different malicious fingerprint graphs based on their sizes or another simplicity metric.

6.3.3 Results
The summarized evaluation metrics for all the detection methods tested are shown in Table 7.
PoT was able to achieve an overall accuracy of 98.3% at the 0.65 detection threshold. The
best result among the baselines is MINOS with an accuracy of 70.8% and a f1 score of 69.8%.
WASim neural network, random forest, and support vector machine classifiers skew toward
labeling most samples as non-miners, while Minesweeper and WASim naive Bayes classifier
label most samples as miners.

6.4 Discussion
The result of this evaluation shows that our graph simplification algorithm in conjunction
with the n-FIS score demonstrates the ability to differentiate cryptominers from other
common types of Wasm web applications based on their data-flow graphs. Moreover, we
demonstrate the ability to detect cryptominers under various obfuscations, outperforming
the state-of-the-art MINOS.

RQ1. In the first part of our evaluation, we showed that Algorithm 1 is able to reduce graphs
of over 3000 edges and vertices to around 20 in most cases. This reduction significantly
speeds up comparison operations between graphs even when employing highly scalable

T. Sermchaiwong et al. 25

algorithms. Furthermore, the simplification of repetitive structural information preserves the
local properties of computation and amplifies the distinction of cryptomining algorithms as
evident in the detection metrics of Table 7.

RQ2. The second part of our evaluation indicate that PoT is highly effective in identifying
cryptominers even in the precense of obfuscation through the use of the n-fragment inclusion
score. Although many obfuscations are able to generate substantially different graphs
for the same miners, the subgraph similarity score remains high, showing that our local
and fragmented view of subgraph similarity is tolerant to noise introduced by common
program transformations. While the xmr miner exhibits high inclusion scores among benign
applications, this can be attributed to the simplicity of its graph and behavior, and we
recommend deploying different thresholds based on the simplicity of a fingerprint in real
world scenarios.

Performance. Although performance was not the main objective of our study, Figure 6
shows that our analysis is scalable. There are several areas in which we could reduce the
analysis overhead in real-world deployment. (1) The resilience of our detection method against
fragmentation allows us to collect data-flow traces at random intervals, thus instrumentation
overhead could be reduced significantly. (2) We developed our prototype in Python, which
could be optimized by using a different language.

Scalability and Limitations. The approximate graph simplification through backward
random walks is designed to solve the scalability issue of analyzing large data-flow graphs,
which we have shown to be effective on real world Wasm applications in the ablation
study (Figure 6 and Table 3). Since our simplification relies on repeated structures in the
graph resulting from repeated computations, programs that perform many diverse types of
computation may not simplify very well, but none of our real-world benchmark programs
have this issue. Another limitation of our method arises due to its similarity to traditional
signature checking, namely that a database of fingerprints needs to be maintained and
updated. The scalability of our detection algorithm depends on the number of unique
cryptomining algorithms. Fortunately, it has been shown in literature that cryptomining
scripts and algorithms are low in diversity [68, 71, 38].

7 Conclusion

Given the limited diversity of cryptomining scripts in the wild, obfuscation serves as a natural
and appealing solution to avoid detection. It is crucial to develop a cryptomining detection
method that is resilient to code obfuscation. In this paper, we propose using instruction-level
data-flow graphs as a valuable source of information on a program’s computational behavior.
We present: (1) a graph simplification algorithm to reduce the computational burden of
processing large and granular data-flow graphs while preserving local substructures; and (2)
a subgraph similarity measure, the n-fragment inclusion score, based on fragment inclusion
that is robust against noise and obfuscation. Our experimental results demonstrate that
the simplified graph fingerprints retain essential structural information that distinguishes
proof-of-work algorithms, and the n-fragment inclusion score effectively quantifies this
structural difference. The combined framework PoT achieved high accuracy against standard
obfuscation, outperforming existing detection methods.

26 Dynamic Graph-based Fingerprinting

References
1 Hisham Alasmary, Aminollah Khormali, Afsah Anwar, Jeman Park, Jinchun Choi, Ahmed

Abusnaina, Amro Awad, Daehun Nyang, and Aziz Mohaisen. Analyzing and detecting
emerging internet of things malware: A graph-based approach. IEEE Internet of Things
Journal, 6(5):8977–8988, 2019. doi:10.1109/JIOT.2019.2925929.

2 Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran Lane. Graph-based
malware detection using dynamic analysis. Journal in Computer Virology, 7(4):247–258, 2011.
doi:10.1007/s11416-011-0152-x.

3 Andreas M Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurrencies. " O’Reilly
Media, Inc.", 2014.

4 M. Arunkumar and K. Ashokkumar. A review on cloud computing security chal-
lenges, attacks and its countermeasures. AIP Conference Proceedings, 3037(1):020047,
04 2024. arXiv:https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0196063/
19864474/020047_1_5.0196063.pdf, doi:10.1063/5.0196063.

5 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu,
and Michael Pradel. Wasm-r3: Record-reduce-replay for realistic and standalone webassembly
benchmarks. Proc. ACM Program. Lang., 8(OOPSLA2):2156–2182, 2024. doi:10.1145/
3689787.

6 Ujkan Q. Bajra, Ermir Rogova, and Sefer Avdiaj. Cryptocurrency blockchain and
its carbon footprint: Anticipating future challenges. Technology in Society, 77:102571,
2024. URL: https://www.sciencedirect.com/science/article/pii/S0160791X24001192,
doi:10.1016/j.techsoc.2024.102571.

7 Shrenik Bhansali, Ahmet Aris, Abbas Acar, Harun Oz, and A. Selcuk Uluagac. A first look at
code obfuscation for webassembly. In Proceedings of the 15th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec ’22, page 140–145, New York, NY, USA,
2022. Association for Computing Machinery. doi:10.1145/3507657.3528560.

8 Weikang Bian, Wei Meng, and Mingxue Zhang. Minethrottle: Defending against wasm
in-browser cryptojacking. In Proceedings of The Web Conference 2020, pages 3112–3118, 2020.

9 Vincenzo Bonnici and Rosalba Giugno. On the variable ordering in subgraph isomorphism
algorithms. IEEE ACM Trans. Comput. Biol. Bioinform., 14(1):193–203, 2017. doi:10.1109/
TCBB.2016.2515595.

10 Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis E. Shasha, and Alfredo Ferro.
A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinform.,
14(S-7):S13, 2013. doi:10.1186/1471-2105-14-S7-S13.

11 Vincenzo Bonnici, Roberto Grasso, Giovanni Micale, Antonio Di Maria, Dennis Shasha, Alfredo
Pulvirenti, and Rosalba Giugno. Arcmatch: high-performance subgraph matching for labeled
graphs by exploiting edge domains. Data Min. Knowl. Discov., 38(6):3868–3921, 2024. URL:
https://doi.org/10.1007/s10618-024-01061-8, doi:10.1007/S10618-024-01061-8.

12 Javier Cabrera-Arteaga, Martin Monperrus, Tim Toady, and Benoit Baudry. Webassembly
diversification for malware evasion. Computers & Security, 131:103296, 2023. URL: https://
www.sciencedirect.com/science/article/pii/S0167404823002067, doi:10.1016/j.cose.
2023.103296.

13 Maurantonio Caprolu, Simone Raponi, Gabriele Oligeri, and Roberto Di Pietro. Cryptomin-
ing makes noise: Detecting cryptojacking via machine learning. Computer Communica-
tions, 171:126–139, 2021. URL: https://www.sciencedirect.com/science/article/pii/
S0140366421000797, doi:10.1016/j.comcom.2021.02.016.

14 Domhnall Carlin, Jonah Burgess, Philip O’Kane, and Sakir Sezer. You could be mine (d): the
rise of cryptojacking. IEEE Security & Privacy, 18(2):16–22, 2019.

15 Domhnall Carlin, Philip O’Kane, Sakir Sezer, and Jonah Burgess. Detecting cryptomining
using dynamic analysis. In 2018 16th Annual Conference on Privacy, Security and Trust
(PST), pages 1–6, 2018. doi:10.1109/PST.2018.8514167.

https://doi.org/10.1109/JIOT.2019.2925929
https://doi.org/10.1007/s11416-011-0152-x
https://arxiv.org/abs/https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0196063/19864474/020047_1_5.0196063.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0196063/19864474/020047_1_5.0196063.pdf
https://doi.org/10.1063/5.0196063
https://doi.org/10.1145/3689787
https://doi.org/10.1145/3689787
https://www.sciencedirect.com/science/article/pii/S0160791X24001192
https://doi.org/10.1016/j.techsoc.2024.102571
https://doi.org/10.1145/3507657.3528560
https://doi.org/10.1109/TCBB.2016.2515595
https://doi.org/10.1109/TCBB.2016.2515595
https://doi.org/10.1186/1471-2105-14-S7-S13
https://doi.org/10.1007/s10618-024-01061-8
https://doi.org/10.1007/S10618-024-01061-8
https://www.sciencedirect.com/science/article/pii/S0167404823002067
https://www.sciencedirect.com/science/article/pii/S0167404823002067
https://doi.org/10.1016/j.cose.2023.103296
https://doi.org/10.1016/j.cose.2023.103296
https://www.sciencedirect.com/science/article/pii/S0140366421000797
https://www.sciencedirect.com/science/article/pii/S0140366421000797
https://doi.org/10.1016/j.comcom.2021.02.016
https://doi.org/10.1109/PST.2018.8514167

T. Sermchaiwong et al. 27

16 Data: The adoption rate of cryptocurrency is 43% faster than that of mobile phones and
20% faster than that of the internet. https://www.chaincatcher.com/en/article/2166659.
[Accessed 10-02-2025].

17 Ramaswamy Chandramouli and Wesley Hales. A data protection approach for cloud-native
applications. Technical report, National Institute of Standards and Technology, 2024.

18 Hyungmin Cho. Asic-resistance of multi-hash proof-of-work mechanisms for blockchain
consensus protocols. IEEE Access, 6:66210–66222, 2018. doi:10.1109/ACCESS.2018.2878895.

19 CoinIMP 0https://www.coinimp.com/. [Accessed 10-02-2025].
20 Christian Collberg. Home — tigress.wtf. https://tigress.wtf/index.html. [Accessed

11-02-2025].
21 Monero Community. CryptoNight - Monero Docs — docs.getmonero.org. https://docs.

getmonero.org/proof-of-work/cryptonight/. [Accessed 14-02-2025].
22 Stephen A. Cook. The complexity of theorem-proving procedures. In Bruce M. Kapron, editor,

Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook, volume 43
of ACM Books, pages 143–152. ACM, 2023. doi:10.1145/3588287.3588297.

23 Shayan Eskandari, Andreas Leoutsarakos, Troy Mursch, and Jeremy Clark. A first look at
browser-based cryptojacking. In 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 58–66. IEEE, 2018.

24 Ryan Farell. An analysis of the cryptocurrency industry. Wharton Research Scholars, 130:1–23,
2015.

25 Cloud Native Computing Foundation. CNCF Annual Survey 2023 — cncf.io.
https://www.cncf.io/reports/cncf-annual-survey-2023/?utm_source=the+new+stack&
utm_medium=referral&utm_content=inline-mention&utm_campaign=tns+platform. [Ac-
cessed 11-02-2025].

26 Ankit Gangwal and Mauro Conti. Cryptomining cannot change its spots: Detecting covert
cryptomining using magnetic side-channel. IEEE Transactions on Information Forensics and
Security, 15:1630–1639, 2020. doi:10.1109/TIFS.2019.2945171.

27 Han Gao, Shaoyin Cheng, and Weiming Zhang. Gdroid: Android malware detection
and classification with graph convolutional network. Computers & Security, 106:102264,
2021. URL: https://www.sciencedirect.com/science/article/pii/S0167404821000882,
doi:10.1016/j.cose.2021.102264.

28 Fábio Gomes and Miguel Correia. Cryptojacking detection with cpu usage metrics. In 2020
IEEE 19th International Symposium on Network Computing and Applications (NCA), pages
1–10, 2020. doi:10.1109/NCA51143.2020.9306696.

29 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
webassembly. SIGPLAN Not., 52(6):185–200, June 2017. doi:10.1145/3140587.3062363.

30 Håkon Harnes and Donn Morrison. Cryptic bytes: Webassembly obfuscation for evading
cryptojacking detection. arXiv preprint arXiv:2403.15197, 2024.

31 GitHub - HikariObfuscator/Hikari: LLVM Obfuscator — github.com. https://github.com/
HikariObfuscator/Hikari. [Accessed 12-02-2025].

32 Raymond Hill. GitHub - gorhill/uBlock: uBlock Origin - An efficient blocker for Chromium
and Firefox. Fast and lean. — github.com. https://github.com/gorhill/uBlock. [Accessed
10-02-2025].

33 hoshsadiq. GitHub - hoshsadiq/adblock-nocoin-list: Block lists to prevent JavaScript miners —
github.com. https://github.com/hoshsadiq/adblock-nocoin-list. [Accessed 10-02-2025].

34 Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. Large-scale malware indexing using function-call
graphs. In Proceedings of the 16th ACM Conference on Computer and Communications
Security, CCS ’09, page 611–620, New York, NY, USA, 2009. Association for Computing
Machinery. doi:10.1145/1653662.1653736.

35 Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-LLVM –
software protection for the masses. In Brecht Wyseur, editor, Proceedings of the IEEE/ACM

https://www.chaincatcher.com/en/article/2166659
https://doi.org/10.1109/ACCESS.2018.2878895
https://www.coinimp.com/
https://tigress.wtf/index.html
https://docs.getmonero.org/proof-of-work/cryptonight/
https://docs.getmonero.org/proof-of-work/cryptonight/
https://doi.org/10.1145/3588287.3588297
https://www.cncf.io/reports/cncf-annual-survey-2023/?utm_source=the+new+stack&utm_medium=referral&utm_content=inline-mention&utm_campaign=tns+platform
https://www.cncf.io/reports/cncf-annual-survey-2023/?utm_source=the+new+stack&utm_medium=referral&utm_content=inline-mention&utm_campaign=tns+platform
https://doi.org/10.1109/TIFS.2019.2945171
https://www.sciencedirect.com/science/article/pii/S0167404821000882
https://doi.org/10.1016/j.cose.2021.102264
https://doi.org/10.1109/NCA51143.2020.9306696
https://doi.org/10.1145/3140587.3062363
https://github.com/HikariObfuscator/Hikari
https://github.com/HikariObfuscator/Hikari
https://github.com/gorhill/uBlock
https://github.com/hoshsadiq/adblock-nocoin-list
https://doi.org/10.1145/1653662.1653736

28 Dynamic Graph-based Fingerprinting

1st International Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th, 2015,
pages 3–9. IEEE, 2015. doi:10.1109/SPRO.2015.10.

36 Conor Kelton, Aruna Balasubramanian, Ramya Raghavendra, and Mudhakar Srivatsa. Browser-
based deep behavioral detection of web cryptomining with coinspy. In Workshop on measure-
ments, attacks, and defenses for the web (MADWeb), pages 1–12. NDSS, 2020.

37 keraf. GitHub - keraf/NoCoin: No Coin is a tiny browser extension aiming to block coin miners
such as Coinhive. — github.com. https://github.com/keraf/NoCoin. [Accessed 10-02-2025].

38 Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew Miller, Nikita
Borisov, Manos Antonakakis, and Michael Bailey. Outguard: Detecting in-browser covert
cryptocurrency mining in the wild. In The World Wide Web Conference, WWW ’19, page
840–852, New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/
3308558.3313665.

39 Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew Miller, Nikita
Borisov, Manos Antonakakis, and Michael Bailey. Outguard: Detecting in-browser covert
cryptocurrency mining in the wild. In The World Wide Web Conference, WWW ’19, page
840–852, New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/
3308558.3313665.

40 Minseo Kim, Hyerean Jang, and Youngjoo Shin. Avengers, assemble! survey of webassembly
security solutions. In 2022 IEEE 15th International Conference on Cloud Computing (CLOUD),
pages 543–553, 2022. doi:10.1109/CLOUD55607.2022.00077.

41 Joris Kinable and Orestis Kostakis. Malware classification based on call graph clustering.
Journal in Computer Virology, 7(4):233–245, 2011. doi:10.1007/s11416-011-0151-y.

42 Oliver Knight. ’Cryptojacking’ in Financial Sector Has
Risen 269 https://www.coindesk.com/business/2022/07/26/
cryptojacking-in-financial-sector-has-risen-269-this-year-sonicwall-says. [Ac-
cessed 10-02-2025].

43 Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina Lindorfer, Chris-
topher Kruegel, Herbert Bos, and Giovanni Vigna. Minesweeper: An in-depth look into
drive-by cryptocurrency mining and its defense. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, page 1714–1730, New York,
NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3243734.3243858.

44 Daniel Lehmann and Michael Pradel. Wasabi: A framework for dynamically analyzing
webassembly. In Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck, editors,
Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April
13-17, 2019, pages 1045–1058. ACM, 2019. doi:10.1145/3297858.3304068.

45 Kyeonghwan Lim, Jaemin Jeong, Seong-je Cho, Jongmoo Choi, Minkyu Park, Sangchul Han,
and Seongtae Jhang. An anti-reverse engineering technique using native code and obfuscator-
llvm for android applications. In Proceedings of the International Conference on Research
in Adaptive and Convergent Systems, RACS ’17, page 217–221, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3129676.3129708.

46 Binbin Liu, Junfu Shen, Jiang Ming, Qilong Zheng, Jing Li, and Dongpeng Xu. MBA-Blast:
Unveiling and simplifying mixed Boolean-Arithmetic obfuscation. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1701–1718. USENIX Association, August 2021. URL:
https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin.

47 Ganapathy Mani, Vikram Pasumarti, Bharat Bhargava, Faisal Tariq Vora, James Mac-
Donald, Justin King, and Jason Kobes. Decrypto pro: Deep learning based cryptomin-
ing malware detection using performance counters. In 2020 IEEE International Confer-
ence on Autonomic Computing and Self-Organizing Systems (ACSOS), pages 109–118, 2020.
doi:10.1109/ACSOS49614.2020.00032.

48 mintme. mintMe | create your own token, monetize yourself! — mintme.com. https:
//www.mintme.com/. [Accessed 14-02-2025].

https://doi.org/10.1109/SPRO.2015.10
https://github.com/keraf/NoCoin
https://doi.org/10.1145/3308558.3313665
https://doi.org/10.1145/3308558.3313665
https://doi.org/10.1145/3308558.3313665
https://doi.org/10.1145/3308558.3313665
https://doi.org/10.1109/CLOUD55607.2022.00077
https://doi.org/10.1007/s11416-011-0151-y
https://www.coindesk.com/business/2022/07/26/cryptojacking-in-financial-sector-has-risen-269-this-year-sonicwall-says
https://www.coindesk.com/business/2022/07/26/cryptojacking-in-financial-sector-has-risen-269-this-year-sonicwall-says
https://doi.org/10.1145/3243734.3243858
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1145/3129676.3129708
https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin
https://doi.org/10.1109/ACSOS49614.2020.00032
https://www.mintme.com/
https://www.mintme.com/

T. Sermchaiwong et al. 29

49 The Monero Project — getmonero.org. https://www.getmonero.org/. [Accessed 14-02-2025].
50 Mozilla. Using Web Workers - Web APIs | MDN — developer.mozilla.org. https://developer.

mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers. [Accessed 14-02-
2025].

51 Ujan Mukhopadhyay, Anthony Skjellum, Oluwakemi Hambolu, Jon Oakley, Lu Yu, and
Richard Brooks. A brief survey of cryptocurrency systems. In 2016 14th Annual Conference on
Privacy, Security and Trust (PST), pages 745–752, 2016. doi:10.1109/PST.2016.7906988.

52 Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. New kid on the
web: A study on the prevalence of webassembly in the wild. In Roberto Perdisci, Clémentine
Maurice, Giorgio Giacinto, and Magnus Almgren, editors, Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 23–42, Cham, 2019. Springer International Publishing.

53 Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. Thieves in the
browser: Web-based cryptojacking in the wild. In Proceedings of the 14th International
Conference on Availability, Reliability and Security, pages 1–10, 2019.

54 Satoshi Nakamoto. Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin. pdf-(: 17.07. 2019),
9:15, 2008.

55 Faraz Naseem Naseem, Ahmet Aris, Leonardo Babun, Ege Tekiner, and A Selcuk Uluagac.
Minos: A lightweight real-time cryptojacking detection system. In NDSS, 2021.

56 Helio N. Cunha Neto, Martin Andreoni Lopez, Natalia C. Fernandes, and Diogo M. F.
Mattos. Minecap: super incremental learning for detecting and blocking cryptocurrency
mining on software-defined networking. Annals of Telecommunications, 75(3):121–131, 2020.
doi:10.1007/s12243-019-00744-4.

57 yescrypt - scalable KDF and password hashing scheme — openwall.com. https://www.
openwall.com/yescrypt/. [Accessed 14-02-2025].

58 Younghee Park, Douglas Reeves, Vikram Mulukutla, and Balaji Sundaravel. Fast malware
classification by automated behavioral graph matching. In Proceedings of the Sixth Annual
Workshop on Cyber Security and Information Intelligence Research, CSIIRW ’10, New York,
NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1852666.1852716.

59 Antonio Pastor, Alberto Mozo, Stanislav Vakaruk, Daniele Canavese, Diego R. López, Leonardo
Regano, Sandra Gómez-Canaval, and Antonio Lioy. Detection of encrypted cryptomining
malware connections with machine and deep learning. IEEE Access, 8:158036–158055, 2020.
doi:10.1109/ACCESS.2020.3019658.

60 Tim Starks Rebecca Heilweil. Even the US government can fall victim to cryptojacking — feds-
coop.com. https://fedscoop.com/cryptojacking-federal-government-agencies-usaid/.
[Accessed 10-02-2025].

61 Juan D Parra Rodriguez and Joachim Posegga. Rapid: Resource and api-based detection
against in-browser miners. In Proceedings of the 34th Annual Computer Security Applications
Conference, pages 313–326, 2018.

62 Alan Romano and Weihang Wang. Wasim: Understanding webassembly applications through
classification. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, pages 1321–1325, 2020.

63 Michele Russo, Nedim Šrndić, and Pavel Laskov. Detection of illicit cryptomining using
network metadata. EURASIP Journal on Information Security, 2021(1):11, 2021. doi:
10.1186/s13635-021-00126-1.

64 MeanShift — scikit-learn.org. https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.MeanShift.html. [Accessed 12-02-2025].

65 Haichuan Shang, Xuemin Lin, Ying Zhang, Jeffrey Xu Yu, and Wei Wang. Connected
substructure similarity search. In Ahmed K. Elmagarmid and Divyakant Agrawal, editors,
Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 903–914. ACM, 2010. doi:10.1145/
1807167.1807264.

https://www.getmonero.org/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://doi.org/10.1109/PST.2016.7906988
https://doi.org/10.1007/s12243-019-00744-4
https://www.openwall.com/yescrypt/
https://www.openwall.com/yescrypt/
https://doi.org/10.1145/1852666.1852716
https://doi.org/10.1109/ACCESS.2020.3019658
https://fedscoop.com/cryptojacking-federal-government-agencies-usaid/
https://doi.org/10.1186/s13635-021-00126-1
https://doi.org/10.1186/s13635-021-00126-1
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
https://doi.org/10.1145/1807167.1807264
https://doi.org/10.1145/1807167.1807264

30 Dynamic Graph-based Fingerprinting

66 Anjali J. Suresh and Sriram Sankaran. A framework for evaluation of software obfuscation
tools for embedded devices. In Lejla Batina and Gang Li, editors, Applications and Techniques
in Information Security, pages 1–13, Singapore, 2020. Springer Singapore.

67 Ege Tekiner, Abbas Acar, and A Selcuk Uluagac. A lightweight iot cryptojacking detection
mechanism in heterogeneous smart home networks. In NDSS, 2022.

68 Ege Tekiner, Abbas Acar, A Selcuk Uluagac, Engin Kirda, and Ali Aydin Selcuk. In-browser
cryptomining for good: An untold story. In 2021 IEEE International Conference on Decent-
ralized Applications and Infrastructures (DAPPS), pages 20–29. IEEE, 2021.

69 Yuanyuan Tian, Richard C. McEachin, Carlos Santos, David J. States, and Jignesh M. Patel.
SAGA: a subgraph matching tool for biological graphs. Bioinform., 23(2):232–239, 2007.
URL: https://doi.org/10.1093/bioinformatics/btl571, doi:10.1093/BIOINFORMATICS/
BTL571.

70 Aaron Turner, James Milner, and Jonathan Beri. Made with WebAssembly — madewith-
webassembly.com. https://madewithwebassembly.com/. [Accessed 12-02-2025].

71 Said Varlioglu, Bilal Gonen, Murat Ozer, and Mehmet Bastug. Is cryptojacking dead after
coinhive shutdown? In 2020 3rd International Conference on Information and Computer
Technologies (ICICT), pages 385–389, 2020. doi:10.1109/ICICT50521.2020.00068.

72 Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W Hamlen, and Shuang Hao. Seismic:
Secure in-lined script monitors for interrupting cryptojacks. In Computer Security: 23rd
European Symposium on Research in Computer Security, ESORICS 2018, Barcelona, Spain,
September 3-7, 2018, Proceedings, Part II 23, pages 122–142. Springer, 2018.

73 WebAssembly — webassembly.org. https://webassembly.org/. [Accessed 14-02-2025].
74 David W. Williams, Jun Huan, and Wei Wang. Graph database indexing using structured

graph decomposition. In Rada Chirkova, Asuman Dogac, M. Tamer Özsu, and Timos K. Sellis,
editors, Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007,
The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 976–985. IEEE Computer
Society, 2007. doi:10.1109/ICDE.2007.368956.

75 Min-Hao Wu, Yen-Jung Lai, Yan-Ling Hwang, Ting-Cheng Chang, and Fu-Hau Hsu. Min-
erguard: A solution to detect browser-based cryptocurrency mining through machine learn-
ing. Applied Sciences, 12(19), 2022. URL: https://www.mdpi.com/2076-3417/12/19/9838,
doi:10.3390/app12199838.

76 Ethash Kernel. https://xilinx.github.io/blockchainacceleration/kernel_design.html.
[Accessed 14-04-2025].

77 Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discovering
vulnerabilities with code property graphs. In 2014 IEEE Symposium on Security and Privacy,
pages 590–604, 2014. doi:10.1109/SP.2014.44.

https://doi.org/10.1093/bioinformatics/btl571
https://doi.org/10.1093/BIOINFORMATICS/BTL571
https://doi.org/10.1093/BIOINFORMATICS/BTL571
https://madewithwebassembly.com/
https://doi.org/10.1109/ICICT50521.2020.00068
https://webassembly.org/
https://doi.org/10.1109/ICDE.2007.368956
https://www.mdpi.com/2076-3417/12/19/9838
https://doi.org/10.3390/app12199838
https://xilinx.github.io/blockchainacceleration/kernel_design.html
https://doi.org/10.1109/SP.2014.44

T. Sermchaiwong et al. 31

A Unsimplified Graph Examples

(a) btc (b) eth (c) zny

(d) cn (e) wmp (f) xmr

(g) boa (h) bullet (i) chocolatekeen

(j) ffmpeg (k) sandspiel (l) sqlgui

Figure 7 (Example Original Graphs of Miners and Non-miners)

	1 Introduction
	2 Background and Motivation
	2.1 Cryptomining and Proof-of-Work Schemes
	2.2 Cryptojacking Detection
	2.3 Resource Graphs in Malware Detection
	2.4 WebAssembly

	3 Threat Model
	4 Graph Analysis
	4.1 Instruction Level Data-Flow Graphs in WebAssembly
	4.2 Fingerprinting Through Graph Simplification
	4.2.1 Approximation Through Backward Random Walks

	4.3 Comparing Graph Fingerprints
	4.3.1 Localized Fragment Similarity

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1: The Effectiveness of Graph Simplification
	6.3 RQ2: The Effectiveness of PoT
	6.3.1 Effectiveness Against Obfuscation
	6.3.2 False Positives
	6.3.3 Results

	6.4 Discussion

	7 Conclusion
	A Unsimplified Graph Examples

