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Abstract

Rust is a promising programming language that fo-
cuses on concurrency, usability, and security. It is used
in production code by major industry players and got
recommended by government bodies. Rust provides
strong security guarantees achieved by design utilizing
the concepts of ownership and borrowing. However,
Rust allows programmers to write unsafe code which
is not subject to the strict Rust security policy. Empir-
ical studies show that security issues in practice always
involve code written in unsafe Rust.

In this paper, we present the first approach that
utilizes selective code coverage feedback to focus the
fuzzing efforts on unsafe Rust code. Our approach sig-
nificantly improves the efficiency when fuzzing Rust
programs and does not require additional computa-
tional resources while fuzz testing the target. To quan-
tify the impact of partial code instrumentation, we im-
plement our approach by extending the capabilities of
the Rust compiler toolchain. We present an automated
approach to detect unsafe and safe code components to
decide which parts of the program a fuzzer should focus
on when running a fuzzing campaign to find vulnera-
bilities in Rust programs. Our approach is fully com-
patible with existing fuzzing implementations and does
not require complex manual work, thus retaining the
existing high usability standard. Focusing on unsafe
code, our implementation allows us to generate inputs
that trigger more unsafe code locations with statistical
significance and therefore is able to detect potential
vulnerabilities in a shorter time span while imposing
no performance overhead during fuzzing itself.

1 Introduction

Software vulnerabilities such as memory safety issues
are still one of the most common vulnerability types
in modern software programs. They have been stud-
ied extensively over the last decades and have become
a hot topic of research [54]. Existing work either

presents new defenses to prevent attacks or finds new
and creative ways to circumvent existing implementa-
tions of protection techniques. Microsoft states that 70
% of all security vulnerabilities are caused by memory
safety issues [15]. Similar results have been reported
by Google for the popular Chrome web browser [32].
One way to address memory safety issues is to im-
plement programs in memory-safe languages such as
Rust, which is recommended by prominent industry
players [19] as well as government bodies [18, 46]. The
Rust programming language is designed to check the
code for potential memory unsafe code patterns such
as null pointer dereferences at compile time. Alter-
natively, the Rust compiler adds the appropriate run
time checks automatically to prevent exploitation of
memory safety bugs. As most Rust security guarantees
are checked during compile time, they do not impose
any performance penalty when executing a program.
This has contributed to the rising popularity of Rust
in production code, e.g., it is utilized by Mozilla [20],
Microsoft [59], Cloudflare [30], Dropbox [36], Face-
book [26], and is also used to write Linux kernel mod-
ules which were introduced in version 6.1 [23].

However, the aforementioned safety guarantees can-
not be upheld in all use-cases. For example, when a
program requires dereferencing C-style raw pointers,
arbitrary type casts, or needs to communicate with
low-level systems [49]. To allow for such code patterns,
Rust includes the prominently marked unsafe keyword,
which disables certain security checks and enhances the
capabilities of programmers. However, unsafe Rust no
longer guarantees the safety of the program, and there-
fore may introduce issues well-known from C and C++
programs such as buffer overflows, use-after-frees, and
undefined behavior in general, which may cause ex-
ploitable vulnerabilities. Thus, vulnerabilities caused
by unsafe code are still an important issue in the Rust
ecosystem. The Rust advisory database (RustSec)!
tracks such vulnerabilities since 2016. It contains over
600 entries, of which 18 describe bugs that are located
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in the Rust standard library, which is thoroughly re-
viewed and commonly written by Rust experts.

Empirical studies [60, 49] which analyzed known vul-
nerabilities show that all memory safety issues found
since the first stable release of the Rust compiler in-
volve unsafe Rust code, and therefore conclude that
safe Rust can be considered safe in practice. At first
glance, it might be surprising that code regions explic-
itly marked as unsafe in Rust suffer from numerous
vulnerabilities since one would assume that developers
should be cautious in using the unsafe keyword, taking
special care that the program cannot be exploited and
ensuring that unsafe code regions are small to allow
efficient and scalable inspection and review. Similarly,
in the domain of trusted execution environments (e.g.,
Intel SGX), one would assume that security-critical
code is less prone to safety issues. However, recent
research revealed that almost all public SGX enclaves
suffer from security issues [57, 21, 38, 22].

Qin et al. [49] systematically analyzed a set of 70
real-world memory safety vulnerabilities of Rust pro-
grams and found that the most prominent bug types
are buffer overflows, null pointer dereferences, and use-
after-free. According to the RustSec database, memory
safety issues? are by far the most common vulnerabil-
ity type with 187 documented cases. The most com-
mon CVSS severity scores are high (134) and critical
(72). This shows that security issues are still a sig-
nificant problem in practice when deploying Rust pro-
grams that utilize unsafe code, even when this code is
written by experienced Rust programmers.

Astrauskas et al. [6] as well as Evans et al. [25] ana-
lyzed the usage of unsafe code in Rust projects. They
find that 24% and 29% of analyzed Rust programs con-
tain unsafe code. Furthermore, around 50% of Rust li-
braries depend on or utilize unsafe code. This number
increases to 60% when only considering the top 500
most popular crates from crates.io. An unsafe code
block is relatively small, as 75% of unsafe blocks con-
sist of at most 21 instructions. In general, unsafe code
is used sparingly, i.e., 90% of Rust crates have fewer
than 2 unsafe functions and less than 11 unsafe code
blocks. These results provide us with two key insights
(1) Rust projects commonly rely on unsafe Rust code,
and (2) most of the code of a Rust program is safe code
and is therefore checked by Rust’s security analysis.

It should be noted that it is not feasible to com-
pletely refrain from using unsafe Rust. Hence, pro-
grammers need other ways to ensure the security of
their implementations, e.g., through extensive testing.
One of the most popular techniques to detect bugs is
fuzzing, i.e., randomly generated inputs are passed to
a program, and a bug oracle checks for potentially un-
wanted behavior; usually a crash of the program under
test [63, 13, 27].

Typically, the reasons for crashes are memory safety
issues, e.g., because a code pointer is overwritten in
case of a buffer overflow. Fuzzers for C and C++ code
commonly try to maximize the code coverage due to

2Note that not all reports include a vulnerability type.

the fact that a fuzzer cannot find bugs in code that
is never executed [63, 39]. However, since Rust code
is secure by default, this approach does not scale for
Rust programs, where only small parts of a program
are written in unsafe code blocks [60, 49]. Hence, by
ignoring these safe code parts, we can optimize Rust
code fuzzing to the few sections of a program that cause
vulnerabilities and may lead to exploits such as remote
code execution. This can be achieved using partial code
instrumentation.

The most popular fuzzer for C and C++ programs is
AFL [63] which introduced the notion of coverage feed-
back to optimize the fuzzing process. Following the
success of AFL, the authors of AFL+ [27] have since
further optimized the design of AFL and implemented
a plethora of improvements from the industry as well
as academia. Due to the performance and capabilities
of AFL+, the Rust fuzzing team has since implemented
afl.rs [2] which allows programmers to use AFL+ ba-
sic capabilities to fuzz Rust programs. However, even
though afl.rs is based on AFL+ it does not support
the whole feature set of AFL+. Most notably, it is not
possible to use the highly optimized and feature-rich
AFL+ compiler suite as these are only compatible with
C and CH++ code but not Rust. This includes the ca-
pabilities of limiting the coverage feedback instrumen-
tation to certain parts of the program.

To the best of our knowledge, the only existing aca-
demic fuzzer for Rust code has been implemented by
Crump et al. [24] as part of a registered report. The
fuzzer is called CRABSANDWICH and is not tailored to
focus on unsafe Rust code. Thus, it does not priori-
tize Rust code that potentially causes security issues.
Furthermore, CRABSANDWICH is currently only a pre-
liminary implementation and is not publicly available.
Other existing publications regarding Rust security use
static analysis based on different intermediate code rep-
resentations [10, 42]. However, static analysis tools
do not provide proof-of-vulnerabilities and suffer from
many false positive detections. Thus, they require sig-
nificant effort to detect exploitable vulnerabilities.

In this paper, we present and implement FourFuzz
(Focus On Unsafe Rust Fuzzer), the first fuzzer that is
specifically tailored to prioritize unsafe Rust code. We
implement partial instrumentation to focus the fuzzing
efforts on unsafe Rust code to significantly increase the
efficiency and probability of triggering and detecting
vulnerabilities in Rust programs.

To implement partial code instrumentation in Rust
we need to patch the Rust compiler itself. This is chal-
lenging as Rust uses a complex compilation toolchain:
This includes multiple intermediate representations
and several compiler stages facilitating Rust-specific
code analysis. Further, the Rust toolchain leverages
the LLVM compiler suite to generate machine code. In
total, the Rust toolchain comprises well over 10 mil-
lion lines of code written in various programming lan-
guages.

Furthermore, our patched Rust compiler automati-
cally exports the list of functions that contain unsafe
code, which we subsequently use as an additional input



in the instrumentation phase. This helps the fuzzer to
focus on inputs that may execute code that leads to
potential vulnerabilities instead of mutating all inputs
that achieve new coverage, even in code parts that ex-
clusively contain safe Rust code. To implement this
approach, we only require call graph data which en-
ables us to utilize FourFuzz even on large and complex
Rust programs.

In our evaluation, we compare our implementation
against the existing implementation of afl.rs on a test
set of 10 programs using a run time of 24 hours, and
performing 30 repetitions. During our evaluation, we
follow existing best practices and use statistical signifi-
cance tests as well as standardized effect sizes to assess
a fuzzer’s performance. We also quantify the impact of
partial instrumentation when fuzzing unsafe Rust code.
Due to the fact that afl.rs and FourFuzz share the
same code base, we can ensure that the performance
differences are caused by the fuzzer’s ability to focus
on unsafe code. We find that FourFuzz outperforms
afl.rs on eight targets with statistical significance by
executing unsafe code parts more often while requir-
ing a shorter time span to do so. Our evaluation fur-
ther shows that, on average, FourFuzz only requires in-
strumentation of around 20% of the program functions
to collect accurate coverage information for paths that
lead to unsafe code locations. Furthermore, FourFuzz
is able to generate inputs that trigger 15% more un-
safe code locations on average. Thus we significantly
improve the overall performance of Rust fuzzing. Note
that we achieve these performance gains without any
computational overhead during the fuzzing process it-
self, as FourFuzz does not require any additional run
time code to work properly.

Furthermore, we present the first study to system-
atically evaluate and quantify the impact of partial in-
strumentation on real-world Rust software. Our results
show that partial instrumentation has an acceptable
build time overhead (even on complex targets) while
significantly improving the overall performance when
analyzing the ability of a fuzzer to trigger code written
in unsafe Rust.

2 Background

First, we explain the fundamentals of the Rust pro-
gramming language and how it can provide broad se-
curity guarantees while at the same time being as flex-
ible as C and C++. We further introduce the concept
of unsafe Rust code and the notion of fuzzing and how
it has been used in existing scientific studies.

2.1 Rust

Rust is a powerful systems programming language
that emphasizes on performance while providing strong
safety guarantees. Contrary to other memory safe lan-
guages, such as Java, Rust allows the programmer to
precisely control memory allocations and is versatile
enough to be used as a low-level systems programming

language.

Rust achieves memory safety through its combina-
tion of a strict type system and the ownership/bor-
rowing model. This improves the performance of Rust
compared to other memory safe languages that require,
e.g., a garbage collector. Rust originates from Mozilla
Research but is currently maintained by the Rust Foun-
dation which is a non-profit organization founded by
tech companies such as Amazon, Google, Huawei, and
Microsoft. All of which use Rust as part of their soft-
ware stack. For example, Google supports Rust to
write native OS components for Android [3]. Simi-
larly, Microsoft supports Rust to write Azure applica-
tions [56] as well as the implementation of driver soft-
ware for Windows [59] citing Rust’s security features
as a major reason for using it. Furthermore, Rust code
has also been included as part of the Linux kernel since
version 6.1 which allows contributors to write compo-
nents such as kernel modules in Rust [23].

2.1.1 TUnsafe Rust

At its core, Rust achieves temporal memory safety by
restricting aliasing of mutable data. This prevents
memory safety issues such as data races, use-after-free,
and double-free. During compilation Rust guarantees
that only a single mutable reference exists for each vari-
able at any point in the program’s execution. The com-
piler does not limit the number of read-only references
as long as no mutable references exist at the same time
in the same context.

Spatial memory safety is achieved via a combination
of compile time and run time checks. The Rust com-
piler determines the bounds of any object in memory
and verifies that memory accesses are in bounds of the
respective object. If the size of the memory object
is unknown at compile time, the Rust compiler auto-
matically inserts the appropriate bounds checks. Any
access beyond an object’s allocated memory results in
a panic.

The design of safe Rust severely limits the capabil-
ities of a programmer, for example, when data needs
to be shared with other (unsafe) programs/libraries or
when implementing certain code patterns, e.g., a mu-
tex. Therefore, Rust supports a keyword called unsafe
which lets programmers ignore certain safety restric-
tions, e.g., modify raw pointers or call unsafe functions.
However, even if code is marked as unsafe, Rust still
checks the respective code but cannot guarantee its
memory safety. Note that not all functions that con-
tain unsafe code also have to be marked as unsafe.
Instead, Rust requires the programmer to ensure that
all public facing functions do not induce unwanted be-
havior when the correct types are used (which can be
easily checked by the compiler). This code pattern
is called a safe abstraction and allows programmers
to call functions that use unsafe code without tagging
such calls as unsafe [6]. In practice, unsafe Rust code is
commonly used to communicate with foreign code, the
kernel, hardware components, or to improve the codes’
performance as well as optimizing memory manage-



ment [29]. Due to the safe abstraction design pattern,
a programmer may use unsafe code unknowingly (see
Section 3.3).

2.1.2 Rust Compilation Pipeline

The Rust compilation process includes multiple com-
plex stages to translate Rust code to highly optimized
machine code (see Figure 1) that can be securely ex-
ecuted on a large set of CPU architectures and plat-
forms. Rust ensures type safety using the high-level
intermediate representation (HIR) while the borrow
checker is executed on the mid-level intermediate rep-
resentation (MIR) which is basically a CFG represen-
tation of the code. After transforming the code into
the LLVM IR, Rust utilizes the LLVM compiler suite
to optimize the code which is subsequently transformed
into the final binary representation.

2.2 Fuzzing

Fuzzing has become one of the most popular test-
ing methods, especially for C and C++ programs. In
this section, we discuss the most important aspects of
fuzzing in the context of testing Rust code.

Fuzzing has been popularized in recent years mostly
by the success of AFL, a mutation-based gray-box
fuzzer. Besides gray-box fuzzing, there also exists
white-box and black-box fuzzing. A black-box fuzzer
simply generates inputs without any knowledge of the
program internals or the program source code. This
means that a black-box fuzzer (e.g., zzuf [35]) has a
very high throughput but cannot reason about the
quality of the generated input apart from program
crashes. White-box fuzzers (e.g., SAGE [31]) use ex-
tensive program analysis to be able to generate high
quality inputs that, for example, solve certain path
constraints and therefore increase code coverage. This
usually means that the throughput is rather low, and
commonly requires access to the program’s source code.
AFL [63] and other gray-box fuzzers try to find a mid-
dle ground between white-box and black-box fuzzing
by utilizing simple code analysis techniques (typically
coverage information) that do not require expensive
computation while fuzzing. Over the years, scientists
proposed various different fuzzers [5, 44, 53, 28, 65], to
improve the general performance and explore different
application domains where fuzzing can be used [44, 65].

Existing best practices [1] recommend the usage of
in-memory fuzzing which significantly improves the ex-
ecution speed as it removes the need to fork the tar-
get program for every execution. However, to use in-
memory fuzzing the fuzzer requires a so called fuzzing
harness which in its most basic form calls a test func-
tion (e.g., data processing function) with the input
bytes which are generated by the fuzzer. The authors of
afl.rs only support the usage of in-memory fuzzing.
Thus, to test a Rust program, one always needs to
write a fuzzing harness (also called fuzz target) which
is compiled into a specially instrumented binary.

3 FourFuzz

Generally, the concept of selective code instrumen-
tation can be implemented for any fuzzer that uti-
lizes code coverage feedback. According to the Rust
fuzzing authority [9], most of real-world bugs detected
in Rust programs have been uncovered by AFL+ [27],
libfuzzer [48], and honggfuzz [33] for all of which
exists a Rust compatible implementation, namely
afl.rs [2], cargo-fuzz [7], and hongfuzz.rs [8]. We
opted to use afl.rs for our implementation FourFuzz,
due to the fact that the underlying fuzzer (i.e., AFL+) is
well maintained and provides the most comprehensive
feature set which allows one to utilize a large number
of fuzzing optimizations published in academic pub-
lications. In the following we describe the different
components required to run FourFuzz. We explain how
afl.rs works internally and how we deal with the chal-
lenges of implementing partial instrumentation and the
detection of unsafe Rust Code itself. Subsequently, we
describe the overall design of FourFuzz. The high level
workflow of FourFuzz is depicted in Figure 2.

3.1 Afl.rs

The main purpose of afl.rs is to invoke the Rust com-
piler with the correct flags to build the program under
test with the correct instrumentation that allows AFL+
to retrieve coverage information when fuzzing the tar-
get binary. Additionally, afl.rs provides an easy-to-
use wrapper code that allows to invoke AFL+ within
the Rust toolchain. Using its default configuration,
afl.rs (1) enables additional checks (e.g., overflow
checks) to improve the bug finding capabilities (2) en-
ables code optimization up to level three to improve the
run time performance, and (3) sets LLVM flags to en-
able code coverage feedback. Recently, afl.rs added
the LLVM trace option for compare instructions, which
implements a CmpLog-style instrumentation originally
implemented in Redqueen [5]. Lastly, afl.rs adds the
AFL LLVM run time library to the target binary which
is responsible to run initialization code, to communi-
cate with AFL+, and provide functionality required by
the instrumentation.

3.2 Partial Instrumentation

AFL+ allows the programmer to utilize partial code
instrumentation in two different ways. First, via the
_AFL_COVERAGE-function family which allows a pro-
grammer to selectively enable the instrumentation for
certain parts of the program by tagging these directly
in the source code, i.e., by calling __AFL_COVERAGE_
ON() and __AFL_COVERAGE_OFF() functions, respec-
tively. However, afl.rs uses LLVM-based code cov-
erage, which does not support calling these AFL spe-
cific functions, therefore one cannot utilize them to
compile Rust code. Secondly, AFL+ allows to di-
rectly whitelist and blacklist parts of the code using
AFL_LLVM_ALLOWLIST and AFL_LLVM_DENYLIST, which
are text files containing a list of the code parts that



fn main() {
println!
("Hello
world");

fn main() {{
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world\n"[..]
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fn main() ->
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_1 = [const
"Hello
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return;}}
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call void
std::io::stdio
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ret void }
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Figure 1: Simplified overview of the Rust compilation pipeline.
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Figure 2: Workflow of FourFuzz. First, we generate a
block list which is subsequently used to build and fuzz
a partially instrumented target.

should be instrumented or ignored. These lists are
processed when compiling a target program using
afl-clang-fast or afl-clang-lto. Even though
Rust, like AFL+ wutilizes LLVM in its compilation
toolchain it does not support the direct usage of any
specialized AFL+ compiler and instead only supports
the use of LLVM instrumentation.

The LLVM compiler itself also provides two different
partial instrumentation features. The first method re-
quires editing the source code, namely adding a special
no_sanitize attribute to the definition of all functions
that should not be instrumented. This attribute how-
ever, is a clang feature that is not available to the Rust
compiler. The second way is a blacklist and whitelist
feature that does not require source code changes and
is utilized via special flags that either specify the usage
of an allowlist or ignorelist. Adding these flags
anywhere in the compilation process of a Rust pro-
gram triggers an exception, as they are not supported
by the LLVM binaries used by the Rust compilation
toolchain.

Thus, it is not possible to use any of the existing par-
tial instrumentation techniques currently implemented
in AFL+ or LLVM with programs written in Rust. In-
stead, we have to implement selective instrumentation
capabilities directly into Rust. As a block list is more
suitable for an automated approach like ours, we de-
cide to implement it instead of a source code based
method. AFL+ supports various instrumentation tech-
niques. However, the only variant that is supported
by afl.rs is called sanitizer-coverage-trace-pc-
guard, and is a feature of LLVM which adds a call to
a coverage feedback function at every CFG edge. This

feedback function reads a dynamically generated edge-
id, which is used as an index into the coverage map
of the respective program. The coverage map is evalu-
ated by AFL+ after each fuzz run to decide if a mutated
input increased the coverage of the program code.

As the coverage feedback utilized by afl.rs
is a LLVM feature, we implement the block list
inside Rust’s LLVM module, mainly inside the
SanitizerCoverage component. This feature adds the
previously mentioned calls to the coverage feedback
function, which in turn sets the respective entry in the
shared coverage map. Similar to AFL++ and LLVM it-
self, our implementation reads a text file that contains
a list of functions that should not be instrumented. In
our particular use case, this is a list of functions that
do not lead to any unsafe Rust code. However, our im-
plementation can also be used for other use cases, e.g.,
to improve patch testing via fuzzing. Additionally, our
implementation can be used by any fuzzer that sup-
ports LLVMs sanitizer-coverage-trace-pc-guard
instrumentation and similar instrumentation features
(e.g., basic CmpLog-style instrumentation) as the par-
tial instrumentation feature is implemented in a LLVM
component. Due to the fact that we implement our de-
sign as part of Rust and LLVM, respectively, FourFuzz
compiles its own Rust compiler suite which it subse-
quently utilizes to generate the partially instrumented
target binary.

3.3 Detecting Unsafe Rust Code

Intuitively, one might get the impression that searching
the source code of a Rust project for the unsafe key-
word is sufficient to assess whether the project contains
unsafe Rust code. However, this approach only de-
tects unsafe code that exists in the exact Rust projects’
source code, but it cannot check the dependencies a
project relies on. Thus, searching only inside the Rust
project completely ignores the fact that Rust crates,
i.e., dependencies, commonly contain unsafe Rust code.
The Rust build tool cargo manages all crates and auto-
matically downloads their transitive dependencies dur-
ing compilation. Rust supports a concept called safe
abstraction (cf. section 2.1.1), which allows developers
of Rust crates to wrap potentially unsafe operations
in safe interfaces. Commonly, the safe interfaces are
ordinary Rust functions, i.e., a developer cannot de-
cide whether a function is just a function or a safe
abstraction for unsafe code. As a result, a developer
may unknowingly include unsafe code in a program.
For example, a call to any third party function may



use std::io;

use byteops::Bytes;

[...]

fn input() -> u64 {
let mut input = String::new();
io::stdin() .read_line(&mut input).expect("...");
input.trim() .parse().expect("...")

Bow N =

w0 N o v

¥
9
10 fn main() {

11 let v: Vec<u8> = vec![1, 2, 3];
12 let mut b = Bytes::new(&v);

13 let index = input() as usize;
14 let value = input() as u8;

15 b.store_at(index, value);

16 }

Listing 1: Example program that unknowingly calls
unsafe Rust code.

execute unsafe code. In practice, Evans et al. [25] find
that around 50% of all Rust libraries contain unsafe
code, and only 29% of all analyzed Rust libraries use
unsafe code directly. Thus, the likelihood of unknow-
ingly calling unsafe code is high.

3.3.1 Motivating Example

To illustrate the problem of unknowingly calling un-
safe Rust code, consider our example in Listing 1. At
Line 15, the program calls a function which it im-
ports from the byteops crate, using parameters that
a user provides in Lines 13 and 14. In our example,
this code snippet represents the entire code base of a
Rust project. As it does not contain the unsafe key-
word, it is not evident to the reader of Listing 1 that
this project relies on unsafe code. Listing 2 shows the
source code sample of our byteops crate. The code
defines the Bytes data structure that operates on ar-
rays of bytes and stores a start pointer, an end pointer,
and a cursor at Line 1. The store_at function calcu-
lates the value of a pointer ptr and uses it to store
an arbitrary value that is provided as a function ar-
gument. Both operations require unsafe code which is
hidden behind the seemingly safe abstraction. How-
ever, store_at does not perform any bounds checking,
thus an attacker might be able to write arbitrary val-
ues to arbitrary memory, even though the code base
in Listing 1 is exclusively written in safe Rust which
prevents such vulnerabilities.

pub struct Bytes { start: *const u8,

1

2 end: *const u8, cursor: *const u8,

3}

4

5 impl Bytes {

6 pub fn new(slice: &[u8]) -> Bytes {...}
7 fn store_at(&self, n: usize, v: u8) {
8 unsafe {

9 let ptr = self.cursor.add(n);
10 std::ptr::write(ptr, v);

11 }

12 }

13 [...]

14 }

Listing 2: Example code of our byteops crate that
includes unsafe Rust.

3.3.2 Rust Compiler Extension

To ensure that FourFuzz can detect all unsafe code, we
need to extend the capabilities of the Rust compiler
to generate a list of all functions that contain unsafe
Rust code. As mentioned before, the Rust compila-
tion pipeline translates the source code into different
intermediate representations, namely HIR, MIR, and
LLVM IR. These representations mainly differ in their
capabilities regarding static program analysis. First,
we need to decide where inside the complex Rust com-
pilation process we should add our analysis pass which
can be applied at HIR, MIR, and LLVM-IR level. The
HIR stores the code before any code optimizations hap-
pen. This impedes the identification of functions fur-
ther down the compilation process, as we need to iden-
tify the functions using low-level symbol names which
are used at the LLVM instrumentation stage. How-
ever, Rust’s function names are changed after running
the HIR stage and therefore extracted function names
might be different at the point the block list is utilized.
We cannot directly operate on the LLVM IR because at
this stage the compiler removed any meta information
about the unsafe status of instructions as LLVM does
not support this code property®. Since the majority of
Rust specific optimizations happen on MIR-level, and
meta information about the unsafe status of functions
and statements is still available, we implement our de-
sign at this stage.

To implement our analysis, we
rustc_monomorphize crate, specifically ~ the
collect_and partition mono_items function. The
Rust compiler calls this function before code gener-
ation. We collect all function instances, including
specialized instances of generic functions, and analyze
the basic blocks of each instance to check for unsafe
code at the instruction-level. Due to the fact that the
terminator is not considered part of a basic block, we
check it separately. Note that our implementation is
not affected by potential false negative detections of
unsafe instructions [17] because our analysis does not
rely on the safety status of basic block objects, but on
the safety of each individual instruction.

Once we detect at least one instruction that is un-
safe, we retrieve and store the symbol name of the sur-
rounding function. FourFuzz further processes this file
during its path finding process to generate the block
list that is subsequently used in the partial instrumen-
tation phase. Note that programmers may still want
to ignore (unsafe) dependency code during fuzz testing
(e.g., because dependency code is tested separately)
which is also supported by FourFuzz.

extend the

3.4 Design

In the following, we describe the different modules of
FourFuzz and how they interact with one another. An
overview of how our design and its components work
are depicted in Figure 3. In the first step, our modified

3As such a property is not required in other languages sup-
ported by LLVM such as C, C++, or Swift.
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Figure 3: Overview of the design of FourFuzz and its
partial instrumentation approach.
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Rust toolchain compiles the target program to gener-
ate the call graph (CG) based on LLVM binary code as
well as a list of functions that contain unsafe code. To
generate a complete call graph, path finder merges the
call graphs of different program modules utilizing the
fact that Rust generates unique names for each func-
tion, including a hash based on the functions content.
This ensures that FourFuzz does not miss any paths
inside the compiled program that leads to unsafe Rust
code. The path finder component leverages the CG and
the list of unsafe functions to construct our block list,
i.e., the set of functions that will never reach any un-
safe Rust code. Subsequently, path finder traverses the
whole-program CG (i.e., every function) and matches
the CGs’ nodes with the list of functions that contain
unsafe code. If no paths from the function to unsafe
code exist, the respective function is added to the block
list. This block list is subsequently used by the Rust
compiler (more specifically the LLVM instrumentation
pass) to only add coverage feedback calls to functions
that actually reach unsafe code. Note that for the ex-
ample in Figure 3, FourFuzz will ignore inputs that
execute fun_2 as this function does not contain or lead
to any unsafe Rust code. This allows FourFuzz to focus
on a smaller set of inputs and thus create more inputs
that potentially trigger a vulnerability inside fun_1.
Note that FourFuzz works as a drop-in replacement
for the Rust compiler as well as afl.rs, i.e., a user
can use the exact same commands to compile and fuzz
the target binary. Therefore, we argue that FourFuzz
does not impose additional significant usability issues,
reported in other fuzzer implementations [41].
FourFuzz’s approach to partial instrumentation re-
quires compiling the target twice in succession. How-
ever, Rust builds are not reproducible in all use cases
and depend on multiple factors, for example, the ab-
solute build path. In fact, issues with reproducibil-
ity are wide-spread enough for the Rust developers
to maintain a separate label in the issue tracker for
issues related to reproducibility?. To prevent issues

4https://github.com/rust-lang/rust /labels/A-reproducibility

Table 1: Overview of our test set, including a short de-
scription, and number of downloads on the main Rust
library registry crates.io.

Project Description Downloads
capnproto Data serialization framework. 3.7 mil.
httparse HTTP 1.x protocol parser. 152 mil.
image Basic image processing library. 31 mil.
1z4 flex Compression algorithm. 15 mil.
rust-cssparser  Rust CSS Syntax Module. 9 mil.
quiche QUIC and HTTP/3 impl. by 0.33 mil.
Cloudflare.
rocket Asynchronous web framework. 5 mil.
syn Generation of Rust Syntax 530 mil.
Trees.
toml TOML decoder and encoder. 188 mil.
ruzstd Decoder for zstd compression. 6.5 mil.

of reproducibility from diminishing the effectiveness of
FourFuzz, we verify that builds of our fuzzing targets
are compatible with each other. e.g., between the ex-
ecution of path finder and the partial instrumentation
step.

3.4.1 Implementation

Our implementation works on the Rust stable release
version 1.77 which uses LLVM version 17 to generate
the binary code. To fuzz the target programs, Four-
Fuzz utilizes afl.rs in version 0.15.3 which is based
on AFL+ version 4.10c. We implemented our changes
to the Rust compiler as part of the MIR code passes, a
modified LLVM code pass, as well as a Python script
that implements the path finder component as well as
a custom Python framework to run the experiments.

4 Evaluation

Evaluating fuzzers is a non-trivial problem [39, 12] as
the majority of fuzzing research does not follow existing
recommendations [52]. When evaluating the impact of
partial code coverage instrumentation, we want to en-
sure that our results are scientifically sound. Hence,
we follow existing best practices [39] and use a time-
out of 24h and repeat every experiment 30 times. We
further utilize the recommended statistical significance
test (Mann—Whitney U test) to ensure that differences
measured in our experiments are not the result of ran-
domness. Additionally, we use standardized effect sizes
(Vargha and Delaneys Ay statistic [4]) to address the
fact that the programs in our test set feature differ-
ent amounts of unsafe code locations (see Table 3).
As our fuzzer prioritizes functions that contain unsafe
Rust code, we utilize the time it takes a fuzzer to find
such a location as an evaluation metric, analogous to
the time a fuzzer requires to trigger a bug. Thus, the
goal of our evaluation is to show that FourFuzz gen-
erates inputs that execute more locations that contain
unsafe Rust code in a shorter time span compared to
the existing state-of-the-art.

To conduct our evaluation, we require a diverse set
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of programs that contain unsafe Rust code. Our target
set consists of 10 popular Rust projects. Note that this
is above the average of 8.9 targets reported by Schloegel
et al. [52] who did a literature review of 150 fuzzing
papers published at renowned academic conferences.
The test set incorporates a wide variety of different
programs ranging from a library to handle HTML re-
quests to code used for data compression. We provide
an overview of our test set in Table 1.

For each program in our test set, we collect a seed set
of 100 different inputs which AFL+ and FourFuzz use
as an initial set for mutations. We selected programs
based on the following criteria: (1) The program con-
tains at least one instance of unsafe Rust code that is
not trivial to reach, i.e., this excludes targets that ex-
ecute all unsafe Rust code regardless of the provided
(valid) input. (2) The program has to be either popular
in the Rust community, i.e., over 1 million downloads
on crates.io, or it has to be implemented by a major
industry player. This makes sure that our results are
relevant in practice. (3) The program is not a test or
otherwise experimental software. This ensures that our
results are relevant to real-world applications. (4) The
program is purely written in Rust, as we consider C
and C++ code to be out of scope for our Rust fuzzer.
Note that C/C++ functions can be fuzzed separately by
a wide selection of existing fuzzers including AFL+ [27]
and LibAFL [28].5

We provide data and additional information related
to our experiments in a dedicated code repository
available at https://github.com/uni-due-syssec/
target-unsafe-rust.

4.1 Partial Instrumentation

Table 2: Number of functions in each project and the
number of functions that do not lead to the execution
of unsafe code.

Project Functions Exclu.ded
functions
capnproto 1752 1041 (59.42%)
httparse 380 356 (93.68%)
image 3680 3558 (96.74%)
124 2731 2719 (99.56%)
quiche 3301 3132 (94.85%)
rocket 19322 19185 (99.29%)
rust-cssparser 5343 5282 (98.85%)
syn 2055 782 (38.05%)
toml 1089 1066 (97.89%)
ruzstd 2974 916 (30.80%)

First, we evaluate the partial instrumentation ap-
proach to fuzz Rust programs by comparing the com-
mon instrumentation using the default LLVM code cov-
erage feedback with the selective instrumentation of
FourFuzz that excludes all functions that cannot reach

5Note that mixed code binaries can further be protected by
existing memory isolation approaches [40, 43, 50, 11] that sepa-
rate Rust and C/C++ memory which prevents malicious access
from the C/C++ to the Rust code.

unsafe code parts. The results are depicted in Table 2.
Note that the results are based on the functions avail-
able in the binary code (i.e., optimized LLVM byte-
code) and not on the number of functions in the Rust
source code. We observe that, on average, the block
list of FourFuzz contains around 81% of all program
functions, i.e., most functions of a Rust program will
never reach any unsafe code and therefore do not need
to be instrumented when fuzzing to find memory safety
issues. This demonstrates the effectiveness of FourFuzz
as the number of instrumented functions can be signif-
icantly reduced when fuzzing exclusively unsafe code.

4.2 Reaching unsafe code

The most common evaluation metrics when testing
fuzzers either try to show that a fuzzer is able to trigger
more bugs in a shorter time span or compare the code
coverage achieved over the course of the experiment
using different code coverage metrics [39]. However,
the goal of FourFuzz is to improve the efficiency when
fuzzing Rust programs, namely to increase the num-
ber of unsafe locations the fuzzer can trigger and de-
crease the time span it takes to generate such an input.
Hence, we instrument each unsafe code location with
an execution oracle to be able to detect when an input
executes the respective unsafe code block or function
for the first time. Instead of the time it takes a fuzzer
to trigger a bug, we measure the time it takes to find
an input which executes a unsafe code location.

To assure a fair comparison, we follow existing rec-
ommendations [47, 52] and use the fuzzer that Four-
Fuzz is based upon (namely afl.rs) as a baseline
which allows us to accurately attribute performance
differences to our design choices. We run all our ex-
periments using Ubuntu 22.04 LTS on a server with
an Intel Xeon Gold 6326 CPU with 32 cores and 256
GB of memory. We utilize Docker to ensure a fair and
equal testing environment, which allows us to precisely
allocate the same resources for each experiment.

We use statistical significance tests to assess if the
results we measured can be attributed to the difference
in the design or may be caused by randomness alone.
As recommended by Klees et al. [39], we use a p thresh-
old of 0.05 to determine if a result is statistically sig-
nificant or not. As effect size threshold we follow the
recommendations of Vargha and Delaney [58].

We provide an overview of the experimental results
considering the time it took each fuzzer to execute
the unsafe code locations in Table 3. We notice that
FourFuzz has a statistically significant better perfor-
mance for at least one unsafe location on eight of the
ten test programs. For example, when comparing the
fuzzer performance for capnproto, FourFuzz requires
less time to generate inputs that execute all seven un-
safe code locations with statistical significance for 99%
of all fuzz runs. Notably, FourFuzz never performs
worse on any of the unsafe code locations with statis-
tical significance. Looking at the effect sizes, we find
that for most (37) unsafe locations the performance
difference is considered large. The evaluation confirms
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Table 3: Total number of non-trivial unsafe locations in each program and corresponding number of times
FourFuzz outperforms afl.rs and vice versa. Additionally, the number of times the corresponding effect size is
considered small, medium, or large. The table also shows the average A5 effect size for all statistical significant

results.

. #unsafe  #stat. sig. results Effect Size A
Project locations afl.rs gFourFuzz small medium large Avg. Ar
capnproto 7 0 7 0 0 7 0.99
httparse 14 0 0 0 0 0 0.00
image 2 0 2 0 0 2 0.88
1z4 flex 2 0 2 0 0 2 1.00
rust-cssparser 4 0 4 0 0 4 0.99
quiche 11 0 10 0 0 10 0.75
rocket 2 0 1 0 1 0 0.69
syn 3 0 0 0 0 0 0.00
toml 14 0 12 0 0 12 0.76
ruzstd 1 0 1 0 1 0 0.66

that FourFuzz performs significantly better when gen-
erating inputs that trigger unsafe Rust code compared
to afl.rs on the vast majority of targets. As FourFuzz
and afl.rs use the same code base we conclude that
the performance differences are caused by partial in-
strumentation helping FourFuzz to focus its resources
on unsafe code locations.

Additionally, we evaluate the total number of times
each fuzzer successfully generates an input that reaches
an unsafe code location over all runs. This helps us to
better assess the performance of partial instrumenta-
tion by comparing the ability of each fuzzer to cover
unsafe code locations at all. The results are depicted in
Figure 4. We observe that FourFuzz is able to trigger
more unsafe code oracles over the course of our experi-
ments on five of the ten targets. For the other targets,
both fuzzers perform equally well over the course of
24h. Again we take a closer look at the results for
capnproto which contains a total of seven unsafe code
locations in the tested binary. On each of the 30 trials,
a fuzzer can generate an input to execute each unsafe
code location. We find that FourFuzz is able to trigger
all unsafe code locations on all 30 trials (total of 210 un-
safe code oracle hits) while afl.rs is unable to execute
a total of 111 unsafe code locations. Overall, FourFuzz
is able to detect 15% more unsafe code locations on our
test set compared to afl.rs. This demonstrates that
partial instrumentation not only improves the time it
takes a fuzzer to execute unsafe code but also helps a
fuzzer to find more unsafe code locations and thus ex-
ecute the parts of a Rust program that are subject to
memory safety issues.

Notably, in both evaluations, FourFuzz never per-
forms worse compared to afl.rs when considering the
performance over the 30 repetitions, regardless if we
use the time it takes to trigger unsafe code or the num-
ber of unsafe code locations found. Hence, we argue
that, on average, FourFuzz always outperforms afl.rs
when testing unsafe code of Rust programs.

During our experiments FourFuzz is able to find one
unique crash in syn, 12 unique crashes in image, one
unique crash in rust-cssparser, and one unique crash
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Figure 4: Total number of times each fuzzer generates
an input that executes a coverage oracle, i.e., unsafe
code in the respective target project.

in toml. To detect unique crashes, we did not rely on
AFL’s crash deduplication but instead wrote a custom
script that analyzes stack traces returned by Rust’s
debug instrumentation. Further analyzed each set of
crashes and if necessary, provided the resulting infor-
mation to the responsible entities to fix the respective
issue.

In the following we discuss the need for accurate call
graph data and its influence on partial instrumentation
and its performance when fuzzing a Rust program.

4.2.1 Case Study: Naga

FourFuzz relies on call graph data generated by LLVM
to detect functions that do not require instrumenta-
tion. Thus, if the call graph data is erroneous, e.g.,
due to missing edges, the block list might contain er-
rors as well. To better assess the importance of call
graph data, we extended our analysis to programs out-
side of our test set. We use naga, a popular shader
translation library, with over 5 million downloads as
a case study. Naga has a parser component that con-
sumes tokens from the input data and calls correspond-
ing handler functions, e.g., to generate the correct ob-
jects in memory. However, we observe that LLVM fails
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Figure 5: Comparison of the compilation times of

afl.rs and FourFuzz which needs to build the target
twice and generate the list of functions that only exe-
cute safe Rust code to create a partially instrumented
program.

to generate the call edge between the front end parser
and functions that are responsible to handle the parsed
objects. As calling these handler functions leads to
the execution of unsafe Rust code in the naga binary,
they should be instrumented but due to the erroneous
call graph data they are not. Note that initial tests
show that missing this specific call edge does not pre-
vent FourFuzz from executing the corresponding un-
safe code locations but it requires more time compared
to a fully instrumented fuzz target. Furthermore, we
want to emphasize that this is not an inherent limita-
tion of FourFuzz or partial instrumentation in general
but a practical drawback due to the fact that LLVM
cannot correctly determine all call targets at compile
time. Our case study highlights the need for proper
call graph data when relying on it as part of partial
code instrumentation during fuzzing.

4.3 Compilation Time Overhead

As mentioned before, the design of FourFuzz does not
impose any performance overhead when fuzzing a tar-
get as we do not require any additional instrumenta-
tion or complex analysis during run time. However,
to generate the block list FourFuzz needs to create a
call graph first, and subsequently compile the program
again to add the code coverage feedback at the correct
locations. Thus, we need to compile the program twice
and additionally need to create a call graph and ex-
ecute path reachability analysis using the path finder
component. We measure the time the compilation pro-
cess takes for each program in our test set and provide
the results in Figure 5. We find that the average per-
formance overhead imposed by our implementation is
around 6 minutes (175%). Given that programs are
commonly fuzzed for several hours and up to multiple
months, we argue that this overhead during the compi-
lation process is reasonable and acceptable in practice.
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5 Related Work

In this section we discuss related work, i.e., other aca-
demic publications in areas related to FourFuzz and
explain how our approach differs from them. Further-
more, we discuss other approaches that address the
security of Rust libraries and programs.

5.1 Fuzzing

As we are not aware of any fuzzer that has been pub-
lished in academia that focus on unsafe Rust code, the
most closely related fuzzers are directed fuzzers for C
and C++ code. The first directed fuzzer in academia
has been implemented by Béhme et al. [14] and is called
AFLGo. In directed fuzzing, the idea is to approximate
the distance of a target for every basic block in a pro-
gram and use this information as additional execution
feedback. However, due to the fact that the distance
calculation does not scale linearly with the number of
basic blocks, this process can take a significant amount
of time for complex real-world programs [16] which can
be a problem in practice, e.g., for usage in continu-
ous integration frameworks that may employ short fuzz
runs to test each commit to the code base. In contrast,
partial instrumentation only requires call graph infor-
mation which improves scaling for large code bases and
does not require additional computations during run
time.

Furthermore, AFLGo requires the implementation of
a cooling schedule which adjusts the probability that an
input is assigned energy based on the distance to a tar-
get block, i.e., the importance of the distance calcula-
tion decreases over time. FourFuzz on the other hand,
does not require a cooling schedule due to the usage of
partial instrumentation, which works seamlessly with
any of AFL+’s power schedules.

Other directed fuzzers have similar issues as AFLGo
(e.g., Hawkeye [16]) or are not applicable to the
challenges posed by Rust unsafe code fuzzing, e.g.,
AFLChurn [64] is specialized on patch testing, which
is orthogonal to the challenge of testing unsafe Rust.

CRABSANDWICH [24] by Crump et al. is a fuzzer that
is specialized on fuzzing Rust programs and was pub-
lished as a registered report including preliminary re-
sults. CRABSANDWICH is a drop-in replacement for
cargo-fuzz and is based on LibAFL [28]. At the time
of writing, the source code of CRABSANDWICH is not
available for testing. CRABSANDWICH does not pro-
vide any means to specifically target unsafe code in a
Rust program but rather treats all code coverage equal,
similar to afl.rs. Thus, FourFuzz tackles a different
set of challenges.

5.2 Rust Security

Researchers have analyzed the usage of unsafe code
in publicly available Rust programs, i.e., crates from
crates.io. Astrauskas et al. [6] state that 21.3% of all
crates contain at least one explicit unsafe Rust state-
ment, which the authors consider a significantly high
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number of crates. Evans et al. [25] find that about
50% of all crates utilize unsafe code, either directly or
in dependency code. Furthermore, both studies an-
alyzed how much of the code is actually written in
unsafe Rust. Evans et al. find that 90% of projects
that contain unsafe code use fewer than 10 unsafe code
blocks, while Astrauskas et al. state that most unsafe
code blocks (75%) consist of 21 or fewer MIR instruc-
tions. This shows that (1) a significant number, but es-
pecially popular Rust projects, can profit from a fuzzer
that focuses on unsafe code, and (2) that using partial
instrumentation is useful due to the fact that unsafe
code is used only for small parts of the program, and
therefore most code is inherently memory safe.

Furthermore, researchers have also analyzed re-
ported bugs found in real-world Rust programs. Qin
et al. [49] as well as Xu et al. [60] systematically an-
alyzed security related Rust bugs and find that all of
them involve unsafe Rust code. The only exception
is a single bug in a pre-release Rust compiler (v0.3)
which Qin et al. consider insignificant. Both studies
conclude that safe Rust code can be considered safe
based on the empirical data. This shows that focusing
on unsafe code is a sound approach when testing Rust
programs with automatic fuzz testing as implemented
in FourFuzz.

Publications have also tackled the problem of find-
ing bugs in Rust without utilizing dynamic analysis.
Rudra [10] as well as MirChecker [42] are static anal-
ysis frameworks that utilize intermediate code repre-
sentations to detect different bug types. While Rudra
relies mostly on data-flow analysis to detect bugs,
MirChecker utilizes a combination of numerical and
symbolic analysis on the Rust MIR. Both implementa-
tions only support very specific bug types while fuzzers
commonly support a wide variety of bug types. Fur-
thermore, both tools suffer from a very high false pos-
itive rate of up to 80% and 95% respectively. Due to
the fact that a fuzzer generates a concrete input that
triggers a bug oracle, false positives are very unlikely
as long as a proper fuzz target is used. During our ex-
periments, FourFuzz did not cause any false positives.
Furthermore, the generated crashing input allows de-
bugging of the unwanted behavior and ultimately fixing
the respective bug.

A different dynamic approach to find bugs in Rust
libraries has been introduced by Takashima et al. [55]
who implement SyRust. The idea is to utilize pro-
gram synthesis to generate programs that call API
functions of a Rust library. SyRust generates Rust
programs which are compiled to MIR and executed via
the Miri [51] interpreter which also acts as a bug oracle
to detect unwanted behavior. Contrary to this, Four-
Fuzz executes test inputs on native code and generates
new inputs through different mutations that may cause
program crashes which indicate a bug. This allows us
to test a large number of test cases per second without
any additional overhead.

Researchers have also put effort into improving other
aspects of the fuzzing process. Namely, RULF [37],
RPG [61], and FRIES [62] automatically generate fuzz
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targets which can be used to test as much code of a
program under test as possible. Note that automati-
cally generated fuzz targets can cause a large number of
false positive crashes. For example, Jiang et al. report
that fuzzers were able to find 636 unique crashes (i.e.,
after deduplication) but found only 30 actual bugs.

All three implementations generate API call se-
quences that process the fuzzer generated input. Thus,
they address a different problem as they do not change
the fuzzer itself but provide usable fuzz targets. Four-
Fuzz improves the fuzzing process by utilizing partial
instrumentation which prioritizes code locations that
contain potentially memory unsafe Rust code. Further-
more, the existing fuzz target genmeration implemen-
tations are focused to test Rust library code whereas
FourFuzz can be used to test library code as well as
whole projects. Note that existing fuzzing recommen-
dations state a fuzzing harness or target should be
written and selected by an expert with domain knowl-
edge [34].

Another component of the fuzzing process which has
been the subject of scientific publications are bug ora-
cles. Min et al. [45] as well as Cho et al. [17] present
Rust specific AddressSanitizer (ASan) based optimiza-
tions. Both approaches try to minimize the number
of necessary memory access checks during fuzz testing.
While ERASan [45] considers raw pointers as the only
source of potentially unwanted behavior, RustSan [17]
includes any data object that is modified by unsafe
Rust code. Additionally, RustSan implements more
fine grained access controls to detect more memory ac-
cess violations. However, due to the usage of computa-
tion intensive static analysis (e.g., points-to analysis)
both approaches require a considerable compile-time
overhead (of up to 31x) and are therefore not applicable
to, e.g., integration into a CI pipeline. Note that both
approaches may considerably reduce the number of ex-
isting memory access checks but this does not neces-
sarily correlate to a similar performance improvement
during fuzzing [17]. Furthermore, note that ASan is
known to suffer from a considerable number of false
negatives (i.e., inputs that crash a normal target may
not crash the ASan instrumented program) [41].

Another line of work tries to isolate unsafe Rust code
from safe Rust code (e.g., to separate Rust and C/CH++
code). Code isolation approaches have been imple-
mented in Sandcrust [40], XRust [43], Galeed [50], or
TRust [11]. Each approach protects different parts
of the Rust program (e.g., heap data, foreign code,
or untrusted objects) and utilizes different techniques
to implement the separation of trusted and untrusted
code (e.g., via guard pages, a separate process, or In-
tel MKP). Code isolation approaches always require
additional security checks at run time which causes a
significant performance overhead. Furthermore, isola-
tion approaches do not fix the underlying issue, i.e., the
bug or vulnerability in the program. FourFuzz identi-
fies the security-related bugs and allows to fix them
by providing a crash input that helps programmers to
understand the corresponding code issue.



6 Conclusion

Our work shows that partial instrumentation for Rust
fuzzing is a promising direction for security testing for
Rust programs. Since the underlying design of safe
Rust does successfully prevent memory corruption is-
sues as well as data races, it is natural to prioritize
unsafe Rust code when trying to detect security is-
sues in Rust. Given that our approach does not re-
quire considerable manual effort but works automat-
ically (i.e., selection of irrelevant functions as well as
instrumentation) it is as simple to use as afl.rs. Our
evaluation shows that partial instrumentation can be
a powerful technique to improve the performance of
unsafe Rust code fuzzing. FourFuzz requires statis-
tically significantly less time when generating inputs
that execute unsafe code blocks and trigger more un-
safe code locations compared to afl.rs. Our paper
shows for the first time that partial instrumentation is
a viable path to improve a fuzzing implementation for
Rust code without imposing any overhead during the
fuzz testing process.
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