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Abstract—This research paper delves into the field of
autonomous vehicle technology, examining the vulnerabil-
ities inherent in each component of these transformative
vehicles. Autonomous vehicles (AVs) are revolutionizing
transportation by seamlessly integrating advanced func-
tionalities such as sensing, perception, planning, decision-
making, and control. However, their reliance on inter-
connected systems and external communication interfaces
renders them susceptible to cybersecurity threats.

This research endeavors to develop a comprehensive
threat model for AV systems, employing OWASP Threat
Dragon and the STRIDE framework. This model catego-
rizes threats into Spoofing, Tampering, Repudiation, Infor-
mation Disclosure, Denial of Service (DoS), and Elevation
of Privilege.

A systematic risk assessment is conducted to evaluate
vulnerabilities across various AV components, including
perception modules, planning systems, control units, and
communication interfaces.

Index Terms—AV Cybersecurity, STRIDE Threats, CAN
Bus Security, OTA Updates, Sensor Integrity

I. INTRODUCTION

This comprehensive paper presents a detailed analysis
of autonomous vehicle technology and its associated
security considerations. The paper commences by tracing
the progressive evolution of autonomous vehicles, from
rudimentary driver assistance features to sophisticated
sensor suites. It underscores the potential of autonomous
vehicles to mitigate human error, enhance traffic ef-
ficiency, and expand mobility for individuals without
access.

The paper emphasizes the imperative of adopting a
systematic security approach that aligns with technolog-
ical advancements.

Identify applicable funding agency here. If none, delete this.

The heart of autonomous vehicle systems lies in the
sensing and perception modules. These modules employ
high-resolution cameras, LiDAR including millimeter
wave variants, multiple radar systems, GPS, and vehicle-
to-everything communications. These components col-
laborate to construct a dynamic 3D perception of the
road environment. Data fusion algorithms harmonize
visual images, point cloud signals, and network position
updates, enabling artificial intelligence models to discern
and categorize pedestrians, vehicles, traffic signs, lane
markings, and environmental conditions such as rain,
fog, or low lighting[1].

Building upon the perception capabilities, the planning
and decision modules transform the understanding of
the scene into safe and lawful motion. Planners assess
potential routes around stationary or moving objects and
compute trajectories that adhere to vehicle dynamics and
traffic regulations[22]. Subsequently, decision logic se-
lects maneuvers such as lane changes, speed adjustments,
or emergency braking by considering the anticipated
behavior of other road users and regulatory constraints.
The control subsystem then dispatches precise real-
time commands to steering, throttle, and braking units,
executing the selected path.

Furthermore, the paper addresses adaptive control
loops and fallback strategies that ensure stability and
comfort under unforeseen circumstances.

In the context of advancing technological advance-
ments, we present a structured risk assessment and threat
model specifically tailored for autonomous vehicles. This
comprehensive analysis systematically evaluates various
potential risks that could compromise the safety of
autonomous vehicles. These risks encompass environ-
mental factors such as glare and precipitation, sensor
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TABLE I
ELEMENTS OF THE AUTONOMOUS VEHICLE ARCHITECTURE

Sub-sections Type of Element System Assets Attacks Through System Assets and Entry Points

Device & Peripheral

Software Sensors Influence of spoofing, harvesting, internal attack, mali-
cious code, outdated software

Wireless Communication Modem Denial of Service (DoS), Man-in-the-middle, induce
misleading data from spoofing

Radar Sensors Spoofing attacks, outdated software, malicious code,
malware of a smartphone

GPS Software Spoofing fake signals, data injection, exploit outdated
software

Sensor Data Storage Data Storage Spoofing, malware of a smartphone, Outdated Software
attacks

Connected Vehicle

Cloud Services Data stored in the cloud Malicious software used to find the vulnerabilities in the
cloud access controls

Decision Maker Machine Learning And AI Malicious injection code to the vulnerabilities of con-
nected software components

CAN Bus ECU Overloading the network by an DoS attack to the ECU
Control ECU Software Spoofing the ECU by sending compromised data
Sensor Fusion Memory Malicious updates through sensors
Perception AI Machine Learning Model Overloading the hardware used by using spoofing on the

AI
Path Planner Software Exploiting the weakness in the code by introducing bugs

and malicious code

attacks including laser blinding and fake object projec-
tion, and network exploits such as fraudulent vehicle-to-
everything messages and software vulnerabilities.

Each identified risk is meticulously assessed based
on its likelihood and potential impact. Consequently,
we propose a comprehensive suite of countermeasures
to mitigate these risks. These countermeasures include
robust AI training, multiple sensor redundancy, secure
communication protocols, trusted boot for controllers,
and continuous network monitoring.

Furthermore, we provide a detailed structure of the
paper and contextualize our contributions within the
existing research landscape. Section two reviews related
work in the field of perception and vehicle security.
Section three presents our functional decomposition of
the sensing perception planning decision-making, and
control processes. Section four outlines the threat tax-
onomy and risk matrix. Section five proposes mitigation
strategies and describes our threat modeling method-
ology. Finally, Section six concludes with recommen-
dations for future investigations and best practices for
ensuring the safe and reliable deployment of autonomous
mobility. By seamlessly integrating technical innovation
with a holistic security perspective, we pave the way for
resilient and trustworthy autonomous mobility, paving
the way for its widespread adoption by the public.

II. RISK ASSOCIATED

Despite rapid advancements in sensing, perception,
planning, and control, autonomous vehicles remain vul-

Fig. 1. Autonomous vehicles components

nerable to a diverse range of threats that can compromise
steering, braking, and overall safety.

Spoofing Attacks
Spoofing attacks impersonate trusted components or

signals to deceive perception and decision modules.
Examples include spoofing a sensor’s identity, GPS
spoofing, spoofing the autonomous-driving ECU identity,
fake V2V messages, man-in-the-middle on V2X, voice-
command exploits, and false firmware-update notifica-
tions. An adversary may broadcast counterfeit GPS data
to divert a vehicle onto hazardous roads or manipulate
vehicle-to-everything messages to simulate nonexistent
traffic. Sensor-identity spoofing can cause the system
to accept erroneous camera or radar data, while forged
firmware updates install malicious software. Voice-
command exploits trigger unintended maneuvers by
mimicking authorized speech. Defenses necessitate cryp-
tographic authentication of all signals, certificate-based
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message verification, and continuous anomaly detection.
Tampering Attacks
Tampering attacks disrupt data streams or the physi-

cal environment to subvert normal operation. Examples
include tampering with message content, tampering with
the environment, smartphone spoofing, machine-learning
tampering, camera image tampering, adversarial visual
input, insecure API exposure, roadside-unit compromise,
and cloud-to-AV sync attacks [2,3,4,10,11,12,13,19]. An
attacker may inject malicious content onto internal buses
to alter planned trajectories or disable alerts during
critical maneuvers [11]. Physical tampering—such as
deploying fog machines, light-rain sprays, or artifi-
cial snow—obscures obstacles and distorts perception
[2,3,4]. Compromised roadside units or exposed APIs
enable remote code injection or data exfiltration [13,19].
Robust end-to-end integrity checks, stringent input vali-
dation, real-time model monitoring, and hardened inter-
faces are essential countermeasures [11,12,19].

Denial of Service Threats
Denial-of-service (DoS) attacks overwhelm or disable

sensors, networks, and processing elements, disrupting
vital data flows. Examples include flooding the inner
vehicle network, DDoS modem attacks, LiDAR over-
load, software denial of service, LiDAR sensor blinding,
radar jamming, DoS on the CAN bus, and physical
destruction of sensors [6,7,10,14]. Flooding the internal
communication bus prevents safety alerts from reaching
controllers [10], while modem-based DoS isolates the
vehicle from over-the-air updates [10]. LiDAR overload
or blinding negates depth perception [7], and radar
jamming masks Doppler returns [6]. Targeted electro-
magnetic interference or outright destruction of sensors
can eliminate autonomy-critical inputs [14]. Resilience
techniques include redundant communication channels,
sensor health-check routines, and graceful degradation
strategies [7,14].

Information-Disclosure Attacks
Information-disclosure attacks involve the unautho-

rized acquisition or dissemination of sensitive data from
sensors, networks, or cloud platforms. These attacks en-
compass various tactics, such as stealing sensor informa-
tion, exploiting prior knowledge vulnerabilities, causing
sensor-fusion conflicts, breaching cloud data, transmit-
ting unencrypted V2X communications, and violating
privacy through telemetry data. Intercepting raw sensor
feeds can reveal detailed maps of passenger locations
and travel patterns. Additionally, compromised supply-
chain elements or insider actors may leak proprietary
control logic or encryption keys. Unencrypted telemetry
streams enable adversaries to reconstruct routes and
behavior profiles. Effective mitigations include imple-
menting robust encryption for both data at rest and in
transit, enforcing strict access controls, and maintaining

continuous audit logging.
Elevation of Privilege Threats
Elevation-of-privilege attacks grant adversaries ele-

vated system privileges to manipulate vehicle behav-
ior. These attacks encompass various tactics, including
remote code injection via over-the-air (OTA) updates,
braking system hijacking, steering manipulation, physi-
cal ECU tampering, and insider threats within the manu-
facturing process. Remote code injection can seize con-
trol of braking or steering subsystems without physical
proximity. Physical tampering with ECUs may bypass
safety interlocks or install persistent malicious firmware.
Insider threats during manufacturing can implant hidden
backdoors that evade authentication checks. Defenses
against these threats include secure-boot processes, hard-
ware root-of-trust anchors, multi-factor authentication
for maintenance interfaces, and rigorous supply-chain
verification.

To effectively counter this extensive threat spectrum,
a multi-layered defense strategy is essential. Redun-
dant sensor fusion with overlapping fields of view en-
sures sustained perception even if one sensor chan-
nel is compromised. Training AI models on a broad
range of real-world and simulated spoofing scenarios
enhances resilience against adversarial inputs. Securing
all communication channels with robust authentication
and encryption prevents unauthorized message injection.
Verifying firmware integrity before execution and enforc-
ing trusted-boot processes prevent remote code injection
via over-the-air updates. Continuous system monitoring
combined with safe fallback procedures—such as grad-
ually decelerating the vehicle or transferring control to a
prepared human operator—preserves safety even under
active attack.

III. RISK ANALYSIS

During our research, we conducted a systematic risk
assessment by compiling all identified threats and vul-
nerabilities into a comprehensive table using the DREAD
scoring methodology. This approach allowed us to evalu-
ate each risk across five key dimensions: Damage poten-
tial, Reproducibility, Exploitability, Affected Users, and
Discoverability. By assigning numerical scores to each
dimension, we were able to quantitatively rank the sever-
ity and potential impact of each threat on the autonomous
vehicle system. The resulting table, presented in the
following chapter, provides an in-depth explanation of
each threat, describing not only its technical nature but
also the specific attack vectors that adversaries might
exploit.The table also highlights mitigation strategies
for each risk, providing actionable solutions to enhance
vehicle security. This evaluation helps prioritize defenses
and inform future system improvements.
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TABLE II: DREAD based scoring details

ID Description Damage Reproducibility Exploitability Affected
Users

Discoverability DREAD
score

1 Spoofing a sensors
identity

4 4 3 1 3 3

2 Spoofing the
Autonomous
driving ECU

identity

4 4 3 1 3 3

3 Tampering with the
message content

4 4 3 1 3 3

4 Stealing sensor
information

4 4 3 1 3 3

5 Flooding the inner
vehicle network

4 4 3 1 3 3

6 Destroying the
sensors

2 4 3 1 4 2.8

7 Tampering with the
enviroment

4 4 1 1 4 2.8

8 DDOS Modem 4 2 3 3 1 2.6

9 Overload LiDAR 4 2 3 2 1 2.5

10 Prior Knowledge 4 3 3 3 3 3.2

11 Machine learning
tampering

4 2 3 2 1 2.4

12 Smartphone
spoofing

4 2 3 3 2 2.8

13 Spoofing Snow 4 2 3 2 2 2.5

14 Spoofing Rain
droplets

4 2 3 2 2 2.6

15 Fog spoofing 4 2 3 2 2 2.6

16 Tampered sensors
data

4 4 3 1 2 2.8

17 Buffer overflow
attack on the

Modem

4 4 3 3 2 2.6

18 Software Denial of
Service

4 4 3 1 3 3

19 GPS Spoofing 4 3 4 4 4 3.8

20 LiDAR Sensor
Blinding

3 4 3 4 3 3.4

21 Camera Image
Tampering

4 3 4 4 2 3.4

22 Radar Jamming 4 3 2 4 4 3.4

Continued on next page
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TABLE II – Continued from previous page

ID Description Damage Reproducibility Exploitability Affected
Users

Discoverability DREAD
score

23 Sensor Fusion
Conflict

3 4 3 4 4 3.6

24 Adversarial Visual
Input

3 4 4 4 4 3.8

25 Remote Code
Injection via OTA

4 4 2 3 4 3.4

26 Man-in-the-Middle
(MITM) on V2X

4 3 4 4 2 3.4

27 Denial of Service
on CAN Bus

4 4 3 4 4 3.8

28 Decision AI Model
Poisoning

4 4 3 4 4 3.8

29 Path Planning
Misguidance

4 4 2 4 2 3.2

30 Braking System
Hijack

4 4 3 4 2 3.4

31 Steering
Manipulation

3 4 4 4 2 3.4

32 Fake V2V
Message

4 3 3 4 2 3.2

33 Cloud Data Breach 4 3 4 4 4 3.8

34 Insecure API
Exposure

3 4 4 4 3 3.6

35 Unencrypted V2X
Transmission

4 3 4 4 3 3.6

36 Roadside Unit
Compromise

4 4 4 4 2 3.6

37 Physical ECU
Tampering

4 4 4 3 3 3.6

38 Insider Threat in
Manufacturing

4 4 3 4 3 3.6

39 Voice Command
Exploit

3 4 2 3 2 2.8

40 Cloud-to-AV Sync
Attack

3 4 4 3 3 3.4

41 Privacy Violation
via Telemetry Data

4 3 3 4 4 3.6

42 False Firmware
Update

Notification

4 4 4 4 3 3.8
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IV. THREAT MODELING

TABLE III: STRIDE-based Threat Model for Connected Vehicle Sen-
sors

ID Threat
Description

STRIDE
Category Attack Method Mitigation Recommendations

1
Spoofing a

sensors
identity

Spoofing

An attacker can spoof one or all
of the sensors’ identities and

provide false inputs to the
controlling ECU, resulting in
incorrect vehicle maneuvering

actions.

All internal communication within
the vehicle should be

authenticated to prevent identity
spoofing and the injection of

malicious messages.

2

Spoofing the
Autonomous
driving ECU

identity

Spoofing

An attacker can spoof the identity
of the ECU to send commands to

the actuators and maneuver the
vehicle.

Use authentication methods for
messages transmitted over the

in-vehicle communication
network.

3

Tampering
with the
message
content

Tampering

An attacker listening to the
in-vehicle communication network

can alter message data, causing
the controlling ECU to make false
maneuvering decisions, which can

be deadly.

All messages should include a
checksum, which is then signed
with a secret key to detect any

tampering during transmission to
their destination.

4 Stealing sensor
information

Information
disclosure

An attacker listening to the
in-vehicle network communication
can intercept all data transmitted

from the sensors to the controlling
ECU. This data may include

images from the camera sensor
and other private information that

should not be disclosed.

These messages should be
encrypted before being transmitted
over the in-vehicle communication

network. This way, an attacker
passively listening to the network

cannot read them.

5
Flooding the
inner vehicle

network

Denial of
service

An attacker can flood the
in-vehicle network, causing a

denial-of-service (DoS) attack and
preventing the sensors from

providing any information to the
controlling ECU.

A rate-limiting measure should be
applied to each element in the

in-vehicle network according to
its expected transmission rate.

6 Destroying the
sensors

Denial of
service

An attacker can use physical
means to disrupt the sensors and
make them inoperable, such as

smashing a camera with a hammer
or attaching a blocking element to
the LIDAR sensor. Although the

risk score is relatively high due to
the ease of execution, we assume

that in the real world it won’t
occur frequently.

There aren’t any real mitigations
for this type of attack other than

keeping your car in a secure
environment. On the other hand,

these attacks are loud and
obvious, so we believe the

likelihood of them occurring is
very low. They can also be

quickly detected and resolved.

Continued on next page
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TABLE III – Continued from previous page

ID Threat
Description

STRIDE
Category Attack Method Mitigation Recommendations

7
Tampering
with the

enviroment
Tampering

An attacker can use physical
means to trick the sensors into

misperceiving or misanalyzing the
environment, using methods such

as 2D image printing attacks,
mmWave interference, and more.

The best mitigation is to use
multiple sensors for

decision-making, so that if one
sensor is under attack, the others

can detect the anomaly.

8 DDOS Modem Tampering

An attacker could impair the
autonomous vehicle’s modem and

communication systems which
would cause a disruption in safety
functions including real time data.

Content Delivery Networks which
will reduce the attacks on one car

9 Overload
LiDAR

Denial of
service

The goal here to overload the
LiDAR sensor to force the AV car

to stop due to not being able to
scan its surrounding correctly

Detection systemsFirewalls

10 Prior
Knowledge

Information
disclosure

The attacker has prior knowledge
of the modem which causes data
from the av car very vulnerable

Proper authenticationRegular
Security Audits

11
Machine
learning

tampering
Tampering

An attack using machine learning
could alter data which could lead

to safety hazards and privacy
beaches

Monitor changes in data

12 Smartphone
spoofing Tampering

A smartphone could cause
damage to the decision making of

the autonomous vehicle when
spoofing is successful. The way it
would work is that spoofing fake
objects in the cars optical view
causing it to change its mind

GPS Signal Authentication

13 Spoofing Snow Tampering

Snow can make the cameras
visually impaired by covering

their lens and thus make spoofing
more dangerous by hindering their

accuracy. This leads to
inaccuracies in visual input.

Heated Sensors

14 Spoofing Rain
droplets Tampering

Rain can make the cameras
visually impaired and thus make

spoofing more dangerous by
hindering their accuracy.

Waterproofing lens

15 Fog spoofing Tampering

The reduced visibility by fog
allows the attacker to spoof fake
obstacles causing the camera to

mistake it for something else

AI models trained for foggy
conditions

Continued on next page
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TABLE III – Continued from previous page

ID Threat
Description

STRIDE
Category Attack Method Mitigation Recommendations

16 Tampered
sensors data Tampering

The data being send over from the
sensors to the software could be
tampered into making the AV to

make risky decisions on the
software side of the car

Data Validation

17
Buffer

overflow attack
on the Modem

Tampering

The message parsing process
handles incoming messages from

the outside world. An attacker can
craft a specially formatted

message with a malicious payload
to exploit a buffer overflow

vulnerability in this process and
gain control over the modem.
From there, the attacker can

launch various attacks, as he now
controls the main communication
point between the vehicle and the

external environment.

ollow secure coding practices for
the modem, conduct code reviews,
and perform penetration testing to
identify vulnerabilities in the code

before production.

18
Software
Denial of
Service

Denial of
service

An attacker could do a denial of
service attack and overwhelm the

system and exploiting
vulnerabilities. The could lead the
software sending commands to the

ECU to potentially cause safety
risks, loss of control, and put the
vehicles ability to avoid collision

at risk

Regular Security
AuditEmployment

TrainingResponse Plan

19 GPS Spoofing Spoofing Attacker sends fake GPS signals
to mislead vehicle positioning.

Use encrypted and authenticated
GPS signals, sensor fusion with

inertial navigation systems.

20 LiDAR Sensor
Blinding

Denial of
Service

Strong lights or lasers blind
LiDAR sensors, disrupting

perception.

Use sensor redundancy, detect
anomalous sensor behavior.

21 Camera Image
Tampering Tampering Physical or digital interference

distorts camera inputs.

Use tamper-evident camera
housings, AI-based anomaly

detection.

22 Radar
Jamming

Denial of
Service

Jamming devices block or distort
radar signals.

Use frequency hopping and
redundant radar systems.

23 Sensor Fusion
Conflict

Information
Disclosure

Mismatched sensor data leads to
confusion in perception system.

Cross-validate sensor inputs; trust
scores for sensors.

24 Adversarial
Visual Input Tampering

Special patterns confuse AI object
detectors (e.g., stop sign as speed

sign).

Harden perception models against
adversarial attacks.

25
Remote Code
Injection via

OTA

Elevation of
Privilege

Attackers inject malicious code
through software updates.

Authenticate all OTA updates,
verify firmware signatures.

Continued on next page
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TABLE III – Continued from previous page

ID Threat
Description

STRIDE
Category Attack Method Mitigation Recommendations

26

Man-in-the-
Middle

(MITM) on
V2X

Spoofing Interception and alteration of V2X
messages between vehicles.

Encrypt and authenticate all V2X
communications.

27
Denial of

Service on
CAN Bus

Denial of
Service

Flooding CAN network disrupts
vehicle internal communication.

Implement CAN bus segmentation
and intrusion detection.

28
Decision AI

Model
Poisoning

Tampering Compromised training data alters
decision-making algorithms.

Secure training pipelines, validate
input data.

29 Path Planning
Misguidance Tampering Altering map or obstacle data to

mislead vehicle path planning.
Validate route data sources; use

redundant mapping systems.

30 Braking
System Hijack

Elevation of
Privilege

Unauthorized commands issued to
brake actuators.

Secure control interfaces with
authentication and encryption.

31 Steering
Manipulation

Elevation of
Privilege

External commands take over
steering functions.

Isolate critical control systems;
use hardware security modules.

32 Fake V2V
Message Spoofing Fake messages mislead the vehicle

about nearby traffic.
Use cryptographic authentication

of V2V messages.

33 Cloud Data
Breach

Information
Disclosure

Unauthorized access to AV logs
or personal data stored in cloud.

Encrypt data at rest and in transit;
enforce strict access control.

34 Insecure API
Exposure Tampering Open APIs allow unauthorized

commands or data extraction.
Use API gateways with

authentication and rate limiting.

35
Unencrypted

V2X
Transmission

Information
Disclosure

Sensitive V2X data transmitted
without encryption can be

intercepted.

Encrypt all V2X communications
using secure protocols.

36 Roadside Unit
Compromise Tampering Manipulating traffic infrastructure

to send false data to AVs.
Physically secure RSUs, use

mutual authentication protocols.

37 Physical ECU
Tampering

Elevation of
Privilege

Accessing and reprogramming
critical vehicle ECUs.

Use tamper-proof enclosures,
monitor for physical breaches.

38
Insider Threat

in
Manufacturing

Elevation of
Privilege

Malicious insiders embedding
vulnerabilities in

hardware/software.

Enforce strict supply chain audits
and access controls.

39
Voice

Command
Exploit

Spoofing Exploiting voice interfaces to
issue unauthorized commands.

Use voiceprint authentication;
limit sensitive voice actions.

40 Cloud-to-AV
Sync Attack Tampering Delaying or tampering with data

syncing between cloud and AV.
Authenticate sync messages; use

integrity checks.

41
Privacy

Violation via
Telemetry Data

Information
Disclosure

Personal location or behavior data
leaked through telemetry.

Anonymize telemetry data;
comply with data protection laws.

Continued on next page
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TABLE III – Continued from previous page

ID Threat
Description

STRIDE
Category Attack Method Mitigation Recommendations

42

False
Firmware
Update

Notification

Spoofing Fake update prompts trick users
into installing malware.

Use secure notification
mechanisms; validate updates

cryptographically.
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Fig. 2. Autonomous Vehicles Threat Model
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V. EXPLANATION

The threat model developed for the autonomous vehi-
cle (AV) system provides a comprehensive and structured
analysis of the various cybersecurity risks inherent to the
AV ecosystem. The model incorporates external actors,
internal processes, and critical data stores to create a
complete representation of the system’s operational and
security landscape.

External Actors and Threat Origins
External actors modeled in the system include the

Remote Attacker, Physical Attacker, Insider Attacker,
Natural Environment (including Rain, Fog, and Snow),
Over-the-Air (OTA) Server, Roadside Units (RSUs),
Peer Vehicles, and Cloud Services. These actors were
strategically selected to represent diverse threat origins
that operate outside the trusted vehicle boundary. Each
of these entities has the potential to inject malicious data,
exploit system vulnerabilities, or disrupt communication
protocols. For instance, Remote Attackers may attempt
code injection through OTA updates, while natural envi-
ronmental conditions can impair sensor performance.

Internal Processes and Functional Modules
The internal architecture of the AV system includes

essential processes such as the Sensor Fusion Unit,
Perception AI, V2X Communication Unit, Telematics
Unit, OTA Client, Path Planner, Decision Maker, Lo-
calization Module, Mapping Data Process, and the Con-
trol ECU. These processes collectively enable the AV
to perceive its environment, make real-time decisions,
and interact with both internal subsystems and external
entities. Threats against these components were assessed
based on their role in ensuring the safety, reliability, and
autonomy of the vehicle.

Critical Data Stores and Data-at-Rest Risks
Key data stores include Sensor Data Storage, Telem-

atics Data Storage, V2X Data Buffer, Perception Output
Storage, Mapping Data Storage, OTA Update Storage,
and Control Commands Log. These repositories were
modeled to reflect the potential risks associated with
data-at-rest, such as unauthorized access, data tampering,
or leakage of sensitive operational information. The
presence of these data stores is vital for maintaining
system continuity, traceability, and diagnostics.

Threat Identification and Classification Using
STRIDE

Each threat was mapped to a corresponding system
element using the STRIDE classification framework,
which categorizes threats as Spoofing, Tampering, Re-
pudiation, Information Disclosure, Denial of Service
(DoS), and Elevation of Privilege. This structured ap-
proach enabled systematic identification and documen-
tation of vulnerabilities across the AV system.

Risk Prioritization Through DREAD Scoring

The threats were evaluated and prioritized using the
DREAD risk assessment model, which measures the
Damage potential, Reproducibility, Exploitability, Af-
fected users, and Discoverability of each threat. This
provided a quantifiable risk score to rank threats based on
their impact and likelihood. High-severity threats such as
GPS Spoofing, CAN Bus Denial of Service, Cloud Data
Breach, Remote Code Injection via OTA, and Decision
AI Model Poisoning were identified as critical due to
their ability to compromise vehicle safety, functionality,
and user trust.

Mitigation Strategies and Controls
Tailored mitigation strategies were developed for each

threat category. Spoofing threats were countered with
mutual authentication protocols, digital certificates, and
encrypted communications. Tampering threats were ad-
dressed through anomaly detection algorithms, redun-
dant sensing mechanisms, and secure software engineer-
ing practices. DoS threats were mitigated via network
segmentation, rate-limiting, and the deployment of In-
trusion Detection Systems (IDS). Information Disclosure
risks were mitigated by enforcing encryption standards,
strict access control policies, and secure cloud inte-
gration. Elevation of Privilege threats were mitigated
through signed firmware validation, hardware-level secu-
rity modules, and role-based access control mechanisms.

Modeling of Environmental Conditions as Threats
Environmental conditions such as Rain, Fog, and

Snow were modeled as external actors with potential to
degrade perception accuracy. These threats, categorized
under Tampering, affect the fidelity of sensor inputs
and thereby impair situational awareness. Although these
threats are not malicious in nature, they pose significant
safety concerns and were rated as medium in severity
under DREAD. Mitigations included hardware-based
solutions (heated and waterproofed sensors), software
resilience (AI models trained for adverse conditions),
and system-level redundancy.

Final Threat Model Overview
The final threat model incorporates a total of forty-

two distinct threats, each precisely mapped to system
components and prioritized based on severity. This com-
prehensive coverage enabled focused risk mitigation
planning and design reinforcement, particularly for top-
ranked threats such as Adversarial Visual Input, GPS
Spoofing, Cloud Data Breach, CAN Bus Denial of
Service, and Decision AI Model Poisoning. These threats
were addressed with heightened attention due to their
potential to undermine safety-critical functions of the AV
system.

Standards Alignment and Cybersecurity Best
Practices

The selected mitigations were aligned with recog-
nized cybersecurity frameworks and industry standards,

12



including AUTOSAR security guidelines, the OWASP
Top Ten for Connected Vehicles, and ISO/SAE 21434
standards for automotive cybersecurity. This ensured
that the proposed threat responses were both technically
robust and compliant with regulatory expectations.

VI. CONCLUSION

Through this threat modeling process, the AV system
was evaluated from a holistic cybersecurity perspective.
The model provides a foundation for secure system
design, proactive defense planning, and continuous risk
monitoring in the face of both cyber and physical threat
vectors. By embedding security into the system archi-
tecture, the AV platform is better prepared for safe and
reliable deployment in real-world environments.
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