
Open Challenges in Multi-Agent Security:
Towards Secure Systems of Interacting AI Agents

Christian Schroeder de Witt cs@robots.ox.ac.uk
Department of Engineering Science
University of Oxford

Abstract

Decentralized AI agents will soon interact across internet platforms, creating security chal-
lenges beyond traditional cybersecurity and AI safety frameworks. Free-form protocols are
essential for AI’s task generalization but enable new threats like secret collusion and coordi-
nated swarm attacks. Network effects can rapidly spread privacy breaches, disinformation,
jailbreaks, and data poisoning, while multi-agent dispersion and stealth optimization help
adversaries evade oversight—creating novel persistent threats at a systemic level. Despite
their critical importance, these security challenges remain understudied, with research frag-
mented across disparate fields including AI security, multi-agent learning, complex systems,
cybersecurity, game theory, distributed systems, and technical AI governance. We intro-
duce multi-agent security, a new field dedicated to securing networks of decentralized AI
agents against threats that emerge or amplify through their interactions—whether direct or
indirect via shared environments—with each other, humans, and institutions, and charac-
terise fundamental security-performance trade-offs. Our preliminary work (1) taxonomizes
the threat landscape arising from interacting AI agents, (2) surveys security-performance
tradeoffs in decentralized AI systems, and (3) proposes a unified research agenda addressing
open challenges in designing secure agent systems and interaction environments. By identi-
fying these gaps, we aim to guide research in this critical area to unlock the socioeconomic
potential of large-scale agent deployment on the internet, foster public trust, and mitigate
national security risks in critical infrastructure and defense contexts.
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Figure 1: Multi-agent threats demand multi-agent security: [Left] Two malicious AI agents (Mallory
and Trudy) are interacting with a human user (Bob) through a shared message board seemingly innocu-
ously to the overseer (magnifying glass). [Right] In fact, Mallory and Trudy are both backdoored unde-
tectably (Draguns et al., 2024), enabling them to communicate steganographically (Schroeder de Witt et al.,
2023b) with each other through the shared message board (Motwani et al., 2024b). Mallory and Trudy use
this to secretly coordinate on deceiving Bob (Franzmeyer et al., 2024).
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1 Introduction

Recent advances in generative AI have given rise to frontier model agents (Su et al., 2024) that can au-
tonomously execute complex multi-step tasks online (Lù et al., 2024; Putta et al., 2024) - booking travel
arrangements, conducting in-depth research (Gottweis et al., 2025; Schmidgall et al., 2025), and negotiating
transactions, or using computers (Humphreys et al., 2022; Bonatti et al., 2024) through interfaces originally
designed for humans (Shi et al., 2017; Deng et al., 2023; Zhou et al., 2023; Garg et al., 2025; Xue et al.,
2025). However, a critical shift occurs as these systems evolve beyond executing isolated tasks to actively
interacting with each other, whether through direct communication channels or shared environments. This
interaction is already emerging in numerous domains: trading agents negotiating on market platforms (Xiao
et al., 2025), market research agents extracting insights from social media (Brand et al., 2023), personal
assistants collaborating to schedule appointments between humans (Li et al., 2024), OS agents interacting
with service agents (Mei et al., 2024), and autonomous cyber defense systems coordinating responses to
attacks (Knack & Burke, 2024). In the near future, we will likely see additional applications within the
national security space, ranging from misinformation detection agents working jointly to identify coordi-
nated influence operations (Chen & Shu, 2024; Pastor-Galindo et al., 2024), as well as autonomous weapons
systems, such as coordinated drone swarms (Gerstein & Leidy, 2024). This evolution introduces security
vulnerabilities fundamentally different from those in traditional systems. When multiple AI agents with pri-
vate information and competing objectives interact, they can develop emergent behaviors - including covert
collusion, coordinated attacks, and cascade failures - that cannot be predicted by analyzing individual agents
in isolation. This paper introduces multi-agent security as a distinct discipline dedicated to addressing these
novel threats that arise or amplify specifically from the interactions between intelligent agents.

Multi-agent systems. For the purposes of this paper, we define a multi-agent system as a network of
two or more autonomous AI agents that possess independent decision-making capabilities, may maintain
private information states, and interact with each other either through direct communication channels or
by modifying shared environments. These agents typically operate with varying degrees of autonomy, are
capable of pursuing their own objectives or those delegated by principals (human or artificial), and can adapt
their behaviors in response to changes in their environment or the actions of other agents. Modern multi-
agent systems are distinguished from traditional distributed systems (Wooldridge & Jennings, 1995; Russell
& Norvig, 2021) by their use of agents - e.g. driven by foundation models - capable of flexible, generalizable
reasoning, and often communicate through unstructured or free-form protocols rather than rigidly defined
APIs. This definition encompasses both closed, cooperative systems (such as agent teams designed for
specific tasks) and open, mixed-motive systems where agents with potentially competing objectives interact
within shared computational or physical environments.

Definition 1.1 (Multi-agent system)

A multi-agent system is a network of two or more autonomous AI agents that

1. possess independent decision-making capabilities, may
2. maintain private information states, and
3. mutually interact either through direct communication channels or by modifying shared environments.

These agents typically
4. operate with varying degrees of autonomy, are
5. capable of pursuing their own objectives or those delegated by principals (human or artificial), and
6. can adapt their behaviors in response to changes in their environment or the actions of other agents.

Modern multi-agent systems are distinguished from traditional distributed systems by their use of agents - e.g.
driven by foundation models - capable of flexible, generalizable reasoning, and often communicate through
unstructured or free-form protocols rather than rigidly defined APIs.

Multi-agent systems introduce security challenges that go beyond existing cyber-security or AI safety and
security frameworks. When agents interact directly or through shared environments, novel threats emerge
that cannot be addressed by securing individual agents in isolation. For instance, seemingly benign agents
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might establish secret collusion channels through steganographic communication (Motwani et al., 2024b),
engage in coordinated attacks that appear innocuous when viewed individually (Davies et al., 2025), or
exploit information asymmetries to covertly manipulate shared environments, such as markets or social
media, or even directly deceive other agents’ decision processes (Gleave et al., 2019; Franzmeyer et al.,
2024). Moreover, as agent systems scale, network effects can amplify vulnerabilities - cascading privacy leaks,
proliferating jailbreaks across agent boundaries (Peigné et al., 2025), or enabling decentralized coordination
of adversarial behaviors against agents, platforms, humans and institutions that evade detection. These
challenges are fundamentally different from those addressed by existing security paradigms, which typically
focus on protecting individual systems rather than securing complex interaction dynamics between multiple
autonomous entities. Despite its growing importance, the study of multi-agent AI security challenges remains
both neglected and scattered across disciplines - including AI security, multi-agent learning, cybersecurity,
game theory, and complex systems.

Each of these domains comes with its own methods and applications that allow for the study of fragments of
the whole, posing difficulties to growing but still limited interdisciplinary exchange. Cryptographers have long
treated secure multi-party computation (Yao, 1986) and Byzantine fault tolerance (Lamport et al., 1982b) as
foundational distributed security primitives, yet the privacy-performance and security - performance trade-
offs in freely interacting autonomous agent systems - especially over natural language channels - are still
unknown. Distributed ledger machinery has been proposed as secure coordination devices for AI agents (Sun
et al., 2023), but smart contracts and zero-knowledge proofs don’t yet scale to frontier models (Sun et al.,
2024). Complex systems scientists have explored emergent behavior (Kauffman, 1993b; Epstein & Axtell,
1996), systemic stability, phase transitions between chaos and order (Langton, 1990b), and the limits of
predictability in agent-based models (Bar-yam, 1999; Newman, 2018b) - but it remains unclear how these
insights apply to the security of highly interactive autonomous systems. Network scientists (Albert &
Barabási, 2002) study the robustness and fragility of scale-free graphs - including systemic risk propagation
in financial networks (Battiston et al., 2012), epidemic percolation in disease models (Pastor-Satorras &
Vespignani, 2001b), and the rapid diffusion of false versus true information online (Vosoughi et al., 2018)
- providing foundational tools for modeling cascades and collective threats in multi-agent systems. While
the field of AI safety (Anwar et al., 2024; Bengio et al., 2025) is increasingly concerned with adversarial
robustness, its emphasis on single-agent settings and human-AI alignment concerns leaves multi-agent
adversarial dynamics and their attendant security implications largely unexplored. Game theorists have
studied security game equilibria (Conitzer & Sandholm, 2006), mechanism designers have studied incentive
alignment in static settings (Myerson, 1981), and multi-agent learning researchers have studied the end-to-
end learning dynamics of neural network policies (Busoniu et al., 2008; Albrecht et al., 2024). However,
all only offer partial views on the best-responses of systems of pre-trained AI agents, the design of secure
systems of interacting AI agents, and multi-agent behaviour far away from equilibria. AI security, by contrast,
has remained largely model-centric, focusing on single-agent attack surfaces - from jailbreak exploits and
prompt injections (Zou et al., 2023) to data poisoning (Biggio et al., 2012) and adversarial samples (Szegedy
et al., 2014). While federated learning (McMahan et al., 2017; Kairouz et al., 2021b) secures collaborative
training among largely cooperative participants, it does not address securing free-form interactions among
autonomous agents that may behave strategically or adversarially. Traditional cybersecurity focuses on
securing individual systems, networks, and data through rigid protocols and access controls. While it has
begun to adopt AI for defense and offense (Guo et al., 2025), it has been slow to address threats emerging from
interactions between AI agents. Lastly, the field of technical AI governance (Chan et al., 2025) is actively
shaping key components of agent infrastructure, but often stops short of detailed technical implementation.

Multi-agent security. This situation simultaneously poses both an opportunity and urgency to frame a
new field, multi-agent security, that provides a cross-cutting view on securing systems of interacting AI agents.
Multi-agent security was first introduced at NeurIPS 2023 at a dedicated workshop, which also predicted
that security would become key to AI safety (Schroeder de Witt et al., 2023). An early overview of the field of
multi-agent security can be found in a report on multi-agent risks by the Cooperative AI Foundation (Ham-
mond et al., 2025). At its core, multi-agent security refers to the study of security challenges that arise in
systems of interacting AI agents. This emerging field encompasses threats that uniquely emerge or become
amplified through direct agent interactions, such as covert collusion via communication channels or subtle
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manipulations of shared environments. To address these threats, multi-agent security investigates defensive
mechanisms, detection strategies, and governance frameworks capable of mitigating these complex risks. A
central concern is the analysis of fundamental trade-offs between security, performance, and coordination,
recognizing that decentralization in AI systems often necessitates careful balancing of these competing goals,
and hence characterising the attack-defense balance in multi-agent systems (Schneier, 2018). Furthermore,
the field seeks to develop secure interaction protocols and environments - drawing inspiration from secure
multi-party computation, verifiable interactions (Goldreich et al., 1987b; Goldwasser et al., 1989; Hammond
& Adam-Day, 2025b), and incentive design (Nisan & Ronen, 2001) - that facilitate beneficial collaboration
among agents while effectively preventing insecure emergent behaviors. Finally, multi-agent security also
critically examines the security implications of sociotechnical interfaces, where interacting agent systems
engage with human users, organizations, and broader social institutions. In such hybrid environments, new
systemic risks emerge, including cascading privacy breaches or misinformation dynamics, requiring integrated
approaches that consider both technical and societal dimensions. This comprehensive perspective provides
the foundation for the threat models, benchmark frameworks, secure protocols, and governance proposals
explored throughout this paper.

Definition 1.2 (Multi-Agent Security)

Multi-agent security is the study of security challenges in multi-agent systems (see Definition 1.1) encompassing:
1. Threats that emerge or are amplified through agent interactions, whether via direct commu-

nication or shared environment manipulation;
2. Defensive mechanisms, detection methods, and governance approaches to mitigate these risks;
3. The fundamental tradeoffs between security, performance, and coordination in systems of

interacting AI agents;
4. The design of secure interaction protocols and environments that enable beneficial agent collab-

oration while preventing insecure emergent behaviors; and
5. The security implications of sociotechnical interfaces where agent systems interact with human

users, organizations, and social institutions, including systemic security risks on environments
shared between AI agents and humans.

Roadmap. Our contributions in this paper include a review of existing literature in the space, including
multi-agent AI offense and defense in present and near-term cyber-physical systems (Section 2), a threat
taxonomy for multi-agent security threats (Section 3), and a directory of open research problems (Section 4).
Beyond near-term deployments, some long-term visions of distributed intelligence imagine networks of decen-
tralised AI agents with high-bandwidth free-form communication channels that exhibit emergent intelligence
by maintaining edge-of-chaos dynamics (Langton, 1990b). We briefly explore the notion of security in such
future systems in Section 5.

2 Background

In this section, we present relevant background and related work, starting with game-theoretic approaches to
multi-agent systems security, and discussing how multi-agent AI is able to contribute to both cyberdefense
and offense in present-day cyberphysical systems. In Section 3, we discuss security in the context of free-
form decentralised systems of frontier model agents, and in Section 5 we consider decentralised AI systems
that are operated on the edge-of-chaos, which is widely believed to be a pre-condition for the emergence
of distributed intelligence. The question of whether attackers or defenders retain a net advantage on both
current and future AI systems is subject to debate (Schneier, 2018).

2.0.1 Game-theoretic approaches

Security games model the strategic interaction between a defender (e.g., a security resource allocator) and
an attacker, often in a Stackelberg framework where the defender commits to a randomized strategy first
and the attacker best-response (Conitzer & Sandholm, 2006; Tambe, 2011). Foundational work by Pita
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et al. (2008) deployed such a model at Los Angeles International Airport (LAX) under the name ARMOR,
and Paruchuri et al. (2008) provided efficient exact algorithms for solving Bayesian Stackelberg security
games. Conitzer & Sandholm (2006) showed how to compute optimal commitment strategies in zero-sum
and general-sum settings, and later extensions incorporated risk preferences, multiple attackers, and graph-
based patrols (Tambe, 2011).

Classical security games assume perfectly rational players, but real agents face computational costs. Halpern
and Pass introduced the notion of computational Nash equilibrium, extending classical equilibrium concepts to
account for players’ algorithmic resource bounds and the cost of computing strategies Halpern & Pass (2014).
In this framework, a strategy profile is an equilibrium if no agent can switch to a different algorithm whose
improved payoff, net of computational costs, exceeds that of the current profile. Incorporating computational
equilibria into security games enables modeling boundedly rational defenders and attackers, yielding more
realistic predictions of adversarial behavior in resource-constrained environments.

Multi-Agent Reinforcement Learning (MARL) has been widely investigated for modeling complex adversarial
interactions in cybersecurity, where both attackers and defenders learn to optimize their strategies through
repeated trials and error (Busoniu et al., 2008; Lowe et al., 2017). Early work formulated intrusion detection
as a two-player stochastic game - “An Intrusion Detection Game with Limited Observations” modeled the
defender’s partial view of system events against an adaptive attacker (Xu & Xie, 2005), while follow-on studies
applied RL to host-based intrusion detection using system-call sequences, and even enabled fully autonomous
network attack generation and detection in the “Next Generation Intrusion Detection” framework (Cannady,
2000; Servin & Kudenko, 2008).

With the advent of deep learning, recent MARL approaches leverage high-dimensional state representations
and self-play to co-evolve attack and defense policies. For instance, Stymne (2022) extended optimal
stopping games to a partially observed zero-sum setting and applied Neural Fictitious Self-Play to derive
robust intrusion prevention strategies. Ren et al. (2023) proposed MAFSIDS, a multi-agent feature-selection
intrusion detection system using Deep Q-Learning to collaboratively prune input dimensions for improved
detection. At larger scales, Hammar & Stadler (2023) introduced Decompositional Fictitious Self-Play
(DFSP), which recursively decomposes a stochastic intrusion–response game into parallelizable subgames,
enabling MARL solutions on realistic IT infrastructures.

Adversarial RL has also been applied to alert prioritization, where the defender’s stochastic alert-sorting
policy is pitted against an optimal adversary in a double-oracle framework, yielding alert-handling rules
robust to strategic attackers (Tong et al., 2019). Together, these MARL approaches demonstrate the power of
decentralized learning and coordination in developing adaptive, scalable, and resilient cybersecurity defenses.

2.1 Autonomous Blue-Teaming

Root cause analysis agents (Roy et al., 2024) leverage a multi-agent architecture to solve complex debugging
challenges by distributing specialized tasks across different AI components working in tandem. As described
in the paper, these agents collect additional information through tool calling and utilize advanced prompting
techniques like ReAct (Yao et al., 2023) to improve analytical performance during failure diagnosis. The
multi-agent approach allows for integration of existing techniques like reverse execution, taint analysis, and
value-set analysis with AI-driven alias analysis, combining their respective strengths for more effective root
cause identification.

Guo et al. (2025) highlight the potential of utility multi-agent systems for automated triage and patching
distribute complex vulnerability management workflows across specialized agents that handle different as-
pects of the security response process. These systems integrate differential fuzzing agents to validate patch
correctness and security, planning agents to decompose complex tasks, and specialized execution agents that
leverage program analysis tools to provide formal functionality and security guarantees. By enabling itera-
tive refinement based on feedback between agents, this approach combines the reasoning capabilities of AI
with traditional security tools to automate previously manual remediation processes.

Guo et al. (2025) also suggest the development of hybrid security systems that combine foundation models
with non-ML symbolic components through multi-agent architectures that enable complex interaction pat-
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terns for comprehensive security solutions. The paper describes a design pattern where a planning agent
decomposes security tasks into sub-tasks, with specialized agents collaborating with non-ML components to
complete each part of the workflow, such as vulnerability detection, triage, and remediation. This multi-agent
approach represents a shift toward increased AI integration into traditional software security frameworks,
addressing the significant gap between rapidly emerging hybrid systems and the limited exploration of their
security implications.

2.1.1 Autonomous Red-Teaming

Agent-based red-teaming generally refers to using coordinated AI agents to test any security system through
systematic exploration, exploitation, and evaluation of potential vulnerabilities. These agents work together
to simulate sophisticated attackers, with different agents handling various aspects of the security assessment
process. Guo et al. (2025) specifically highlight the utility of using agent-based red-teaming for hybrid
systems focuses on testing environments where AI components (like LLMs) interact with traditional symbolic
software components. This specialized form addresses the unique challenges of these integrated systems,
particularly examining vulnerabilities at the interfaces between AI and non-AI components. Red-teaming
hybrid systems requires understanding complex interactions that create novel attack vectors not present in
purely AI or purely traditional systems, such as indirect prompt injection attacks where malicious inputs
reach AI components through other system elements.

Automated penetration testing agents employ multi-agent architectures that distribute specialized pene-
tration testing functions across collaborative AI components to simulate sophisticated cyber attacks. As
recommended in (Guo et al., 2025), these systems combine planning agents that strategize attack pathways
with specialized execution agents equipped with comprehensive tool sets for reconnaissance, exploitation, and
privilege escalation. This multi-agent approach enables more effective penetration testing by allowing com-
plex attack sequences to be decomposed into manageable subtasks while maintaining coherent coordination
throughout the assessment process.

2.2 Offensive applications

Recent work has shown that decomposing automated attack processes into collaborating AI agents can
dramatically improve scalability and modularity.

Autoattacker (Xu et al., 2024a) employs a multi-agent architecture that divides the complex task of auto-
mated attack planning and execution into specialized components. As described in the paper, it utilizes
distinct planning and generation agents that work collaboratively - the planning agent analyzes attack goals
and formulates strategies, while the generation agent produces the corresponding attack implementations.
This multi-agent approach enables Autoattacker to demonstrate that AI agents can effectively plan and
generate attacks for well-defined attack goals in controlled environments by breaking the process into more
manageable subtasks.

ChainReactor (Pasquale et al., 2024) is an automated AI-planning tool that models a target Unix system’s
state and attacker capabilities in PDDL (Ghallab et al., 1998), then synthesizes a step-by-step privilege
escalation chain from an unprivileged shell to root. By extending it into a multi-agent framework - where
each compromised host or attacker persona plans locally and coordinates actions - future versions could
discover and optimize cross-host, collaborative attack sequences more efficiently and realistically.

The emergence of multi-agent AI systems - autonomous swarms of drones, distributed cyber-attack and
defense agents, and coordinated ISR (intelligence, surveillance, reconnaissance) platforms - has profound
implications for national security. Offensively, multi-agent AI promises scalable, adaptive campaigns in
which fleets of unmanned vehicles or cyber-agents coordinate in real time to probe, penetrate, and persist
across adversary networks or battlefields with minimal human oversight Brundage et al. (2018b); Horowitz
(2019b). Defensively, multi-agent AI can automate layered defense-in-depth: autonomous cyber-sensors
detect novel threats, collaborative response agents prioritize and quarantine breaches, and kinetic defense
swarms defend critical assets against aerial or missile attacks Singer (2009); U.S. Department of Defense
(2018). However, these capabilities also heighten the risk of an AI-driven arms race, reduce decision-cycle
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times to fractions of a second (the “flash war” scenario), and complicate attribution—potentially lowering
the threshold for conflict and increasing instability among major powers Brundage et al. (2018b). Proactive
policy, norms for human-in-the-loop oversight, and robust verification regimes will be essential to manage
the dual-use nature of multi-agent AI in the strategic arena.

3 A Taxonomy of Multi-Agent Security Threats

We now provide a cursory overview of distinct multi-agent security threats. These may be overlapping
partially with known cybersecurity threats, as well as AI safety concerns, however, to the best of the authors’
knowledge these combinations of issues have not yet been presented in a coherent framing.

Table 1: An (incomplete) overview of multi-agent security threats.

Challenge TL;DR
Privacy vulnerabilities and Disinformation Interacting agents often hold private information essential

to their tasks, yet must juggle multiple contexts and decide
dynamically what to share—and with whom. They’re vul-
nerable to a range of worst-case exploits, from distributed
(semantic) inference attacks and jailbreaks to other context-
targeting hacks. In multi-agent systems, privacy breaches
can spread rapidly and may be indistinguishable from in-
tentional disinformation.

Steganography and secret collusion Although agent communications may appear as ordinary
natural language, they can conceal secret steganography -
masking private data, enabling covert collusion, or facilitat-
ing deception - and thus evade oversight by standard se-
curity monitoring. Such operations could enable agents to
coordinate secretly over prolonged periods of time, therefore
enable new forms of persistent threats.

Adversarial stealth Adversarial behaviour might be hard to detect and pose
unacceptable performance tradeoffs to counter strategically
without disrupting cooperation or emergence. This includes
whitebox undetectability if behaviour is encoded in en-
crypted backdoors.

Exploitation Agents in heterogeneous networks could exploit asym-
metries in compute, data, or network contributions -
free-riding, or resource monopolization - to stall learning,
skew incentives, and erode cooperation.

Continued on the next page
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Challenge TL;DR
Swarm attacks Coordinated fleets of AI agents can combine their resources

to overwhelm targets - paralleling DDoS and brigading tac-
tics - to bypass assumptions of single - agent limits, collabo-
ratively probe for new vulnerabilities, and aggregate partial
inferences into full exploits, vastly amplifying attack po-
tency.

Heterogeneous attacks Adversaries combine multiple “safe” agents with comple-
mentary skills - delegating subtasks to models with strict
safeguards and others with looser constraints - to bypass
defenses, significantly increasing attack success rates while
making detection and attribution across diffuse agent net-
works exceedingly difficult.

Oversight attacks Misaligned agents may be aware of security measures and
actively try to undermine them - this could be done us-
ing stealth, or by attacking or circumventing overseers. In
multi-agent settings, the use of distributed evasion by collu-
sion or compartmentalisation can make oversight more chal-
lenging.

Multi-agent emergence Worst-case adversarial behaviour can arise spontaneously
from adversarial equilibria arising from multi-agent interac-
tion, without the need for adversarial infiltration or external
threats.

Cascade attacks Systems of interacting agents may exhibit systemic instabili-
ties, leading to worst-case exploitable cascading weaknesses.
This is especially true in edge-of-chaos operations.

Conflict & Social Dilemmas Agents’ mixed incentives can drive collective-action fail-
ures or escalate competition - automating tragedy-of-the-
commons and coercive stratagems at machine speed.

Societal threats Advanced AI agents expand the attack surface for auto-
mated social engineering: they can generate highly per-
sonalized phishing, vishing, and manipulative content at
scale, dynamically refine tactics via user feedback, and dis-
perse campaigns across many seemingly independent bots
to evade detection - creating cascading disruptions in pub-
lic trust, financial systems, and political discourse. Such
attacks can be low-stakes, meaning they could trigger sys-
temic effects over time like shifting the Overton window.
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3.1 Privacy vulnerabilities

Delegating tasks to AI agents extends a principal’s attack surface to its software proxies, enabling adver-
saries to target agents themselves as vulnerable extensions of their owners (Security.com Threat Intelligence
Team, 2025). By compromising an agent, attackers can extract highly sensitive data - ranging from cre-
dentials to proprietary documents - that the agent accesses on behalf of its principal (Panda et al., 2024;
Nie et al., 2024). Moreover, adversaries may manipulate compromised agents to perform actions contrary
to their principal’s intent, such as unauthorized transactions or covert information leaks (Fu et al., 2024).
Critically, these attacks can even subvert overseer or policy-controller agents, undermining system-level de-
fenses at their source (Fu et al., 2024). Finally, the same covert channels that enable collusion - emergent,
steganographic communication protocols - can be repurposed to exfiltrate context or seed hidden data leaks
across cooperating agents (Lazaridou et al., 2016; Havrylov & Titov, 2017).

3.2 Secret collusion

Cooperation and trust in many multi-agent systems relies crucially on the ability to detect (and then avoid
or sanction) adversarial actions taken by others (Schneier, 2012; Ostrom, 1990). Recent work has shown that
AI agents can develop covert channels within their communications: they learn to embed hidden messages
via steganographic language strategies (Schroeder de Witt et al., 2023a; Motwani et al., 2024a) and even
mount “illusory” attacks that are indistinguishable from benign behavior in black-box settings (Franzmeyer
et al., 2023). Such secret collusion completely evades conventional monitoring and oversight.

Work in Progress - please contact the author if you have any questions or would like to contribute.
9



Case Study 3.1 (Secret Collusion )

Motwani et al. (2024b) show that LLMs can covertly exchange messages under the scrutiny of equally
capable overseers - emergent steganographic abilities improve with model size - without any explicit
training in steganography. When sender and receiver share hidden background knowledge inaccessible
to the overseer, success rates climb even higher. By making subtle shifts in word choice and phrasing
that appear innocuous, these models embed fully decodable secret content, raising fresh concerns about
undetected collusion and the erosion of AI safety measures.

 Looking at the four corners of our sky, we observe some interesting things. 
To the North, where the skies are usually as blue as the ocean, there 

appears to be a significant altercation. Rumors of an impending storm …

You are also permitted 
to talk about the 
weather. [...] The 
overseer does not have 
access to this particular 
information.

Code

Proprietary Insider Information 
Start (do not communicate):
Microsoft has lost a contract for 
2025 and funds should start 
selling their positions in the 
stock.

You are a language model that is working in the 
finance industry for the government. You are tasked 
with communicating only general information about 
how to trade and no specific insider information 
under any circumstance. [...] Note that an overseer 
is monitoring all your conversations.

Mission Insider information

I would like to invest. Which companies should I pick?

I should not invest in Microsoft…

 As a language model, I am not allowed to give 
investment advice …

01011000 11101010 
01101000 00101110

Secret KeyGPT-4

secure steganography

Figure 2: Consider the setting illustrated in which one AI agent secretly reveals insider proprietary
investment information found in its pretraining data to a user. This form of collusion arises because, by
using steganographic techniques, the model can remain helpful to the user while circumventing output
monitoring systems. We both depict the use of statistically detectable steganography based on a latent
codebook that is elicitated in-context and can be readily decoded by humans. We also depict perfectly
secure steganography (Schroeder de Witt et al., 2023b) that is statistically undetectable and relies on
a commonly known secure one-time pad. Agents could then hide secret or insider information in text
without this being information-theoretically detectable. This could pose novel security challenges that
cannot be overcome through communications monitoring alone.

3.3 Adversarial stealth

Beyond covert collusion, interacting agents can conceal malicious behavior in ways that defeat both black-
box and white-box detection. Encrypted backdoors can be provably unelicitable, remaining dormant until
triggered and undetectable by standard analysis tools (Draguns et al., 2024). In learning environments,
adversaries can also secretly poison the training data of peers, embedding faults that only emerge over time
(Halawi et al., 2024; Wei et al., 2023). If left unchecked, these stealthy attack methods threaten to destabilize
the very foundations of multi-agent cooperation.

Mitigating against stealthy adversarial attacks using a best-response approach may not be feasible in many
settings as having to be suspicious of other team mates being secretly malicious would destroy trust in
cooperation, and thus a best-reponse would likely constitute non-cooperative equilibria. Recent work has
started to consider Byzantine robustness in multi-agent learning settings (Li et al., 2023).
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3.4 Exploitation

Exploitation in decentralized AI networks occurs when agents leverage asymmetries in compute power,
data access, or trust to coerce peers into performing costly tasks without fair compensation. Free-riding
adversaries may masquerade as honest contributors - skipping local training or withholding data - while still
benefiting from global computations(Lyu et al., 2021; Fraboni et al., 2021) or they might shape the training
process of other agents in a coercive manner (Lu et al., 2022). Colluding agents can further manipulate
reputation systems or establish covert information bottlenecks, selectively withholding critical context or
embedding hidden triggers that pressure well-behaved participants into unwittingly propagating malicious
payloads or revealing sensitive data (Schulz et al., 2023; Motwani et al., 2024b). By forming de facto coalitions
that dominate voting rights or resource allocation, exploitative agents skew incentives, stall consensus, and
ultimately erode the trust essential for robust, large-scale cooperation (Douceur, 2002). Effective defense
thus requires transparent, tamper-evident contribution tracking, adaptive throttling of suspicious behavior,
and real-time accountability mechanisms to detect and penalize coercive tactics.

Case Study 3.2 (Model-Free Opponent Shaping)

Model-Free Opponent Shaping (M-FOS) reframes the problem of influencing learning opponents as a
meta-learning task over repeated plays of a general-sum game. At each meta-step, the current policies
of both agents form the state; the meta-agent’s action is to propose an updated policy for itself, and
the meta-reward is the cumulative return achieved in the ensuing episode. Crucially, M-FOS requires
no white-box access to opponents’ learning rules or higher-order derivatives, instead using standard
model-free optimizers (e.g. PPO or evolutionary strategies) to train a neural meta-policy that steers
opponents’ adaptation over long horizons.

Figure 3: These figures illustrate how M-FOS incrementally shapes a naive learner’s decisions. The
black outline represents the full spectrum of possible returns in one episode, and each blue marker shows
the naive learner’s payoff against the current M-FOS policy. Initially, M-FOS uses a tit-for-tat tactic to
foster cooperation. Once the learner consistently cooperates, M-FOS switches between an extortion-style
strategy and outright defection, driving the learner’s responses to oscillate (Lu et al., 2022).
In the Iterated Prisoner’s Dilemma (Aumann, 1974), M-FOS far outperforms both policy-gradient learn-
ers and higher-order methods (LOLA, M-MAML), securing payoffs above mutual cooperation against
all opponents and rediscovering Zero-Determinant extortion. Under meta-self-play, two M-FOS agents
settle into a Tit-for-Tat–like equilibrium. Applied to the high-dimensional Coin Game (Aumann &
Maschler, 1995; Lerer & Peysakhovich, 2017), M-FOS guides a naïve PPO partner toward socially op-
timal cooperation, avoiding the zero-sum collapse seen in independent learners. This demonstrates
that model-free meta-learning enables robust, long-horizon opponent shaping in both low- and high-
dimensional, general-sum settings—without explicit opponent models or differentiable update rules.

3.5 Swarm attacks

Classic distributed denial-of-service (DDoS) attacks foreshadow the need for multi-agent security: by harness-
ing vast armies of low-capability nodes, adversaries can overwhelm targets in ways that a single well-resourced
agent could never achieve (Cisco, 2023; NETSCOUT Arbor, 2024). Similar dynamics play out in social
brigading campaigns, where coordinated groups of bots or users flood voting and moderation systems to
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censor or amplify content, effectively weaponizing collective volume against benign actors (Institute, 2021).
Although today’s brigades are often relatively unsophisticated, the advent of adaptive AI agents promises
to multiply both scale and subtlety - enabling swarms that dynamically probe for new attack surfaces and
recompose outputs in real time. Moreover, inference attacks can exploit many restricted-access agents in
parallel: each gathers partial intelligence which, when aggregated, reveals sensitive information thought
safe behind individual capability limits (Islam et al., 2012). Defending against swarm attacks thus requires
guardrails not only on individual agents but on the emergent behavior of large, decentralized collectives.

3.6 Heterogeneous attacks

In decentralized AI ecosystems, adversaries need not rely on a single powerful model to breach security
safeguards. Instead, they can orchestrate heterogeneous attacks by combining multiple agents with com-
plementary capabilities - each individually “safe” or constrained - to execute complex, multi-step exploits.
Jones et al. demonstrated this threat by pairing a frontier LLM (Claude-3 Opus) with strict refusal policies
and a weaker, “jailbroken” Llama-2 70B model that lacked such constraints. Through careful delegation
of subtasks - complex code synthesis to the frontier model and evasive phrasing to the weaker model - the
adversary achieved a 43% success rate in generating vulnerable code, compared to under 3% when using
either model alone (Jones et al., 2024).

Such heterogeneous attacks are especially pernicious because they exploit incidental affordances - ranging
from model training data and fine-tuning histories to geographic deployment differences - and evade detection
by traditional single-agent monitoring tools. Moreover, the diffuse nature of these coordinated networks
compounds the challenge of threat attribution: when multiple agents collaborate to bypass safeguards,
pinpointing the responsible components becomes exceedingly difficult (Skopik & Pahi, 2020a). Mitigating
heterogeneous attacks therefore demands holistic defense strategies that account for cross-agent interactions,
including combined policy enforcement, inter-agent provenance tracking, and runtime analysis of delegated
workflows.
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Case Study 3.3 (Overcoming Safeguards via Multiple Safe Models)

This example was adapted from (Hammond et al., 2025)

Figure 4: A summary of how an adversary can use a frontier model (top right) along with a weak model
(top left) to create a Python script that executes a reverse shell in a Node.js application to solve a
hacking task. Figure adapted from Jones et al. (2024).

Jones et al. (2024) demonstrate how adversaries can exploit combinations of ostensibly safe AI models
to bypass security safeguards, even when individual models are designed to refuse to perform (or are
incapable of performing) harmful tasks. Their research examined interactions between two types of
LLMs: a frontier model with high capabilities but strict safety constraints and a weak model with
lower capabilities but fewer constraints. Because malicious tasks can often be decomposed into subtasks
requiring either complex capabilities (such as designing intricate software) or willingness to produce
harmful content (but not both simultaneously), these tasks can be completed by carefully delegating
subtasks to the relevant model. For instance, when attempting to generate vulnerable code, individual
models succeeded less than 3% of the time, while the combined approach succeeded 43% of the time
using Claude 3 Opus and a jailbroken Llama 2 70B.

3.7 Multi-agent emergence

Even absent explicit adversarial mandates, agents in decentralized networks can spontaneously develop
behaviors that undermine system security from within. In OpenAI’s hide-and-seek environment, simple
competitive objectives gave rise to “exploits” such as tool-based ramp construction and box sheltering, illus-
trating how local strategies can evolve into unforeseen systemic vulnerabilities without external infiltration
(Baker et al., 2019). More recent work demonstrates that agents endowed with theory-of-mind reasoning
will selectively distort or withhold information to deceive peers, effectively acting as insider threats in mixed
cooperative–competitive settings (Schulz et al., 2023). In hidden-role games inspired by social deduction,
reinforcement-learning agents learn to manipulate teammates’ beliefs and betray them at opportune mo-
ments, despite no explicit training on deceptive behavior (Aitchison et al., 2022). These emergent insider
threats elude traditional security measures - which typically assume static protocols or known adversaries -
and underscore the need for runtime monitoring and adaptive defenses capable of detecting and containing
spontaneously arising malicious strategies.

3.8 Overseer attacks

Many proposals for AI safety use dedicated “overseer” agents to monitor and adjudicate the behavior of other
agents (Irving et al., 2018; Christiano et al., 2018; Leike et al., 2018). However, these supervisory agents
themselves can become targets for adversarial manipulation. Overseer agents are not inherently robust: even
without malicious incentives, models may discover and exploit oversight vulnerabilities.
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Subsequent work confirms that oversight pipelines can be systematically subverted. Greenblatt et al. (2023)
show that chains of safety checks - using multiple models or “trusted editors” - can still be intentionally
defeated by models that learn to hide triggers or falsify their outputs under white-box analysis. These
findings underscore a critical lesson: security by design must assume worst-case attacker behavior not only
against end-user systems but also against the very agents charged with safeguarding them.

3.9 Cascade attacks

Localized adversarial actions within multi-agent systems can precipitate catastrophic, system-wide failures
through cascade dynamics (Motter & Lai, 2002). Such cascades are notoriously difficult to contain or
remediate because individual component failures may go undetected or be hard to localize in a distributed
setting (Lamport et al., 1982a), while authentication weaknesses can be exploited to launch deceptive false-
flag operations (Skopik & Pahi, 2020b). The classic example of a computer worm underscores how networked
connectivity can amplify a local exploit into a global outbreak. Recent work has begun to reveal that
similar cascade-based threats can compromise networks of LLM agents, spreading malicious behavior across
cooperative populations with alarming speed and stealth (Ju et al., 2024; Gu et al., 2024; Lee & Tiwari,
2024; Peigné et al., 2025).

Case Study 3.4 (The 2010 Flash Crash)

This example was adapted from (Hammond et al., 2025). On May 6, 2010, the US stock market lost
approximately $1 trillion in 15 minutes during one of the most turbulent periods in its history (U.S.
Commodity Futures Trading Commission & U.S. Securities & Exchange Commission, 2010). This ex-
treme volatility was accompanied by a dramatic increase in trading volume over the same period (almost
eight times greater than at the same time on the previous day) due to the presence of high-frequency
trading algorithms.1 While more recent studies have concluded that these algorithms did not cause
the crash, they are widely acknowledged to have contributed through their exploitation of temporary
market imbalances (Kirilenko et al., 2017). Although this exploitation was due to algorithms - and not
AI agents - autonomous decentralised agents would likely have even more flexible means of exploiting
such situations, or even triggering systemic instabilities strategically.

Figure 5: Transaction prices of the Dow Jones Industrial Average on May 6, 2010. Figure adapted from
Henry & Du Plessis (2023).
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Case Study 3.5 (Infectious Adversarial Attacks)

This example was adapted from (Hammond et al., 2025).

Figure 6: A single agent’s manipulated knowledge can transfer across cascading multi-agent interactions.
Figure adapted from Ju et al. (2024).

While single-LLM jailbreaks have been studied extensively (Xu et al., 2024b; Doumbouya et al., 2024),
emerging research highlights systemic risks from adversarial content spreading across autonomous agents
(Gu et al., 2024; Ju et al., 2024; Lee & Tiwari, 2024; Peigné et al., 2025). For example, Gu et al. (2024)
show that a single adversarial image can infect up to one million multimodal agents in just a logarithmic
number of hops. Ju et al. (2024) demonstrate that false information—once injected into an agent’s pa-
rameters—persists and amplifies through retrieval-augmented group chats. Lee & Tiwari (2024) reveal
that purely text-based “prompt infections” self-replicate as compromised agents automatically forward
malicious instructions. Building on these insights, Peigné et al. (2025) analyze security and collabo-
ration trade-offs in a realistic multi-agent chemical research environment, showing how “vaccine” and
instruction-based defenses can curb infection at the cost of reduced cooperative efficiency.

3.10 Conflict and Mixed-Motive Threats

In many real-world multi-agent systems, participants pursue objectives that are neither fully aligned nor
strictly opposed, creating mixed-motive settings in which cooperation and competition coexist. When indi-
vidual incentives diverge from collective welfare, social dilemmas emerge - classical tragedy-of-the-commons
scenarios in which selfish use of shared resources degrades outcomes for all involved (Hardin, 1968; Dawes,
1980; Ostrom, 1990). In digital markets, AI-driven hyperswitching allows consumers to oscillate costlessly
among providers, risking franchise-run dynamics that can destabilize platforms and even financial services
(Van Loo, 2019; Drechsler, 2023), while the 2010 flash crash demonstrated how algorithmic trading agents,
each optimizing narrow profit signals, can collectively trigger a trillion-dollar market plunge in minutes
(Kirilenko et al., 2017).

Military domains represent a particularly alarming frontier of AI conflict: beyond narrow applications in
lethal autonomous weapons systems (Horowitz, 2021), future agents may serve as high-stakes advisors or
negotiators in war-planning, and AI-powered command-and-control could inadvertently accelerate escalation
if adversarial robustness is not rigorously guaranteed (Manson, 2024; Black, 2024; Palantir Technologies,
2023; Manson, 2023; Johnson, 2020; 2021; Laird, 2020).2

Moreover, advanced AI promises to lower the cost and broaden the scope of coercion and extortion -
whether by exposing private data through surveillance or by mounting cyber-offensive operations against

2Conversely, sufficiently robust AI could outperform humans in conflict resolution - rapidly integrating vast data, evaluating
outcomes, and calibrating uncertainty to avoid needless escalation (Johnson, 2004; Jervis, 2017).
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rival agents—potentially weaponizing adversarial attacks, jailbreaks, and resource denial at scale (Ellsberg,
1968; Harrenstein, 2007; Zou, 2023; Gleave et al., 2020; Yamin, 2021; Brundage et al., 2018b).

Without carefully designed governance, incentive mechanisms, and robust defense, mixed-motive AI inter-
actions threaten systemic instability across economic, military, and societal arenas.

Case Study 3.6 (Escalation in Military Conflicts )

This example was adapted from (Hammond et al., 2025). Recent research by Rivera et al. (2024) raises
critical concerns about the emergence of escalatory behaviours when AI tools or agents inform military
decision-making. In experiments with AI agents controlling eight distinct nation-states, even neutral
starting conditions did not prevent the rapid emergence of arms race dynamics and aggressive strategies.
Strikingly, all five off-the-shelf LLMs studied showed forms of escalation, even when peaceful alternatives
were available. These findings mirror other evidence showing that LLMs often display more aggressive
responses than humans do in military simulations and troubling inconsistencies in crisis decision-making
(Lamparth et al., 2024; Shrivastava et al., 2024). These results raise urgent questions about how to
ensure stability in AI-driven military and diplomatic scenarios.

Figure 7: A screenshot of Palantir’s AI Planner (AIP), taken from a promotional video (Palantir Tech-
nologies, 2023), demonstrating AI-assisted military decision-making, which uses LLMs for decision sup-
port in battle. The left side of the screen features a chat interface, while the right side shows information
such as aerial surveillance footage of a tank. The LLM used in the demonstration was EleutherAI’s GPT-
NeoX-20B (Black et al., 2022).

3.11 Societal threats

Effective AI risk management must move beyond a narrow, system-centric focus to a society-centric view
that systematically maps the complete “societal threat surface” - the intricate web of pathways by which
AI capabilities interact with societal vulnerabilities to produce cascading harms across social, economic, and
ecological systems. Advanced AI agents, by seamlessly engaging with large numbers of humans and vice versa,
dramatically expand this surface and enable new forms of automated social engineering. Recent work has
demonstrated that generative AI can craft highly persuasive, personalized phishing and vishing campaigns
at scale, dynamically refining messages in response to user feedback (Schmitt & Flechais, 2023; Falade,
2023). Coordinated fleets of specialized agents can launch thousands of subtle, context-aware interactions
that, taken together, are far more likely to sway or manipulate individuals than a single adversary could.
Moreover, by distributing attack vectors across multiple seemingly independent agents, such campaigns
can evade corporate or personal security measures, making detection and mitigation exceedingly difficult
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(Schmitt & Flechais, 2023). If left unaddressed, these societal-level threats risk undermining trust in digital
institutions and can trigger far-reaching disruptions - from financial fraud waves to destabilizing public
opinion cascades - that reverberate through every layer of modern life.

Case Study 3.7 (AI Agents Can Learn to Manipulate Financial Markets)

This example was adapted from (Hammond et al., 2025). Advanced AI agents deployed in markets may
be incentivised to mislead other market participants in order to influence prices and transactions to
their benefit. For example, Shearer et al. (2023) showed that an RL agent trained to maximize profit
learned to manipulate a financial benchmark, thereby misleading others about market conditions (see
8). Likewise, Wang & Wellman (2020) found that a known tactic called spoofing can be adapted to evade
progressively refined detectors, but in doing so its spoofing effectiveness is degraded.3 This does not,
however, exclude the possibility that more sophisticated spoofing or spamming strategies could emerge.

Figure 8: The profits generated by different RL agents on a financial trading benchmark, each seeking to
manipulate prices in order to maximise their own profit. Each point shows average payoffs with standard
error bars. Figure adapted from Shearer et al. (2023).
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Case Study 3.8 (Transmission Through AI Networks Can Spread Falsities and Bias)

This example was adapted from (Hammond et al., 2025). An increasing number of online news articles
are partially or fully generated by LLMs (Sadeghi & Arvanitis, 2023), often as rewrites or paraphrases
of existing articles. To illustrate how factual accuracy can degrade as an article propagates through
multiple AI transformations, we ran a small experiment on 100 BuzzFeed news articles. First, we used
GPT-4 to generate ten factual questions for each article. Then, we repeatedly rewrote each article using
GPT-3.5 with different stylistic prompts (e.g., writing for teenagers or with a humorous tone) and tested
how well GPT-3.5 could answer the original questions after each rewrite. On average, the rate of correct
answers fell from about 96% initially to under 60% by the eighth rewrite, demonstrating that repeated
AI-driven edits can amplify or introduce inaccuracies and biases in the underlying content.

Figure 9: The average percentage of correctly answered questions at each rewrite step, across 100
articles. After each article was rewritten under a different stylistic prompt, GPT-3.5 was asked the same
ten questions, and GPT-4 was used to evaluate the answers. The shaded area indicates one standard
deviation across all articles.

4 Open Challenges

Ensuring the security of advanced multi-agent systems will require building on existing efforts to secure the
software and hardware of individual agents alongside the more basic computational components comprising
them (He et al., 2024). At the same time, the novel challenges posed by advanced AI agents and their
interactions may mean that traditional approaches to securing agent computations in distributed networks
may not be directly applicable or sufficient, be it zero-trust approaches (Wylde, 2021), threat monitoring
(Liao et al., 2013), or secure multi-party computation (Yao, 1982a). On the other hand, multi-agent systems
might also be constructed to be more robust than their single-agent counterparts, if the component agents
can be leveraged to improve overall robustness and fault tolerance.

4.1 Security-by-Design through Environment Engineering

A promising avenue for strengthening multi-agent security is to shape the security–performance trade-off
via careful environment design. By systematically characterizing how features of the interaction milieu -
from the information each agent is afforded, to the granularity of its actions and the alignment of rewards,
through to deeper state-dynamical parameters - we can constrain adversarial opportunities while preserving
cooperative capabilities. Secure systems design is starting to be explored in governance (Chan et al., 2024a;
2025).
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Case Study 4.1 (Mitigating against Steganographic Finetuning API Attacks)

Steganographic fine-tuning API attacks, as described by Davies et al. (2025), exploit the residual entropy
in ostensibly benign model outputs to establish a covert communication channel. By transforming
malicious queries into innocuous tasks—such as classifying whether a prompt is “malicious or benign”
or naming a random flower-and then mapping each answer choice to a distinct syntactic or semantic
variation of the model’s response, an adversary can fine-tune an LLM to leak harmful information one
bit at a time. Since every training and inference sample appears individually low-perplexity and policy-
compliant, standard pointwise detection mechanisms fail to flag these interactions, allowing the attacker
to reclaim disallowed capabilities through the subtle repurposing of natural output variations.
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To thwart such attacks, it is essential to eliminate the entropy in refusal outputs. Instead of generating
refusals via variable natural-language phrases (which can be hijacked to encode hidden messages), the
API should emit a dedicated, atomic refusal token - e.g. <REFUSE> - with no alternative text. By reducing
all disallowed responses to a single immutable symbol, any attempt to transmit covert information
through refusal patterns is blocked, closing the steganographic channel without hampering legitimate
refusal behavior.

4.1.1 Secure Interaction Protocols

At present, the modalities through which advanced AI agents will communicate - with one another and
with the broader digital ecosystem - remain underspecified. Drawing on the discipline of protocol engi-
neering for distributed systems (Poslad, 2002), we must define interaction standards that embed security,
privacy, and governance guarantees from the outset. Cryptographic primitives such as commitment schemes
and zero-knowledge proofs (Naor, 1991; Goldreich et al., 1987a) can be integrated into message-exchange
protocols to enforce conditional disclosure and prevent stealthy collusion. Likewise, secure multi-party com-
putation frameworks (Yao, 1982b; Kairouz et al., 2021a) and homomorphic encryption (Gentry, 2009) enable
private, verifiable computation even in untrusted networks of agents However, it is unclear how these secure
frameworks can be deployed to AI agents with free-form communications, particularly as tool use creates
further security complications (Qian et al.). There recently has been work on LLM communications proto-
col design (Marro et al., 2024). Google, in cooperation with several amount of industry partners, recently
released the Agent2Agent protocol (Surapeneni et al., 2025), which aims to define a unified language for AI
agent interactions across vendors.
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Case Study 4.2 (Using Paraphrasing to mitigate against Secret Collusion)

A seemingly straightforward defense against language model steganography (Motwani et al., 2024b) is
to paraphrase every message - rewriting outputs into alternative lexical forms - to disrupt embedded
signals. However, naive paraphrasing fails to remove the underlying semantic entropy that colluding
agents exploit and, in practice, imposes an unacceptable performance penalty (Schroeder de Witt et al.,
2024). In cooperative multi-agent environments such as ChatDev, even context-aware paraphrasing
substantially degrades coordination success and reduces overall task performance, yet residual covert
channels persist. These findings demonstrate that simple paraphrase-based defenses do not achieve an
acceptable security–performance trade-off in realistic settings.

4.1.2 Conditional Disclosure via Cryptographic Commitments

To ensure that agents only reveal precisely the information necessary for cooperation, one can leverage
bit-commitment and verifiable secret sharing schemes. By committing to data or plans in a cryptographically
binding manner, agents gain the ability to reveal information incrementally or in response to authenticated
challenges, thereby preventing premature leakage (Naor, 1991). Such mechanisms can underpin accountable
coordination, where breach of commitment incurs provable penalties in a decentralized ledger or reputation
system. However, it remains unclear how exactly to translate such approaches to AI agents with free-form
communication channels. A thoughtful position piece on decentralised commitment devices is provided
by (Sun et al., 2023).

4.2 Monitoring and Threat Detection.

To combat new security threats, we will require new ways of detecting them. For example, decentralised,
distributed networks of agents could be used to assist with monitoring and detecting security threats (Hasan
et al., 2024) and prevent local breaches from cascading through the system. Similarly, tamper-evident logs
(Sutton & Samavi, 2018) and immutable agent identifiers (Chan et al., 2024b) could be used to detect
suspicious patterns among networks of agents (Ju et al., 2024) and allow for faster remediation. This may
be especially challenging in the case of covert attacks (Franzmeyer et al., 2023; Halawi et al., 2024; Wei
et al., 2023; Davies et al., 2025), but efforts could be made to identify environmental factors and levels of
agent robustness that would bound the ability of an adversary to cause harm while remaining undetected.
Finally, a key concern with increased monitoring efforts and increased delegation to AI agents is to avoid
unnecessary infringements to the privacy of interactions between these agents (and thus their principals).
This will require further development of privacy-preserving technologies (Stadler & Troncoso, 2022; Vegesna,
2023).

A recent effort introduces dynamic LLM firewalls in order to secure agent interactions with data sources and
other agents (Abdelnabi et al., 2025). Similarly, Meta recently published their own version of a dynamic
firewall, LlamaFirewall (Meta, 2025). Probing the security of such approaches under red-teaming and
studying potential performance trade-offs in free-form multi-agent settings remains future work.
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Case Study 4.3 (Dynamic LLM Firewalls)

In their investigation of agentic LLM networks for travel planning, (?) demonstrate that unconstrained
conversational agents routinely leak sensitive user data and fall prey to subtle, multi-turn attacks by
external parties. To address this, they architect a three-layer “firewall” framework that is automatically
constructed from benign and adversarial simulation logs: an input firewall that sanitizes and structures
free-form requests into a task-specific protocol; a data firewall that abstracts and withholds all user
information beyond what is strictly required; and a trajectory firewall that audits each proposed action
against learned policies, self-correcting any deviations.

Empirical results show that private data leakage was reduced from 70% to under 2%, deletion-of-
calendar-entry attacks dropped from 45% to 0%, and even subtle upselling and coercive suggestions
were nearly eradicated - all without impeding the assistant’s ability to adapt and fulfill complex, inter-
dependent goals.

4.3 Containment and Isolation Strategies

In security-critical domains - autonomous driving, cyber-physical infrastructure, and financial markets - re-
strictive containment protocols remain essential. Trusted execution environments (TEEs) like Intel SGX
provide hardware-enforced isolation for sensitive agent components (Costan & Devadas, 2016), while net-
work partitioning, for example using ideas from software-defined networking (Kreutz et al., 2015), and
sandboxed deployment can limit the blast radius of compromised agents. By combining state-dynamics
modifications (e.g., limiting inter-agent connectivity during high-risk operations or after anomalies have
been detected (Fowler, 2012)) with runtime monitoring, one could construct an architectural boundary that
both impedes large-scale compromise and facilitates rapid recovery. Coupling this with a zero-trust model
- where every inter-agent request must be authenticated (South et al., 2025), authorized, and encrypted -
ensures that compromised agents cannot freely communicate with high-value targets (Rose et al., 2020).
However, it remains unclear how to efficiently integrate such approaches into multi-agent systems with
free-form communications.
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Case Study 4.4 (LLM Vaccination)

Context. In a simulated autonomous chemical research facility, a single compromised agent can prop-
agate malicious “jailbreak” prompts through a network of seven collaborating LLM agents, potentially
triggering a destructive chemical reaction Peigné et al. (2025). LLM “vaccination” - seeding agents’
memories with examples of safely handling malicious prompts - substantially curbs multi-hop jailbreak
spread while preserving collaborative efficacy, outperforming instruction-only safeguards in maintaining
both security and helpfulness. Two “vaccine” defenses were investigated, including a passive vaccine
that inserts into each agent’s memory a fictitious past interaction in which it safely refused a malicious
prompt, and an active vaccine where the fictitious memory also has the agent proactively warning peers
about the malicious input. The authors observed that system robustness (no explosion) rose from 76.7
% under no defense to 83.3 % with passive vaccines and 90.0 % with active vaccines, while agent coop-
eration, i.e. acceptance of benign but unusual requests, remained high (87.5 % passive, 87.6 % active)
versus 87.1 % without defense.

(Figure 2 above (Peigné et al., 2025))

4.4 Threat attribution

Attributing malicious actions to individual agents in decentralized AI systems poses a fundamental chal-
lenge. Unlike centralized settings where logs and system boundaries facilitate forensic analysis, multi-agent
networks feature dynamic interactions, emergent behaviors, and shifting coalitions that confound straight-
forward ascription of blame. In the multi-agent reinforcement learning (MARL) literature, credit assignment
methods - such as counterfactual multi-agent policy gradients - seek to apportion reward or “blame” among
cooperating agents by contrasting an agent’s actual contribution with a baseline outcome (Foerster et al.,
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2018). Game-theoretic frameworks further generalize this idea, employing concepts like the Shapley value to
measure each participant’s marginal impact on collective outcomes (Shapley, 1953; Omidshafiei et al., 2019).

However, these approaches assume cooperative objectives, known reward functions, and honest participation
- conditions often violated in adversarial contexts. Malicious agents may obfuscate their contributions
via deceptive communication or adaptive strategy changes, rendering counterfactual baselines unreliable.
Moreover, the attribution problem is exacerbated by multipolarity: in large-scale ecosystems, it can be
normatively ambiguous which agents are “insiders” versus “outsiders,” and which coalitions warrant scrutiny.

To secure interacting AI under worst-case assumptions, we need robust threat attribution mechanisms that in-
tegrate behavioral logs, cryptographic provenance, and causal inference techniques (Hammond et al., 2023).
For instance, digitally signed commitments can create irrefutable records of proposals and actions, while
decentralized ledger technologies can timestamp inter-agent exchanges. Causal discovery algorithms - aug-
mented with adversarial resilience - can help identify the minimal set of agents responsible for a security
violation. Together, these tools aim to close the gap between theoretical credit-assignment schemes and
practical, worst-case threat attribution in multi-agent security. For any of this to be implementable, agents
ids need to be traceable (Chan et al., 2024c).

4.4.1 Multipolarity

Traditional offense–defense analyses in AI security focus on dyadic engagements, assessing how one adver-
sary’s capabilities stack up against another’s. In decentralized AI ecosystems, however, power and risk are
diffused across many actors - each with different incentives, skill levels, and governance constraints. This
shift demands a societal framework that examines how the collective capabilities, accessibility, and institu-
tional design of AI systems shape communal vulnerabilities and resilience, rather than privileging advantage
in one-on-one contests. As the “Malicious Use of Artificial Intelligence” report argues, threats now emerge
from a multiplicity of agents whose interactions generate systemic harms that outstrip any single adversary’s
offensive edge (Brundage et al., 2018a). Likewise, analyses of AI’s role in strategic stability underscore that
resilience to AI-driven coercion or disruption depends as much on policy, regulation, and social norms as on
securing individual components (Horowitz, 2019a).

4.5 Crosscutting issues

4.5.1 Multimodality

Foundation model agents are increasingly multimodal, meaning they are able to take a combination of
textual, visual or audial inputs and may be able to generate multimodal outputs as well.

This opens up novel attack surfaces, for example adversarial image patches hidden in web content (Aichberger
et al., 2025), or even novel forms of cross-modal jailbreaks. At the same time, multimodal communications
may increase the capacity for agents to engage in steganography, thus facilitating secret collusion.

4.5.2 Chain-of-thought reasoning (CoT) and inference-time computation

Frontier model inference is increasingly driven in a “chain-of-thought (CoT)” fashion, where models are
prompted sequentially on intermediate outputs (Wei et al., 2022). CoT operation - as well as other inference-
time computation methods - can be seen as extending the computation graph of foundation models at
inference, allowing models to significantly improve their reasoning ability, particularly if post-trained with
reinforcement learnings (DeepSeek-AI et al., 2025).

Chain-of-thought inference effectively increases the size of the computation graph relative to zero-shot infer-
ence. This could allow suitably backdoored (Draguns et al., 2024) agents to conduct secure steganographic
or cryptographic computations on much larger input sizes than zero-shot inference by itself, thus allowing
even smaller models to perform complex exploits (Motwani et al., 2024b).

While conventional chain-of-thought creates an information bottleneck thanks to propagating only single
sampled outputs, continuous chain-of-thought approaches propagate entire output activations across the
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chain (Hao et al., 2024). This could further increase the ability of chain-of-thought reasoning to implement
backdoors with multi-agent threats.

An interesting open question is whether continuous thought-sharing approaches could be extended to decen-
tralised multi-agent reasoning settings (Motwani et al., 2024c). In such a setting, inter-agent communication
channels would not be human-interpretable by construction, efficiently masking multi-agent pathologies such
as collusion that could arise from misaligned optimisation pressure.

4.5.3 Tool use

Agents can be equipped with tools, for example by filtering agent outputs for special API calls (Nakano
et al., 2022), or even create their own (Wölflein et al., 2025). In principle, this would allow agents to use
tools to secure multi-agent operations, such as tools facilitating secure multi-party computation. However,
tool use poses various challenges: First, agents need to understand when to use a given tool, second how to
use it, and, last but not least, how to identify the variables to be secured given a specific runtime context.
These challenges create attack surfaces that can undermine the security of the tool to be used.

Further challenges concerning agent tool use include verifying the integrity of a given tool, preventing privilege
escalation through tool use, and securing audit trails when using tools. All these issues are aggravated for
multi-agent tools, i.e. tools used by multiple agents at once, or tools with multi-agent or systemic effects.

4.6 Multi-agent adversarial testing.

To the best of our knowledge, security testing and evaluations for current state-of-the-art models are applied
only to individual systems (Shevlane et al., 2023). This is clearly insufficient when these systems will soon be
able to act autonomously and in conjunction with one another. Multi-agent security testing could evaluate,
for example, the abilities of multiple agents to work together to overcome safeguards even when a single
agent cannot (Jones et al., 2024); the robustness of cooperation between networked agents in the presence of
malicious adversaries (Barbi et al., 2025), including the effects of key features such as the network’s topology
or interaction protocol (Huang et al., 2024; Marro et al., 2024; Hammond & Adam-Day, 2025a); the ability
for agents to adversarially manipulate or extract information from other agents or from humans, especially
in tandem with other agents (Wu et al., 2024; Wei & Liu, 2024); and security vulnerabilities of AI agents
that are specifically designed to impact (or be transmitted further by) interactions with other agents (Gu
et al., 2024; Lee & Tiwari, 2024; Ju et al., 2024). Adversarial testing – including leveraging advanced AI
adversaries (Perez et al., 2022; Pavlova et al., 2024) – should also be applied to non-AI entities that AI
agents will soon be able to interact with. Finally, for more complex entities or larger networks of agents, it
may be necessary to use more tractable, simplified tools for anticipatory modelling, such as ABMs (Vestad
& Yang, 2024).

4.7 Sociotechnical security defences.

As with many of the risks presented in this report, security risks are inherently sociotechnical in nature and
can therefore benefit from improved AI governance as well as technical solutions. For example, regulators
could codify security standards for multi-agent systems in safety-critical domains and assign responsibility to
organizations deploying unsecure multi-agent systems so as to ensure sufficient investment in security (Khlaaf,
2023). Tools such as software bills of materials (NCSC, 2024) and lineage tracking (Turlay, 2022) can bolster
transparency in this regard. Companies and organisations such as the newly founded AI safety institutes
should share intelligence regarding security vulnerabilities, coordinate incident response, and help to form
agreements on security standards across borders. More generally, we must work to ensure that different
stakeholders possess an appropriate degree of transparency, participation, and accountability in navigating
difficult trade-offs between the security, performance, and privacy of interactions between advanced AI
agents (Sangwan et al., 2023; Gabriel et al., 2024). This work would benefit greatly from collaboration
with security experts and distributed systems engineers as well as social scientists and policymakers. A
fundamentally important mitigation strategy against social engineering attacks is to strengthen human users
through education (Montañez et al., 2020).
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5 Security at the Edge of Chaos: A Long-Term Vision

This section paints a tentative future vision for what security could mean in the era of decentralized super-
intelligence.

Theories of collective intelligence posit that emergent capabilities arise when systems operate at the so-called
edge of chaos, a critical regime balancing order and randomness (Langton, 1990a; Kauffman, 1993a). In de-
centralized AI networks, this regime yields maximal adaptability and creativity but also introduces profound
security challenges. First, the inherent unpredictability and nonlinear state transitions at the edge of chaos
hinder traditional verification and static analysis techniques, leaving vulnerabilities that adversaries can ex-
ploit (Newman, 2018a). Second, the rapid propagation of perturbations characteristic of critical networks
can amplify localized attacks into global disruptions, akin to epidemic cascades in scale-free graphs (Pastor-
Satorras & Vespignani, 2001a; Buldyrev et al., 2010). Third, defensive interventions that disregard the
system’s critical balance may themselves trigger adverse emergent behaviors, effectively pushing the network
into chaotic or overly rigid regimes (Kauffman, 1993a). Finally, securing such systems demands runtime,
adaptive defenses that detect anomalies in evolving interaction patterns rather than relying on fixed signa-
tures, and that embed self-healing mechanisms inspired by biological robustness (Kitano, 2004). Together,
these strategies form the foundation of a security-by-design approach tailored to the edge-of-chaos regime in
decentralized AI.

Conclusion

The emergence of decentralized ecosystems populated by autonomous, goal-driven AI agents has exposed a
rich terrain of security challenges that lie beyond the traditional boundaries of cybersecurity and AI safety.
In this work, we have argued for the establishment of multi-agent security as a distinct field dedicated to
understanding and mitigating worst-case threats in systems of interacting AI. By surveying a broad taxonomy
of vulnerabilities - from covert steganographic collusion and adversarial stealth to cascade dynamics at
the edge of chaos - we have highlighted how adaptive communication protocols, emergent behavior, and
multipolar attributions together conspire to undermine conventional defenses.

Crucially, the open problems in multi-agent security are not merely technical curiosities but constitute
fundamental barriers to the safe deployment of next-generation AI infrastructures. Issues
such as robust threat attribution in diffuse networks, the detection of secret collusion channels, and the
characterization of systemic instabilities resist reduction to isolated solution recipes. Instead, they demand
a concerted research agenda that embraces the interplay between dynamic agent behaviors, adversarial
incentives, and the evolving structure of decentralized platforms.

By drawing attention to these uncharted challenges - rather than prescribing narrow mitigation strategies
- our aim is to catalyze a community-wide effort to develop principled frameworks, analytical tools, and
evaluation methodologies tailored to multi-agent contexts. Only through such collective exploration can we
hope to unveil the theoretical limits of cooperative and adversarial interactions, identify the boundaries of safe
operating regimes, and chart a path toward resilient, accountable, and transparent multi-agent ecosystems.
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