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Abstract

The Open Radio Access Network (O-RAN) architecture is
revolutionizing cellular networks with its open, multi-vendor
design and Al-driven management, aiming to enhance flexi-
bility and reduce costs. Although it has many advantages, O-
RAN is not threat-free. While previous studies have mainly
examined vulnerabilities arising from O-RAN’s intelligent
components, this paper is the first to focus on the security
challenges and vulnerabilities introduced by transitioning
from single-operator to multi-operator RAN architectures.
This shift increases the risk of untrusted third-party oper-
ators managing different parts of the network. To explore
these vulnerabilities and their potential mitigation, we de-
veloped an open-access testbed environment that integrates
a wireless network simulator with the official O-RAN Soft-
ware Community (OSC) RAN intelligent component (RIC)
cluster. This environment enables realistic, live data col-
lection and serves as a platform for demonstrating APATE
(adversarial perturbation against traffic efficiency), an eva-
sion attack in which a malicious cell manipulates its reported
key performance indicators (KPIs) and deceives the O-RAN
traffic steering to gain unfair allocations of user equipment
(UE). To ensure that O-RAN’s legitimate activity contin-
ues, we introduce MARRS (monitoring adversarial RAN re-
ports), a detection framework based on a long-short term
memory (LSTM) autoencoder (AE) that learns contextual
features across the network to monitor malicious telemetry
(also demonstrated in our testbed). Our evaluation showed
that by executing APATE, an attacker can obtain a 248.5%
greater UE allocation than it was supposed to in a benign
scenario. In addition, the MARRS detection method was
also shown to successfully classify malicious cell activity,
achieving accuracy of 99.2% and an F1 score of 0.978.

1 Introduction

In recent years, network operators and vendors have begun
exploring innovative radio access network (RAN) architec-
tures [13, 18]. The RAN provides wireless connectivity to

mobile devices and acts as the final link between the cellular
network and user equipment (UE). Traditionally, RANs have
been vendor-specific, i.e., with hardware interfaces and ap-
plications optimized for a specific vendor’s equipment, and
were operated by a single owner. While this approach en-
ables vendors to deliver integrated and highly optimized so-
lutions, it also has significant drawbacks. Traditional RANs
require vendors to develop all components, driving up costs
for network operators and creating vendor lock-in, which
limits flexibility and innovation. To overcome these draw-
backs, an advanced architecture was proposed, the Open Ra-
dio Access Network (O-RAN) [56].

O-RAN, which was introduced by the O-RAN Alliance!,
started to gain attention, as it allowed: (1) open accessible
shared information to promote multi-vendor deployments,
with standardized interfaces between RAN components [30,
40]; (2) adaptivity in real time by using cloud-based and vir-
tualized components managed through software-defined net-
working (SDN), which enables more flexibility and reduces
operational costs [32, 69]; and (3) adaption of the RAN in-
telligent component (RIC), which is responsible for utilizing
artificial intelligence (AI) and machine learning (ML) sys-
tems, to reduce human intervention [48, 54].

While previous studies have begun to uncover vulnerabil-
ities in O-RAN’s intelligent components—particularly those
exploited by malicious UE for personal gain [44]—the shift
to multi-operators in RAN architectures introduces new se-
curity challenges. Traditional RANs, where a single operator
oversees the entire network, were considered fully trusted.
However, the disaggregation of the O-RAN architecture has
accelerated the shift toward multi-operator networks, result-
ing in an untrusted environment since different operators
manage various network elements [33, 64].

In this paper, we demonstrate a threat model in which
the threat actor is the cell (i.e., a cellular operator). An ad-
versarial cell can disrupt the network in several ways, such
as reducing UEs migration to other cells or executing other
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denial-of-service (DoS) attacks. These types of attacks can
be financially driven, since operators may be compensated
based on the amount of UE their cells serve. To illustrate
this threat, we introduce the APATE (adversarial perturba-
tion against traffic efficiency) attack.

The APATE is an evasion attack [10] targeting the traf-
fic steering (TS) flow (part of O-RAN RIC use cases [50])
which is responsible for dynamically and intelligently man-
aging network traffic. The attacker misleads the TS flow into
assigning additional UE to its cell by falsely manipulating
the TS’s ML model that is responsible for the quality of ex-
perience (QoE) predictions (i.e., attacking the QoE predictor
referred to as the QP). The APATE attack works as follows:
The attacker trains a substitute model of the QP model and
uses this model to craft adversarial samples, i.e., samples that
mislead the QP and cause it to make an incorrect prediction.
The crafted adversarial samples are then used to query the
QP target model, maliciously leading it to forecast an artifi-
cially high QoE for the attacker’s cell, by misleading the TS,
resulting in an unfair allocation of UE to the malicious cell.

To mitigate these type of risks and ensure that O-RAN’s
legitimate activity continues, we propose a mitigation strat-
egy called MARRS (monitoring adversarial RAN reports),
specifically designed to detect untrusted actors attempting
to disrupt legitimate network operations, such as in attacks
like APATE. MARRS is a detection method based on a
long short-term memory (LSTM) autoencoder (AE) archi-
tecture [34]. MARRS extracts relevant time-series features
from the reporting cells and UEs key performance indicators
(KPIs) and trains a dedicated AE model for each cell. Then,
it uses the compressed latent space from each AE model,
concatenated with the aggregated latent spaces from all other
cells, to generate new enriched feature vectors that capture
contextual information from both the specific cell and the en-
tire network. Next, an additional AE for each cell using the
new enriched feature vector is trained, however this time in
an attempt to reconstruct the original features. Finally, a clas-
sifier is trained to compare the second model’s output to the
first model’s input; if the loss between them exceeds a prede-
fined threshold, then the input is classified as untrusted; oth-
erwise it is classified as trusted. The entire training process
is performed using benign data to learn benign data behav-
ior, i.e., unsupervised learning. At inference time, MARRS’s
classification will indicate whether the examined cell’s KPIs
are benign or adversarial.

To demonstrate the APATE attack and evaluate the
MARRS detection method, we developed a testbed with a
wireless network simulator [17] to emulate a live network
topology with moving UE and gNBs (5G cell base stations)
and an O-RAN Software Community (OSC) RIC cluster [11]
hosting the TS ML models. The use of these components in
the testbed enables realistic simulations where UE and cells
regularly report KPIs to the RIC and receive real-time real-
location handover requests based on TS handover decisions.

We assess APATE’s impact by simulating two scenarios: (1)
anormal benign scenario, and (2) a malicious scenario where
one cell within the environment executes an attack. The re-
sults of our experiments in the testbed show that on average
an adversarial cell was able to obtain a 248.5% greater UE
allocation than it was supposed to in a benign scenario. To
evaluate our proposed detection method, we test it on sim-
ulated malicious scenarios aiming to classify cells’ KPIs re-
ports as trusted or untrusted, to identify malicious activity.
MARRS detection method successfully identified malicious
cell activity in the test scenarios achieving an accuracy of
99.2% and an F1 score of 0.978.

The main contributions of this paper can be summarized
as follows:

1. Present a threat model that takes into account the
vulnerabilities resulting from O-RAN’s openness and
multi-operator untrusted structure. We demonstrate an
attack (APATE) in which a cell is the threat actor target-
ing the TS flow to obtain more UE to serve.

2. Publish an open-source testbed environment that in-
cludes a closed-loop wireless network simulator con-
nected to the OSC RIC cluster that enables realistic and
live data collection.

3. We also present MARRS; a practical Al-based detec-
tion method to mitigate this attack and future attacks
based on this threat model.

2 Background

2.1 O-RAN Architecture

Traditional RAN components are monolithic, vendor-
provided black boxes that integrate all layers of the cellu-
lar protocol stack. This design limits reconfigurability, hin-
ders coordination between network nodes, and locks oper-
ators into specific vendors. In addition, the vendor devel-
ops all the components, which drives up costs for network
operators and creates vendor lock-in, which limits flexibil-
ity and innovation. To address these challenges, O-RAN has
emerged as a new paradigm that leverages disaggregated, vir-
tualized, and software-based components connected through
open, standardized interfaces. This approach enhances flex-
ibility, supports multi-vendor ecosystems, and enables intel-
ligent, data-driven closed-loop control. By adopting cloud-
native principles, O-RAN improves RAN resiliency, adapt-
ability, and innovation potential.

The O-RAN specifications build on the 3GPP long-term
evolution (LTE) and new radio (NR) standards, extending
the 3GPP NR 7.2 functional split for base stations [56]. This
split disaggregates base station functions into three distinct
components: the central unit (CU), distributed unit (DU),
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Figure 1: O-RAN architecture high-level overview.

and radio unit (RU), enabling greater flexibility and modu-
larity. These units connect to RICs via open interfaces, en-
abling the streaming of RAN telemetry and the deployment
of control actions and policies. The O-RAN architecture’s
components and their open interfaces are illustrated in Fig. 1.

2.2 The RAN Intelligent Controllers RIC

The RIC is a key element in the O-RAN architecture, intro-
ducing programmable components capable of executing op-
timization and intelligent routines with closed-loop control.
RICs often leverage Al and ML models for various tasks like
network slicing, handovers, and scheduling policies. By do-
ing so, RICs significantly enhance network efficiency and
performance optimization. Some of the main key benefits of
RICs include: Improved network performance and efficiency
through AI and ML-driven optimization [9]. Increased flex-
ibility and programmability of the RAN [15]. Reduced op-
erational costs through automation and intelligent resource
management [32]. Improved UE experience through more
granular and intelligent control of network resources [59].
The RIC as described in the O-RAN specifications consists
of two primary levels: the near-real-time RIC (near-RT RIC)
and the non-real-time RIC (non-RT RIC) [49, 50].

The Near RT RIC acts as the near-real-time decision-
making core of the network. It operates with control loop
periodicities ranging from 10 milliseconds to 1 second, en-
abling it to manage dynamic adjustments within the network
in near real-time. Designed to oversee multiple RAN nodes
(DUs or CUs), the near-RT RIC can influence the quality of
service (QoS) for hundreds or even thousands of UE con-
nections. The near-RT RIC hosts specialized applications
known as xApps, which perform essential tasks such as RAN

data analysis, traffic steering, and network control. These
xApps communicate with the RAN via the E2 interface, re-
ceiving real-time data and sending control commands back to
adjust network behavior. Additionally, the near-RT RIC pro-
vides APIs and services to support the automated lifecycle
management of xApps, including onboarding, deployment,
and termination. These capabilities ensure seamless inter-
nal messaging, conflict mitigation, and operational stability
across the network [49].

Non-RT RIC The non-RT RIC is responsible for longer-
term (operating on timescales greater than one second) net-
work optimization and policy management to support the
near-RT RIC via the Al interface (e.g., the threshold for UE
reallocation, in the TS xApp). It hosts applications called
rApps, which can handle tasks such as network slicing, en-
ergy saving, and AI/ML model training [50].

2.3 Traffic Steering (TS)

One of the most important tasks of the near-RT-RIC is the TS
task, as it is responsible for managing the UE cells’ connec-
tion in the network. The TS flow illustrated in Fig. 2 demon-
strates a network topology where UE is located within the
reception range of cells A, B, and C and can be connected
by each of these cells. The network operator needs to make
a decision regarding which cell the UE should be connected
to. There are several TS approaches to make this decision.
Many handovers for the TS task are performed using rein-
forcement learning (RL), due to its policy-based decision-
making nature [52,57]. Another way to perform the TS task
is to connect UE to a cell based on the maximum received
signal reference power (RSRP). As a UE moves away from
its serving cell, the RSRP from that cell decreases over time,
while the RSRP from a nearby target cell increases as the
UE approaches it [66]. One of the most common approaches
presented in the OSC, is the QoE prediction, which is based
on QoE prediction for potential new target cells (this is the
approach we followed in this paper) [19]. In this TS ap-
proach, there are four main xApps involved: KPI monitoring
(KPIMON), anomaly detection (AD), QP, and TS. The TS
flow illustrated in Fig. 2 contains the following steps; The
KPIMON receives telemetry from the cells regarding the net-
work status (e.g., cells and UE’s KPIs) and writes them into
the RIC influx database (DB). The AD xApp, scheduled to
run every 10ms, identifies UE with an anomalous QoE that
might need reassignment to another cell. Detection is per-
formed by a pretrained isolation forest (iForest) model, based
on UE metrics extracted by the KPIMON xApp and stored
in the RIC. The AD xApp sends this list of anomalous UEs
to the 7S xApp for reallocation. Then, the TS calls the QP
xApp for QoE prediction for each neighbor cell of all UE in
the list. The QP trains a vector autoregression (VAR) model
for every UE neighbor cell, forecasts the QoE, and sends it
back to the TS. Finally, based on the QP predictions and a
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Figure 2: High-level overview of the relevant components in
the TS flow.

given Al policy from the non-RT-RIC, for each UE, the TS
decides whether it should stay in its current serving cell or
be handed over to a new target cell.

2.4 Multiple Operators Deployments

The evolution of telecommunications infrastructure has wit-
nessed a significant shift toward disaggregation, where dif-
ferent network elements are operated by distinct entities
(such as different companies). While multi-vendor deploy-
ments have been a longstanding practice in telecommunica-
tions, the emergence of multiple operators managing differ-
ent network segments introduces new trust considerations.
This paradigm shift predating O-RAN was primarily driven
by cost-efficiency considerations and the understanding that
specialized capabilities could be better managed through
outsourcing arrangements [24,41,42,46,51].

The infrastructure-sharing model gained particular promi-
nence with the rise of tower companies like American
Tower” and Vantage Towers’. These companies emerged as
spin-offs from traditional telecom operators and have since
evolved into independent entities managing critical network
infrastructure. The participation of third-party mobile tower
companies has also led to an increased incidence of base
stations (BS) colocation [51]. For example, in the U.S.,
companies sublease space from independent landlords to de-
ploy BSs belonging to more than one operator on the same
premises [67]. In the United Kingdom, Freshwave deploy-
ment enables four mobile operators to share the same in-
door small cell infrastructure, demonstrating the feasibility
of extensive operator collaboration [20, 71]. In Germany,
Deutsche Telekom and Telefénica Deutschland established a
major infrastructure-sharing agreement, in which thousands
of mobile sites were covered through reciprocal network
access [39]. Similarly, Vodafone and Orange have imple-
mented extensive network sharing in Spain, particularly fo-
cusing on rural and suburban areas [27]. Recent develop-

ments have also facilitated innovative deployment scenarios.
For example, the integration of satellite networks as RU/DU
units [21] with cellular backbones represents an extreme case
of a multi-operator scenario, highlighting both the poten-
tial and challenges of such arrangements [37,75]. Compa-
nies like AST SpaceMobile*, Lynk Global® and Starlink [37]
are developing satellite-to-cellular solutions that will inte-
grate with terrestrial networks, creating new multi-operator
paradigms.

3 Related Work

3.1 O-RAN Security

New concepts and technologies are continually being in-
troduced into the RAN, each bringing new cybersecurity
threats and significantly expanding the RAN’s attack sur-
face [2, 6, 54, 56, 63]. O-RAN security focuses on several
key areas. Recent attacks on traditional RANs are reviewed
to assess their applicability to the O-RAN architecture [61].
The open-source and disaggregated nature of O-RAN intro-
duces unique threats, necessitating analysis of the security
implications of the O-RAN architecture [44]. Specific vul-
nerabilities arise from O-RAN’s openness, particularly in
xApp access control and the E2 interface, which could al-
low unauthorized access and manipulation of network poli-
cies [31]. The classification of various security-related risks
specific to O-RAN includes inadequate logging, lack of en-
cryption, and insufficient access controls, which can lead to
security breaches and data integrity problems [38]. The com-
prehensive summary of the security threats, requirements,
and recommended mitigation strategies associated with the
O-RAN framework provided by Park et al. [53] highlights
the steps required to strengthen the architecture’s resilience
against emerging threats. However, as emphasized by Park
et al. [53], there are many remaining security risks, as we
will demonstrate in this paper.

3.2 Attacks on O-RAN

Adversaries may exploit the inherent vulnerabilities of learn-
ing algorithms, and specifically ML algorithms, with vari-
ous attack techniques, which are referred to as adversarial
machine learning (AML) [7, 8, 29, 60]. Recent work [29]
provided a comprehensive threat assessment of ML usecases
within O-RAN according to a common cybersecurity risk as-
sessment (NIST ontology). In their work, the authors outline
the potential adversaries, their capabilities, and their goals,
identify threats to ML production systems within O-RAN,
and enumerate attacks that can materialize these threats. In
addition to their threat modeling, the authors demonstrated
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Table 1: Summary of Related Work

Paper ‘ Key Points ‘ Actor ‘ Attack Mitigation
[29] A novel AML threat assessment methodology with practical demonstrations and | UE Evasion & -
tools for high-risk threats in ML-based network management Poison
[68] Anomaly traffic detector that enhances network security by mitigating DoS attack | UE DoS ML-Based
executed by UE on RIC xApps
[4] Presents how compromised KPIs can poison the RIC closed loop followed by an - Poison LSTM
LSTM detection method
[62] ‘ ML-based detection for preventing DDoS attacks executed by malicious UE ‘ UE ‘ DDoS ‘ ML-Based
[14] ‘ Fast ML-based detection for DDoS attacks on O-RAN ‘ UE ‘ DDoS ‘ ML-Based
[26] ‘ MiTM attack that exploits the open interfaces and poisons the network slicing xApp ‘ - ‘ Poison ‘ DRL AE
[60] Presents how a malicious xApp reduces the network capacity by performing FGSM | xApp Evasion -
and PGD attacks
[8] | Evasion attack on the connection management xApp, with defense approaches | xApp | Evasion | Adv Training
Our Paper ‘ Attack by untrusted cell in O-RAN with Al-driven detection ‘ Cell ‘ Evasion ‘ LSTM-AE

how UE can produce manipulated signals that lead to in-
correct anomaly detection and QoE classification. By doing
so, the UE influences the model’s decision-making process
by presenting inputs that are very similar to legitimate data
but designed to cause misclassification or incorrect predic-
tions [29].

Sapavath et al. [60] conducted experiments in an O-RAN
testbed to demonstrate that both the fast gradient sign method
(FGSM) and projected gradient descent (PGD) attacks can
effectively manipulate input data for the xApp interference
classifier, leading to misclassification. Even minimal adver-
sarial perturbations (i.e. small modifications to input data
designed to mislead ML models) have been shown to dras-
tically impair the xApp’s accuracy, which consequently re-
duces network capacity and increases overall bit loss within
the O-RAN system [60].

The authors of [7] analyze O-RAN WGI11’s [5] threat
model and risk assessment methodology, focusing on DoS
and performance degradation threats. They identify specific
vulnerabilities, mapping them to potential attacks across crit-
ical O-RAN interfaces. Through experiments using an O-
RAN deployment, the authors evaluated the impact of DoS
and performance degradation attacks on these interfaces, as-
sessing their resilience in various attack scenarios [7].

3.3 O-RAN Attack Mitigation

Growing concerns over attacks on O-RAN ML systems have
prompted research on mitigation of such attacks.

Both white-box and black-box evasion attacks have been
demonstrated on deep reinforcement learning (DRL)-based
traffic steering [52], revealing the impact of adding noise into
the UE’s metrics. These attacks showed that PGD attack can

reduce coverage rates by as much as 50%, while jamming at-
tacks result in up to a 25% reduction in coverage. To counter
these effects, two mitigation techniques were proposed: (1)
adversarial training [25], and (2) regularized training [74].
Both techniques were found to improve model robustness
against such attacks [8].

Recent work by Xavier et al. [72] introduced an effective
mitigation strategy for several types of DoS attacks. This
approach employs ML models to analyze air interface mea-
surements, enabling the early detection of malicious traffic
before it disrupts network services. In their followup work,
the authors improved their mitigation strategy which is sup-
posed to mitigate all types of DoS attacks while improving
its ability to be deployed on real systems [73].

Research directly related to our study on attacks exe-
cuted by malicious KPIs reaching the RIC has also been per-
formed. In [26], the authors highlighted the vulnerabilities
introduced to the intelligent components of O-RAN due to
the adoption of open interfaces. Man-in-the-middle attack
(MiTM) attackers were shown to be able to inject malicious
KPI reports into the E2 interface targeting the near-RT RIC
or deliver malicious control actions from the near-RT RIC to
E2 nodes. They specifically demonstrated AML attacks on
the input KPI reports of a network slicing xApp. To mitigate
such threats, the authors proposed a method based on AEs to
detect this threat [26]. Another study [4] built on this type
of poisoning attack, emphasizing the critical role of KPIs in
near-RT RIC control loop use cases. The authors proposed
an LSTM model for detecting anomalous KPIs, which was
shown to be a robust approach for mitigating such attacks in
their evaluation.

To detect Distributed DoS (DDoS) attacks et al [14]
demonstrates that XGBoost achieves high precision and re-



call with the fastest execution time compared to random for-
est and multilayer perceptron, ensuring operations remain
within latency requirements. Another study [62] presents
a ML-based framework for detecting DDoS attacks in O-
RAN, utilizing dApp and xApps to enhance real-time threat
detection, while balancing speed and accuracy. It evaluates
multiple ML algorithms to identify the best-fit models for
anomaly detection and service usage tracking, addressing O-
RAN’s unique challenges.

To the best of our knowledge, no recent research has con-
sidered network cells as untrusted elements in the RAN as
potential threat actors or proposed mitigation strategies for
such types of attacks. The related works [4, 8, 14,26, 29, 60,
62] performed on O-RAN attacks and mitigation is summa-
rized in Table 1.

4 Threat Model

We present a threat model based on the NIST ontology for
modeling an enterprise security [12,65]. The proposed threat
model considers the following assumptions:

(1) Multiple Operators RAN Deployments. The shift of
telecommunications infrastructure to disaggregation resulted
in different network elements being operated by distinct en-
tities, allowing the reduction of operational cost, achieving
both capital expenditures (CAPEX) and operational expen-
ditures (OPEX) savings [24,41,42,46,51]. Implementation
reports and real-world scenarios to support the feasibility of
multi-operator deployment are detailed in the background
section (Section 2). In addition, as described in 3GPP spec-
ifications, multiple cell operators agree on sharing a cover-
age area taking into account the load balancing between the
cells [1]. Similarly, GSMA also released a specification on
infrastructure sharing, describing standards for site, tower,
RAN and core network sharing [28].

(2) Financial Model. In multi-operator deployments, when
an operator lacks the resources to serve its clients (UEs), ser-
vices are provided through a third-party operator. According
to Farhat et al. [22,23] UE payments go to their home opera-
tor, and the latter must pay a service price (transaction cost)
to the new access operator.

Under these assumptions, an attacker is a malicious cell
operator carrying an AML attack targeting the O-RAN TS
flow. The attack goal is to gain unfair UEs allocation, thereby
increasing its revenue. Such manipulation can degrade the
QOoE for the victims’ UEs and reduce the income of its neigh-
boring benign operators.

The threat model entities and their relations based on
NIST ontology as illustrated in Fig. 3 are described as fol-
lows:

e Attacker: A malicious operator running a malicious
cell operating in the O-RAN network. In the remain-
der of the paper, we will use the term malicious cell.

¢ Adversarial Capabilities: (a) The malicious cell can
manipulate the KPIs it reports to the RIC. (b) The ma-
licious cell has knowledge of the targeted TS task flow.
This capability follows SOTA AML threat analysis in
O-RAN [29].

* Threat: A malicious cell disrupts the TS process by
influencing the QP model’s QoE predictions, resulting
in an unfair allocation of UE to the malicious cell.

* Vulnerability: Refers to the inherent ability to manipu-
late the input of the ML model used by the QP, causing
it to inaccurately predict QoE.

* Technique: Query-based evasion attack.

e Assets: The TS task hosted on the near-RT RIC, re-
sponsible for the allocation of UE to cells.

¢ Impact: The attacker is able to serve more UE than it
is supposed to, which can: (a) malicious cell to receive
payment for providing the service to UEs that would
gain better service from other cells. (b) reduce the QoE
of UE affected by the attack, since providing service to
UE that would receive a better QoE by other cells.

rrrrrrr
Attacker Threat Impact

owns using affects the
security of

targets
c Attack q Asset

Figure 3: Threat analysis based on NIST ontology [65].

5 APATE Attack

The APATE attack (adversarial perturbation against traffic
efficiency), an attack designed to manipulate network TS by
attacking the QP model is illustrated in Fig. 4. The attacker’s
objective is to maximize the amount of UE assigned to at-
tacker’s service. To achieve this, the attacker manipulates
its own KPIs to mislead the QP model into forecasting a
higher QoE than the actual QoE. To execute this attack, the
malicious cell needs to know which TS approach (see Sec-
tion 2.3) is implemented on the network; this will allow the
attacker to replicate the behavior of the target model.

The attack unfolds in three main stages: (1) The attacker
begins by training a substitute QP model, replicating the be-
havior of the target model used in the TS flow. (2) Using
the substitute model, the attacker learns the model’s decision
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boundaries and behavior. By analyzing the decision bound-
aries, the attacker identifies the minimal input perturbations
that need to be added to the cell’s KPIs to manipulate the QP
model. Then the attacker performs an adversarial evasion at-
tack to generate adversarial samples. (3) The crafted adver-
sarial samples, representing the perturbed KPIs, are reported
to the RIC as legitimate data. These adversarial samples are
written to the RIC database by the KPIMON xApp. When
the AD xApp detects that UE might require cell allocation,
the TS xApp requests the QP xApp for a QoE prediction for
the potential new target cells (as detailed in Section 2.3). At
this point, the QP model predicts an artificially high QoE for
the malicious cell based on the adversarial samples, causing
the TS xApp to allocate UE to the malicious cell.

The proposed attack is formally described as follows:
let N = (V/,V* E) denote the network bipartite graph
where V' = {1 v¢! .. v} are the cell’s nodes and V* =
{ve,vhe, .. v} are the UE’s nodes, and n and m are respec-
tively the number of cells and number of user equipments.
The edges E C V! x V* are defined by serving connections
between pairs of cells and UE. For example, if v/ is the serv-
ing cell of UE v¥¢, then (vfcl,v;“") €E.

The objective of the attacker cell VZiiv is to find a pertur-
bation noise 0 that can be added to its KPI reports R, such
that the QP model will predict a higher QoE than it should as
presented in Eq. (1) where 8* represents the optimal pertur-
bation, Q is the QP model, and y is the true QoE prediction.
The attacker sends these crafted adversarial samples to the
RIC where they are incorporated into the TS flow, as detailed
in Section 2.3. This manipulation leads the QP model to
overestimate the QoE for the adversarial samples, potentially
resulting in unjustified greater UE allocations (VZiiw"ue) to
the adversarial cell.

Raay =R+ (la)
8" = argmax(L(Q(R +3),)) (1b)

6 MARRS Detection Method

Predicted
Network Reports

Latent Space Enriched AE
Feature Creation Training

Feature Initial AEs

Extraction Training

Figure 5: LSTM-autoencoder framework architecture.

The APATE attack poses a significant threat to resource
management by targeting the network TS. To mitigate these
types of attacks, we propose MARRS (monitoring adversar-
ial RAN reports)—a framework designed to detect adver-
sarial cell telemetry (reported KPIs) in real time. MARRS
can be deployed as an xApp on the near-RT RIC, provid-
ing immediate notifications about whether a cell’s teleme-
try can be trusted. The detection architecture is based on
LSTM networks, which have proven to be particularly ef-
fective for anomaly detection in time-series data, especially
when combined with AE architectures [34,58]. LSTM AEs
are trained to reconstruct normal input sequences, leverag-
ing an LSTM’s ability to capture long-term dependencies in
time-series data [70]. We utilize a two-layer combination of
LSTM and AEs to capture not only individual cell behavior
but the contextual interactions of a specific cell within the
entire network.

The detection framework architecture, which is illustrated
in Fig. 5, operates as follows: (1) Feature Extraction and Ini-
tial AE Training: Relevant time-series features are extracted



from the KPIs reported by cells and UE. Then, for every cell,
a dedicated AE model is trained to learn the patterns in these
features. (2) Latent Space Feature Creation: Using the latent
representations from the first set of AE models, new enriched
feature vectors are generated. This is achieved by concate-
nating the latent space of a specific cell’s AE with aggregated
latent spaces from other cells, effectively capturing both lo-
cal and global network contexts. (3) Enriched AE Training:
A second AE is trained for each cell, however this time us-
ing the enriched feature vectors as input. The objective is
to reconstruct the original features from these vectors, lever-
aging the additional contextual information. (4) Classifica-
tion of Network Reports: Finally, a classifier is trained to
compare the reconstructed output of the second AE with the
original input features from the first AE. If the reconstruc-
tion loss exceeds a predefined threshold, the input is labeled
as untrusted; otherwise, it s labeled as trusted. By integrating
contextual insights and multi-stage reconstruction, MARRS
serves as a robust mechanism for the detection and mitiga-
tion of adversarial activity in the network.

Formally MARRS is described as follows: Given a net-
work denoted as in Section 5, and the network KPI reports
R, we aim to identify a framework ¥ that will reconstruct the
original network reports. We examine the loss function score
2(F (R),R) between the reconstructed report ¥ (R) and the
original report (R). If it is higher than the threshold 7, the
classifier C will return trusted (i.e., 0), otherwise, untrusted
(see Eq. (2)).

aﬁﬂ:{a if, T > ((F(R),R) o

I, if, T <(F(R),R)

6.1 Feature Extraction and Initial AE Train-
ing

6.1.1 Feature Extraction

We begin by extracting relevant time-series features from the
network, summarized in Table 2. For a given O-RAN net-
work, we extract KPIs such as the physical resource block
(PRB) aggregation period, PRB downlink/uplink ratios, and
the amount of UE currently in the cell, newly entering UE,
and UE leaving the cell. Additionally, we extract UE-specific
metrics, including the average and standard deviation of the
Packet Data Convergence Protocol (PDCP) downlink and
uplink throughput, UE PRB downlink/uplink ratios, and sig-
nal quality indicators such as the reference signal received
power (RSRP) and signal-to-noise ratio (RSSNIR). In total,
these features result in 11 time-series features for each cell.
These features were extracted as they are the ones used in the
TS flow (defined in the OSC RIC [11]). Finally, all features
are standardized to produce scaled values and split to sliding
time windows denoted as X'~

6.1.2 Initial AE Training

After extracting X§1> from the network, we proceeded to
train a dedicated AE for each cell, denoted as AEC<1,1> . Bach
AE is based on an LSTM AE architecture and designed to
encode every time window x5!~ € X'> to a new dimen-
sional latent space representation emb,, and then decode it
back to the original xc<,_1>. Completing this phase results in a
trained LSTM AE for each cell in the network AEC<il>.

6.2 Latent Space Feature Creation

In this phase, we conduct a second round of feature extrac-
tion to generate enriched feature vectors for each cell, captur-
ing both contextual information from the specific cell and the
entire network. To achieve this, we leverage the embedded
(emb,,) latent space representations produced by the trained
AEZ'> from the initial feature set X', For each cell v{/,
we construct a new feature set by concatenating its latent
space embedding with an aggregated embedding (e.g., aver-
age) derived from the rest of the network.

1
— emd,; 3)

jevcl\{vld}

X2 =emb.,

where ¢; and c; represent the features associated with the cell
nodes vfl and v?l respectively and n = [V¢| represents the
number of cells in the network. This approach enriches the
feature set by capturing both local and network-wide contex-
tual information.

6.3 Enriched AE Training

The next step in our proposed framework involves training a
second round of AE models AES?> for each cell v{' € V<.
In this phase, the AEC<,-2> models are designed to encode the
enriched feature set ch2> to a new latent space using LSTM
layers similar to what was done in AEC<,-1>~ However, unlike
the initial round, these new AEs are trained not to reconstruct
their input (xc<l_2>) but to decode and reconstruct the first fea-
ture set xfib. Through this process the AE models learn to
incorporate information from the entire network while effec-
tively leveraging the specific reports from the individual cell,
resulting in a more network-context-aware representation.

6.4 Classification of Network Reports

After completing the second round of AE training, the frame-
work is ready to detect malicious activity. To classify and de-
tect this activity, we propagate the cell reports throughout the
framework; when cell reports reach the RIC, the first feature
set is extracted (X;'7) and encoded by its AES ">, produc-
ing the latent embedding (emb,;). This embedding is then
used to generate the enriched feature set X;2> as defined



Table 2: Cell and UE Feature X <!>

Type | Feature Name | Units | Description
- | Throughput | bps | The amount of data transmitted per unit of time across a cell
E MeasPeriodPrb kHz Physical Resource Block (PRB) is defined as a time-frequency resource in the physical layer of
— wireless communication systems
Q
@] | Number_UEs | # | Amount of UEs the cell is currently serving
| New_UEs | # | Amount of new UEs in the cell
| Left_UEs | # | Amount of UEs that left the cell
ThpDI_Mean s .
é “ Tthl_St d bps UE’s downlink throughput
o -
?_)D » | Rssnir_Mean dB RSSNIR (signal to interference & noise ratio) The ratio of the useful signal power to the
& g Rssnir_Std combined interference and noise power
< Rsrp_Mean . . . .
Rsrp_Std dBm | RSRP (Reference Signal Received Power) - The signal strength received by UE from cell

in Eq. (3), which is fed into the second AEs noted as AE;2>

to reconstruct the first feature set as chl> ", If the models
are trained effectively, the reconstruction loss ¢ between the
given feature set extracted from time window report xcfl>
and the framework output x' > is expected to be low for be-
nign reports and high for malicious or compromised reports.

To classify these reports, a threshold 7 needs to be de-
fined based on a certain policy provided by the operator. The
policy should determine which classification metrics (e.g.,
recall, precision, F1 score) should be optimized depending
on the operator’s preferences regarding the network’s perfor-
mance. Finally, reports with reconstruction loss ¢ exceeding
T are classified as untrusted, while those below T are clas-
sified as trusted as in Eq. (2).

6.5 Sequence-Based Detection (S-MARRS)

We propose an extension to MARRS approach which is
based on sequence detection denoted as S-MARRS. Dur-
ing inference, given a time window of the same size used
in training, we expect the framework to yield a low re-
construction loss for benign time windows and significantly
higher losses for malicious time windows. In this approach,
both malicious inputs and unrelated outliers that exceed the
framework’s reconstruction loss threshold are classified as
untrusted. This can result in a higher false positive rate (FPR)
in the detection method, if a benign sample is classified as
untrusted (positive) falsely. To address this issue and reduce
the FPR, we apply detection based on sequences of time win-
dows, using specific classification rules defined on the entire
sequence. In this detection method, given a trained frame-
work ¥, sequence of time windows S = (R, Ry, ..., R), clas-
sification rule R L (e.g. "majority vote"), and threshold T,
we classify the entire sequence as either trusted or untrusted
according to the rule. For example, consider a sequence of
network time windows’ KPI reports S = (Ry,R;, ..., Ry) size
k, "majority vote" rule, and classifier C (as in Eq. (2)), we

classify reports (R|,Rz,...,Ry):
untrusted, if, % < ):]](‘:1 C(R;,T)

trusted, else

CS(S,7) z{ “)

In this example, if most of the sequence exceeds T, the entire
sequence is classified as untrusted. This approach allows us
to reduce the false positives that may arise due to outliers and
focus more on malicious behavior.

7 Test Environment

We developed a simulation testbed environment that contains
two primary components, as illustrated in Fig. 6; (1) Wire-
less Network Simulator [17]: Which simulates real-time net-
work scenarios involving UE and gNB cells. (2) O-RAN
Software Community (OSC) Near-RT RIC Platform [11]:
Deployed within a Kubernetes cluster. This platform serves
as a dynamic hosting environment for the relevant xApps in
the TS flow, including the AD, QP, and TS xApps.

In deployment, these two components are isolated from
each other to simulate real-world usage and communicate
within a closed-loop system via a REST API. The interaction
occurs as follows: At the end of each simulation iteration, the
simulator reports the current KPIs (both UE and cell KPIs)
to the RIC cluster. Simultaneously, the TS xApp in the RIC
platform generates handover requests based on those KPIs
and sends them back to the simulator for UE allocation.

7.1 Wireless Network Simulator

The simulator is deployed separately from the near-RT-RIC
cluster on an AWS EC2 instance running Ubuntu 20.04 LTS
(Focal Fossa). The simulation begins with the configuration
of network parameters, including the geographical topology
size, initial locations and velocities of UE, and cell types
(e.g., gNB, eNB) along with their respective locations. The
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Figure 6: Testbed Environment; left - OSC near-RT RIC Ku-
bernetes cluster and right - the wireless network simulator.

simulation operates with two parallel threads, one of which
manages the core simulation loop, while the other hosts a
Flask app that listens for handover requests from the RIC.
Upon receiving a request, the Flask app processes it and up-
dates the target cell allocation for the relevant UE. In each
simulation iteration, UE either moves randomly or follow-
ing predefined trajectories, and the simulator generates up-
dated metrics for both UE and cells, formatted to align with
the RIC requirements. Each report has the following KPIs:
UE ID, serving cell ID, location, timestamp, PDCP aggrega-
tion period, PDCP throughput, PRB report timestamp, PRB
aggregation period, PRB throughput ratios, reference sig-
nal received power (RSRP), reference signal received quality
(RSRQ), and signal-to-noise ratio (SNIR). Cell KPIs include
the cell ID, timestamp, PDCP aggregation period, PDCP
throughput, PRB aggregation period, and PRB throughput.
In this way, the TS handover requests are reflected in real
time in the simulation, allowing live UE allocation.

7.2 OSC RIC Cluster

The RIC platform, deployed as a Kubernetes cluster on
an AWS EC2 instance running Ubuntu 20.04 LTS (Focal
Fossa), hosts the TS flow xApps (AD, QP, and TS) as indi-
vidual pods. It receives KPIs from the simulator, which func-
tions as the RAN. Upon receiving these KPIs, the KPIMON
xApp processes the metrics and writes them to the RIC’s In-
fluxDB pod. Once the data is populated in the RIC database,
the TS flow begins as described in Section 2.3, generating a
handover request. This request is sent back to the simulator,
completing one iteration of the closed-loop testbed. The pro-
cess repeats continuously until the simulation loop is done.
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8 Evaluation

8.1 Experimental Setting
8.1.1 Attack

Data Collection To demonstrate and evaluate the impact of
the APATE attack, we set up a network topology with six
gNB cells and 50 UEs randomly moving within this topol-
ogy as shown in Fig. 8a. At the end of each iteration in the
simulation loop, the simulator reports the state of the net-
work to the RIC cluster as described in Section 7. Then,
the KPIMON xApp populates the RIC DB with the reported
KPIs, and the TS flow begins. Once the TS makes a han-
dover decision (as described in Section 4) for the UE, the TS
sends it back to the simulator. The simulator receives the TS
handover request and updates the environment based on its
decision.
Attack Scenarios We evaluate APATE in two attack scenar-
ios using the described closed-loop simulation: (1) Single-
Attack Scenario (SAS): A single malicious cell (BSS5) exe-
cutes the APATE attack, manipulating its KPI reports to mis-
lead the TS into allocating it more UEs. (2) Multi-Attack
Scenario (MAS): Two malicious cells (BS1 and BS5) simul-
taneously execute the APATE attack, manipulating their KPI
reports to mislead the TS into allocating them more UEs.
For comparison, we establish corresponding benign base-
line scenarios where all cells report trusted KPI telemetry to
the RIC. To accurately model real-world attack progression,
we initialize both attack scenarios using identical conditions
to their benign baseline scenarios, while the benign scenarios
initialized randomly. The velocity steps are consistent across
all scenarios.
Adversarial Sample Generation To execute the APATE, we
employed the HopSkipJump attack [16] from the Adversar-
ial Robustness Toolbox (ART) [47] to generate adversarial
samples. This involved categorizing the QP outputs into four
quality levels: poor, average, good, and excellent, with the
goal of manipulating the QP to forecast a higher quality cat-
egory to the attacker cell than the true one.

8.1.2 Detection

Data Collection To evaluate MARRS’s detection capabil-
ities, we train the framework as described in Section 6.
The training process begins with data collection, conducted
through closed-loop benign simulation scenarios. In these
scenarios, we initialize a network topology consisting of six
gNB cells and 50 UEs, randomly moving within the topol-
ogy as illustrated in Fig. 8a. From these simulations, we ex-
tract relevant features, as detailed in Table 2 resulting overall
dataset for a training size of 10531 records.

Model Training The feature set, denoted as X <!>, serves as
the input for training the first layer of AE<'>s in the frame-
work. The AE<!> architecture consists of an LSTM encoder
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(a) SAS; BS5 (purple) is the malicious cell.
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(b) MAS; BS5 (purple) and BS1 (blue) are the malicious cells.

Figure 7: Amount of UE for each cell (BS1-BS6) during each of the network iterations (x-axis) in the examined scenarios: the

SAS, the MAS, and the corresponding benign scenario.

Table 3: Amount of UE for each cell in each scenario - corresponding to Fig. 7.

\ \ SAS \ MAS \

‘ ‘ Benign ‘ Malicious ‘ Difference ‘ Benign ‘ Malicious ‘ Difference ‘

‘ cell ID ‘ mean min max ‘ mean min max ‘ % ‘ mean min max ‘ mean min max ‘ % ‘
BS1 8.14 7 9 8.81 7 12 108.25% 8.97 8 10 13.83 8 19 154.16%
BS2 4.64 1 6 4.21 1 6 90.77% 4.27 2 7 3.73 1 7 87.46%
BS3 14.01 12 15 14.31 12 16 102.14% 6.82 4 10 5.55 4 7 81.40%
BS4 4.59 3 5 3.83 3 5 83.49% 11.04 3 16 8.45 2 13 76.53%
BS5 4.27 1 7 10.61 7 14 248.50% 4.56 2 7 11.21 6 17 245.68%
BS6 14.34 10 19 8.21 6 10 57.27% 14.34 10 20 7.23 4 10 50.39%

followed by an LSTM decoder with a fully connected (FC)
output layer. The models are implemented in PyTorch [55],
using the Adam optimizer and mean squared error (MSE)
as the loss function. After training the AE <I>g we extract
the second feature set (X <>>), according to Eq. (3), which
is subsequently used to train the next layer of AEs (AE<>>).
The AE<?>s use the same architecture, optimizer, and loss
function as the AE<!>s. Both AE layers are trained for
200 epochs and the hyperparameters such as the number of
LSTM layers hidden size, and learning rate are tuned using
Optuna [3]. In these experiments, we set the threshold policy
T to maximize the F1 score in the classification processes.
Compared Benchmarks All compered benchmarks below
were trained using the same dataset and evaluated on the
same test set. (1) Isolation Forest (IF), an anomaly detection
algorithm that isolates outliers by recursively partitioning
data and scoring it based on the number of splits required to
isolate an observation [36]. (2) One-Class SVM (OCSVM),
which learns a decision boundary to separate benign data
from outliers, treating all training data as belonging to one
class [35]. (3) Autoencoder (AE), which learns to compress
and reconstruct data using linear layers, with anomalies de-
tected by measuring reconstruction error, assuming that be-
nign data have lower errors than the anomalous data.
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8.2 Experimental Results

8.2.1 Attack

The experimental results of the APATE attack are presented
in Fig. 7 and summarized in Table 3. Fig. 7 presents the
network state for both attack scenarios and the correspond-
ing benign scenarios detailed in Section 8.1: (1) SAS with
BS5 as the malicious cell (Fig. 7a), and (2) the MAS with
both BS1 and BS5 as malicious cells (Fig. 7b). Each cell
(BS1-BS6) is presented in a different color, with the y-axis
representing the amount of connected UE during each iter-
ation. Table 3 summarizes the two scenarios for each cell.
Each row represents a cell, while the columns represent the
different scenarios; for each scenario, presented the average
amount of UE served, the percentage difference from the be-
nign scenario, and minimum and maximum UE counts.

When examining the results regarding the SAS, we see a
significant increase of 248.5% in the average amount of UE
served by the malicious cell BSS in the malicious scenario
compared to the benign scenario. Additionally, we observe
a higher minimum number of serving UE for BS5 in the ma-
licious scenario, indicating that fewer UE left compared to
the benign scenario. In the MAS, we see the attack’s impact
across the entire network. The malicious cells BS1 and BS5
increased the amount of their served UE by 154.16% and
248.5% respectively, while their neighbor cell BS6 suffered
a 50.39% reduction in its average amount of served UE.
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(a) Network topology during be-

(b) Network topology during
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Figure 8: Network topology during the benign scenario
(Fig. 8a) and MAS (Fig. 8b). The boxes (BS1 - BS6) are
the cells, and the circles (1-50) are the UE IDs. The colors
represent the UE’s association to a cell. Both Fig. 8a and
Fig. 8b provide a snapshot of the same simulation iteration.

Fig. 7 demonstrates the impact of the attack by compar-
ing UE distribution patterns across cells over time. In the
SAS shown in Fig. 7a, where malicious cell BS5 (purple)
executes the attack, we observe different behavior between
the benign and malicious scenarios. While the benign sce-
nario shows BS5’s UE count decreasing over time, the ma-
licious scenario shows a significant increase in its UE allo-
cations. The MAS shown in Fig. 7b, where both BS1 (blue)
and BS5 (purple) execute the attack, shows several distinct
patterns. In the benign scenario, both BS1 and BS5 maintain
relatively stable UE counts. However, during the attack sce-
nario, both malicious cells demonstrate increases in their UE
allocations. Notably, this attack significantly impacts neigh-
boring cell BS6 (brown), which experiences a substantial re-
duction in UE connections compared to its high allocation in
the benign scenario.

Fig. 8 presents the network states for two scenarios: the
benign scenario (Fig. 8a) and the MAS (Fig. 8b). In both
figures, circles represent UE, and boxes represent cells, with
each UE’s color indicating its serving cell. Both Fig. 8a and
Fig. 8b provide snapshots for a specific simulation iteration.
The figures illustrate the impact of the attack, which affects
not only the attacker’s cell but also neighboring cells, partic-
ularly BS6 (orange), by reducing the amount of UE it serves.

8.2.2 Detection

To evaluate MARRS method, we first demonstrate the im-
portance of gathering data over time in the simulation
testbed. The results are presented in Table 4, where each row
presents different subsets of the training set that were used
(x1,x2,x3,x4), and the columns present the accuracy, preci-
sion, recall, and F1 scores. As can be see in the table, the
more time the system operates, the more data it collects; ac-
cordingly, the classification metrics results improve.

Compared Benchmarks We compared MARRS’s perfor-
mance to that of other detection methods as detailed in Sec-
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Table 4: Accuracy of the MARRS method over time.

Training Set ‘ Accuracy Precision Recall F1 Score
x| \ 0.873 0.793 1 0.884
X1,X2 ‘ 0.984 0.986 0.922 0.949
xix,x3 | 0964 0.932 1 0.965
X1,X2,X3,X4 \ 0.992 0.958 1 0.978

tion 8.1. The results are presented in Table 5, where each
row represents a method used to detect the APATE attack,
and the columns contain the classification metric values on
the test set. As can be seen, MARRS outperforms all other
methods on the F1 score and accuracy metrics.

Table 5: Performance of the examined detection methods.

| Method | Accuracy Precision Recall  F1
2| IF | 0837 0.522 I 0.69
é | OCSVM | 0.871 0578 0985 0.730
2| LAE | 0873 0.793 I 0884

| MARRS | 0.992 0.958 1 0.978

Ablation Study In ablation studies, components of an ML
model are systematically removed or altered to assess their
impact on the model’s overall performance. The goal is to
determine how each part contributes to the overall effective-
ness of the model [43,45]. We employed this evaluation pro-
cess to examine the effectiveness of MARRS’s architecture
(see Fig. 5). In the first experiment of the ablation study just
the first layer of AEs (AE< > was used to encode and recon-
struct network KPIs and classify them based on their recon-
struction loss. In the second experiment, we trained the AE
for each cell using the concatenated average features from
the rest of the network along with the cell’s own feature set
(AE<'t>). This is in contrast to our detection method which
also employs two additional steps: latent space feature cre-
ation and enriched AE training (described in Section 6).
The results are summarized in Table 6, where each row
represents the experiment (AE<!> and AE<!*>), and the
columns contain the classification metric values. The results
show how incorporating latent space features as contextual
information from the entire network improves the detection
of malicious cell reports.
Sequence-Based Detection (S-MARRS) Fig. 9 presents the
results of our sequence-based detection approach (see Sec-
tion 6.5), which reduces the false positives that may result
from outliers and focuses on malicious behavior by examin-
ing a sequence of KPI time windows instead of an individual
time window. The classification rules used in this experi-
ment are as follows: A (all rule): The sequence is classified
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Figure 9: Sequence-based detection approach results.

Table 6: Ablation study results.

Layer ‘ Accuracy Precision Recall F1 Score
AE<> | 0917 0.932 1 0.964
AE<IT> ‘ 0.966 0.934 1 0.965
MARRS \ 0.992 0.958 1 0.978

as untrusted if all windows within the sequence exceed the
threshold 7'; otherwise, it is classified as trusted. M (major-
ity rule): The sequence is classified as untrusted if the ma-
jority of windows within the sequence exceed the threshold
T ; otherwise, it is classified as trusted.

Note that on the x-axes in Fig. 9, the number before the
letters "A" or "M" indicates the sequence size. The evalua-
tion results for accuracy, recall, and F1 score are summarized
in Fig. 9. In terms of precision, all configurations of "A" and
"M" obtained a perfect score of 1, however when a sequence-
based configuration was not used, which we refer to as the
1-MARRS (see Fig. 9 the last column) detection approach,
precision of 0.958 was obtained. The primary goal of adopt-
ing a sequence-based detection approach is to minimize the
FPR, and the results demonstrate that we have achieved this
objective. The FPR directly impacts precision and indirectly
influences metrics like recall and the F1 score. In configura-
tions where precision is a perfect 1, this indicates the absence
of false positives, i.e., benign time windows were not mis-
classified as untrusted. On the other hand, the non-sequence
detection approach achieved a perfect recall of 1 but at the
expense of a higher FPR, which reduced its precision com-
pared to the sequence-based configurations. This highlights
the tradeoff between high recall and precision when the FPR
is not adequately controlled.

9 Discussion

Throughout this paper, we have examined the security vul-
nerabilities arising from multi-operator deployments. We
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have demonstrated the need for robust security solutions
and regulatory constraints, compliance, and auditing in this
rapidly evolving domain. According to the introduced threat
model presented in Section 4, we demonstrated how mali-
cious cells can exploit the multi-operator network to manip-
ulate the TS flow and unfairly increase their UE allocations
(the APATE attack). The risks that arise from applying the
APATE attack, not only undermine the integrity of the net-
work but also degrades the QoE for UEs, presenting new se-
curity challenges for the O-RAN architecture.

However, the presented threat model (Section 4) is not
limited to scenarios that only involve malicious operators
as threat actors. A similar threat can emerge even in
single-operator networks if a cell’s supply chain is compro-
mised. An attacker who gains control of a cell via a sup-
ply chain breach could execute the APATE attack, result-
ing in disruptions similar to those detailed in Section 8 such
as QoE reduction, which could harm the operator’s reputa-
tion. Deploying MARSS on the near-RT RIC offers a so-
lution to these challenges as well, as it treats all telemetry
as untrusted, enabling the detection and mitigation of such
threats.

10 Conclusion and Future Work

This paper addresses O-RAN vulnerabilities in multi-
operator environments. We introduce the APATE to demon-
strate how a malicious operator can exploit these vulnera-
bilities by executing an evasion attack that misleads O-RAN
traffic steering and disrupts network load distribution. To
counter such threats and ensure the continuation of O-RAN’s
legitimate operation, we developed the MARRS framework,
designed to detect compromised telemetry in real time. Our
evaluation reveals MARRS achieves high precision, recall,
and F1 scores in detecting malicious cell behavior.

Future work can focus on enhancing the MARRS frame-
work by developing an innovative approach for automated
policy selection using deep reinforcement learning (DRL).
Currently, the policies (Section 6.4) in MARRS must be



manually managed by the operators, a process which may be
prone to human error. However, leveraging the RIC architec-
ture, it is possible to train a DRL-based policy-making model
within the service management and orchestration (SMO)
layer. This model would be able to be deployed as rApp
on the non-RT RIC and integrated with the MARRS xApp
hosted on the near-RT RIC via the Al interface. This au-
tomated approach could significantly improve the proposed
MARRS’s adaptability and efficiency while reducing human
involvement.
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