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Abstract—Kyber is a lattice-based key encapsulation mecha-
nism selected for standardization by the NIST Post-Quantum
Cryptography (PQC) project. A critical component of Kyber’s
key generation process is the sampling of matrix elements from
a uniform distribution over the ring Rq . This step is one of the
most computationally intensive tasks in the scheme, significantly
impacting performance in low-power embedded systems such as
Internet of Things (IoT), wearable devices, wireless sensor net-
works (WSNs), smart cards, TPMs (Trusted Platform Modules),
etc. Existing approaches to this sampling, notably conventional
SampleNTT and Parse-SPDM3, rely on rejection sampling. Both
algorithms require a large number of random bytes, which needs
at least three SHAKE-128 squeezing steps per polynomial. As a
result, it causes significant amount of latency and energy. In
this work, we propose a novel and efficient sampling algorithm,
namely Modified SampleNTT, which substantially reduces the
average number of bits required from SHAKE-128 to gener-
ate elements in Rq—achieving approximately a 33% reduction
compared to conventional SampleNTT. Modified SampleNTT
achieves 99.16% success in generating a complete polynomial us-
ing only two SHAKE-128 squeezes, outperforming both state-of-
the-art methods, which never succeed in two squeezes of SHAKE-
128. Furthermore, our algorithm maintains the same average
rejection rate as existing techniques and passes all standard
statistical tests for randomness quality. FPGA implementation
on Artix-7 demonstrates a 33.14% reduction in energy, 33.32%
lower latency, and 0.28% fewer slices compared to SampleNTT.
Our results confirm that Modified SampleNTT is an efficient
and practical alternative for uniform polynomial sampling in
PQC schemes such as Kyber, especially for low-power security
processors.

Index Terms—Kyber, SampleNTT, FPGA, Low Power, Parse,
Shake-128.

I. INTRODUCTION

Public-key cryptographic systems play a fundamental role in
ensuring secure communication over the internet by enabling
encryption, digital signatures, and key exchange protocols.
These protocols are primarily based on the hardness of math-
ematical problems such as integer factorization (RSA) and
the discrete logarithm problem (Elliptic Curve Cryptography,
ECC). However, the advent of quantum computing poses
a significant threat to the security of these cryptosystems.
When executed on a sufficiently powerful quantum com-
puter, Shor’s algorithm can efficiently solve these problems
in polynomial time, rendering traditional public-key cryptog-
raphy insecure. Researchers have begun to study quantum-

resistant public-key cryptographic algorithms to keep infor-
mation secure from the upcoming quantum computer attack.
This research area is known as Post-Quantum Cryptography
(PQC). To address this emerging challenge, the U.S. National
Institute of Standards and Technology (NIST) initiated the
Post-Quantum Cryptography (PQC) standardization process in
2016 to develop quantum-resistant cryptographic algorithms.
After four rounds of evaluation in 2022, NIST has decided
to standardize CRYSTALS-Kyber as a key encapsulation
mechanism (KEM) algorithm and CRYSTAL-Dilithium as a
signature scheme. The theoretical foundation of the various
lattice-based protocols is based on the computational hard-
ness of Learning With Error (LWE). Its variants over Ring
Learning With Error (RLWE) and [1] and Module Learning
With Error (MLWE) [2] have been thoroughly investigated
against both the classical and quantum adversaries. A growing
number of researchers are actively working on optimized
implementations of PQC schemes on Central Processing Units
(CPUs), Graphical Processing Units (GPUs), Application-
Specific Integrated Circuits (ASICs) and Field-Programmable
Gate Arrays (FPGAs), aiming to achieve optimal trade-offs
in terms of resource usage, latency, and energy consumption
across both software and hardware platforms. In particular,
processor based software implementations offer flexibility and
ease of deployment, whereas Application-Specific Integrated
Circuits (ASICs) and reconfigurable hardware (e.g., FPGAs)
provide high-performance and low-power solutions. FPGA-
based implementations are becoming more popular compared
to ASICs due to their cost-effectiveness and reconfigurable
nature. In contrast, a pure hardware (FPGA) implementations
can achieve significant performance by applying well-known
optimization techniques such as register balancing, parallel
processing, and efficient resource sharing. These designs are
often reconfigurable and cost-effective, making them suitable
for high-performance applications.

CRYSTALS-Kyber is a lattice-based cryptosystem whose
security relies on difficulty of solving the learning-with-errors
(LWE) problem in module lattices. It is a quantum-resistant
key encapsulation mechanism (KEM) that achieves IND-
CCA2 (indistinguishability under adaptive chosen ciphertext
attack) security. The fundamental algebraic operation in Kyber
is of the form As + e, where s and e are k-dimensional
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polynomial vectors, and A is a k× k polynomial matrix with
coefficients in the polynomial ring Rq = Z3329[X]/(X256+1).
Kyber supports three security levels - Kyber512, Kyber768,
and Kyber1024—corresponding to NIST security levels 1,
3, and 5, respectively, with the module dimension k set
to 2, 3, and 4. To improve the practical applicability of
Kyber, researchers have extensively focused on optimizing its
computational efficiency and reducing latency across various
algorithmic components. In the Kyber post-quantum crypto-
graphic scheme, one of the most computationally intensive
and resource-constrained operations are sampling, Number
Theoretic Transform (NTT)-based polynomial multiplication,
and cryptographic hashing. Wan et al. [3] implemented a
high-performance CRYSTALS-Kyber using an AI accelerator
on a GPU (NVIDIA GeForce RTX 3080). They employ an
NTT-box to perform the NTT/INTT operations efficiently,
particularly when the polynomial dimension is relatively small.
The implementation achieves a speedup of 6.47× compared
to the state-of-the-art on the same GPU platform. In [4],
authors proposed three methods to improve the NTT perfor-
mance: sliced layer merging (SLM), sliced depth first search
(SDFS-NTT) and entire depth-first search (EDFS NTT). They
uses kernel fusion-based memory optimization technique to
achieve a speedup of 7.5%, 28.5%, and 41.6% over the
existing implementation. Notably, EDFS-NTT is introduced
for the first time on a GPU platform (NVIDIA Titan V Volta
GV100 with 5120 CUDA cores). Zou et al. [5] developed
a RISC-V based processor: Seesaw, specifically designed to
accelerate the Kyber schemes. This paper implemented the
various components of the Kyber algorithm. Also, proposed
a rejection sampling architecture where as, two coefficients
are generated from the three uniform random bytes. Every
three 4-bit random values pad with a 4-bit zeros to form a 16-
bit word and is used to extract two matrix elements. In [6],
the paper proposed a dual-issue superscalar Kyber processor
(Super-K) based on RISC-V instruction set architecture (ISA).
It is a parallel three stage pipeline architecture which supports
conflict-free hash-based sampling and polynomial arithmetic
operations. The authors [6] also design a reconfigurable poly-
nomial arithmetic unit (PAU), which employs the fast modular
reduction method and optimizes the compress/decompress
process. This design reduced time overhead by 25%–33%
and improved the parallelism and throughput of the overall
processor. The work in [7], present a resource-efficient Kyber
processor on ASIC (40nm LP CMOS) platform. The design
incorporates a lightweight SHA-3 engine based on a half-
fold Keccak core and reconfigurable modular arithmetic units
(MAU) to compute the polynomial operations. The processor
achieves a minimal power consumption of 273µW and an
energy efficiency of 0.72 µJ per operation in Kyber. Kim
et al. [8] propose a configurable architecture for the Kyber
accelerator, introducing a Memory-based Number Theoretic
Transform (NTT) unit. The design also uses the Dadda tree
algorithm for modular reduction, which improves processing
speed, reduces hardware area, and increases data throughput.
The authors in [9], present a lightweight BRAM-free FPGA
implementation of the NTT/INTT unit in CRYSTALS-Kyber
They propose an optimized modular multiplier based on K-

RED [10] and lookup-table techniques. The design outper-
forms existing works by 36–75% in hardware efficiency and
achieves a 3.4–4.4× improvement in point-wise multiplica-
tion performance. An instruction set coprocessor for Kyber
is presented in [11] to design a high performance hard-
ware architecture. This architecture also implements on ASIC
platform which outperforms state-of-the-art implementations.
Article [12] implemented a Kyber using a non-memory-based
iterative NTT for polynomial multiplication, which avoids the
use of Block RAM on the Artix-7 FPGA. The authors in
[13] implemented a light weight crypto processor for Kyber.
Among all the aforementioned Kyber implementations, only
[12] and [13] report the implementation cost of conventional
SampleNTT.

A key computational process in Kyber is the generation
of a structured public polynomial matrix in the Number
Theoretic Transform (NTT) domain. These polynomials must
be uniformly distributed over the ring Rq . The standard
aforementioned implementations of Kyber utilize a rejection
sampling technique in their SampleNTT algorithm, where
random values are iteratively extracted from an input byte
stream generated from SHAKE-128, and out-of-range values
are discarded until all polynomial coefficients are assigned
valid values in Rq . To the best of our knowledge, all the
aforementioned literature related to Kyber implementation has
focused only on the NTT, polynomial multiplication, modules
reduction, and the memory storage required to store polyno-
mial coefficients and twiddle factors. The authors in [14] pro-
posed the first alternative to the rejection sampling algorithm
for Kyber, adopting a simple partial discard method instead
of the conventional rejection method used in SampleNTT. It
reduces the required byte stream compared to results in [15].
However, the article [14] did not implement their sampler on a
hardware, thereby making it difficult to justify if this method
will work in a practical implementation. Keep this in context,
we propose a new Modified SampleNTT implemented on a
hardware that not only drastically reduces energy consumption
and latency but also conserves all the statistical properties of
the conventional kyber SampleNTT. The major contributions
of our work are discussed below.

Our Contribution

1) In this work, we propose a new sampling technique
(namely Modified SampleNTT), that improves the ef-
ficiency of element generation in the polynomial ring Rq

under the Kyber lattice-based cryptographic scheme. In
particular, Modified SampleNTT offers hardware effi-
ciency improvements over the conventional SampleNTT
used in Kyber. It achieves a 33.14% reduction in en-
ergy consumption, 33.32% lower latency, and a 0.28%
decrease in slice utilization. All implementations were
performed and verified using the Vivado 22.04 tool on
the Artix-7 FPGA platform.

2) We demonstrate that Modified SampleNTT reduces the
average number of bits required to generate an element
in Rq when the XOF is instantiated with SHAKE-128.
Across all Kyber security levels (Kyber512, Kyber768,
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and Kyber1024), our method consistently consumes only
∼ 2523.8 bits, compared to ∼ 3785 bits in conventional
SampleNTT and ∼ 3470 bits in Parse-SPDM3. The
proposed algorithm successfully generates a full polyno-
mial inRq using exactly two squeezing steps of SHAKE-
128 in 99.16% of the cases. In contrast, existing ap-
proaches such as conventional SampleNTT and Parse-
SPDM3 fail to achieve this, consistently requiring three
or more invocations of SHAKE-128.

3) Furthermore, Modified SampleNTT maintains the same
average rejection sampling percentage as the existing de-
signs, SampleNTT and Parse-SPDM3, across all Kyber
security levels (as shown in Table III). The rejection rate
remains consistently within the narrow range of 18.84%
to 18.85%.

4) In addition, Modified SampleNTT passes all standard
statistical tests for randomness, including the Frequency,
Entropy, Kolmogorov–Smirnov (KS), Wald–Wolfowitz,
and Serial tests (see Table IV). These results confirm
that Modified SampleNTT retains the quality of uniform
sampling and exhibits randomness characteristics on par
with state-of-the-art algorithms like conventional Sam-
pleNTT and Parse-SPDM3.

The organization of the article is as follows: Section II
presents the preliminaries and problem statement. The pro-
posed Modified SampleNTT and its analysis are detailed in
Sections III and IV, respectively. The hardware architecture
and corresponding results are discussed in Sections V and VI.
Finally, the conclusions are presented in Section VII.

II. PRELIMINARIES

Algorithm 1 Kyber.CPAPKE.KeyGen(): Key Generation
[15]

1: Output: Secret key sk ∈ B12·k·n/8

2: Output: Public key pk ∈ B12·k·n/8+32

3: d← B32

4: (ρ, σ) := G(d)
5: N := 0
6: for i from 0 to k − 1 do
7: for j from 0 to k − 1 do
8: Â[i][j] := Parse(XOF(ρ, j, i))
9: . . .

A. Public Key Generation in Kyber: SampleNTT

The key generation algorithm of Kyber produces a secret
key sk ∈ B12·k·n/8 and a public key pk ∈ B12·k·n/8+32. To
derive a public key, the algorithm first constructs a matrix
Â ∈ Rk×k

q within the NTT (Number Theoretic Transform)
domain. This matrix is generated by invoking an algorithm
named SampleNTT k2 times. The SampleNTT algorithm
processes a byte stream B = b0, b1, b2, · · · ∈ B∗ and produces
the NTT representation â = â0+â1X+· · ·+ân−1X

n−1 ∈ Rq

of a ∈ Rq . The input byte stream for Algorithm SampleNTT
is generated using XOF. The function XOF is recommended
to be instantiated with SHAKE-128.

Algorithm 2 SampleNTT: B∗ → Rq [15]

1: Input: Byte stream B = β0, β1, β2, · · · ∈ B∗

2: Output: NTT-representation â ∈ Rq of a ∈ Rq

3: i := 0
4: j := 0
5: while j < n do
6: d1 := βi + 256 · (βi+1 mod +16)
7: d2 := ⌊βi+1/16⌋+ 16 · βi+2

8: if d1 < q then
9: âj := d1

10: j := j + 1

11: if d2 < q and j < n then
12: âj := d2
13: j := j + 1

14: i := i+ 3

15: return â0 + â1X + · · ·+ ân−1X
n−1

To sample an element uniformly from Rq , Algorithm Sam-
pleNTT extracts twelve-bit chunks sequentially from the input
byte stream and assigns a coefficient to the element only if the
extracted chunk falls within the required range. If the chunk is
out of range, it discards the chunk and extracts another twelve-
bit segment, following a simple rejection sampling method.
This process repeats until all coefficients of the element in Rq

are determined. Consequently, the number of bytes (or bits)
required by Algorithm SampleNTT to generate â ∈ Rq is not
fixed and depends on the input byte stream.

III. ModifiedSampleNTT

In this section, we present the design of Modified Sam-
pleNTT algorithm (refer Algorithm 4). The proposed algo-
rithm is an optimized polynomial sampling method that is
more efficient compared to the SampleNTT algorithm 2 used
in Kyber. The SampleNTT algorithm employs a rejection
sampling technique, takes a byte stream as input to gener-
ate the coefficients of the polynomial in Rq . In this paper,
Modified SampleNTT reduces the number of required byte
streams compared to SampleNTT. It ensures a consistent sam-
ple rejection rate and efficient use of randomness. Modified
SampleNTT takes an input byte stream B, and converts it
into a polynomial α̂ ∈ Rq . It extracts twelve-bit chunks at a
time and maps them into polynomial coefficients. Two twelve-
bit values, d1 and d2, are extracted from two consecutive
bytes in each iteration. In line [7-8], The first value, d1, is
computed by combining the ith byte and the next (i + 1)th

byte using bitwise OR operation. Then, apply a 12-bit mask to
take the relevant bits to make a number in the range [0, 4095].
Similarly, d2 is derived but with the byte order reversed to
ensure the randomness in the output. In line 9 and line 12, the
calculated values d1 and d2 are compared against the modulus
q = 3329 respectively;if the value is less than q, it is accepted
as a valid coefficient; otherwise it is rejected.

IV. ANALYSIS

We first present the comparative analysis of the aver-
age number of bits required to generate an element in Rq
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Algorithm 3 Parse-SPDM3: B∗ → Rq [14]

1: Input: Byte stream B = β0, β1, β2, · · · ∈ B∗

2: Output: NTT-representation â ∈ Rq of a ∈ Rq

3: i := 0
4: j := 0
5: while j < n do
6: d1 := 16 · βi + ⌊βi+1/16⌋
7: if d1 < 3584 then
8: i := i+ 1

9: d2 := (256 · βi mod+ 212) + βi+1

10: if d1 < q then
11: âj := d1
12: j := j + 1

13: if d2 < q and j < n then
14: âj := d2
15: j := j + 1

16: if d2 < 3584 then
17: i := i+ 2

18: i := i+ 1

19: return â0 + â1X + · · ·+ ân−1X
n−1

Algorithm 4 Modified SampleNTT: B∗ → Rq

1: Input: Byte stream B = β0, β1, β2, · · · ∈ B∗

2: Output: NTT-representation â ∈ Rq of a ∈ Rq

3: i := 0
4: j := 0
5: mask := 4095
6: while j < n do
7: d1 := ((βi | (256 · βi+1)) & mask
8: d2 := ((βi+1 | 256 · βi) & mask
9: if d1 < q then

10: âj := d1
11: j := j + 1

12: if d2 < q and j < n then
13: âj := d2
14: j := j + 1

15: i := i+ 2

16: return â0 + â1X + · · ·+ ân−1X
n−1

when XOF is instantiated with SHAKE-128 across three
Kyber security levels: Kyber512, Kyber768, and Kyber1024
(refer Table I). This metric quantifies the amount of ran-
domness extracted from the XOF, which in turn determines
the entropy and computational effort involved in generat-
ing uniform elements in the ring. We compare the con-
ventional SampleNTT, and Parse-SPDM3 with Modified
SampleNTT. For each security level, Modified SampleNTT
consistently achieves a significant reduction in the number
of bits required—approximately 2523.8 bits—compared to
conventional SampleNTT, which requires over 3785 bits, and
Parse-SPDM3, which uses around 3470 bits. The experi-
ments were carried out over 1 million iterations. These findings
confirm that Modified SampleNTT provides a more resource-
efficient approach to element generation in Rq . Reducing the
average number of bits needed per element in Rq leads to

less expansion of XOF expansion, lower energy consumption
and faster execution. Thus, Modified SampleNTT method
is suitable for practical deployment in resource-constrained
cryptographic environments.

Table II presents an analysis of the success percentage
for generating an entire polynomial in Rq using exactly two
squeezing steps of the SHAKE-128. Modified SampleNTT
achieves a 99.16% success rate in generating a full polynomial
using only two SHAKE-128 invocations, in contrast to the 0%
success rate of both conventional SampleNTT and Parse-
SPDM3. In addition, both SampleNTT and Parse-SPDM3
require at least three or more invocations of SHAKE-128 to
produce enough randomness for polynomial generation. Thus,
they incur additional computational cost, latency, and power
consumption. In contrast, Modified SampleNTT optimally
utilized the XOF output, and reduce the number of hash
function calls required to sample a polynomial in Rq .

Table III presents the average rejection percentage while
generating an element inRq when the XOF is instantiated with
SHAKE-128. Rejection sampling plays a key role in ensuring
uniformity of the generated elements. Modified SampleNTT
maintains rejection percentages that are statistically equivalent
to those of conventional SampleNTT and Parse-SPDM3
across all Kyber security levels. We note that our improve-
ments in bit consumption (Table I) and reducing the number
of hash calls of SHAKE-128 (Table II) do not compromise
sampling correctness and efficiency.

A. Statistical Analysis
In order to evaluate the statistical quality and randomness

of the sampled output sequences generated by Modified Sam-
pleNTT, a comprehensive benchmarking of well-established
randomness tests has been conducted. These tests are designed
to uncover different types of non-random patterns or statisti-
cal anomalies. We also conducted these randomness test on
existing state-of-the-art sampling algorithm such as conven-
tional SampleNTT and Parse-SPDM3 for the completeness.
Each subsection introduces the theoretical motivation and
mathematical formulation of the respective test, followed by
a detailed analysis of the results observed across the three
sampling algorithms.

1) Frequency Test: The Frequency Test is used to analyze
the uniformity of a sequence of discrete random variables.
The objective of this test is to determine whether all possible
symbols in the output sequence of a sampling algorithm appear
with approximately equal frequency, as expected in a truly uni-
form random process. Given a sequence S = {s1, s2, . . . , sn}
of n values sampled from a discrete set {0, 1, . . . , k−1}, let Oi

denote the observed frequency of symbol i and let the expected
frequency under the uniform distribution be E = n/k for all
i = 0, 1, . . . , k− 1. In the following, the observed frequencies
are compared with the expected ones using the chi-square (χ2)
statistic, defined as

χ2 =

k−1∑
i=0

(Oi − E)2

E
.

Under the null hypothesis H0 that the data is uniformly
distributed, the χ2 statistic follows a chi-square distribution
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TABLE I: Average numbers of bits required to generate an element in Rq when XOF is instantiated with SHAKE-128

Cipher SampleNTT Parse-SPDM3 Modified SampleNTT

Kyber512 3785.8446 3470.3500 2523.8184
Kyber768 3785.7993 3470.3177 2523.8201
Kyber1024 3785.8269 3470.3223 2523.8084

TABLE II: Success percentage that an element in Rq is generated using exactly two SHAKE-128 squeezing steps

SampleNTT Parse-SPDM3 Modified SampleNTT

0% 0% 99.16%

TABLE III: Average rejection percentage while generating an element in Rq when XOF is instantiated with SHAKE-128

Cipher SampleNTT Parse-SPDM3 Modified SampleNTT

Kyber512 18.84% 18.85% 18.84%
Kyber768 18.85% 18.84% 18.85%
Kyber1024 18.81% 18.82% 18.85%

with (k − 1) degrees of freedom. To determine whether the
observed sequence deviates significantly from uniformity, we
computed the p-value associated with the observed χ2 statistic.
If this p-value is smaller than a pre-determined significance
level α = 0.05, the null hypothesis is rejected, indicating that
the sequence does not exhibit uniform randomness. It is also
important to consider the standard deviation of the frequencies,
which gives an auxiliary metric of spread around the mean
frequency E. The standard deviation σ of the frequencies is
defined as:

σ =

√√√√1

k

k−1∑
i=0

(Oi − E)2,

A low standard deviation means values occur with nearly
equal frequencies, indicating uniformity, while a high value
suggests potential non-randomness. All three algorithms were
tested using 25, 600, 000 samples drawn over a value space
of size k = 3329. For an ideal uniform distribution, the
expected frequency per symbol is approximately 7689.997,
with a theoretical standard deviation around 87.66. The Mod-
ified SampleNTT method yielded a mean of 7690.00 and a
standard deviation of 87.66, producing a chi-square statistic
of 3326.6658 with a p-value of 0.503265, thereby passing the
test at the 0.05 significance level. Similarly, the standard Sam-
pleNTT method resulted in a chi-square statistic of 3342.4143
and a p-value of 0.426774, with a standard deviation of 87.87,
also passing the test. The Parse-SPDM3 method exhibited
slightly higher variability, with a standard deviation of 88.85, a
chi-square value of 3417.3402, and a p-value of 0.137072, but
still comfortably passed the threshold for statistical uniformity.
These results confirm that all three algorithms exhibit near-
uniform output distributions and demonstrate no statistically
significant deviation from ideal randomness as assessed by
the frequency test and the chi-square goodness-of-fit method.

2) Serial Test: The Serial Test (also known as the two-
dimensional frequency test) is a statistical tool that is used for
the evaluation of the uniformity and independence of adjacent
elements in a sequence. Let a sequence S = {x1, x2, . . . , xn}
consist of n samples where each xi takes values from a finite
set A = {0, 1, . . . , k − 1}. In the following, we construct
ordered pairs (x1, x2), (x2, x3), . . . , (xn−1, xn) resulting in
n−1 adjacent pairs. Under the hypothesis that S is generated
by a truly uniform and independent process, each possible
pair (a, b) ∈ A × A should appear with approximately equal
probability, i.e., 1

k2 . Since, there are n − 1 total pairs, the
expected count for each such pair is given by

E =
n− 1

k2
,

Let Oi,j denote the observed frequency of the pair (i, j) in
the sequence. We employ the chi-square statistic to measure
the deviation of observed pair frequencies from their expected
values

χ2 =

k−1∑
i=0

k−1∑
j=0

(Oi,j − E)2

E
. (1)

Equation 1 approximately follows a chi-square distribution
with k2 − 1 degrees of freedom under the null hypothesis
that the sequence is uniformly distributed and consecutive
elements are independent. The corresponding p-value is cal-
culated using the CDF of the chi-square distribution. A small
p-value (typically p < 0.01 or p < 0.05) indicates that
the observed distribution of pairs is significantly different
from the expected uniform distribution. For all three sam-
pling algorithms Modified SampleNTT, SampleNTT, and
Parse-SPDM3—the chi-square statistic was approximately
11081986, with 11082240 degrees of freedom. This yielded
a consistent p-value of ≈ 0.521457 in each case. Since the
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p-value exceeds the common significance level of 0.05, the
results indicate that all three algorithms produce sequences
that exhibit randomness in terms of serial correlation.

3) Runs Test: The Runs Test evaluate the randomness of a
binary sequence by analyzing the occurrence and distribution
of uninterrupted subsequences (called “runs”) of similar ele-
ments. In other words, the test checks whether the number
and lengths of such runs are consistent with what would
be expected in a truly random sequence, where each bit is
independently and uniformly distributed. Let us consider a
binary sequence S = {x1, x2, . . . , xn} of length n, where
each xi ∈ {0, 1}. A run is defined as a maximal contiguous
subsequence of identical bits. For example, in the sequence
S = 00110011, there are four runs: two of 0s and two of 1s,
with various lengths. We assume that the bits are independent
and identically distributed with equal probability of 0 or 1. Let
n0 and n1 denote the total number of 0s and 1s, respectively,
in the sequence. The total number of runs, denoted R, can be
determined by iterating through the sequence and incrementing
the run count each time a change in bit value is observed. Let
µR, and σ2

R denotes respectively, the expected number of runs
under the hypothesis of randomness, and the corresponding
variance. Using these parameters, the test statistic is computed
as a standard normal variable:

Z =
R− µR

σR
.

Under the null hypothesis that the sequence is random, the
value of Z follows a standard normal distribution. A p-value
is then computed from Z, and the null hypothesis is rejected
if this p-value falls below a pre-determined threshold, such as
0.05 or 0.01. By mapping integer sequences to binary (e.g.,
thresholding), one can apply the test in our case.

For the Modified SampleNTT implementation, the ob-
served number of runs was 499470 against an expected value
of 500000.9997, yielding a Z-score of −1.0620 and a p-value
of 0.4882. The conventional SampleNTT implementation
showed 499777 runs against expected 500000.8330, with a Z-
score of −0.4477 and a p-value of 0.3544. Lastly, the Parse-
SPDM3 variant produced 500621 runs against the expected
500000.9804, resulting in a Z-score of 1.2400 and a p-value
of 0.2150. In all three cases, the p-values were well above
the conventional significance threshold of 0.05, leading to the
conclusion that the null hypothesis of randomness could not be
rejected. Thus, the output sequences from all three protocols
are consistent with what would be expected from a random
source in terms of run behavior.

4) KS Test: The Kolmogorov–Smirnov (KS) Test is a non-
parametric statistical method used to assess the goodness-of-
fit between an empirical distribution function (EDF) derived
from a given data sample and a reference CDF. In other
words, KS test can be used to test whether a sample of
data conforms to a specified probability distribution. The
EDF of the observed data is compared to the CDF of the
theoretical distribution. The test statistic, denoted Dn, is
defined as the supremum of the absolute differences be-
tween these two functions over the entire range of the data:
Dn = supx |Fn(x) − F (x)|, where Fn(x) is the EDF and

F (x) is the CDF of the reference distribution. In the case
of a two-sample K-S test, the test compares two empirical
distributions Fn(x) and Gm(x) from independent samples,
using the test statistic Dn,m = supx |Fn(x) − Gm(x)|. To
determine statistical significance, the computed test statistic
is used to compute a p-value. A smaller KS statistic value
suggests a closer match to the reference distribution. We took
the reference distribution to be uniform. For all three sam-
pling algorithms Modified SampleNTT, SampleNTT, and
Parse-SPDM3—the KS statistics were 0.00208, 0.00082, and
0.00106 respectively, with corresponding p-values of 0.7777,
0.5073, and 0.2041. Since all p-values are greater than the
common significance threshold of 0.05, the null hypothesis
that the sample follows the reference distribution cannot be
rejected in any case. These results confirm that the outputs of
all three protocols conform closely to the uniform distribution
and can be considered statistically random under the KS test.

5) Entropy Test: The Entropy Test quantifies the level
of uncertainty or unpredictability in a sequence of discrete
random variables. The motivation behind this test is based on
the idea that a truly random sequence should exhibit maximum
entropy. Mathematically, for a discrete random variable X with
a finite set of outcomes {x1, x2, . . . , xk} and corresponding
empirical probabilities pi = Pr(X = xi) for i = 1, 2, . . . , k,
the Shannon entropy H(X) is defined as:

H(X) = −
k∑

i=1

pi log2 pi. (2)

This measure reaches its maximum value when all outcomes
are equally likely, i.e., when pi = 1/k for all i, resulting in
Hmax = log2 k. We consider a sequence S = {s1, s2, . . . , sn}
consisting of n symbols drawn from an alphabet of size k.
The test involves counting the occurrences of each symbol
xi in S to estimate their empirical probabilities pi = fi

n ,
where fi is the frequency count of xi. The entropy of the
sequence is then computed using the formula above. This
value is then compared to the theoretical maximum entropy
log2 k expected from a perfectly uniform random distribu-
tion. A small deviation from the maximum indicates good
randomness, while a significant drop suggests potential bias
or pattern structure in the data. We utilized the entropy test
to assess the unpredictability in the sequence outputted by
SampleNTT, Modified SampleNTT, and Parse-SPDM3.
The entropy H of a discrete probability distribution over a set
of size k = 3329 is maximized when all possible outcomes
are equally likely, in which case the expected entropy value
is Hexpected = log2(3329) ≈ 11.7009. For each of the three
sampling schemes, the observed entropy was computed using
Equation 2. All three methods yielded nearly identical empiri-
cal entropy values of H = 11.7008, which are extremely close
to the theoretical maximum.

V. HARDWARE ARCHITECTURE

This section discusses the hardware architectures of con-
ventional SampleNTT and Modified SampleNTT.
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TABLE IV: Statistical Test Results for Randomness

SampleNTT Parse-SPDM3 Modified SampleNTT

Frequency Test ✓ ✓ ✓
Entropy Test ✓ ✓ ✓
Kolmogorov-Smirnov (KS) Test ✓ ✓ ✓
Wald-Wolfowitz Test ✓ ✓ ✓
Serial Test ✓ ✓ ✓

A. Conventional SampleNTT

As shown in Fig. 1, the conventional SampleNTT used in
Kyber has 9 sub components.

1) Seed Memory (SeedMem): Seed Memory (SeedMem)
is a First In First Out (FIFO) memory which stores 504
bytes generated by SHAKE-128 algorithm used in Kyber
variants. This block has 7 ports : clk_rd, clk_wr, rd_en,
wr_en, rst, din and dout. The SeedMem_ctrl generates the
control signals : rd_en, wr_en, rst of SeedMem to read the
output B = [β0, β1, β2, ...] from SeedMem. The output of
SeedMem is buffered in βi Block, βi+1 Block and βi+2

Block blocks.
2) Seed Memory Controller SeedMem_ctrl: This

SeedMem_ctrl module generates control signals : rd_en,
wr_en, rst for the SeedMem. Once the conventional
SampleNTT is enabled, SeedMem_ctrl reads bytes from
SeedMem on each rising clock edge and sends them to the
βi, βi+1, and βi+2 blocks.

3) Controller (CTRL): The Controller (CTRL)
block generates enable (en) and reset (rst) signals for
SeedMem_ctrl, βi, D1_Gen, D2_Gen, Rejecter block,
βi+1 block and βi+2 blocks.

4) βi Block: The βi block latches the 0th, 3rd, 6th, ... bytes
from SeedMem when βi_en from CTRL is high.

Fig. 1: Hardware Architecture of Conventional SampleNTT
used in Kyber

5) βi+1 Block: The βi+1 block latches the 1st, 4th, 7th, ...
bytes from SeedMem when βi+1_en from CTRL is high.

6) βi+2 Block: The βi+2 block latches the 2nd, 5th, 8th, ...
bytes from SeedMem when βi+2_en from CTRL is high.

7) D1 Generator (D1_Gen): When CTRL sets
D1_Gen_en high, the D1 Generator (D1_Gen) reads

βi from the βi Block and βi+1 from the βi+1 Block, then
executes line 6 of Algorithm 2.

8) D2 Generator (D2_Gen): When CTRL sets
D2_Gen_en high, the D2 Generator (D2_Gen) reads
βi+1 from the βi+1 Block and βi+2 from the βi+2 Block,
then executes line 7 of Algorithm 2.

9) Rejecter Block (Rej_Block): When CTRL sets
Rej_en high, the Rejecter Block (Rej_Block) checks
whether D1 and D2 are less than q or not (line 8 and line
11 2). If this condition holds true, D1 and D2 are accepted;
otherwise, they are rejected.

Fig. 2: Timing Diagram of Conventional SampleNTT used in
Kyber

Fig. 2 shows the timing diagram of conventional Sam-
pleNTT. The β0, β1, β2, .. are read in every clock cycle
from SeedMem. The values β0, β3, β6, . . . are latched by the
βi Block every 3 clock cycles. Similarly, β1, β4, β7, . . . are
latched every 3 clock cycles by the βi+1-Block, and β2, β5, β8,
. . . are latched every 3 clock cycles by the βi+2-Block. The βi,
βi+ 1 and βi+ 2 are latched for 3 clock cycles, 2 clock cycles
and 1 clock cycles respectively. Once βi and βi+1 are latched
by the βi Block and βi+1 Block, respectively, the D1_Gen
is ready to compute D1. Similarly, once βi+1 and βi+2 are
latched by the βi+1 Block and βi+2 Block, respectively, the
D2Gen is ready to compute D2. The Rejector Block starts
once D1 is computed and compares D1 with q. After D1 is
ready, D2 is computed in the next clock cycle. The Rejector
Block then continues by comparing D2 with q. As a result, the
Rejector Block is activated in every 3-clock-cycle period. For
the first 2 clock cycles, the Rejecter Block remains active,
and for the remaining 1 clock cycle, it is inactive.
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B. Proposed Modified SampleNTT
The proposed modified SampleNTT stated in algorithm

4 does not required βi+2 Block. As shown in Fig. 3, this
Modified SampleNTT has three primary changes.

1) βi+2 Block: The modified SampleNTT does not re-
quire βi+2 Block. The D1 and D2 can be computed directly
from βi and βi+1.

2) CTRL: As βi+2 Block is absent, the control signals
of βi+2 Block from CTRL are not required. Therefore, it
reduces the implementation cost of CTRL.

3) D1 & D2 Generator (D1_Gen & D2_Gen): As shown
in lines 7 and 8 of Algorithm 4, apart from the OR operation,
both lines involve a multiplication by 256 and an AND
operation with the mask value 4095.To make the hardware
more efficient, we replace these two operations with two
lightweight operations.

• The multiplication by 256 is replaced by the left-shifting
βi+1 (line 7) and βi (line 8) by 8 bits.

• The mask operation with 4095 is replaced by truncating
all bits beyond the 12th bit (since 212 = 4096).

4) Seed Memory: The modified SampleNTT requires only
∼ 336 bytes to store in SeedMem for Kyber standard,
while the conventional SampleNTT requires ∼ 504 bytes for
storage in SeedMem.

CTRL

Seed
Mem
ctrl

Seed
Mem

i
D1
Gen

D2
Gen

Rejecter

validB

i+1

ˆ

D1_Gen_en

D2_Gen_en Rej_en

i_en

i+1_en

Fig. 3: Hardware Architecture of Modified Sample NTT

Fig. 4: Timing Diagram of Modified SampleNTTs

VI. HARDWARE RESULTS & DISCUSSIONS

The conventional SampleNTT used in Kyber, Parse-
SPDM3 and proposed Modified SampleNTT are imple-

Fig. 5: Reduction of Implementation Cost of Our
Modified SampleNTT⋆ + SHAKE− 128⊛ and SPDM3⋆

+ SHAKE− 128⊛ as Compared to SampleNTT⋆ +
SHAKE− 128⊛

Fig. 6: Reduction of Implementation Cost of Our Modified
SampleNTT⋆ and SPDM3⋆ as Compared to SampleNTT⋆

mented on Artix-7 (xc7a100tcsg324-3) FPGA with the
V ivado 22.02 tool and the VHDL language. This section
discusses the impacts of the adopted changes on the imple-
mentation cost of our Modified SampleNTT. The detailed
implementation costs of our conventional SampleNTT⋆,
the SampleNTT from [12], the SampleNTT from [13],
Parse-SPDM3⋆ from [14], and the proposed Modified
SampleNTT⋆ are presented in Table V. It is to be noted that
the ⋆ symbols indicate the hardware designs are implemented
by us. To the best of our knowledge, articles [12] and [13] are
the only works in the literature that reported the implementa-
tion cost of the SampleNTT.

1) Impact on Energy and Time: Our proposed modified
SampleNTT⋆ can generate the required number of d1s and
d2s using 336 input bytes generated from the SHAKE− 128⊛,



9

Design Names # Slices # LUTs # FFs # DSPs Energy
(nJ)

Clock
Period (ns)

# Clock
Cycles

Sample NTT [12] 62 116 141 0 NA* NA* NA*
Sample NTT [13] 78 246 133 0 NA* 3.7 4623
Sample NTT ⋆ 44 113 96 0 ∼470 10 ∼474
- SeedMem_ctrl 9 15 20 0
- βi Block 1 0 8 0
- βi+1 Block 3 0 8 0
- βi+2 Block 1 0 8 0
- d1_gen 4 6 12 0
- d2_gen 7 13 12 0
- rejecter 9 3 15 0
- seed_mem 22 72 10 0
- CTRL 6 4 6 0
SHAKE-128 ⊛ 4115 37577 47898 0 ∼3114 3.264 3324
SPDM3 ⋆ 40 106 79 0 ∼320 10 ∼316
- SeedMem_ctrl 6 9 19 0
- βi Block 2 0 8 0
- βi+1 Block 3 0 8 0
- d1_gen 9 14 12 0
- d2_gen 4 4 12 0
- rejecter 10 4 15 0
- seed_mem 22 72 10 0
- CTRL 3 3 6 0
SHAKE-128 ⊛ 4115 37577 47898 0 ∼3114 3.264 3324
Our Modified Sample NTT ⋆ 32 106 79 0 ∼320 10 ∼316
- SeedMem_ctrl 5 9 20 0
- βi Block 2 0 8 0
- βi+1 Block 3 0 8 0
- seed_mem 23 72 10 0
- d1_gen 7 14 15 0
- d2_gen 4 4 15 0
- rejecter 9 4 15 0
- CTRL 2 3 3 0
SHAKE-128 ⊛ 4115 37577 47898 0 ∼2076 3.264 2216
The proposed Modified SampleNTT⋆ is successfully tested with Kyber-512 on the Artix-7 FPGA (xc7a100tcsg324-3).

Note: NA* = Data Not Available; ⋆ = Designed by us; ⊛ = AMD-Xilinx Vitis Security Library [16].

TABLE V: Implementation Costs of Sample NTTs

whereas the conventional SampleNTT⋆ and Parse-SPDM3⋆

require 504 bytes from the SHAKE− 128⊛. These extra
bytes generated in SHAKE− 128⊛ for both the conven-
tional SampleNTT⋆ and the Parse-SPDM3⋆ require extra
clock cycles, which causes a significant amount of latency
and energy. As a result, as shown in Fig. 5, our Mod-
ified SampleNTT⋆ alone efficiently reduces energy con-
sumption by 31.91% and latency by 33.33%, compared to
the conventional SampleNTT⋆ used in Kyber. Our Modi-
fied SampleNTT⋆+SHAKE− 128⊛ efficiently reduces energy
consumption by 33.14% and latency by 33.32%, compared
to the SampleNTT⋆+SHAKE− 128⊛ used in Kyber. On
the other hand, Parse-SPDM3⋆ is able to reduce energy
consumption by 4.18% and latency by 10.13%, compared to
the SampleNTT⋆ used in Kyber. It is to be noted that the
main SampleNTT⋆ and SHAKE− 128⊛ can run in paral-
lel in all the 3 designs. However, the latencies of Parse-
SPDM3⋆, the conventional SampleNTT⋆ and our Modified

SampleNTT⋆ are calculated as the sum of the latencies
of SampleNTT⋆/Parse-SPDM3⋆ and SHAKE− 128⊛. The
detailed timing diagram of conventional SampleNTT used in
Kyber and our Modified SampleNTTs are shown in Fig. 2 and
Fig. 4 respectively. As the SampleNTT used in Kyber requires
3 bytes from SeedMem to generate one set of d1, d2, there is
an empty clock cycle after generating each set. However, our
modified SampleNTT requires only 2 bytes from SeedMem
to generate one set of d1, d2, and thus does not incur any
empty clock cycles. As a result, considering the rejection rate
to generate 256 sets of d1, d2, our SampleNTT requires∼ 316
clock cycles, whereas the conventional SampleNTT requires
∼ 474 clock cycles. In our modified design, using fewer bytes
from Shake-128 and eliminating the empty clock cycle in
SampleNTT significantly reduces both energy consumption
and latency.

2) Impact on Area: Our modified SampleNTT⋆ eliminates
the βi+2 blocks. Therefore, our modified SampleNTT⋆ can
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produce the required number of d1 and d2 using only 336
bytes generated from SHAKE− 128⊛, instead of the 504 bytes
required by the conventional SampleNTT⋆. As a result, it
reduces the FIFO depth of the SeedMem used to store the
bytes from SHAKE− 128⊛. Additionally, the CTRL block of
our SampleNTT⋆ becomes lightweight as it no longer needs
to generate control signals for the βi+2 block. As a result, the
slice consumption of our modified SampleNTT⋆ is reduced by
27.27% compared to the conventional SampleNTT⋆ used in
Kyber, whereas Parse-SPDM3⋆ achieves only a 9.09% reduc-
tion in slice overhead relative to conventionalSampleNTT⋆.
Availability of Codes
The RTL and the statistical test code for this work are uploaded
to GitHub 1.

VII. CONCLUSION

SampleNTT and Shake − 128 are among the most fun-
damental and critical components of next-generation security
processors incorporating Kyber. However, SampleNTT and
Shake − 128 cause significant energy and latency overhead,
which makes them unsuitable for low-power field embedded
systems. SampleNTT requires an adequate number of random
bytes from Shake − 128 in Kyber. Generating more random
bytes using Shake − 128 leads to increased latency and
energy consumption. To make Kyber suitable for low-power,
resource-constrained devices, the proposed Modified Sam-
pleNTT adopts two measures without affecting its statistical
properties: (i) It reduces the required number of random
bytes form Shake− 128 and (ii) The proposed algorithm for
Modified SampleNTT avoids extra buffering of random byte
and develops light wight Controller. As a result, our Modified
SampleNTT+Shake − 128 reduces energy consumption by
33.14%, latency by 33.32% and slice utilization by 0.28%,
compared to the SampleNTT+Shake − 128 used in Kyber.
Meanwhile, our Modified SampleNTT alone reduces energy
consumption by 31.91%, latency by 33.32% and slice utiliza-
tion by 27.27% compared to the SampleNTT used in Kyber.
As part of future work, we aim to further reduce the rejection
sampling percentage while preserving uniformity and correct-
ness. Additionally, an in-depth study of the rejection sampling
behaviour in other lattice-based schemes such as Dilithium
will be performed to explore the broader applicability of our
optimization techniques.
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