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Abstract

Synthetic data has become an increasingly popular way
to share data without revealing sensitive information.
Though Membership Inference Attacks (MIAs) are widely
considered the gold standard for empirically assessing
the privacy of a synthetic dataset, practitioners and re-
searchers often rely on simpler proxy metrics such as
Distance to Closest Record (DCR). These metrics esti-
mate privacy by measuring the similarity between the
training data and generated synthetic data. This simi-
larity is also compared against that between the training
data and a disjoint holdout set of real records to con-
struct a binary privacy test. If the synthetic data is not
more similar to the training data than the holdout set
is, it passes the test and is considered private. In this
work we show that, while computationally inexpensive,
DCR and other distance-based metrics fail to identify
privacy leakage. Across multiple datasets and both classi-
cal models such as Baynet and CTGAN and more recent
diffusion models, we show that datasets deemed private
by proxy metrics are highly vulnerable to MIAs. We
similarly find both the binary privacy test and the contin-
uous measure based on these metrics to be uninformative
of actual membership inference risk. We further show
that these failures are consistent across different metric
hyperparameter settings and record selection methods.
Finally, we argue DCR and other distance-based metrics
to be flawed by design and show a example of a simple
leakage they miss in practice. With this work, we hope
to motivate practitioners to move away from proxy met-
rics to MIAs as the rigorous, comprehensive standard
of evaluating privacy of synthetic data, in particular to
make claims of datasets being legally anonymous.

*Equal contribution

1 Introduction

Synthetic data is a popular tool for sharing and using
sensitive data, used across fields such as medicine [12, 14],
finance [57] and public security [48]. Synthetic data gen-
erators (SDGs) aim to learn the underlying distribution
of a dataset and generate synthetic data that preserves
its statistical properties while protecting the privacy of
individual records.

Membership inference attacks (MIAs) are widely
accepted as the standard method to empirically as-
sess information leakage and the privacy of synthetic
data [26, 38, 56, 16, 6, 31] and machine learning models
in general [10, 50, 69], both as a direct attack, and as an
upper bound on more severe threats such as reconstruc-
tion or attribute inference attacks [52, 5]. MIAs evaluate
the privacy of synthetic data at an individual level by
assessing the risk of a particular record’s membership
in the training dataset being correctly inferred by an
attacker.

While MIAs are the state-of-the-art method for eval-
uating privacy, they typically involve training multiple
generative models, leading to high computational costs
and motivating the use of simpler distance-based metrics.
Distance to Closest Record (DCR) and similar metrics
are commonly used as a proxy for MIAs, both in commer-
cial products [41, 58] and for evaluating novel methods
such as diffusion models [32, 70, 46]. These metrics as-
sess the privacy of a synthetic dataset as a whole by
measuring the similarity between synthetic and training
data. Intuitively, the less similar a synthetic dataset is
to its training data, the stronger the assumed privacy.
The metrics can be used either to construct a binary
privacy test τDCR classifying a dataset as “private” or
“non-private,” or directly as a continuous measure of pri-
vacy µDCR. The binary test compares the distribution of
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distances between synthetic and training records against
the distances between a set of real holdout records and
the training records, typically at a certain percentile.

Contribution. In this work, we evaluate the effective-
ness of DCR and similar metrics as a proxy for mem-
bership inference attacks, and show them to be an in-
adequate measure of both information leakage and the
privacy risk of generated synthetic data.

First, we show proxy metrics to provide a misleading
measure of privacy risk for well-known classical SDGs:
IndHist [49], Baynet [71], and CTGAN [64]. Across 9 ex-
perimental setups, we generate more than 10,000 datasets
and find the majority of them to be deemed private by
proxy metrics as applied in industry. Yet, instantiating
MIAs against outlier records in these datasets reveals
significant information leakage, with records shown to
be highly vulnerable to membership inference attacks
(AUC> 0.8). Worse, we show MIAs to perform equally
well against datasets deemed “private” and “non-private”
by DCR, and an absence of correlation between MIA
performance and µDCR.

Second, we show our empirical results to extend to dif-
fusion models, a more recent popular class of synthetic
data generation models. For diffusion models TabD-
DPM [32] and ClavaDDPM [46], we generate synthetic
datasets considered private by τDCR, and instantiate
the state-of-the-art MIAs for tabular diffusion models
against them. Similarly to classical models, the MIAs
reach high performance (TPR at FPR=0% above 10%)
despite passing the binary privacy test τDCR. µDCR also
shows no correlation with vulnerability to MIAs.

For computational reasons, we previously focused on
outlier records which are more likely to be vulnerable to
MIAs in the case of classical models. We here study for
the Baynet generator and Adult [7] dataset the risk for
every record in the target dataset and show that the risk
is not limited to outliers. Though the synthetic datasets
pass the binary privacy test, an MIA is able to infer
the membership of 20% of the training records better
than a random guess (AUC≥ 0.6). We also show that
our findings hold across different choices of the τDCR
hyperparameter, the comparison percentile. Finally, we
study a real-world example of a simple privacy leakage
that the proxy metrics are by-design unable to detect.

Taken together, our results show DCR and other

distance-based metrics to be poor proxies for measuring
privacy risk. They detect only the most severe privacy
violations, such as when synthetic data consists mostly of
copies of the real data, and potentially leaving more sub-
tle information leakage undetected. They also seem to
show no meaningful correlation with actual privacy risk,
making them unreliable even as general indicators of pri-
vacy. We hope this work will motivate rigorous privacy
evaluation using state-of-the-art attacks defined in the
literature, and encourage researchers and practitioners
to move away from using distance-based metrics.

2 Preliminaries

In this section, we introduce relevant notation, synthetic
data generators, and methods for measuring privacy of
synthetic data.

Notation. We denote a record consisting of k at-
tributes with xi = (xi,1, . . . , xi,k) ∼ D, where D is
the distribution over feature space F = F1 × . . . × Fk.
D = {x1, . . . , xm} denotes a tabular dataset where one
record xi corresponds to one row.

Synthetic Data Generators (SDGs). Let Dtarget =
{x1, . . . , xn} be a real tabular dataset. A generative
model M = ϕ(Dtarget) trained using procedure ϕ esti-
mates the underlying distribution of Dtarget. A synthetic
dataset Dsynthetic ∼ M can then be sampled from the
model. In general, we consider synthetic datasets of the
same size as the training data, |Dsynthetic| = |Dtarget|.
We distinguish two main categories of SDGs in this paper,
classical and diffusion models. Classical models are older
generative models that typically learn distributions of
feature values in the training dataset. Diffusion models,
introduced more recently, generate data through an iter-
ative denoising process, allowing them to capture more
complex data distributions and dependencies.

Measuring privacy of synthetic datasets. The
standard approach for evaluating the privacy risk of syn-
thetic data in the literature are membership inference
attacks (MIAs). They estimate the risk of a record’s
membership in the training data of an SDG being cor-
rectly inferred by an attacker. However, MIAs are typ-
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ically computationally expensive, leading practitioners
and researchers to rely on simpler distance-based metrics
such as DCR as proxies. In the following sections, we
introduce these methods in more detail and evaluate
their effectiveness.

3 Privacy Evaluation Techniques
for Synthetic Data

In this section, we describe how proxy metrics and mem-
bership inference attacks are used in practice to empiri-
cally evaluate the privacy risk of synthetic data.

3.1 Distance to Closest Record (DCR)
and Other Distance-Based Metrics

Proxy privacy metrics use a notion of distance between
a synthetic dataset Dsynthetic ∼ M(Dtarget) and its cor-
responding training dataset Dtarget. They then use this
metric to either to construct a binary privacy test or as
a continuous measure of privacy.

DCR is the one of the most popular metrics used
for evaluating privacy risk of synthetic data in both
industry [41, 58, 66, 39, 4] and academia [14, 35, 22, 55,
61, 65, 68, 9, 32, 70, 72, 74, 53, 46]. It defines a vector of
per-record distances between datasets D1 and D2, where
each entry is the distance from a record in D1 to its
nearest neighbor in D2:

dDCR(D1, D2) = { min
xj∈D2

dist(xi, xj)}|D1|
i=1

where dist(xi, xj) could be any distance metric but is
typically the sum of euclidean distance for continuous
features and hamming distances for categorical features
between xi and xj [41, 4, 53, 32].

Other popular proxy metrics include Nearest Neigh-
bor Distance Ratio (NNDR) and Identical Match Share
(IMS). NNDR defines the distance vector dNNDR(D1, D2)
by computing, for each record in D1, the ratio between
the distance to its nearest neighbor and the distance to its
second-nearest neighbor in D2. Instead of a distance vec-
tor, IMS defines a scalar distance measure dIMS(D1, D2)
as the number of records in D1 with an identical match
in D2.

Privacy test. DCR, NNDR and IMS are often used
to construct binary privacy tests to classify a synthetic
dataset Dsynthetic as “private” or “non-private” [41, 4, 22].
This is done by comparing the distance between Dsynthetic
and Dtarget to the distance between Dtarget and a holdout
set of real records Dholdout. If Dsynthetic is further away
from Dtarget than Dholdout, it is considered private.

DCR and NNDR construct privacy tests τDCR and
τNNDR by comparing the 5th percentile of the respective
distance vectors:

τDCR(Dsynthetic,Dtarget) =

1

[
dDCR(Dsynthetic, Dtarget)p=0.05 ≥

dDCR(Dholdout, Dtarget)p=0.05

]
where p = 0.05 denotes the 5th percentile. The test is

defined analogously for dNNDR.
IMS constructs the privacy test by comparing the

number of identical matches:

τIMS(Dsynthetic, Dtarget) = 1[dIMS(Dsynthetic, Dtarget) ≤
dIMS(Dholdout, Dtarget)]

Here, the synthetic dataset is considered private if it
contains fewer identical matches with the training data
than the holdout set does.

Various combinations of these metrics are used in
practice, with no agreed-upon, widely used setup. We
therefore define a strict privacy test τDCR,NNDR,IMS as a
joint privacy test using all three proxy metric. Dsynthetic
is considered by τDCR,NNDR,IMS to be privacy only if it
passes all of them τDCR, τNNDR, and τIMS.

τDCR,NNDR,IMS(Dsynthetic, Dtarget) =

1[τDCR(Dsynthetic, Dtarget) = 1

∧ τNNDR(Dsynthetic, Dtarget) = 1

∧ τIMS(Dsynthetic, Dtarget) = 1]

Continuous privacy measure. DCR is also com-
monly used as a continuous privacy measure µDCR
for comparing the privacy of different generative mod-
els, particularly for diffusion models [53, 32]. In-
stead of comparing synthetic data to a holdout set,
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the continuous measure aggregates the distance vec-
tor dDCR(Dsynthetic, Dtarget) to produce a single privacy
score. In this work, we follow Kotelnikov et al. [32] and
use the mean of the distances in dDCR(Dsynthetic, Dtarget)
as the continuous privacy measure:

µDCR(Dsynthetic, Dtarget) =

1

|Dsynthetic|

|Dsynthetic|∑
i=1

dDCR(Dsynthetic, Dtarget)i

A higher value of µDCR(Dsynthetic, Dtarget) indicates
that synthetic records are more distant from Dtarget and
is thus assumed to imply better privacy protection.

3.2 Membership Inference Attacks
(MIAs)

MIAs are the state of the art technique for evaluating
privacy risk of synthetic data [26, 62]. They identify
privacy leakage using a privacy game where an attacker
aims to infer whether a synthetic dataset was generated
by a model trained on a specific target record.

Classical models. The state-of-the-art MIA for clas-
sical SDGs is extended-TAPAS, a black-box attack in-
troduced by Houssiau et al. [26] and extended by Meeus
et al. [38]. Extended-TAPAS models how the inclusion
or exclusion of a single target record x impacts the gener-
ated synthetic data and trains a meta-classifier to predict
membership.

For a target record x ∈ Dtarget, the attacker trains
shadow models on datasets sampled from an auxiliary
dataset Daux, which is drawn from the same distribution
as the target dataset Dtarget but is disjoint from it. The
target record is included in exactly half of the shadow
datasets. They then generate a synthetic dataset using
each shadow model, and extract query features from each.
These features count the number of synthetic records
that match the target record across random subsets of
attributes. This results in a labeled membership dataset
for training a meta-classifier that predicts whether a
given synthetic dataset was trained on the target record.
In our experiments, we use 1000 shadow models.

The MIA is evaluated across a set of evaluation mod-
els, where exactly half are trained on x. In this work,

we evaluate in the model-seeded setup of Guépin et al.
[21], where half of the evaluation models are trained on
Dtarget, and half on Dtarget where x is replaced by a ran-
domly sampled holdout record. The MIA is performed
against each dataset, and its ROC AUC score is com-
puted, resulting in a risk estimate of x within Dtarget.
In our experiments, we use 1000 evaluation models.

As extended-TAPAS must be developed and evaluated
separately for each target record, evaluating the risk of
every record in Dtarget across setups is computationally
infeasible. Because of this, in our main experiment, we
select 100 target records in Dtarget and instantiate the
MIAs against them. We use the Achilles vulnerability
score introduced by Meeus et al. [38], and select the 100
records with the highest vulnerability score. The final
output for each setup is then a set of per-record MIA
AUC scores.

Diffusion models. The state-of-the-art MIA for tabu-
lar diffusion models was introduced by Wu et al. [62] in
the challenge on Membership Inference over Diffusion-
models-based Synthetic Tabular data (MIDST) [60]. We
consider both the black-box and white-box variant of
the attack, and refer to them collectively as the MIDST
attacks for simplicity. The black-box attack relies only
on data generated by the target model, while the white-
box attack has full access to the model and its internal
parameters. Both attacks model the model’s loss on
member versus non-member records.

To train the meta-classifier, the attacker first samples
shadow datasets from an auxiliary dataset and trains a
shadow diffusion model on each. For each shadow model,
they extract features from the initial noise and training
loss for both member and non-member records. These
features form a labeled dataset used to train a multi-layer
perceptron (MLP) classifier that predicts whether a given
record was part of the training data. In our experiments,
we use 20 shadow datasets to train the MIDST attacks.

As these attacks can be applied to any individual
record, and training diffusion models is computation-
ally expensive, evaluation here is typically done on a
fixed target model across a set of known members and
non-members. The attack is applied to each record,
and a single True Positive Rate (TPR) at a fixed low
False Positive Rate (FPR) is computed based on the pre-
dictions [62, 10]. In our setup, we evaluate the MIDST
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attack on 10 diffusion models, each with 200 member and
200 non-member records, resulting in 10 TPR values–one
per synthetic dataset.

4 Experimental Setup

In this section, we specify the datasets and models we
use in our experiments.

4.1 Models

Classical models. We use three well-known synthetic
data generators, using the implementations available in
the reprosyn [3] repository.

IndHist [49] is the simplest of our selected models. It
uses marginal frequency counts to generate feature values
for synthetic records. For each feature, it samples from
the distribution of values for that feature among all train-
ing records. Different features are sampled independently
from each other.

BayNet [71] trains a Bayesian network to learn the re-
lationships between features. Each feature is represented
as a node on a network graph, with edges represent-
ing relations between two features. The GreedyBayes
algorithm introduced by Zhang et al. [71] is then used
to estimate the joint probabilities of the features, from
which synthetic records can be sampled.

CTGAN [64] trains a generative adversarial network
(GAN) consisting of a generator and a discriminator
to model feature distribution of records in the training
dataset. They are trained jointly with opposing goals:
the discriminator attempts to distinguish between real
and synthetic records produced by the generator, while
the generator aims to produce synthetic data similar
enough to real data to fool the discriminator.

Diffusion models. Diffusion models have become in-
creasingly popular in recent years due to their increased
utility of generated synthetic data and versatility of appli-
cations compared to classical models. We use two tabular
diffusion models, with the implementation available in
the MIDSTModels repository [60].

TabDDPM [32] is the first diffusion model specifically
developed for tabular data. It adapts the diffusion pro-
cess to account for different feature types by applying

Gaussian diffusion to numerical features and multinomial
diffusion to categorical and binary features.

ClavaDDPM [46] is a tabular diffusion model designed
to generate multi-relational data. It uses latent clustering
to model the relationships between the tables defined
by foreign keys and enable conditional generation of
synthetic tables.

4.2 Datasets

We evaluate the success of privacy measures across the
following publicly available datasets, commonly used in
literature studying tabular data privacy.

Adult [7] is an anonymized sample of the 1994 US
Census data containing 48,842 records. It contains 15
demographic features, 9 of which are categorical.

Bank [40] contains 45,211 records concerning the mar-
keting campaign of a Portuguese banking institution in
2014. Each record contains 17 features of which 4 are
demographic and 13 describe the individual’s previous
interactions with the institution.

UK Census [43] is an anonymized 1% sample of the
2011 Census from Wales and England, published by the
UK Office for National Statistics. The dataset is com-
prised of 569,741 records with 17 categorical demographic
features.

Berka [8] is an anonymized database containing in-
formation regarding over 5, 000 clients collected in 2000
from a Czech bank. The main dataset, which we re-
fer to as the Berka dataset, contains over 1, 000, 000
transactions. Additional tables with account and client
information can be linked via foreign keys, e.g. when
training ClavaDDPM.

5 Results

5.1 Evaluating DCR and Other Proxy
Metrics for Classical Models

We here evaluate the effectiveness of DCR and other
proxy metrics for identifying privacy leakage in classical
synthetic data generators by comparing them to MIA re-
sults across 3 datasets and 3 target models. We develop
MIAs against 100 outlier target records per setup, se-
lected using the Achilles score. For each target record, we
compute the percentage of evaluation synthetic records
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Figure 1: Extended-TAPAS MIA AUC on datasets considered “private” by τDCR,NNDR,IMS across classical SDG setups.
Each dataset-SDG setup contains 100 target records selected using the Achilles score.

that fail τDCR and τDCR,NNDR,IMS, and the mean µDCR
across all synthetic datasets for that record. We then
study the MIA AUC values for the outlier records in
datasets deemed “private” by τDCR and τDCR,NNDR,IMS.

In 7 out of the 9 setups, both τDCR,NNDR,IMS and τDCR
consistently classify all 500 synthetic datasets per target
record as “private.” The only exceptions are observed
with the Baynet generator on the Census and Bank
datasets. For Census, 12% of the synthetic datasets fail
the τDCR,NNDR,IMS and 1.1% fail τDCR alone. For Bank,
0.4% of the datasets fail the τDCR,NNDR,IMS, and 0% fail
τDCR. Fig. 1 shows the datasets to be highly vulnerable
to MIAs, despite being considered “private” by the proxy
metrics.

Fig. 1 shows the datasets passing the proxy metric pri-
vacy tests to leak information about their training data.
In the majority of setups, the MIA reaches AUC ≥ 0.6—
shown to indicate information leakage—for a significant
fraction of records, and even AUC ≥ 0.8 for some. This
suggests that τDCR and τDCR,NNDR,IMS often misrepre-
sent synthetic datasets with significant privacy leakage
as “private,” making them unreliable for verifying privacy
of synthetic data for release.

As proxy metrics often fail to flag privacy leakage, we
now study whether they can still provide informative
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Figure 2: Comparison of mean µDCR and MIA AUC for
the Baynet generator on the Adult dataset. Each point
represents a target record’s MIA AUC and its mean
µDCR across evaluation datasets.
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Table 1: Pearson correlation between TPR@FPR=0%
and µDCR.

Dataset Black-box attack White-box attack

TabDDPM 0.47 0.11
ClavaDDPM 0.10 −0.03

signal about the risk of a dataset. We examine whether
synthetic datasets considered “non-private” exhibit higher
MIA AUC values then those considered “non-private.”
Then, we evaluate whether the continuous measure µDCR
gives an indication of MIA performance.

For the Census dataset and the Baynet generator, 12%
of the synthetic datasets are classified as “non-private”
by τDCR,NNDR,IMS. We compare MIA performance when
instantiated across the full set of synthetic datasets and
only the “private” datasets. Fig. 1 shows that there is
no meaningful difference in performance between the
two sets – MIA AUC remains equally high, regardless of
whether evaluation is restricted to the “private” subset
or not.

For each target record in the Adult-Baynet setup, we
compute the corresponding MIA AUC and the mean
µDCR across the synthetic datasets used for evaluation
and study their relationship. Fig. 2 shows that there is
no correlation between the two values. AUC values span
a wide range (roughly between 0.5 and 1.0), regardless
of the value of µDCR, suggesting that µDCR is unable
to effectively distinguish between datasets with different
levels of privacy risk.

5.2 Evaluating DCR for Diffusion Mod-
els

We here study the effectiveness of DCR for evaluating
the privacy of diffusion models by repeating the analy-
ses done in Section 5.1, and follow the state-of-the-art
methods for diffusion models. Specifically, we focus on
DCR and measure MIA performance on datasets deemed
“private” as TPR at FPR=0% [10]. Using TabDDPM
and ClavaDDPM, we train 10 target models for each
method and generate one synthetic dataset per model.
All generated datasets pass the DCR privacy test τDCR.
We then instantiate both the black-box and white-box
MIDST attacks against each of the generated synthetic

datasets.
Table 1 shows that for both TabDDPM and ClavaD-

DPM, the MIDST attacks are able to successfully infer
membership in the training data of the target models.
The black-box attack achieves TPR@FPR=0% above
5% on the majority of datasets, and exceeds 10% on
some datasets for both models. The white-box attack
performs even better, reaching TPR@FPR=0% above
20% on all 10 target datasets, and on more than half of
the ClavaDDPM datasets. These results indicate clear
information leakage that is not detected by τDCR.

In line with our analysis in Section 5.1, we evaluate
whether µDCR provides any meaningful signal of privacy
risk. We compute the µDCR for all 10 target datasets
in each setup, and compare it to the TPR@FPR=0%
achieved by the MIAs. Table 1 shows there to be no
clear correlation between µDCR and MIA performance,
indicating that µDCR is not a reliable proxy for privacy
risk as identified by MIAs.

5.3 Effect of Adjusting DCR Hyperpa-
rameter

τDCR determines the privacy of a synthetic dataset
Dsynthetic by comparing the distance vector between
Dsynthetic and Dtarget to the distance vector between
Dholdout and Dtarget at the same percentile mark p, typ-
ically 5th percentile. This percentile choice is the only
hyperparameter of τDCR. We now study whether tun-
ing this threshold can improve τDCR’s ability to detect
privacy leakage. The condition for passing the privacy
test,

dDCR(Dsynthetic, Dtarget)p ≥ dDCR(Dholdout, Dtarget)p

can be rewritten as:

dDCR(Dsynthetic, Dtarget)p−dDCR(Dholdout, Dtarget)p ≥ 0

We examine the effects of adjusting p ∈ [0, 0.1] for
the above condition across all synthetic datasets in the
Baynet generator with Adult dataset setup.

Fig. 4 shows an example of adjusting p for a single
synthetic dataset trained on a vulnerable record with
MIA AUC= 0.84. For this synthetic dataset, the value
remains above 0 regardless of the value of p, showing
that the dataset passes τDCR on all thresholds p ∈ [0, 0.1].
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Figure 4: Comparison of dDCR(Dsynthetic, Dtarget) −
dDCR(Dholdout, Dtarget) across percentile thresholds for
a synthetic dataset trained on a vulnerable record with
MIA AUC = 0.84.

This result holds across all synthetic datasets in the
Baynet-Adult setup – every dataset is deemed “private”
by τDCR, regardless of the choice of threshold.

5.4 Analysis of the Impact of the Achilles
Vulnerability Score

In our main experiment for classical models in Section 5.1,
we reduce computational costs by only performing MIAs
against the top 100 records by Achilles vulnerability
score for each dataset. To eliminate concerns that such
sampling may have exaggerated the privacy risk indicated
by MIA, we analyze DCR and MIA performance on all
1000 records in Dtarget for one setup (Baynet with Adult).
Consistent with our prior results, all synthetic datasets
for all 1000 records also pass τDCR and τDCR,NNDR,IMS.

We now compare the distribution of MIA AUC values
across all 1000 records to the MIA AUC values of 100
outlier records selected by the Achilles vulnerability score
in Section 5.1. Fig. 5 shows that while Achilles score is
more likely to identify vulnerable records than random
sampling, a significant proportion of vulnerable records
went undetected – the MIA achieves an AUC ≥ 0.8 for 54
records and AUC ≥ 0.6 for 200 records out of 1000 total
records. This is still a high percentage of records with
information leakage, which indicates significant privacy
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Figure 5: MIA AUCs of all 1000 target records and 100
vulnerable records selected using Achilles in the Adult-
Baynet setup, in synthetic datasets considered “private”
by τDCR,NNDR,IMS.

risk across all synthetic datasets in the setup.

5.5 Detailed Analysis of one Highly Vul-
nerable Record

We select the record with the highest MIA AUC across all
our classical setups for detailed analysis as to why DCR
is unable to detect clear privacy violations. This record
has an MIA AUC of 0.94 and is from the CTGAN-Adult
setup, all synthetic datasets generated by this setup
passed both τDCR and τDCR,NNDR,IMS. We start by iden-
tifying the cause of high privacy leakage for this record –
a distribution shift of generated synthetic datasets be-
tween CTGAN models trained on the target record and
those that were not.

Notably, as shown in Fig. 6, CTGAN models trained
on this record generate synthetic data containing records
with a native-country value of “Holland-Netherlands”
in 92% of cases, while models not trained on it never
produce it. We immediately notice the target record is
the only record in the entire Adult dataset with the value
“Holland-Netherlands” for the native-country feature.
Thus, the presence of a synthetic record with this feature
value would reveal the membership of the target record
in Dtarget. While this is a clear privacy concern, DCR
instead focuses on distance measurements to the closest
record, which is not the cause of the privacy leakage.
Furthermore, distance calculations treat all features with
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Figure 6: Comparison of synthetic datasets generated
by CTGAN-Adult models trained on target record
with uniquely identifying native country “Holland-
Netherlands.”

the same importance, a single feature has minimal effect
on the overall distance metric – synthetic records con-
taining the uniquely identifying value are not even the
closest records in Dsynthetic to the target record. As a
result, τDCR and τDCR,NNDR,IMS fail to flag this obvious
privacy risk.

We believe this to be a core limitation of proxy metrics
which by design do not learn and need to make assump-
tions about what causes privacy leakage. While one
could design another proxy metric to check for uniquely
identifying feature values, it is just a single example of
privacy leakages that distance metrics cannot capture.
Prior work has shown that leakage may also arise from
more complex feature combinations or dataset-specific
characteristics [51], which cannot be identified by DCR
and requires designing setup-specific proxy metrics. In
contrast, MIAs are able to learn and thus capture a more
comprehensive spectrum of privacy risks, including those
that were previously unknown and unique to specific
setups.

6 Related Work

Synthetic Data Generators (SDGs). Numerous
synthetic data generators have been proposed for tab-
ular data [29, 15, 27], spanning approaches from tradi-
tional statistical methods like graphical models [71, 36]
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and workload/query-based [33, 37], to advanced deep
learning techniques, including Variational Autoencoders
(VAEs) [2, 1] and Generative Adversarial Networks
(GANs) [63, 73, 28, 64]; and more recently, diffusion
models [32, 70, 53, 42]. As discussed in Section 4.1, we
use a range of best-performing models with reliable and
public implementations.

Membership Inference Attacks (MIAs). MIAs
were initially introduced as a method to infer the presence
of trace amount of DNA from released genomic aggre-
gates [25]. It was then extended to assess privacy leakage
in discriminative machine learning models [54, 10, 67, 69].
In the context of generative models on images, Hayes
et al. [23] and Hilprecht et al. [24] propose the first
MIAs targeting VAEs and GANs, employing a shadow
discriminator and Monte Carlo estimation, respectively.
Subsequently, Chen et al. [13] introduce a taxonomy of
MIAs along with a model-agnostic attack against GANs.
More recently, Zhu et al. [75] and Carlini et al. [11] ex-
tend MIAs research to diffusion models, demonstrating
that these models are more susceptible to memorization
than GANs.

For tabular data, Stadler et al. [56] present the first
systematic evaluation of MIAs, showing that outliers are
particularly vulnerable. Other MIAs against tabular data
include TAPAS [26], which relies on running a collection
of random queries, and DOMIAS [59], which detects
overfitting using a density-based approach. Meeus et al.
[38] propose an identification procedure for selecting the
most vulnerable records based on distance metrics and
an extension of TAPAS [26], called extended-TAPAS.
Guépin et al. [20] relax a common assumption in MIAs
that the adversary has access to an auxiliary dataset.
More recently, researchers have proposed model-specific
attacks targeting traditional generative models to audit
their privacy properties [6, 18, 19], and diffusion models
to mitigate computational overhead [62].

Distance to Closest Record (DCR). DCR is widely
adopted to measure and claim privacy in both indus-
try [41, 58, 66, 39, 4] and academia, particularly in the
medical domain [14, 35, 22, 55, 61, 65, 68, 30]. Further-
more, a growing number of recently proposed diffusion
models – published in top-tier ML and NLP venues such
as NeurIPS, ICML, and ICLR – rely exclusively on DCR

to support privacy claims, or to demonstrate improve-
ments over prior models [9, 32, 70, 72, 74, 53, 46].

DCR is often used in conjunction with other proxy
metrics like Nearest Neighbor Distance Ratio (NNDR)
and Identical Match Share (IMS) in real-world synthetic
data products to run statistical tests and support privacy
claims [41, 58, 4].

This is despite existing research showing that MIAs,
such as TAPAS, are more effective at detecting privacy
leakage than DCR in traditional models [26, 6]. Addi-
tionally, Ganev and De Cristofaro [17] show that relying
on DCR to guarantee synthetic data privacy could be
dangerous as adversaries operating under strong assump-
tions – such as repeated black-box access to conditional
generation and proxy metric APIs – can successfully
perform MIAs and reconstruct entire training records.

7 Discussion & Conclusion
Distance to Closest Record and other proxy privacy met-
rics are presented both as a statistical test for verifying
privacy of synthetic datasets prior to data release and
also as a proxy measurement of privacy of synthetic
datasets [35, 4, 47, 65, 74, 61, 9, 32, 34, 68, 12, 72, 70,
44, 45, 22, 55, 14, 53, 32, 41].

In this paper, we show across both classical and diffu-
sion models, that DCR and other metric tests consistently
fail to identify privacy leakage, including clear privacy
violations such as the presence of uniquely identifying
feature values. Furthermore, we also show that DCR
as a proxy measurement is uninformative for compar-
ing privacy of synthetic datasets for both classical and
diffusion models – there is no clear relation between dis-
tance of synthetic records to training dataset and MIA
vulnerability.

Additionally, we show that privacy violations that are
caused by a subset of feature values, such as the case of
uniquely identifying feature values in the CTGAN genera-
tor with Adult dataset setup, have synthetic records that
are distant from the training record. The effect of these
important features on synthetic record distance is heavily
reduced by the presence of other features, thus making
it highly unlikely for DCR to detect such violations.

With DCR and other proxy metrics shown to be unsuit-
able for use as a privacy test or proxy privacy measure-
ment, it is imperative for both the academic and industry

10



community to move to Membership Inference Attacks,
which is the state-of-the-art for measuring privacy risks
of synthetic datasets.
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