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Abstract

Local Differential Privacy (LDP) enables massive data collection
and analysis while protecting end users’ privacy against untrusted
aggregators. It has been applied to various data types (e.g., categor-
ical, numerical, and graph data) and application settings (e.g., static
and streaming). Recent findings indicate that LDP protocols can
be easily disrupted by poisoning or manipulation attacks, which
leverage injected/corrupted fake users to send crafted data con-
forming to the LDP reports. However, current attacks primarily
target static protocols, neglecting the security of LDP protocols in
the streaming settings. Our research fills the gap by developing
novel fine-grained manipulation attacks to LDP protocols for data
streams. By reviewing the attack surfaces in existing algorithms,
we introduce a unified attack framework with composable mod-
ules, which can manipulate the LDP estimated stream toward a
target stream. Our attack framework can adapt to state-of-the-art
streaming LDP algorithms with different analytic tasks (e.g., fre-
quency and mean) and LDP models (event-level, user-level, w-event
level). We validate our attacks theoretically and through extensive
experiments on both synthetic and real-world datasets, and finally
explore a possible defense mechanism for mitigating these attacks.

1 Introduction

Local Differential Privacy (LDP) [1-3] enables massive data col-
lection and analytics while ensuring end-users’ privacy without
relying on a trusted aggregator. Due to the rigorous guarantee and
easy implementation, it has been widely deployed at major com-
panies like Google [4], Microsoft [5], and Apple [6]. Early studies
on LDP focus on various static analytic tasks like frequency esti-
mation [4, 7-12], mean/variance estimation [13], key-value data
collection [14], frequent itemset mining [15-18] and graph data
mining [19, 20]. Recent work proposes to adapt LDP protocols
for more complicated streaming settings [21-25], which can re-
alize continual data collection and analysis over streams. These
work adopts different stream LDP models, including event-level
LDP [21, 26], user-level LDP [22, 27], and w-event LDP [23]. In par-
ticular, w-event LDP can be easily extended to both event-level and
(approximate) user-level LDP, thus being a popular paradigm [24].

Recently, data poisoning attacks, arising in general data commu-
nity [28, 29], have also emerged as a threat to LDP protocols [30-32].
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Research indicates that LDP aggregators are vulnerable to manip-

ulated user data distributions. Cao et al. [30] initiated attacks on

LDP frequency estimation and heavy-hitter detection by inflating

target item frequencies. Wu et al. [31] targeted LDP for key-value

data, aiming to boost both frequencies and mean values of selected
keys using data from fictitious users. Li et al. [32] developed a fine-
grained attack on LDP for mean and variance estimation, enabling
precise manipulation of statistical estimates and demonstrating
that a larger LDP privacy budget enhances attack effectiveness.

However, these studies are all limited to one-shot attacks in static

settings, and none of them consider the streaming data. Despite

being an essential analytic setting and extensively used in various
applications, the vulnerability of streaming data LDP protocols to
data poisoning attacks remains unexplored.

In this work, we explore data poisoning attacks on streaming
LDP protocols. Specifically, we focus on fine-grained manipulation
attacks [32] of the stream of estimated statistics (e.g., frequency and
mean), to persistently match a target stream of intended statistics
at each timestamp, allowing for varied targets over time. We pro-
pose a novel framework to show how fake users can continuously
manipulate the estimation over streams by submitting carefully
crafted data to the aggregator at each timestamp, thus minimiz-
ing the overall gap between the released and intended statistics
throughout the whole stream. These attacks can lead the online
estimate sequence over massive users’ streams close to a sequence
with intended statistics. For example, a malicious company wants to
manipulate seasonal consumer interest or preferences over time. It
can leverage some fake users to send crafted data continuously, thus
manipulating the preference trends to follow desired time-varying
patterns. We identify three technical challenges of the attacks:

e C1: Complicated optimization over streams. Unlike poison-
ing attacks for static (non-streaming) LDP that only perform
one-shot manipulation, attacks for streaming LDP require attack-
ers to reconcile the correlations across timestamps and formulate
attack strategies to optimize the attack performance over the
whole stream. Directly applying the one-shot attacks into stream-
ing settings cannot achieve the overall optimality of the attack.

e C2: Fine-grained manipulation of statistics. We focus on
fine-grained manipulation of common statistics like frequency
and mean estimation. On one hand, existing attacks for frequency



estimation like MGA [30] are not fine-grained with specific tar-
gets. On the other hand, existing fine-grained attacks [32] only
work for mean and variance estimation in static settings, lacking
consideration of frequency estimation and Challenge C1.

e C3:Sophisticated mechanisms within LDP protocols. Stream-
ing LDP protocols typically consist of multiple coupled phases,
choosing different submechanisms (i.e., publication or approxi-
mation) for statistical data release at different timestamps. It is
challenging to design corresponding attack modules for differ-
ent phases that can coordinate the choice of different strategies
toward a specific target in a unified manner.

To address the above challenges, we propose a novel fine-grained
manipulation attack framework against streaming LDP protocols,
by formulating it as an optimization problem. We first summarize
existing streaming LDP protocols into three phases with inher-
ent attack surfaces. Based on the surfaces, we then propose two
theory-driven attack modules for manipulating the publication and
approximation strategies respectively, with consideration of both
input and output poisoning. To coordinate the two attacks toward
the overall optimization, we also propose a manipulation strategy
determination module by mimicking the adaptive LDP protocol
themselves. To demonstrate the effectiveness of our attack frame-
work, we further propose both baseline and adaptive attacking
algorithms against the state-of-the-art LDP protocols. Besides theo-
retical analysis, we conduct extensive experiments for performance
evaluation. Finally, we discuss a possible defense with validations.
Our contributions can be summarized as follows:

e To the best of our knowledge, we are the first to explore fine-
grained data poisoning attacks against state-of-the-art LDP pro-
tocols for infinite data streams, which achieves not only arbitrary
targets-driven LDP poisoning but also nearly-optimal attacking
performance on-the-fly over the whole streams.

e We propose a general attack framework against LDP protocols
for data streams, which considers both different knowledge as-
sumptions (full and partial knowledge) and attacking modes
(input and output poisoning). The unified framework with com-
posable modules can effectively adapt to various analytical tasks
(frequency and mean estimation etc) and streaming LDP models
(w-event, event-level, and user-level LDP).

e We study the proposed attacks both theoretically and empiri-
cally. We present theoretical analysis of the attack performance,
and discuss the sufficient conditions. We also implement all the
proposed attacks and conduct experiments on both synthetic
and real-world datasets. The results show that compared to the
baseline attacks, our proposed attacks can achieve significant
improvement in attack effectiveness. In addition, we explore a
possible defense method against our attacks.

2 Background Knolwedge

We outline the background knowledge, defining Local Differen-
tial Privacy (LDP), and introduce Local Differential Privacy over
Data Streams, our attacking targets.

2.1 Local Differential Privacy (LDP)
In LDP, M is a randomized mechanism that perturbs each user’s
input v before being aggregated for data analytics.
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Definition 2.1 (Local Differential Privacy). A mechanism M with
O denotes the set of all possible outputs of M satisfies e-Local Dif-
ferential Privacy (i.e., e-LDP) if and only if, for V v,0” € Dom (M)
and VS C O there is Pr [M (v) € S] < e*Pr [M (¢v’) € S].

LDP also applies to the streaming setting with the similar defini-
tions of event-level, user-level and w-event LDP, which are defined
over different adjacency of stream prefixes. Event-level adjacency
has at most one timeslot of difference while user-level adjacency can
differ at all the user’s contributed slots. w-neighboring means they
share identical elements within a window of up to w timestamps.
More details can refer to [33] and [23].

Definition 2.2. Let M be amechanism that takes as input a stream
prefix Vi = (v1,02,...,0;) consisting of an arbitrary number of
consecutive input values v; of a single user, and O be the set of
all possible outputs of M. M satisfies w-event (event-level, user-
level resp.) e-LDP if, for any w-neighboring (event-level, user-level
adjacent resp.) stream prefixes V;,V; with arbitrary ¢, and VS € O
it holds O, Pr [M (V;) € S] < ePr [M VARS S].

2.2 Frequency and Mean Estimation under LDP
Frequency and mean estimation are two common analytic tasks
in streaming LDP. Frequency estimation is based on Frequency
Oracles (FOs) [9], which estimate the frequency of any item wy
in a domain Q = {®1, ..., wg} of size d. Three commonly used FO
protocols are kRR [1], OUE [9] and Ada [34]. For every j € [n] user,
a FO first perturbs its input item v; to y; and sends the output value
y; to the aggregator. Then the aggregator calculates the frequency
of each distinct item k, denoted as f [k], as follows:
1yn 0,
n =S (y))
p—q
where n is the total number of users, y; is the output value from
the j-th user, p and g are two perturbation parameters of FOs,
and S(yj) is the support set of y; (i.e., the input values that can
i (k)
produce y; in FO). ]IS(yj)

defined as 1 if k € S(y;) and 0 otherwise. FOs provides unbi-

flk]= )
is a characteristic function, which is

ased estimation of the actual item frequencies f[k], i.e., E(f [k]) =
f[k]. [9] shows the variance of estimated frequency. For kRR, it is

7 _ d-2ve¢ _ flk](d-2) (. d _
Var (f [k],e, n) = n(ee_‘la)z + D) .Since Y7, f[k] =1, we
1 vd £ _ _d—2+e€ d-2
denote ; ;| Var (f [k] ¢, n) as Var (n,¢€) = n(ef—ji)z +ndiee=D
For OUE, Var(n, €) = % ZZ:1 Var (f [k],e, n) = rz(:+j1)2 + n_ld The

variance of Ada is the smaller one of kRR and OUE.

Mean estimation usually adopts the Hybrid Mechanism [13],
which merges Stochastic Rounding (SR) [35] and Piecewise Mecha-
nism (PM) [13] for minimal error. For € > 0.61, it employs PM with
probability 1 — e~€/2 and SR with e~¢/2. Below € < 0.61, it solely
uses SR. Like FOs, the variance of HM can also be denoted as the
function of population n and privacy budget ¢, i.e., Var(n, €).

2.3 LDP over Data Streams

2.3.1 System Models. We consider the stream data analytics, un-
der the definition of local differential privacy. We assume there
are n users and a central aggregator. At each timestamp t, each
user j € [n] holds a value v{ from a domain Q, either categorical
Q = {w1,...,wq} with the cardinality of |Q| = d or numerical



Fine-grained Manipulation Attack to Local Differential Privacy Protocols for Data Streams

& Target Result Stream
g (e.g. NV (0,5%t))

-

D2 [ car Tnga) v}
D, | User

& Streaming LDPDJTser [Value|

1

| users ||
! m+n | of

Estimation

Manipulation 3 e
Bl;ttack pDz y—ly)—',-uim £ Trequency
H
D[ User [Value = o g igi
mram e 2l -Attack £ O Original A
A i [J Attacked ;
Users O I 1 | f Manipulated | | |
{ = -
Fake - L {‘.’ b Estimation k1
Users Umtn [op | —Lgmes®™ 123...a4  (close to Target) || 123---d

Figure 1: Manipulation to LDP Frequency Estimation over Streams.

Q = [0, B] with a maximal differential bound B. Meanwhile, the
aggregator aims to analyze the aggregate statistics (e.g., frequency
or mean estimation) over all n users’ data v},v?, . v;’ at each
time t. With time evolves, each user actually has an infinite data
stream V/ = (u{, vé, el vi, ...). Different LDP model (i.e., event-
level, w-event LDP, user-level) can be adopted to provide specific
DP guarantees to these users. Then LDP streaming analytic aims
to derive a stream of aggregate statistics f= (fl, fz, el f}, ...)as
close to the actual stream f = (f,f5,...,f;...) as possible on-the-
fly, according to massive end users’ LDP perturbed report stream.
For any given stream with a length of T timestamps, it seeks to
minimize the average estimate error as:

min ~ 2 S S Ik - £ (kD) @

In particular, two typical LDP analytic tasks can be considered:
Frequency estimation for categorical data aims to estimate the fre-
quency histogram f; =< f;[1],£f;[2],...,f;[d] > over a domain Q
of size d. Mean-value estimation for numerical data estimates the
mean value f; = % ;.1:1 o)
domain [0, B] where B is the maximum value.

As w-event LDP can be easily extended to event-level and user-
level ones, we primarily introduce the streaming protocols with
w-event LDP and briefly discuss those with the other two models.

over all n users’ data Uﬁ in a transformed

2.3.2 w-event Adaptive Budget-Division and Population-Division.

e Private Dissimilarity Calculation. At time ¢, LDP-IDS [23]
invokes the FO to derive an initial estimation f; using budget
€1,1 = 35 with whole population or population |Uy 1| = 54 with
whole budget. Then, a private dissimilarity dis can be calculated

=23 (k) = Eea (k) - 5 D0 var(f k). @)

o Private Strategy Determination. Some publication budget €; 2
or population |Uy 2| is assigned to derive a potential publication
error err (equivalent to noise variance Var(n, €;,2) for budget-
division and Var(|U; 2|, €) for population-division) for possible
publication strategy. Then dis and err are compared to choose a
strategy with less error. That is, if dis > err, the publication is
chosen; otherwise, approximation without spending budget.

o Publication Budget Allocation. If publication is chosen, LDP-
IDS will consume €2 budget with whole population or |U; 2|
population with whole budget and release the estimates as fr;
otherwise, it will directly publish the last released statistics as
an approximation and save budget or population for next pub-
lication. €;2 and |U; 2| is assigned based on different rules. In
LDP budget distribution (LBD) and LDP population distribution
(LPD), €2 and |Uy 2] is distributed in an exponentially decaying
way to the timestamps when a publication is chosen. In LDP
budget absorption (LBA) and LDP population absorption (LPA),

€r,2 and |Uy 2| is uniformly assigned as €72 = 5= and |Uy 2| = 5%
first and then unused budget is absorbed at timestamps where
approximation is chosen.

2.3.3 Other w-event LDP Methods.LDP-IDS also provides three
baselines, LBU (LDP Budget Uniform), LPU (LDP Population Uni-
form), and LSP (LDP Sampling). Furthermore, RescueDP [36] and
DSAT,, [37] can be extended to w-event LDP, as discussed in [23].
o Private Dissimilarity Calculation. DSAT,, calculates dis us-
ing budget €;,1 with whole population or population |U;, ;| with
whole budget. RescueDP calculates feedback and PID errors with-
out allocating budget or population. Other methods do not apply.

o Private Strategy Determination. They adopt a similar budget-
division or population-division framework, except that DSAT,,
modifies err as a dynamic threshold. LBU/LPU publishes always.
LSP selects one timestamp in a window for publication and ap-
proximates other w— 1 timestamps. RescueDP calculates the next
sampling intervals according to PID error, publishes at the next
sampling timestamps and approximates at other timestamps.

e Publication Budget/Population Allocation. DSAT,, dynami-
cally allocates €;,1 (or |Uy,1]) and €2 (or |Ut,2|) by a PID controller.
LBU/LPU allocates fixed budget €/w or population n/w across
timestamps. LSP allocates the entire € and population at the
sampling timestamp. RescueDP dynamically allocates budget
or population at sampling timestamps and approximates with a
Kalman filter.

2.34  Event-level and User-Level Methods. We briefly discuss event-
level protocols, including ToPL [21] and (LDP extended) PeGa-
Sus [38], and user-level protocols, including CGM [22] and (LDP
extended) FAST [39].

e Private Dissimilarity Calculation. FAST calculates the feed-
back error and PID error. PeGaSus, ToPL and CGM do not apply.

e Private Strategy Determination. PeGaSus, ToPL and CGM
publish at each timestamp. FAST calculates the next sampling
interval according to PID error, publishes at next sampling times-
tamp and approximates the rest timestamps.

e Publication Budget/Population Allocation. PeGaSus allo-
cates all privacy and population at each timestamps to satisfy
event-level LDP and post-processes the estimates with Grouper
and Smoother. ToPL consumes all privacy and population for
mean estimation at each timestamp. FAST allocates budget for
publication equally at each sampling timestamp. CGM distributes
budget to one user’s data stream for user-level LDP.

3 Threat Model

We detail attackers’ abilities and goals in our proposed attacks.

3.1 Assumptions

We assume that the attacker can inject or compromise multiple
users to manipulate the aggregator’s estimation by sending crafted
data. Specifically, the attacker may inject m fake users and blend
them with n genuine users (or the attacker may compromise m out
of n + m as fake users), all participating in the streaming LDP pro-
tocols. Similar to [32], we assume a sufficient number of fake users
is available, i.e., m is large enough. Existing study [40] indicates
the low cost of acquiring fake accounts on platforms like Twitter,
Google, and Hotmail (approximately 0.0004 — 0.03 US dollar per



Table 1: Notations.

Notation | Description

€,w Privacy budget, size of sliding windows
n, n€ Number of genuine users, attacker-estimated n
f, f¢ Genuine distribution, attacker-estimated f
m Number of fake users
d Domain size of FOs
ft, ft [k] | Released distribution ¢, k-th item frequency in f}
f, f;[k] | Target distribution at ¢, k-th item frequency in £,
dis, err | Private dissimilarity, potential publication error
f:, f:[k] | Frequency for dis calculation, k-th item in ;

Grt, Go,s | Manipulation gap of IPMA/OPMA

account). Besides, we follow [32] to assume that the attacker can
estimate the number of real users n as n® from public sources. We
also assume that attackers can estimate the input distribution f; as
ff at every timestamp, where we further consider two major types
of attackers who have different levels of knowledge about the infor-
mation: full-knowledge and partial-knowledge as discussed in [41].
The former means attackers know the true statistics while the lat-
ter means attackers can compromise a subset of users and know
their inputs for f; estimation. A variant of the partial-knowledge
is the man-in-the-middle (MITM) attack, where the attacker can
only estimate the frequencies of items based on intercepted per-
turbed reports. Additionally, the attacker accesses LDP protocol
parameters like € and w from public documents [6] and detailed
FO implementation information [30-32].

3.2 Attacker’s Goal

We consider the attacker aim to modify the estimated statistical
result f; (e.g., frequency distribution or mean value) of streaming
LDP protocols at each timestamp ¢, such that the estimated re-
sult stream f = {fl, £, f .. .} to be as close to the target result
stream f = {fl, fz, e f} ...} as possible. Fig. 1 illustrates the attack
scenario for frequency estimation. As shown, the attacker can set
a target frequency distribution (e.g., f; = N (0, 6%t)) at each times-
tamp, which forms a target stream. Without attack, the streaming
LDP protocol continuously releases the estimated frequency his-
togram from the genuine users at each timestamp. Once attacked
by some fake users, the released histogram is manipulated to be
close to the target at each timestamp. To measure how successful
the fine-grained attack is at each timestamp, we define the manip-
ulation gap G; = ZZ:] (ft [k] - £, [k])2/d as the distance between
the estimated result f} and the target result ft at timestamp ¢. Then,
average manipulation gap Gayg = % Zthl G; can be used as the
performance metric over the whole stream. A smaller gap Ggyg im-
plies a more successful fine-grained attack. For any given streams
of T timestamps and d-dimensional statistics, the attacker seeks to
minimize the average gap between them

min 22 S S (G lk] - [k @

Note that, the target f, changes by time ¢, manipulating the post-
attack estimated result to follow specific time-varying patterns.
Table 1 summarizes key notations.
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4 Attack Framework and Modules

4.1 Overview

Attack Surfaces. As introduced in Sec. 2.3, existing streaming
LDP protocols can be summarized into three phases, shown in
Fig. 2(a), which also leaves surfaces for manipulation attacks.

(1) Private Dissimilarity Calculation: This step estimates a dissim-
ilarity value dis via FOs to measure the stream change at the current
timestamp, which is compared with the potential publication error
err in the following step of private strategy determination. There-
fore, the attacker can manipulate dis to control the private strategy
determination, which can be leveraged to amplify the attack. Specif-
ically, the dissimilarity dis is calculated based on f; which is derived
by FOs, and can be manipulated to be increased or decreased.

(2) Private Strategy Determination: This step tries to select be-
tween publication and approximation at each timestamp to adap-
tively minimize the total noise introduced over the non-deterministic
data stream, as illustrated in Sec. 4.4.2. The attacker also need a
guideline to manipulate the strategy choice at each timestamp to
minimize the overall gap throughout the stream. Interestingly, we
found that the optimization problem of minimizing the average
manipulation gap is very similar to that of minimizing the total
noise in streaming LDP protocols. Therefore, the attacker can mimic
the optimization strategy in streaming LDP protocols to adaptively
manipulate the strategy choice in fine-grained attacks. Specifically,
the manipulation gap of publication or approximation at each times-
tamp is compared for greedily choosing a better strategy.

(3) Publication Budget/Population Allocation: This step distributes
the LDP budget/population and invokes FOs for the publication
strategy. The attacker cannot directly affect the distribution process
of publication budget/population since it is independent of user
data. However, the invoked FOs can be manipulated to make the
estimate f; at publication timestamps close to the target f;. Note
that, despite no direct manipulation on approximation timestamps,
the manipulated result at a publication timestamp would be set as
the approximate value on later approximation timestamps.

Attack Modules. Thus, we introduce three attack modules: Pub-
lication Manipulation Attack (PMA), Dissimilarity Manipulation
Attack (DMA), and Manipulation Strategy Determination (MSD). At
each timestamp, the attacker performs these modules to mount the
attack. Specifically, based on current knowledge, the attacker first
adopts MSD to determine whether publication or approximation is
more beneficial in reducing the manipulation gap between f, and
f,. If MSD chooses the publication strategy, the attacker will invoke
DMA to manipulate dis and steer the LDP aggregator to choose
publication. Otherwise, DMA will minimize dis to make the aggre-
gator choose the approximation strategy. If the publication strategy
is chosen as expected, PMA will be further invoked to manipulate
the released statistics f; to approach the target f. Fig. 2(b) summa-
rizes the attack modules and interactions with the exposed attack
surfaces of the adaptive streaming LDP protocols. Note that, these
three attack modules can be applied to any streaming LDP algo-
rithms with the aforementioned attack surfaces. For DMA and PMA,
we also consider both input and output manipulation methods.

In what follows, we introduce PMA and DMA in Sec. 4.2 and
Sec. 4.3, respectively. Then we design MSD in Sec. 4.4.
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Figure 2: Overview of adaptive attack framework: (a) attack surfaces;
(b) proposed attack modules; (c) proposed adaptive attack strategy.

4.2 Publication Manipulation Attacks (PMAs)
4.2.1 The Goal of PMAs.PMAs aim to manipulate the estimated
statistic f; (e.g., frequency and mean estimate) via FOs to be as close

to a target f; as possible (at any timestamp t), i.e., minimizing the
manipulation gap G;. It can be formulated as follows.

min G; = ézzﬂ (ft [k] - Ft [kl)z )

Eq. (5) aligns with our main objective (Eq. (4)), allowing the at-
tacker to precisely target a specific distribution f; with PMAs to
manipulate LDP estimates at publication timestamps. Note that ex-
isting poisoning or manipulation attacks cannot directly apply here.
Maximum gain attack (MGA) [30] works for frequency estimation
but is not fine-grained to precisely manipulate each item, while
existing fine-grained attacks [32] are only proposed for mean and
variance estimation.

4.2.2  Input Publication Manipulation Attack (IPMA). We first intro-
duce the Input Publication Manipulation Attack (IPMA), aimed at
modifying f by adjusting the inputs from fake users to approximate
the target distribution.

IPMA can minimize the manipulation gap G; by crafting the
input values for the m controllable fake users. According to the
FO protocols, once the input distribution f; of n + m total users’
data can be manipulated to be close to the target distribution f;, the
estimates f; derived from FOs will also approach f;. Therefore, the
optimization in Eq. (5) can be transformed into the minimization
of the gap between f; and f,. Besides, for Vk € [1,..d], suppose
m[k] represents the number of fake users whose input is the k-th
item wy € Q, then the true frequency f;[k] Vk € [1,...,d] can be
estimated as f; [k] ~ (m[k] +n€ - ff [k]) /(m + n®). Specifically, we
formulate IPMA as finding m[k] Vk € [1,..,d] such that f;[k] =
£, [k] and the attacker can determine m[k] for different k by solving
the following convex optimization problem.

d

d (m[k]+n® (k] - 2
min 5 3 (6 k1 = B 1) = 5 5 (ML g
k=1 k=1
s.t. Zkzlm[k]:m,OSm[k] <m (6)

And the input values of fake users at timestamp ¢ can be set as an
arbitrary combination of [v1,...,0m] (Vj:0; € Q = {w1,...,04})
that satisfies X7, 11" = m[k],Vk € [1,...,
tolifvj = wy and 0 otherwise.

Analysis of IPMA. Here we analyze the properties and sufficient
conditions of IPMA.

d] where ]Iz(,f) equals

THEOREM 4.1. The expected manipulation gap for IPMA Gy can
be calculated as

Gremme) =25 20 (f 11 - £ 151 |

m* [k] +n-f; [k]
del( n+m

where (m*[1],m*[2],...,m"

mization problem, Var(n + m,€) = é Zgzl
privacy budget of the attacked FO.

ProOF. See Appendix A.1. O

2
- [k]) +Var(n+me), (1)

[d]) is the solution of the above opti-
Var(f}[k]) and € is the

COROLLARY 4.2. When € is larger, Gr; (m, n, €) becomes smaller,
implying a more successful attack.

ProOF. See Appendix A.2. O

Also, the relation between Gy (m, n, €) and the number of users
n and m could be illustrated as follows.

COROLLARY 4.3. ForVa > 1, Gr; (m,n,€) > Gr; (am,an, ).

ProOF. See Appendix A.3. O

Corollaries 4.2 and 4.3 show the relationship between the ma-
nipulation gap Gr; and the budget € or population n.

COROLLARY 4.4. ForVk € [d], if the attacker has

n-fr [k] n-fi (k] —n-f; [K]

m > max [ — —n, = , ®)
£y [k] 1-1 [k]

fake users and the accurate knowledge of n and f;, i.e., n® = n and
ff = f;, then the expected manipulation gap is

Gzt (m,n,e) = Var(n+m,e). 9)

ProOF. See Appendix A 4. O

4.2.3 Output Publication Manipulation Attack (OPMA).We then
present the Output Publication Manipulation Attack (OPMA), which
utilizes the LDP implementation details to manipulate the outputs
sent to the aggregator directly.

We consider the attacker targets the FO at a publication times-
tamp t with privacy budget €. The n real users’ output are denoted
as (y1,y2, ..., yn), and the m fake users’ outputs (z1,22,...,2m)-
We use m|k] to denote the number of fake users who send the
k-th item to the aggregator (when using kRR) or who set the k-th
bit of the encoding binary strings as 1 (when using OUE). That is,

mlk] = (Z;” 1 I[g () )) Using FOs’ unbiased estimation, there is

B (1)) = 6 -0+ 0) = o (1K -0 +a)

where p and g are FO parameters. So, the expected estimate E(f; [k])
after the attack can be calculated as

n (k) (k)
T 5 () T 2R ()
(m+n°) (p-q)

—amEn) ) g emik]

T -q (m+ne)

where A = n® (p — q) ff [k] — mq.
Also, E(ézzzl (fy [k] - f; [k])?) can be computed by
1yd (E (ft [k]) -f [k]) + 139 Var (ft [k]).
However, unlike IPMA perturbs all inputs (including those of

fake users), only the input of genuine users is perturbed in FOs.
Considering the estimate variance



n (k) m (k)
2i s () P s ()

(m+n€)(p-q)

—q(m+n®)

Var (f} [k]) = Var is usually small

when there are a large number of users. In OPMA, we focus on
N - 2
minimizing the first term, i.e. min ézzzl (E(ft [k]) - £; [k])

There is 0 < m [k] < m, and ZZ:I m [k] = m when kRR is used
as the FO and only 0 < m [k] < m when using OUE. To simplify

the computation, we try to minimize é Zzzl |E(f} [k]) - £, [k]|,

instead of é Z‘Zzl (E (ft [k])
5 B (£ (k1) - £ 11 =
k=1

where Cy. = Ay — £, [k] (p — @) (m + n®). Particularly, this simpli-
fies the problem into a linear optimization problem, solvable in
polynomial time [42].

Let uy, = Im[k]+Ck|;(m[k]+Ck)

so the minimization of Zzzl

. 2
—f; [k]) . Specifically, there is

Y Imk]+Crl
(p-q) (m+ne)’

= Imlk]+Cy |- (m[ 1+Cr)

and v =
|m [k] + Ci| could be converted to

d
minz:k_1 U + o s.t.Cr < up —ovp <m+Cg. (10)

When attacking kRR, uy, vy also satisfy ZZ:l (ugp —op —C) =
m. We use HiGHS [42] to solve the optimization problem. After
obtaining u; and vy, we calculate m[k] as u — v — Cy.
Analysis of OPMA. Here we also analyze the properties and suffi-
cient conditions of OPMA.
THEOREM 4.5. The expected manipulation gap for OPMA Go 4 can
be calculated as

1. . 2
Go.s (m.n.e) :E(d]; (£ k1 - K1) )

n? - Var(n,€)
(m+n)?

& (nf [k] (p - q) +m* [K] -
:gz(

2
TG “‘]) *

k=1
(11)
where (m* [1],m* [2],...,m" [d]) is the solution of the above op-
timization problem, p,q are parameters of FO and € is the privacy
budget of the attacked FO.
ProoF. See Appendix A.5. O
COROLLARY 4.6. ForVk € [d], if the attacker has

(12)

(nﬁ [k] - nf, [K] nf, [K] - nf, [k])
m > max .

gkl Lk
fake users and the accurate knowledge of n and f;, i.e, n® = n and
7 = f;, then the expected manipulation gap is

" n o \2 n
Go, (myne) = (m) Var (n,e) = " Var(n+m,e€) . (13)

ProOF. See Appendix A.6. O

For OPMA, we also explore its relation between manipulation
gap and privacy budget €.

COROLLARY 4.7. When (12), n® = n and f; = f; holds, Go;
becomes smaller as € becomes larger, implying more successful attack.

PRroOOF. See Appendix A.7. O

Unlike IPMA, OPMA’s optimization and m* [k] depend on €, mak-
ing it impossible to determine the relationship between Go ; (m, n, €)
and e without enough fake users. However, the impact of user num-
bers n and m on attack effectiveness is similar in OPMA and IPMA.
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COROLLARY 4.8. ForVa > 1, Go; (m,n,€) > Go; (am, an,€).
Proor. See Appendix A.8. O

Corollaries 4.7 and 4.8 also show the relation between the manip-
ulation gap and the € (or population) used when attacking adaptive
streaming LDP protocols.

The manipulation gaps of PMAs, regardless of OPMA or IPMA,
decrease with the increase of m + n and/or e. This implies the
similarity between PMAs and FOs. For FOs, a larger € or population
n means a better estimation with a smaller variance. Similarly, for
PMAs, a larger € or population m + n also means a better attack
with a smaller manipulation gap. This inspires us that the strategy
for minimizing the estimation error of streaming LDP protocols
(i.e., Eq (2)), can be referenced for achieving our attack goal (i.e.,
Eq (4)). We will detail it in Sec. 4.4.

Based on the above introduction, one naive idea is manipulating
the FOs at each publication timestamp by PMAs. However, it fails
to achieve the optimal. Consider a simple situation where target f,
keeps as a constant across timestamps and there are enough fake
users with accurate knowledge n® = n, ff = f;. Then, at publication
timestamps, PMAs can achieve the manipulation gap as Eq. (9) us-
ing IPMA or Eq. (13) using OPMA. At approximation timestamps,
the manipulation gap equals to that of the last publication manip-
ulation gap. In such a case, the optimal attack strategy is to find
the minimal manipulation gap and try to keep it approximate the
timestamps after it. Recall that a larger budget or population helps
PMAs to achieve a smaller manipulation gap. Thus, PMAs achieve
the optimal when one publication timestamp has the largest budget
or population that the procotol can allocate and the rest timestamps
directly approximate it. Unfortunately, PMAs can not control the
strategy determination within LDP protocol. Specifically, the strat-
egy is chosen according to the calculated dissimilarity dis, which
depends on f; and is uncontrolled by PMAs.

4.3 Dissimilarity Manipulation Attacks (DMAs)

4.3.1 The Goal of DMA.The adaptive streaming LDP protocol
selects a per-timestamp strategy by comparing dissimilarity and
potential publication error err. The aggregator calculates err using
user population and privacy budget. For dissimilarity, it first aggre-
gates users’ LDP data to estimate f; [k], then computes dissimilarity
asdis =3 29 (£ [k] - f,-1[k])? - 3 £¢_ Var(f;[k]). This data
aggregation allows attackers to manipulate f;[k].

The objective of DMAs is to manipulate dis via f; [k] to steer LDP
protocol towards a desired strategy for enhanced attack outcomes.
If attackers want the protocol to choose the publication strategy,
they should increase the dis (max dis) so it surpasses the publica-
tion error. Conversely, to trlgger the approximation strategy, they
should reduce dis (min dzs) to make it lower than the publication
error. This manipulation allows attackers to control the protocol’s
Private Strategy Determination phase. And the goal of DMAs can
be formulated as follows:

o 1wd .
max/min 7 Zk:l(f[[

4.3.2 Input Dissimilarity Manipulation Attack (IDMA). We also in-
troduce the Input Dissimilarity Manipulation Attack (IDMA) first.
Similar to the idea of manipulating the distribution of fake users’ in-
puts of FOs in IPMA, IDMA can adjust the input distribution of FOs
to either maximize or minimize the estimated dissimilarity between

- fralk])? - E Var(fe[k]).  (14)

k=1



Fine-grained Manipulation Attack to Local Differential Privacy Protocols for Data Streams

timestamps. According to [23], dissimilarity is an unbiased estimate
. 2

~ fi-1[k])". The

attacker can manipulate f; [k] to either align closely or deviate sig-

nificantly from fro1, by controlling the number of fake users m[k]
per k-th element, to manipulate dis. This can be formulated as the
following optimization problem.

max/min ézzzl (f, [k] - fros [k])2

of the genuine dissimilarity dis = % ZZ:1 (ft [k]

.30 mik]=mo<mkl <m (15)
where f; [k] approximates to %

In Eq. (15), the minimization of the estimated dissimilarity can
be solved similarly as Eq. (6). In particular, the attacker only has to
replace £, [ k] with frq [ k]. On the other hand, the maximization of
the estimated dissimilarity, we use the following theorem.

THEOREM 4.9. Assumek™ = arg maxye(y,. q)(n°ff [k]/(m+n®)—

£1-1[k]), the maximum of

éZZ:l(fr[ - k]) del(

is reached when m [k*] = m andm [k] =0 (k # k¥).
PRroOF. See Appendix A.9. O

4.3.3 Output Dissimilarity Manipulation Attack (ODMA).IDMA
can evolve into Output Dissimilarity Manipulation Attack (ODMA),
where fake values are sent directly to the aggregator to control

[k]+ne-£f[k] 2
—— L (k]
n®+m

dissimilarity. According to [23], dissimilarity at time ¢ is dis =
134 (B [k]-f,-1[k])?-1 £¢_ Var(f; [k]). The aggregator com-
putes the variance term as a constant Var(n, €). To manipulate dis-
similarity, only the first term is adjusted, i.e.,

max/min E (é Zizl(f}[k] —f,_1[k])?). (16)

OPMA can be adapted as ODMA to reduce dissimilarity by sub-
stituting f; [k] with f;_; [k]. For maximizing dissimilarity, we use
the following theorm.

THEOREM 4.10. Assumek™ = argminge(y
bound of

E(é PN AR [k])z)

](ft 1[k]), the lower

2

nf, [k] (p - q) + m[k] - A
dzkl( g K]
n (k) +ym (m+n)
1\ T Is ) * TP ) 9
* G D VO (m+m) (- q)

=mandm[k] =0 (k # k*), where
Zm) are fake users’

can be maximized when m [k*]
(Y1, Y2, - - ., yn) arereal users’ outputs, (21, z2, . . .,

outputs and m[k] = E(X", HSZ ))

Proor. See Appendix A.10. ]

According to Theorem 4.10, to maximize the dissimilarity, the
attacker can first identify the least frequent item (denoted as k*-th
item) in the last release f,_1, and then control all the fake users to
send the data representing k*-th item to the aggregator, i.e, send
k*-th item when using kRR or set the k*-th bit of the encoding
binary strings as 1 and other bits as 0 when using OUE.

4.4 Manipulation Strategy Determination

PMAs and DMAs provide composable modules for manipulating
the per-timestamp estimate processes in streaming LDP protocols.
With them, we first propose two baselines applicable to two special
target streams.

4.4.1 Baseline Strategy for Special Targets

Baseline 1: Sampling Attack. Let us reconsider a simple situa-
tion where the target f} remains as a constant with t. With DMAs,
an attacker could steer LDP protocols into a desired strategy at
each timestamp. Recall that for a constant target, the optimal at-
tack can be achieved when the protocol chooses publication at one
timestamp with allocating the largest budget or population while
approximating at other timestamps. In a window of size w, the
attacker needs to steer the protocol into approximation for w — 1
timestamps and then into publication to make it allocate the largest
budget or population. Then the attacker only needs to approximate
until the end of the stream. With loss of attack effectiveness, we
modify the above idea by publishing at the sampling timestamp in
the window, and approximating at other timestamps, termed Sam-
pling Attack, since only one publication with continuous approx-
imation may raise aggregator’s concern. This attack can achieve
high attacking effectiveness against LSP by solely manipulating
sampling timestamps.

Baseline 2: Uniform Attack. In contrast to the constant target,
here we consider another special target stream f; with huge fluc-
tuations at each timestamp. Similar to the above analysis, at each
publication timestamp, the attacker can achieve a manipulation gap
as G}i , or G(*)’ ;- Since the huge fluctuations of target, meaning large
distance between two adjacent timestamps, the manipulation gap
for approximation will be larger than that of the publication times-
tamp. Thus, always publication is more beneficial for the attack.
We term this Uniform Attack, meaning attacking every publication
timestamp uniformly. The uniform attack works well for LBU/LPU,
which publishes at every timestamp.

The above baselines assume special targets. However, for ar-
bitrary targets, adopting Uniform Attack to publish always will
result in a publication budget or population not exceeding €/2w or
(m+ n) /2w. When the budget or population is exactly or below
€/2w or (m+n) /2w, G; meets or exceeds Gy(p),;(m, n,€/2w) or
Gr(0),:(m/2w,n/2w, €). As analysed in Sec. 4.2, with a large w, G;
will become very large, which contradicts the objective of min-
imizing Ggpg. When adopting the Sampling Attack for arbitrary
targets, the protocol allocates at most a publication budget of €/2 or
population (m + n)/2 at the sampling timestamp and zero at others.
The average manlpulatlon gap Gayg becomes (Gy(o) ¢ (m,n, 2) +

7 thz ZZ:1(ft[ 1 - f1[k])?)/w for budget -division methods and
(Groys (2 Be)+ 3 5, £ (B [k1~E1 [K)?)/w for population-
division methods, assumlng the ﬁrst timestamp is the sampling time.
The attack effectiveness diminishes unless f; remains constant.

4.4.2 Adaptive Strategy Chosen for Arbitrary Targets

Minimizing the time-average manipulation gap for an arbitrary
target stream requires adaptive coordination of the two modules
across timestamps. We propose a MSD module to achieve this by
mimicking the idea of adaptively optimizing the estimation error
in streaming LDP protocols as follows.



Optimization View of Streaming LDP. Adaptive streaming
LDP protocols seek to minimize the average estimate error as an
optimization problem in Eq. (2). Specifically, the estimation error
errory = Zzzl(ﬂ [k] — f;[k])?/d per timestamp can be denoted as
a binary-state variable error;(i) concerning the privacy strategy of
publication or approximation. It equals to either publication error
err in the publication (denoted as i = 1) or approximation error
(dissimilarity dis, where E(dis) = dis) in the approximation (i = 0).
The former err equals the noise variance of FO (i.e., Var(n;, €;))
which is decided by the allocated user population n; and budget €;.
The latter dis can be denoted as Zzzl (f,_1[k] - £:[k])?/d, where

f}_l is the last release at t — 1. So,

dis=Y¢_ (f,-1[k] - f:[k])?/d, i = 0 (approximation)
err = Var (n;, €;), i = 1 (publication)

errors (i) = {

Then, the optimization problem in Eq. (2) is a strategy-chosen
problem of finding a binary sequence Q for minimizing the time-
average estimation error, i.e. arg minQe{0,1}T % Z{zl error;(Q[t]).
Adaptive streaming LDP protocols in Sec. 2.3 provide different
online adaptive solutions to this problem by comparing err with
dis and greedily choosing a private strategy with a smaller error.

Optimization View of Attack. The overall goal of our attack
is formulated in Eq. (4). The manipulation gap G; = ZZ:I (f; [k] -
£, [k])?/d at timestamp ¢t varies with the aggregator’s choice be-
tween publication and approximation. If the aggregator chooses
the approximation strategy, it will publish the prev1ously estimated
frequency fi_1,50G; = Zk 1(ft 1[k] = £:[k])?/d. Otherwise, it
chooses the publication strategy, the aggregator will invoke the FO
to publish a fresh estimate. The attacker will also initiate PMAs to
manipulate the estimate to approach the target. Overall, when pub-
lication, Gy can be computed as GLt(m‘tz, n?, €;) when using IPMA
or Go+(m$, nf, €;) when using OPMA. m{, n{, and €; are the num-
ber of fake users and genuine users, and the privacy budget used
for publication, respectively. Considering the aggregator’s choice
over two privacy strategies can be manipulated by DMAs, there
are also two attack strategies from the attacker’s view. They are
approximation-based and publication-based strategies, i.e., manipu-
lating the dissimilarity calculation to steer the aggregator to choose
approximation and publication, respectively. And the manipulation
gap G; can be formulated as the following variable, where i = 0
and 1 represent the approximation and publication-based attack
strategies, respectively.

Ge (i) = {zzzl(ft_l[k] - f:[k])?/d,

GI(O),t (m?, n'tz, €1),

i =0 (approximation)
i =1 (publication)

Therefore, the optimization problem in Eq. (4) can also be seen as
a strategy-chosen problem, i.e., seeking a binary vector Q = {0, l}T
of length T which can minimize the average manipulation gap
Gavg = % ZLI G; over the whole stream:

T

arg min LS Gl

MSD: Adaptive Strategy Chosen. Comparing the strategy-
chosen problems of the adaptive streaming LDP protocol to adap-
tive attack for arbitrary targets, it is easy to find that they share
a similar problem structure. For publication, both error;(1) and
G¢(1) are determined similarly by privacy budget and population
size; larger values result in smaller errors or manipulation gaps, en-
hancing estimation or attack effectiveness. For approximation, both
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Algorithm 1: Adaptive Attack to LDP-IDS

Input: Target stream f= {f'l ?2, f} .}
Output : Manipulated released statistics f= {?1, fg, s f}, ..}
1 Initialize Queue of €3 or |Uy2|, Qm = [0,..,0]™7%;
2 Estimate the number of genuine users as n¢;
3 for each timestamp t do

4 Get f7 from fake users and estimate €, 5 or |Uy,| using Qpm;
5 Compute m* for PMAs’ optimization problem (e.g. Eq. (10));
6 Calculate attack dissimilarity disgsrack = ZZ:I (f,,l [k] - £, [k])?/d;
7 Calculate potential manipulation gap G(m, n, €, ) for budget-division
e
or G :""l:f,ﬁ)l s r;m‘f,f’ez)l S e) for population-division;
// Manipulation Strategy Determination (MSD)
8 if disgsrack > G then o
9 ‘ Adopt DMAs to maximize the dissimilarity dis;
10 else -
1 ‘ Adopt DMAs to minimize the dissimilarity dis;
12 end
13 if LDP Aggregator chooses publtcatlon then
14 ‘ Launch PMAs (using m* in line 5) to derive fa”ack
15 return ft = fmmck,
16 else
17 ‘ return f, = f,,l;
18 end
19 Pop the first item from Q,,, enqueue new €2 or |Uy 2|;
20 end

error;(0) and G;(0) represents approximating the results of current
timestamp (i.e.,f; or f;) with the last one. The similar problem struc-
ture inspires us the design of MSD module, which solves the attack
strategy-chosen problem in an online adaptive way as the private
strategy-chosen problem of adaptive streaming LDP protocols. In
particular, MSD guides the attacker to greedily choose between
approximation and publication-based strategy with a better attack
effect (i.e., smaller manipulation gap). Specifically, if G;(0) is less
than G (1), MSD chooses the approximation-based attack strategy;
otherwise, MSD chooses the publication-based attack strategy.

5 Attacking Streaming LDP Protocols

In the following, we present the details of our Adaptive Attack
against the adaptive streaming LDP protocols by integrating the
above proposed MSD, PMAs, and DMAs.

5.1 Attacking Adaptive Streaming LDP

For LDP estimation, a larger privacy budget or population en-
hances data utility. Similarly, for attacks, a larger budget (Corollar-
ies 4.2 and 4.7) or population (Corollaries 4.3 and 4.8) reduces the
manipulation gap, thus increasing the attack effectiveness. This sug-
gests adopting a streaming-LDP-like adaptive budget/population
allocation could enhance attacks, as discussed in Sec. 4.4.2.

5.1.1 Algorithm details. Algorithm 1 shows the detailed framework
of our proposed Adaptive Attack to LDP-IDS (adaptive framework
of streaming LDP protocol [23]) with an arbitrary target stream
f = {fl,fz,“ ft, .}. At each timestamp ¢, the attacker first gets
the inputs (or outputs in the MITM attack) of FOs from a por-
tion of compromised users to estimate f; (line 4). Then, the at-
tacker computes (m* [1],...,m* [d]) via solving the optimization
problem of PMAs (line 5). After that, the attacker can calculate
disgitack = Zzzl (F,_1[Kk] - £:[k])?/d as the manipulation gap for
the approximation-based attack strategy (line 6), and the potential
manipulation gap G (i.e., G in IPMA or Go; in OPMA) for the
publication-based attack strategy (line 7). For budget-division pro-
tocols LBD/LBA, by estimating n and f; as n® and {7, G is calculated
as G(m, n®, €;2) since €;2 budget with all users (n genuine and m
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fake users) are used. For population-division protocols LPD/LPA,

Gequalsto G ((rﬂi]:lﬁL ?;'g;f)' , 6) as the whole budget with |U; 2|
n|Ut.|

users (—;5. genuine and % fake users) are used.

Then, MSD chooses a beneficial strategy by comparing disgssgck
with G (line 8). If dis ;4qck > G, MSD will choose the publication-
based attack strategy. Thus, DMAs will be launched to maximize

dis in the streaming LDP protocol and enforce the LDP aggregator
to choose publication (line 9). If the aggregator does so, PMAs will
be further mounted to manipulate the FO in publication (line 14). If
disgsrack < G, DMAs instead of PMAs will then be called to mini-
mize dis (line 11). Fig. 2(c) illustrates the strategy selection-based
adaptive attack, which interestingly mimics that of the strategy
selection in the adaptive LDP estimation in Fig. 2(a).

Note that, the historical usage of budget €; 2 or population |U; 2|
for the previous w — 1 timestamps is needed for calculating G
(line 4). So, the attacker can store them in a first-in-first-out queue
QOm (line 19). For example, when attacking LBD, ;2 = (€/2 —
Z;Sl Omlil)/2. Current e; 2 or |Uy 2| at t can be obtained as follows.
For the publication timestamp, the fake users will receive €;2 from
the aggregator, |U; 2| can be estimated as W where m; is the
number of fake users sampled. For the approximation timestamp,
€t or |Us 2] is 0.

5.1.2  Theoretical Analysis. Tables 3 and 2 summarize the effects of
all proposed attacking methods. For LBU and LPU, only the Uniform
Attack (including both Input and Output poisoning) is used. For LSP,
only the Sampling Attack (also including Input and Output) is ap-

plied, and we abbreviated G (o) ; (m, n, e)+Xiv ZZ:I (£ [k)-

t=(i—1)w+2

f‘(i_l)wﬂ [k])2/d as G5 (m,n,€,i). In each attack, the same

I1(0),t
type of LDP poisoning ((i.e)l, Input or Output) is assumed for both
DMAs and PMAs. These methods employ Uniform, Sampling, and
Adaptive Attacks, each available in input and output forms. Par-
ticularly, it is assumed that there are enough m fake users so that
DMAs can always succeed in inducing the LDP aggregator into the
desired strategy. Since the adaptive allocation of privacy budget
and population results in varying sequences of €; 2 and Uy 2, it is
hard to calculate the exact average manipulation gap. Therefore,
we estimate the upper and lower bounds of the manipulation gap
based on the minimum and maximum privacy budget and popula-
tion that can be allocated. For LBD, the privacy budget ranges from
€/2¥* to €/4. For LBA, it ranges from e/2w to €/2. For LPD, the
user population is between (m + n)/2%*! and (m + n)/4. For LPA,
the range is from (m + n) /2w to (m +n)/2.

Tables 3 and 2 manifest that the Adaptive Attacks’ performance
always equals to or exceeds Uniform Attacks’. It is hard to compare
Adaptive Attacks and Sampling Attacks directly while experiments
show that Adaptive Attacks also outperform Sampling Attacks.
Interestingly, we find that the baseline LDP algorithms are more ro-
bust to our attacks than the adaptive ones when adopting the same
type of attacks. For example, attacking LBA has less manipulation
gap than attacking LBU with Uniform Attacks. This raises concerns
that, despite achieving higher utility, adaptive LDP methods may
be less robust to fine-grained manipulation.

Table 2: Average manipulation gap of attacks against LDP-
IDS baselines. ¢, is the total number of attack timestamps.

LBU LPU LSP
Input Uniform € mon Input Sampling S .
Attack(Sec. 4.4.1) Grs (m.m, W) Gre (55, w? ¢ Attack(Sec. 4.4.1) (Z’ Gl-f (m e, 1)) /ta

Output Uniform
Attack(Sec. 4.4.1)

5.2 Attacking Other LDP Tasks and Protocols

e Attacking Mean Estimation. Besides frequency estimation,
our methods can also apply to continual mean estimation over
data streams [21, 23] with only replacing PMA with OPA [32]
since both PMA and OPA benefits from a larger budget and
population. For further information, refer to Appendix C.

o Attacking Other Streaming LDP Protocols. Our attack meth-
ods are applicable to other streaming LDPs like PeGaSus [38],
FAST [39], DSAT,, [37], RescueDP [36], CGM [22] and ToPL [21].
To summarize, since DSAT,, adopts budget-division or population-
division like LDP-IDS, all our proposed attacks are applicable. Pe-
Gasus, CGM and ToPL choose to publish at every timestamp like
LBU/LPU, thus Uniform Attack are adopted. FAST and RecueDP
samples timestamps for publication like LSP, so the Sampling
Attack is considered. The post-processing of event-level LDP
does not affect our attacks. Both LDP estimation and attacks
benefit from a larger budget population (Corollaries 4.2, 4.3, 4.7,
and 4.8), sharing similar properties. Thus, the post-processing
for better LDP estimation can be directly exploited to enhance
our attacks. More details are in Appendix D.

Output Sampling
Attack(Sec. 4.4.1)

Gos (mn, £) | Gou (2, 2,¢)

(2465, mmei) /ra

6 Performance Evaluation
6.1 Experimental Setup

6.1.1 Datasets. Three real-world datasets were used as follows.
Results on synthetic datasets are shown in Appendix B.8.

e Taxi' comprises taxi trajectories in Beijing from Feb. 2nd to
Feb. 8th, 2008. We extracted data from N = 10, 357 taxis, each
with T = 885 timestamps at 10-minute intervals, across 6 grid
partitions (d = 6). We also utilize longitude data of Taxi dataset
for numerical domain attacks, denoted as Taxi-Longitude.

e Foursquare? includes Foursquare check-ins from Apr. 2012 to
Sep. 2013, detailing time, place, and user ID. It’s transformed into
N = 266,909 data streams, each with T = 456 timestamps, and
places categorized into 100 types (d = 100).

e Taobao? includes AD click logs from 1.14 million Taobao cus-
tomers across 12,973 categories. For simplicity, AD commodities
were grouped into d = 150 categories. The extracted click streams
of N = 728,745 customers, each representing the category of the
last click every ten minutes over three days, totaling T = 432
timestamps. For numerical domains, we obtain the labeled price
of each AD commodities in Taobao, referred to as Taobao-Price.

We also synthesized four types of datasets and run experiments
on them. The results can be found in Appendix B.8.

6.1.2  Targets.We used four different target streams f= (?1 fg, o, f'T)

for frequency and mean with the following time-varying patterns.

!https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-

sample/
Zhttps://sites.google.com/site/yangdingqi/home/foursquare- dataset
3https://tianchi.aliyun.com/dataset/dataDetail?datald=56


https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
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Table 3: Average manipulation gap of attacks against adaptive LDP-IDS. ¢, is the total number of attack timestamps.

LBD LBA LPD LPA
Tnput Uniform Attack
" ey | (00 (mn ) G (mn 7)) G (mn ) (61 .59 (8. 52.)) Gue (-
Output Uniform Attack . . . m n m n m
I S| (o ) o)) | ool | (Gor(9. 40 or () | Gon(2dod
I tS: ling Attack € s € . mn _ mn _
T Geenay | (26 mn50) (268, (mn5.0) (265, (3. 5.00) /1 (265, (3.3.00) /ta
Output Sampling Attack ) ; : S mon_ s mon
P ey (2668, (o §.1)) (365, (mn.5.1)) /1 (2165, (2.5.0.0) 1 (265, (4. 3.6/t
Input Adaptive Attack
ey | (e (o §) .G (mm ) | (Gre (mn§).Gre (mom5)) | (Gue (3 5€). G (¥ o)) | (Gne (%.5.).Ge (45 £ €))
O t tAd t Att k € € € € m n m n m n m n
e (Sezpsl"llf ac (Go,z (m.n, §),Gor (m nm)) (Goy (m.n, §),Goy (mn, 55;)) (Go,z (2.%.¢).Go, (zwﬂ, Zwﬂ,f)) (Gost (2.%2.€).Goy (32, 5%.€))
o Uniform: f; at each time t was set as a uniform distribution for ew-event Level: LDP-IDS [23], DSAT,, [37] and RescueDP [36];
frequency estimation and a constant for mean-value estimation eEvent Level: PeGaSus [38] and ToPL [21];
to simulate a stream with no fluctuation. eUser Level: FAST [39] and CGM [22].
e Pulse: To simulate huge fluctuation stream, for frequency esti- We assume the same type of attack for DMAs and PMAs (e.g.,
g q y yp g
mation, at each time t, we selected one item k € [d] and set its IDMA with IPMA). We abbreviated attacks (e.g., IUA for Input
g p
frequency f; [k] = 1 and others f; [k’] = 0 (K’ # k). We set the Uniform Attack) and denoted attacking format as “X-Y” (e.g., LBD-
target as an extreme value for mean-value estimation. IUA means attacking LBD with TUA).
e Gaussian: Gaussian distribution is a common distribution that 6.2 Exp erimental Results

always appears in natural and social sciences. We set f; at each
time t as a discrete Gaussian distribution N (0, o2 t), where o =
0.5. For mean-value estimation, we set the target as the value
sampled from the Gaussian distribution.

e Sigmoid: To simulate frequency increasing pattern, for each
f,, we chose one item k € [d] and set its frequency as £, k] =
2 - Sigmoid (0.01¢) — 1. For mean estimation, we set the target
increasing according to Sigmoid pattern.

We present our findings on the sufficient conditions for effective
attacks and how different factors impact the attack’s performance.

6.2.1 Overall Results.Fig. 3 shows the attack effectiveness of all
proposed attacks with different targets while varying the fake user
ratio 5. As shown, for target streams with minor fluctuations like
Uniform (Fig. 3(a)), Adaptive and Sampling Attacks outperform
Uniform Attacks, which is consistent with the analysis in Sec. 5.1.2.
For those with significant fluctuations like Pulse (Fig. 3(b)), Adaptive
6.1.3  Metrics. We measured the attack performance using the time and Uniform Attacks outperform Sampling Attacks. Generally, we
and dimension averaged MSE between manipulated statistical stream can observe that, Output Attacks (OUA, OSA and OAA) outperform

f and the target one f, ie, MSE = J- X[, %4 (f[k] - f: [k])%, Input Attacks (IUA, ISA and IAA). Adaptive Attacks (TAA and OAA)
aligning with Eq. (4). A smaller MSE means better attack effec- surpass Uniform Attacks (IUA and OUA) and Sampling Attacks (ISA
tiveness. We also used the Success Rate = % to evaluate the and OSA). Among all, OAA achieves the best performance. A larger
effectiveness of DMAs, where #success is the number of DMAs that B (i.e., more fake users) generally enhances the attack effectiveness
successfully induce the LDP protocol into beneficial strategies for and DMA’s success rate. However, for OSA with the Pulse target,
the attack, and #total is the total number of launched DMAs. the effectiveness reduces when f is larger since the improvement of
6.1.4  Parameter Settings. We set default € = 1 and w = 20 and used DMA’s success rate causes LDP-IDS to choose approximation more,
Ada as the default FO. We evaluated attacks against other FOs with which is contrary to the way to achieve Pulse target, i.e., requiring
larger domain in Sec. 6.2.3. We chose the default estimated user more publication. Appendix B.1 shows more results on different
number n® based on a common observation that online reports tend datasets.

to publish round numbers instead of precise values [4]. We selected 6.2.2  Sufficient Conditions for Attacks. We examined the minimum
1000 fake users per dataset for f* information. Here, we mainly number of fake users for achieving targets in IPMA and OPMA.
consider a partial-knowledge attacker and compare different levels Given f, e, and the dataset, the minimum number of fake users could
of knowledge in Sec. 6.2.3. Given the difficulty of achieving special be derived by Egs. (8) and (12). Then, the minimum  for attacks
targets like Pulse, we adjusted f§ = m/(m + n) variably for different can be obtained. Figs. 5(a) and 5(b) show the minimum f required
targets. For budget-division attacks with OPMA, sufficient fake for successful IPMA and OPMA attacks respectively, during the
users are necessary due to Corollary 4.7, setting f at 0.2 for uniform first 400 timestamps for each dataset. We can observe that OPMA

and Gaussian, and 0.3 for pulse and sigmoid per Eq. (12). IPMA
inherently negates the need for sufficient fake users as per Eq. (8)
due to Corollaries 4.2 and 4.3. Attacks on population-division are
based on Corollaries 4.3 and 4.8, without requiring for sufficient
fake users. Reasons for different f settings are detailed in Sec. 6.2.2.

requires less faker users when achieving the same attack effect.

6.2.3 Impact of Other Factors

Impact of €. Fig. 4(a) shows the attack effectiveness with different
privacy budget €. Attacks improve when e is larger. Success rates
vary with e. Large € typically boosts the success rate of Uniform
Attacks since a larger € reduces the noise injected into dissimilarity
our proposed Adaptive Attack with the baselines by applying them calculation, which allows DMAs to succeed with a higher probabil-
to the following algorithms in the stream setting. ity. The success rate for Sampling Attacks either drops or remains

6.1.5 Compared Algorithms.Due to no existing study, we compared
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Figure 3: Attacking effectiveness against LBD, LBA, LPD and LPA, varying fake user ratio § (Taxi with different targets).
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Figure 4: Attack effectiveness w.r.t. different parameters (Taobao with Sigmoid target).
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1
. 10 =LBD-OVA . T -e-LBA-OUA
stable. This is because Sampling Attacks always need to minimize 210" LBD-OSA @ -e-LBA-OSA
- . . ->-LBD-OAA 3 LBA-OAA
dis via DMAs to make it smaller than err but a larger € also makes -3 10 -
X . 10 57753758 38510512 TS 55 510 12
err smaller, leading worse successful rate for DMAs. Appendix B.1
ives more results on different datasets and different targets w 10755 TEPDOR g DN
g : : gets. . g LPD-OSA @10, -o-LPA-OSA
Impact of w. Fig. 4(b) shows the attack effectiveness on varying --LPD-OAA 10 ~-LPA-OAA

27724 36 8 31012 27 34 26 38 31012
d d

sliding window size w. Overall, the attack effectiveness improves
with smaller w. Also, Output Adaptive Attack always achieves bet-
ter performance. Different attacks show different relations between
their success rates and w. For Uniform Attacks, it decreases with
w as large w increases the result variance in DMAs. For Sampling
Attacks, the success rate is basically unchanged since the budget or
population allocated at the sampling timestamp is independent of
w. Appendix B.1 shows more results.

Impact of Attacker’s knowledge. Figs. 4(c) and 4(d) demonstrate
the effects of varying n® and f¢ on the attacks. We varied n¢ by

Figure 6: Effectiveness w.r.t d (Taobao with Gaussian target).
Impact of Attack Mismatch. Table 4 illustrates the mismatch
scenarios where the attacker launches an unmatched attacking al-
gorithm against an LDP protocol, e.g., using an LBA-based adaptive
attack on an aggregator operating with LBD. Mismatched attacks
mainly result in the wrong calculation of Gr; or Go, leading the
aggregator to choose a strategy less beneficial for attacks. Each en-
try (X, Y) in Table 4 means using OAA designed for LDP protocol

+50% and +25% from n to assess the impact. For £¢, we assume the

attacker can access different numbers of fake users for f¢ estimation.

in column Y to attack row X. As shown, despite the matched at-
tack gains the smallest gap, the mismatch often has a slight impact



if they adopt the same budget or population division framework.
Otherwise, mismatched attacks with different division frameworks
often lead to much poorer attack performances since the calculation
of Gy ; or Go s is quite different in the two division frameworks.
Table 4: Impact of Mismatched Attacks (Gaussian target).

SE Attack Methods SE Attack Methods
OAA-BD | OAA-BA | OAAPD | OAA-PA OAABD | OAA-BA | OAA-PD | OAAPA
= | LBD | 0.0178 | 00213 | 79034 | 74535 || o | LBD | 0.0011 | 00013 | 23891 | 2999
2 LBA 0.4736 0.0152 3.537 3.1310 =z LBA 0.0029 0.0009 1.1676 1.2000
E LPD 0.0021 0.00166 0.0004 0.0012 E LPD 0.0004 0.0004 0.0002 0.0004
= [TPA | 00085 | 00038 | 00011 | 0.0003 ||~ [LPA | 00017 | 00017 | 00004 | 0.0002
(a) Foursquare. (b) Taobao.

Different Levels of Knowledge. Fig. 7 compares the performance
of the full-knowledge (FK), partial-knowledge (PK) and the man-
in-the-middle attack (MITM). In these scenarios, the PK attackers
obtain 1% or 25% of the knowledge about frequencies, denoted
by PK(0.01) and PK(0.25). MITM attackers intercept 1% or 25%
of the communication between users and aggregator and recover
the frequencies with FO, denoted by MITM(0.01) and MITM(0.25).
Results show that FK attackers perform better than PK attackers.
The performance of PK attackers with 25% information is almost
as good as that of FK attackers. MITM attackers perform the worst
because recovering frequencies with FO often introduce more noise.
More results are in Appendix B.3.

10" ©OLBD-FK 10 BLBA-FK
w BLBD-PK(Q.0T) LBA-PK(0.01)
2 . OLBD-PK0.25) @ SLBA-PK(0.25)
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SLPD-MITM(0.25) T GLPA-MITM(0.25)
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Figure 7: Attack effectiveness using OAA with different levels of
knowledge, varying e (Taxi with Sigmoid target).

6.2.4 Attacking Baseline Methods.Fig. 8 shows the performance of
our attacks against baselines, LBU, LPU and LSP. For LBU and LPU,
the Uniform Attack was used. LSP was targeted with the Sampling
Attack. The results are much similar to those of attacking adaptive
methods, with a larger € and f and a smaller w meaning a more
successful attack. More results can be found in Appendix B.4.
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Figure 8: Attack effectiveness on baselines, varying ¢, w and
(Foursquare).

6.2.5 Attacking Mean Estimation.We attacked HM-based mean
estimation in the streaming setting. In the experiments, we used
Taobao-Price and the Uniform target, and set the parameters as
€ =1, w = 20, and § = 0.1. Results are shown in Fig. 9, demon-
strating attack effects across different €, w, and f values. Still, the
Adaptive Attack generally performs the best. Larger € improves the
attack which is align with the analysis in [32], whereas increasing
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w reduces effectiveness by decreasing the privacy budget and user
population at each timestamp. A larger f allows more fake user ma-
nipulation, enhancing attack effectiveness. More results are shown

in Appendix B.5.
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Figure 9: Attack effectiveness on HM-based LDP-IDS, varying €, w
and f (Taobao-Price with Uniform target).

6.2.6 Attacking Other LDP Algorithms. As discussed in Sec. 5.2,
our attacking methods apply to other streaming LDPs adapted in
[23], where they are categorized into budget-division (LB-*) and
population-division (LP-*). Only Uniform Attack work on PeGa-
Sus, and only Sampling Attack on FAST and RescueDP. However,
DSAT,, is susceptible to all our adaptive proposed attacks. Fig. 10
shows the results. For comparison, we binarized the Taxi, Taobao,
and Foursquare datasets and set § at 0.1. Results show output at-
tacks generally outperform input ones, with Adaptive Attacks no-
tably more effective on DSAT,,.

For other stream LDPs over numerical domain, we normalized
Taxi-Longitude and Taobao-Price datasets into [—2 %] for CGM
and [0, 1] for ToPL. We set the default value ¢ = 1, § = 0.1, and
8 = 1073 (for CGM). Fig. 11 shows the attack effectiveness of Output
Uniform Attack against CGM with user-level LDP and ToPL with
event-level LDP respectively. The results demonstrate that more
fake users are beneficial to the attack. More results can be found in
Appendix B.6.

LB-DSAT-IUA [Z] LP-DSAT-IUA
LB-DSAT-ISA [Z1 LP-DSAT-ISA

B8 PeGaSus-lUA 3 LB-RescueDP-ISA
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—
—_
EZ3 FAST-ISA 3 LP-RescueDP-ISA [ LB-DSAT-IAA [ LP-DSAT-IAA
% 100 @R FAST-0SA X LP-RescueDP-OSA % 10 [ LB-DSAT-OUA 0 LP-DSAT-OUA
= = [0 LB-DSAT-OSA EZ3 LP-DSAT-OSA
N LB-DSAT-OAA A LP-DSAT-OAA
1072

Taxi

Taobao Foursquare

Figure 10: Effectiveness on other stream algs. (Gaussian target).
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Figure 11: Attack effectiveness against stream LDPs over numerical
domain (Taxi-Longitude).

7 Discussion on Possible Defense

Inspired by [32, 43], we propose a potential countermeasure.
We first propose our defense for FOs. The first step is sampling.
Assuming a total of m + n users, the aggregator samples subsets of
received data, each with the size of r(m + n) where r is a fraction
between 0 and 1. It then estimates item frequencies for each subset,
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(a) Sigmoid target. (b) Uniform target.
Figure 12: Accuracy Gain (Taxi, € = 1, r=0.5).
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(a) Sigmoid target. (b) Uniform target.

Figure 13: Accuracy Gain (Taxi, € = 1, r=0.5).

obtaining different f. Most f, due to a small proportion of fake
users, cluster near the true frequency distribution, but some may
appear abnormal with higher fake user concentrations. We then
employ Isolation Forest [44], an anomaly detection method, to score
each f for anomalies. Larger scores indicate less anomalous data,
from which the aggregator determines the publication frequency.
Based on the defense on FO above, we propose our defense on LDP-
IDS. We notice that LDP-IDS invokes FO twice at each timestamp,
producing two estimates for the same distribution. However, the
proposed attack may break the similarities between two statistics,
causing two estimates inconsistent. Thus, the attack can be detected
by comparing two estimates. Here we use Kolmogorov-Smirnov
test to detect it. Once the attack is detected and LDP-IDS chooses
the publication strategy, the defense for FOs above will be invoked.

Experiments. Fig. 13 demonstrates the performance of our
proposed defense mechanism on Taxi, setting € = 1 by default.
The defense performance is measured by the Accuracy Gain (AG)
of the LDP protocols brought by the defense. Specifically, AG is
defined as the reduction in estimation error (measured by MSE, i.e.,
MSEbefore(f', f) - MSEafm(f, f)) between the released statistics f
from the genuine statistics f, after applying the defense. A positive
AG indicates successful mitigation. Results in Fig. 13 show our
defense mechanism can generally mitigate the attack, more effective
for Sigmoid target than Uniform target. It is because Sigmoid target
manipulates the dataset from the original more than Uniform target,
resulting in more anomalies detected and leaving more space for
mitigation. More results are in Appendix B.7.

8 Related Work

LDP over data streams. Local differential privacy (LDP), a de-
centralized variant of Differential privacy (DP) [45, 46], has emerged
as a popular privacy-preserving paradigm for large-scale data collec-
tion and analysis without relying a trusted aggregator. It has been
applied in various analytic tasks like frequency estimation [4, 7-
12], mean/variance estimation [13], key-value data collection [14],
frequent itemset mining [15-18], graph data mining [19, 20], as
well as streaming data analysis [21-23, 25, 47-50].

This paper focuses on the LDP analysis over data streams. Ac-
cording to the granularity of protection, related studies can be
categorized into event-level DP [38], user-level DP [39, 51], and w-
event level DP [24, 33]. Among them, w-event level strikes a balance
between and can be easily extended to the other two, thus gaining

much attention [24]. Wang et al. [21] proposed ToPL composed of a
threshold optimizer and perturber for outputting streaming data at
event-level LDP. It actually publishes at each timestamp and then
performs post-processing. Bao et al. [22] presented CGM that adds
correlated noise to ensure approximate user-level LDP. CGM can
also be seen as publishing at each timestamp with different budget.
Ren et al. [23] proposed LDP-IDS focusing on w-event LDP, which
includes two extensible budget-division and population-division
frameworks. Based on the frameworks, most existing CDP algo-
rithms on streams can be extended into the LDP setting, and roughly
summarized into three phases discussed in Sec. 2.3.

Poisoning attacks to LDP protocols. Research shows the LDP
aggregator’s vulnerability to perturbed data, enabling data poison-
ing attacks. Cheu et al. [52] explored untargeted attacks manip-
ulating the L, norm distance in estimated frequencies pre- and
post-attack. Cao et al. [30] and Wu et al. [31] developed targeted at-
tacks on LDP for frequency estimation, heavy-hitter identification,
and key-value data, respectively. Li et al. [32] examined fine-grained
attacks on mean and variance estimation. Zheng et al. [53] disrupted
LDP-based crowdsensing with bi-level optimization. Tong et al. [41]
presented poisoning attacks against LDP frequent itemset mining
protocols. However, all these focus on static settings and cannot
directly work for fine-grained manipulation in streaming scenarios.

9 Conclusion

We conduct a comprehensive study on fine-grained data poi-
soning attacks to LDP protocols for data streams. By summarizing
existing streaming LDP algorithms into three phases with poisoning
surfaces, we introduce a unified attack framework with three coor-
dinated attack modules, each with theory-driven designs. Applying
the attack framework, we integrate these modules and propose
detailed adaptive attacking methods to the state-of-the-art online
adaptive LDP algorithms. Furthermore, we explore their potential
against other algorithms under different LDP models and analytic
tasks. Besides theoretical analysis, extensive experiments demon-
strate the effectiveness, sufficient conditions, and parameter impacts
of the proposed attacks. Finally, we discuss possible countermea-
sures with experiment validations. Our work highlights the security
of streaming LDP protocols and appeals to further research.
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A Proofs of Theorems and Corollaries

A.1 Proof of Theorem 4.1

We consider to manipulate an FO with the privacy budget of
€. Suppose that the solution to the above optimization problem is
(m* [1],m* [2],...,m* [d]). Then, the expected manipulation gap
for IPMA Gy (m, n, €) can be calculated as follows:

Gre (mme) = E(é Do Bk -f [k])z)
= % Y (Var (k1) + (= ( k1) - [k])z)

kl+n-f k]
- D (R

n+m

2
f, [k]) +Var (n+m,€) (17)

é ZZ:I Var (fi [k]). The solution to the
optimization problem is independent of ¢, affecting only the term
Var(n + m, €) in terms of attack impact.

A.2 Proof of Corollary 4.2

The optimization problem is unrelated to €, so m*[k] is indepen-
dent of €. In Gy, only Var(n+m, €) varies with e: a larger € reduces
Var, decreasing Gy ¢(m, n, €).

A.3 Proof of Corollary 4.3

Suppose m and n become a > 1 times larger, and the solution
to the optimization problem before expanding m and n (denoted
as problem A) is (m* [1],m* [2],...,m" [d]). For the optimization
problem after expanding m and n (called problem B), we can re-
place m [k] with m’ [k], where m’ [k] = m [k] /. Thus, problem
B can be transformed into a problem similar to problem A. Solving

7’

m’ [k] of problem B is equivalent to solving m [k] of problem A. So,

where Var (n+m,¢) =

considering that the solution to problem A is (m* [1],...,m* [d]),
(m’ [1],...,m’ [d]) can be solved as (m* [1],...,m" [d]). Thus,
the solution to problem B is (am™ [1],am™ [2],...,am™ [d]). The

first term of Gy ; (m, n, €) after expanding m and n would be equal to
the first term of Gy ; (m, n, €) before expanding m and n. However,
Var becomes smaller after expanding m and n. Hence, if n + m is
larger, Gy ; (m, n, €) will be smaller.

A4 Proof of Corollary 4.4

When m satisfies Eq. (8), it is easy to prove that one feasible
solution of Eq. (6) is m[k] = (m+n)f; [k] —nf;[k], i.e., m[k] satisfies
Z”klzl m[k] = mand 0 < m[k] < m. Also, when m[k] = (m +
n)f[k] - nf, [K],

E N IS ATY)

C1wd (mlk]+n-f K]
Y (e

which reaches the minimum of quadratic sum. Considering that
Eq. (6) is a convex optimization problem which has only one global

2
-f [k]) =0 (18)

~ 2
optimal solution and 3 X¢_, (€ [k] = [k]) " reaches the mini-

mum when m[k] = (m + n)f; [k] - nf; [k], m[k] = (m + n)f;[k] -
nfy (k] is the optimal solution of Eq. (6). Substitute m*[k] = (m +
n)f; [k] - nf,[k] into Eq. (7), G1+ can be calculated as G}"t (m,n,e) =
Var (n+ m,e€).
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A.5 Proof of Theorem 4.5

Suppose the attacker targets a publication strategy FO whose
privacy budget is € and the solution to the above optimization
problem is (m* [1],m" [2],...,m" [d]). Thus, the manipulation
gap for OPMA G (m, n, €) can be calculated as follows:

d
Go,: (m,n,e) = (1 Z (ft [k] -

J=1

d 2

nf; [k] (p — q) + m* [k] —mq -
EZ( (m+n) (p-q _ft[k])
n (k) m y(k)
1 d Zjlﬂs(y) 111[5( ) -qg(m+n)
+ 7 ;Var I - . (19)

For the second term, }.'" 1)

i=1ls(z,) is treated as a constant as the

optimization problem is solved as (m* [1],m* [2],...,

m* [d]). So,

& (nf [kl (p-q)+m" [kl -mgq = |
Go,(mne) EZ::( (m+n)(p—q) —ftlkJ

+

)2 Var (n, €) .

p—

(20)

+

m+n

A.6 Proof of Corollary 4.6
When m satisfies Eq. (12), it is easy to prove that one feasible

solution of min é ZZ:I |E (f} [k]) -1 [k]‘ is
mik] = (p - q) [(m +n) & [k] - nf, [k]] +mg, ie., m[k] satisfies

m[k] = mand 0 < m [k] < m when attacking kRR or 0 <
< m when attacking OUE. Also, when

mlk] = (p = g) | (m+ m) Fe K] = nfi ]| + mg,

LSl w) k]
:éi(nft (k] (p —q) +m [K]

(21)

2
—
m+n) (p—q) fe [k]) 0

which reaches the minimum of sum of absolute values. Note that,
the optimization problem (i.e., min % ZZ=1 E (ft [k]) — £, [k] ‘) is
convex with the only optimal solution

mlk] = (p—q) [(m+ n) ft[ 1 — nf; [k ]] + mgq. So, we substitute
m*[k] = (p-q) [(m+ n) ft[ | — nf: [k ]]+mqinto Eq. (11), we can
m+n) Var (n,€) =

A.7 Proof of Corollary 4.7
According to Eq. (13), when ¢ is larger, Var becomes smaller and
Gy, ; (m,n, €) becomes smaller.

A.8 Proof of Corollary 4.8
The proof of Corollary 4.8 is similar to that of Corollary 4.3.

obtain that G(*),t (m,n,e) = ( m_m Var (n+ m,€).



A.9 Proof of Theorem 4.9
We define n[k] = n°ff[k] and by = n[k]/(m +n®) — £ 1[k]
with k* = arg maxge[y, 41 (bx), aiming to maximize the formula.

S (et = L5 (2

k=1 k=1

d d
_ 1 2 2 1
_d(ne+m)2;m[k] +d(ne+m); m [k bic+ d

Ul =

b (22)

Mn.

x>~
I

1

For the first term, the maximum value is taken if one of m [k]
(m [i]) is m and the other m [k] (e.g., k # i) is 0. For the second term,
the maximum value is taken if m [k*] = m and other m [k] (k #
k*) are 0. And the third term is a constant. So the solution to this
problem is m [k*] = mand m [k] =0 (k # k¥).

A.10 Proof of Theorem 4.10

It’s assumed that the attacker targets a FO with a privacy budget
of €. Real users have outputs (y1,y2, ..., yn), and fake users have

outputs (z1,22,...,zm). Let m[k] = E(Z;" 1 ]I(k> )) So for Yk €

[1,...d],

B _ . 2
e ((F k1 i 1)) = (PR LI = g,y

(m+n)(p-q)
n (k) m (k)
+ Var jl]ls(y)+ JIHS(Z) atmen (23)
(m+n)(p-q)

Here, for the second term, (z1,z2,...,zm) are random variables,
whose variance are hard to determine, while (y1,y2,...,yn) are
outputs of local perturbation, whose variance has been shown in

n (k() ’."111”‘() )
j=1"g J=17s(z;
[9] Thus, Let Yk W and Zk W(P_]q)’
)+ S e
Var
(m+n)(p-q)

= Var(Yg) + Var(Zy) + 2Coov(Yg, Zy)

= Var (Yi) + E (Zi2) = (E (Z))? + 2(B(YeZe) = EOE(Zx)), (24)

where E (Zkz) > 0 and E(Y;Zy) = 0. Thus, we have

2 (5 i1~ s 101

. (nft [Kl(p-q) +m[k] -m
- (m+n)(p-q)
+Var (Yg) — (E (Zk))? = 2E (V) E (Zx) .

g 2
—fro1 [K]
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n ((k) )
T Us(y)) _ Agr(mtn)q

_ __ mlk]
where E (Z) = (m+n)(p—q) B (Y) = (m+n)(p—q) ~— (m+n)(p—q)°
Ay = nfy [k] (p — g) — mq. Thus,
e ((F i - s 15)’)
Ag +m[k] 2 n? -1 H(sk()y-)
R hk <
- (<m+n) TR J) T | -9
B ( m (k] )Z _,mlk] (Ax+ (m+n)q)
(m+n)(p-q) (m+n)? (p-q)°
A —om[k] (ng+mg) g2 L5
- (p—q)?% (m+n)? (m+n)? n(p-q)
Ax+m[k] & A 2
- mft—l [k]+ (ft—l [k]) (26)
n 10
J=
where Zzzl Var n(sp( y’q)) = d Var (n, €). After summing the

inequality from k = 1 to d, disregarding constants like d Var(n, €)

and focusing on m[k] terms, maximizing dis becomes an optimiza-
tion problem to maximize its lower bound.

- Zd: —2f,_ [k] (m+n) (p—q) —2(m+n)q

(p-q?(m+n)? 1kl

(27)

Also, 0 < m [k] < m and for kRR, ZZ:I m [k] = m. To solve this
problem, we only need calculate the coefficient in front of m [k]
(i.e.find the minimum f;_; [k]). Assume the index of the maximum
coefficient (the minimum f;_; [k]) is k* € [d]. Then, the solution
ism[k*] =m, m[k] =0 (k #k*).

B Experimental Results

B.1 Results on Real-World Datasets

The average manipulation gap against adaptive methods for real-
world datasets with varying f, €, w, n¢, and f¢ are shown in Fig. 20,
Fig. 21, Fig. 22, Fig. 23, and Fig. 24, respectively.

B.2 Result on Different FOs, Varying d

Fig. 14 shows attack effectiveness against Ada, kRR and OUE on

Taobao dataset with Gaussian target, varying d.

B.3 Result on Different Levels of Knowledge
Fig. 15 shows attack effectiveness using OAA on Taxi dataset
with different levels of knowledge, varying e.

B.4 Result on Baseline Methods

Results for baseline methods are shown in Fig. 25.

B.5 Results on Mean Estimation
Figs. 16 and 17 shows attack effectiveness on HM-based LDP-IDS,
Taobao-Price and Taxi-Longitude datasets, varying €, w and S.

B.6 Results on Stream LDPs over Numerical

domain
Fig. 18 presents attack effectiveness on stream LDPs over numer-
ical domain on Taxi-Longitude and Taobao-Price datasets.

B.7 Results on Defense
Fig. 19 shows accuracy gain on different r.
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(b) Attack effectiveness when using kRR.
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(c) Attack effectiveness when using OUE.

Figure 14: Attack effectiveness, varying d (Taobao with Gaussian
target).
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Figure 15: Attack effectiveness using OAA with different levels of
knowledge, varying e (Taxi).
B.8 Results on Synthetic Datasets

We created binary streaming datasets using various sequence
models. Starting with a probability process model p; = f(t), time
T, and user count N, we generated a sequence (p1, p2, ..., pr). At
each timestamp ¢, we randomly assigned p; fraction of N users a
value of 1, with others set to 0. p; is defined accordingly.

e LNSisalinear process p; = pr—1+N (0, Qy), where pg = 0.5 and
N(0,Qs) is Gaussian noise with the standard variance VQs =
0.025.
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Figure 16: Attack effectiveness on HM-based LDP-IDS, varying €, w
and f (Taobao-Price with Uniform target).
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Figure 17: Attack effectiveness on HM-based LDP-IDS, varying €, w
and f (Taobao-Price with Uniform target).
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Figure 18: Attack effectiveness on stream LDPs over numerical
domain.
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e Sin is a sequence composed by a sine curve p; = Asin(bt) + h
with A =0.05,b =0.01and h = 0.5.

e Log is a series with the logistic model p; = A/(1+e
A=0.75and b = 0.01.

o Pulse is an extreme case that randomly sets p; as 0 or 1.

~bty where

Using default parameters and models, we generated synthetic
binary streams from 100,000 users across 800 timestamps.

Our experimental results on these datasets are depicted in Figs. 26,
27, 28, 29, and 30, illustrating attack impacts by varying f, €, w, n®,
and f€.
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C Attacking Mean Estimation over Numerical

Domain

Apply HM to LDP-IDS [23]. The Hybrid Mechanism [13] is
an LDP mean estimation technique merging Stochastic Rounding
(SR) [35] and Piecewise Mechanism (PM) [13] for minimal error.
For € > 0.61, it employs PM with probability 1 — e~¢/2 and SR
with e~€/2. Below € < 0.61, it solely uses SR. Considering that in
practice users’ private values v € [—1, 1] are close to 0, the worst
case variance of the perturbed value y in HM is written as

e +1 2,
N ,if € < 0.61

eE —_
e +1\?
+

e€ -1
The variance of the mean estimate f = % Z;’zl yj (denote the per-
turbed value of j-th user as y;) can be calculated as Var [f] =
# Z;’:l Var [yj]. Simplifying, we use Var [f] = %Var* [y], de-
noted as Var(n, €). The HM mechanism can then replace FOs in the
LDP-IDS framework for mean estimation.

Attack HM-based LDP-IDS. [32] introduced a fine-grained

poisoning attack, Output Poisoning Attack (OPA), for SR and PM

to manipulate estimated means and variances. For SR, the mean
2n-2(p-q)°s®
(m+n)?(p—q)*

Var” [y] = €l 4

3 (e€/2 — 1)

1

m ,Ife > 0.61

estimation manipulation gap of OPA is given by
s@ ne—n s _ 5(1)

(m+n)? ( m+n He + m+

$M $2) are sums of genuine user inputs and their squares, re-

spectively, and S, (1) is the attacker-estimated S(V). For PM, it’s
S(I;Hflé ) )2 2n(e€/243) (1+e€/2)S®2 _OPA
3(m+n)?(e€/2-1)2 (m+n)?(e€/2-1)
maintains security-privacy consistency [32] and improves as m and
n scale equally, making it suitable for replacing PMAs in Adaptive
Attack frameworks. For DMAs, when attackers want to minimize
dissimilarity, they just need to set the target value as the last es-
timated mean and use OPA to attack. When attackers want to
maximize dissimilarity, they can set the target as an extreme value
(e.g., —1 or 1 when data is normalized to [—-1, 1]) and use OPA to

)2 where p = 1+eE,q 1-p, and

nf—n
man Ht +
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attack. Manipulation gaps are calculated using the formulas above,
noting that only half the users are used for mean estimation in
[32], requiring adjustment by doubling m and n for exclusive mean
estimation.

D Attacking Other Streaming LDP Algorithms

LDP protocols for data streams, which often employ methods like
budget and population division for better utility, can be exploited by
attackers who mimic these methodologies to optimize attack strate-
gies for improved results, as discussed in Sec. 4.4. This approach is
effective because both data estimation and our attacks benefit from
larger privacy budgets or populations, enhancing estimation and
attack outcomes.

Besides LDP-IDS, streaming algorithms like event-level private
PeGaSus [38], user-level private FAST [39], and w-event private
DSAT,, [37] and RescueDP [36] can be adapted to LDP settings.
Our attack methods are also applicable to these protocols. We also
consider two LDP streaming alogorithms over numerical domains,
CGM [22] and ToPL [21].

PeGaSus. [38] describes an event-level CDP method with three
components: perturber, grouper, and smoother. The perturber adds
noise independently at each timestamp, while the grouper divides
the stream into partitions, and the smoother post-processes these
partitions. In event-level-LDP PeGaSus, the perturber allocates €
LDP budget to all users with FOs at each timestamp, generating
an estimate f;. The grouper then partitions the stream based on
these estimates without additional budget, defining deviation as
the squared distance within a partition. The smoother operates as
in the CDP algorithm. Steps (2) and (3) are aggregator-handled,
aiming for improved data stream estimation. Attackers focusing
on Step (1) can manipulate the initial estimates by sending tailored
data. Since PeGaSus, like LBU and LPU, performs data estimation at
each timestamp, only Uniform Attacks can be adopted for attacks.

FAST. [39] describes FAST, a user-level DP algorithm adaptable
to user-event LDP settings, using PID controller-based adaptive
sampling and Kalman-filter-based post-processing. In these settings,
FAST aggregates data using LDP protocols from all users with
a reduced privacy budget of €/M, generating an initial estimate
f; with FOs, where M is the number of sampling timestamps. A
Kalman filter then refines this into a posterior estimate £, output at
each sampling timestamp. FAST dynamically adjusts the sampling
interval using the PID controller. Attacks on FAST can only target
the initial estimate f; to influence the result. Like attacking LSP,
attackers can only manipulate FAST at sampling timestamps. Thus,
only Sampling Attacks are adopted.

DSAT,, is a w-event private adaptation of DSAT [37] for w-
event LDP. It allocates a portion of the budget or population for
distance computation (dissimilarity budget €; or population nq) and
the remainder (publication budget ez or population ny) for data
publication. Budget or population usage is tracked at each times-
tamp to avoid depletion. If depleted, DSAT,, repeats the last release
ft = ft 1. If not, it uses €1 /C for all users or € for n1/C sampled
users for LDP reporting, estimating dissimilarity dis. This dis is
compared against an adaptively controlled threshold to decide on
publication or approximation. Publication decisions trigger a new
reporting round for an updated estimate. Attacks on DSAT,, mirror
those on LBD/LBA/LPD/LPA, exploiting the dual data collection
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Figure 20: Attacking effectiveness for real-world datasets with varying f.

per timestamp. Attackers target the statistics during LDP aggre-
gation phases. For effective manipulation, both DMAs and PMAs
should be designed to influence dissimilarity and control estimates,
with mechanisms to decide on publishing or approximating to aid
attacks.

RescueDP. [36] is a real-time spatio-temporal data release mech-
anism that extends FAST [39] with w-event privacy for multi-
dimensional data, adaptable to w-event LDP protocols when using
FOs. Each timestamp begins with a KF-Prediction to get a prior
estimate f;. If it’s not a sampling timestamp, this estimate is im-
mediately released as f,. At sampling timestamps, the aggregator
calculates the budget or population to be used, then aggregates
reports via LDP to derive f;, and combines these with the prior
f; to produce and release a posterior estimate f, using a Kalman
filter. Like FAST, RescueDP dynamically adjusts sampling intervals.
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Attacks on RescueDP, similar to those on FAST, can only target f;
to influence outputs. Thus, only Sampling Attack are adopted.
CGM. [22] proposes a novel Correlated Gaussian Mechanism
(CGM) for enforcing (e, §)-LDP on streaming data collection over
numerical domains. At each timestamp, CGM injects temporally
corelated gaussian noise, computed through an optimization pro-
gram that takes into account the given autocorrelation pattern, data
value range, and utility metric, to the original data for publication.
It is noted that CGM is used for processing only one user’s data
stream. It needs to be run n times to process n users’ data streams.
We consider the situation that aggregator utilizes CGM for mean
value estimation, i.e., the aggregator collects every user’s CGM-
processed data stream and releases the mean value over all users
at each timestamp. For attacks, attackers also hope to manipulate
the released mean value to be close to the target mean value f, at
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Figure 21: Attack effectiveness for real-world datasets with varying e.

(I) Taobao dataset, Sigmoid f

every timestamp. CGM publishes at every timestamp, causing only
Uniform Attacks to be adopted. Assume that attackers estimate
the number of users and the real mean value as n® and f; and fake
users report zj, j € [1,..., m] to the aggregator at each timestamp,
bypassing the noise injection of CGM. Considering the expectation
of gaussian noise injected to genuine users is 0, attackers only need

e._fe m )
to solve z;, which satisfies % = f} for attack.

ToPL. [21] describes ToPL method for outputting streaming data
in event-level LDP setting over numerical domains. ToPL consists
of two parts, Threshold Optimizer and Perturber. ToPL first utilizes
Threshold Optimizer to cash a period of reports to privately find the
optimal threshold € by minimizing overall estimation errors. After
obtaining 0, the sever sends it to all users. When a user reports a
value, it will first be truncated to be no lager than 6. The user than

20

adopts the Hybrid Mechanism (HM) [13], which combines SR [35]

and PM [13], as the Perturber to report the truncated value and
release the estimated mean values. For attacks, considering that
Threshold Optimizer adopts Square Wave (SW) [54] which utilizes
Expectation Maximization algorithm to estimate distribution itera-
tively, we only heuristically adopt IPMA for attack. For Perturber,
OPA [32], which is specifically designed for attacking mean value
estimation, is used to perform each timestamp attacks on HM. ToPL
publishes at every timestamp like LBU/LPU. Thus, only Uniform

Attacks are adopted.
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Figure 22: Attacking effectiveness for real-world datasets with varying w.
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Figure 23: Attacking effectiveness for real-world datasets with varying n°.
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Figure 24: Attacking effectiveness for real-world datasets with varying the number of fake users for f¢ calculation.
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(c) Taxi dataset, Gaussian f
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(g) Foursquare dataset, Gaussian f

(h) Foursquare dataset, Sigmoid f
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Figure 25: Attack effectiveness for real-world datasets on baseline methods, varying ¢, w and S.
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(m) Pulse dataset, Uniform f

(n) Pulse dataset, Pulse f
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(p) Pulse dataset, Sigmoid f

Figure 26: Attack effectiveness for Synthetic datasets, varying f.
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Figure 27: Attack effectiveness for Synthetic datasets, varying e.
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Figure 28: Attack effectiveness for Synthetic datasets, varying w.
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Figure 29: Attack effectiveness

(0) Pulse dataset, Gaussian f

for Synthetic datasets, varying n®.
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Figure 30: Attack effectiveness for Synthetic datasets, varying the number of fake users for f¢ calculation.
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