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Abstract

Security vulnerabilities in Windows Active Directory (AD) systems are typically
modeled using an attack graph and hardening AD systems involves an iterative
workflow: security teams propose an edge to remove, and IT operations teams
manually review these fixes before implementing the removal. As verification
requires significant manual effort, we formulate an Adaptive Path Removal Problem
to minimize the number of steps in this iterative removal process. In our model,
a wizard proposes an attack path in each step and presents it as a set of multiple-
choice options to the IT admin. The IT admin then selects one edge from the
proposed set to remove. This process continues until the target ¢ is disconnected
from source s or the number of proposed paths reaches B. The model aims to
optimize the human effort by minimizing the expected number of interactions
between the IT admin and the security wizard. We first prove that the problem
is #P-hard. We then propose a set of solutions including an exact algorithm, an
approximate algorithm, and several scalable heuristics. Our best heuristic, called
DPR, can operate effectively on larger-scale graphs compared to the exact algorithm
and consistently outperforms the approximate algorithm across all graphs. We
verify the effectiveness of our algorithms on several synthetic AD graphs and an
AD attack graph collected from a real organization.

1 Introduction

We propose the Adaptive Path Removal Problem, a model motivated by the challenge of eliminating
attack paths in cybersecurity. We begin by describing the cybersecurity use case that motivates our
approach and by explaining the design rationale behind our model. The main contributions of this
paper are the introduction of a novel theoretical model and the exploration of scalable algorithms for
solving this problem. Our model’s design rationale is heavily influenced by practical cybersecurity
scenarios and by the urgent demand for workable solutions from security teams.

Windows Active Directory (AD) is Microsoft’s directory service that enables IT administrators
to manage security permissions and control accesses across Windows domain networks. An AD
environment is naturally described as a graph where nodes are accounts/computers/groups, and the



directed edges represent accesses/permissions/vulnerability. One of the main focus in this line of
work is minimizing “attack paths”—routes an attacker might use to escalate privileges and move
laterally within the network.

Existing security models |Guo et al.|(2023); [Zhang et al.| (2024)); Goel et al.|(2023) and commercial
tools such as BloodHound Robbins| (2023) reduce these paths by suggesting actionable fixes, typically
presented as sets of edges to remove from the graph. Unfortunately, not every proposed fix (edge)
is implementable. Some edges may appear redundant, but removing them could cause significant
disruptions. Since removing edges equates to revoking permissions or accesses within the network,
each fix must be approved and implemented by IT operations teams. This has been referred to in the
literature as the “implementable fixes” problem Dunagan et al.| (2009); |Guo et al.|(2024). In industry
practice, network hardening workflow typically unfolds in two stages: the security team first proposes
necessary fixes, and then IT operations team review those fixes before implementation. This practical
constraint has motivated the development of adaptive security models, models that incorporate human
feedback and are thus better suited to real-world usage.

In the same way a “proxy” in auction theory places bids on user’s behalf, our proposed wizard model
acts as a “proxy” security operator that guide the IT administrator through the attack path removal
process. At every step, the wizard model proposes an attack path to remove. The IT admin view
this as a multiple-choice list of edges and will require to choose one edge to remove. This process
continues until all attack paths are eliminated, or until the number of proposals reaches a preset limit.
The wizard’s goal is to minimize the expected number of proposals. The wizard is adaptive, meaning
it proposes subsequent edges to remove based on the IT admin’s choices in previous steps. Unlike
previous work |Guo et al.| (2024); [Zheng et al.| (2011); |[Dunagan et al.| (2009), which modeled IT
admin’s decision as simply removing or retaining an edge (binary decision), without guaranteeing that
all attack paths would be eliminated; our path-based proposal mechanism provides a cut-guarantee
solution.
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Figure 1: The wizard is a software step-by-step guide to assist the user in performing correction
actions without requiring extensive technical knowledge.

Our key contributions can be summarized as follows:

* We introduce a new theoretical combinatorial optimization model called Adaptive Path
Removal, motivated by the network security use case in AD systems. This is the first
adaptive graph-focused model to incorporate path proposals and provide a cut-guarantee
solution.

* We prove that the problem is #7P-hard and introduce both an exact and an approximate
algorithm.

* We develop a scalable heuristic called Dynamic Programming with Restriction (DPR), which
builds on our exact and approximate algorithms. DPR achieves better scalability than the
exact algorithm and outperforms the approximate algorithm.

* We also introduce several baseline methods, including two RL-based heuristics, and evaluate
them on multiple synthetic graphs and a real AD network. Our experimental results show
that DPR consistently achieves superior performance over all other methods.



2 Problem Formulation and Related Work

2.1 Problem Formulation

The Adaptive Path Removal (APR) problem can be formally defined as follows: Given a directed
attack graph G = (V, E) with a source s and a destination node ¢. Each edge e € E is associated
with a confidence score, defined by a function conf : E — [0, 1]. Every round, the system will
propose a simple path from the current attack graph. A simple path p is defined as a sequence
of edges p = ((vo = s,v1), (v1,v2),...,(vg—1,vx = t)) such that no edge is repeated, i.e.,
((vi,vig1) # (v5,v541)), ¥(i # 7). When a path p is queried, the IT admin selects exactly one edge
e € pto remove. We model the IT admin’s choice using the Bradley—Terry model, which assigns a
probability to each edge e € p proportional to its confidence score relative to the others in p:

conf(e)
> erepconf(e’)

In other words, an edge with a higher confidence score is more likely to be chosen for removal. This
models the administrator’s relative preference or belief about which edge’s removal is most effective.
Let C be the set of edges removed by the IT administrator after |C| round. Atround |C| + 1, the
system will proposed a path p € P in the temporary graph G’ = (V, E'\ C) where G’ is called the
temporary graph which evolved from the original graph G = (V, E)) by removing set of C' edges and
Pg: is the set of every possible path from s to ¢ in G’. The query process terminates when either C'
forms an (s, t)-cut (i.e., s is disconnected from ¢) or the query budget B is reached (i.e. |C| = B).
In this paper, all cuts refer to s — ¢ cuts. To minimize human effort during the cutting process, our
optimization goal is to design a policy that minimizes the expected number of queries (or iterations)
required to complete the cutting process.

Theorem 1. The APR Problem is #P-hard

Pr(elp) = ()

Proof. We defer the proof the appendix Section [6.1] O

Reason for edge’s confidence score and how to assign it Integrating confidence scores helps us
effectively embed domain-specific security information into our model, making it easier to identify
edges that are more likely to be removable. This matters because not all edges are equally prone
to be removed by IT admin; some edges, such as outdated privileges or overly permissive group
assignments, are clear candidates for removal. Using insights from the security context in our
edge preference model could substantially reduce the number of required queries. To automate the
assignment of confidence scores, we can train a binary classifier that predicts the likelihood of each
edge being safely removable. For example, Zheng et al. Zheng et al.|(2011) propose an active learning
approach that learns an IT admin’s decisions about which edges to remove. We can automatically
assign confidence scores to edges by using a binary classifier, defined as a function f : F +— [0, 1]
where the output represents the classifier’s confidence that a given edge can be safely removed.

2.2 Related Works

Active Directory and non-adaptive defense models. The seminal work by Dunagan et al. [Dunagan
et al.| (2009) proposed the Active Directory (AD) attack graph which modelled the identity snowball
attack that developed further and commercialized by Bloodhound |[Robbins| (2023). Follow-up works
by Guo et al. (Guo et al.| (2022} [2023) and Zhang et al. Zhang et al.|(2023) formulate the problem of
hardening the AD system as the shortest path interdiction via edge-removing problem. Goel et al.
(2022, |2023)) proposed the Evolutionary Diversity Optimization (EDO) algorithm to defend against
attackers in a configurable environment. Another work by Zhang et al. Zhang et al.| (2024) studied
the problem of minimizing the number of users with paths to the domain admin via edge removal.
Another approach for defending Active Directory found in the literature involves node-removal,
which abstracts the concept of decoy allocation as introduced in Ngo et al. [Ngo et al.[(2024bla). The
main drawback of non-adaptive models in real-world deployments is that they are not amenable to
include human feedback.

Adaptive models for Active Directory defense. Several studies have integrated manual feedback
from IT admin into network defenses process, emphasizing the importance of human involvement in



configuration changes. Dunagan et al. Dunagan et al.|(2009) proposed Heat-ray, a system aimed at
minimizing snowball identity attacks in Active Directory (AD) by iteratively proposing edge removals
to IT administrators based on the sparest cut. Zheng et al. [Zheng et al.|(2011) enhanced Heat-ray
with active learning to improve edge cost learning process. Guo et al. |Guo et al.[(2024)) introduced
an adaptive defense model called the Limited Query Graph Connectivity Test (LQGCT), which is
closely related to our approach. In their model, a proxy algorithm proposes one edge at a time, and
the IT admin’s decision is binary (i.e. whether to remove or retain it). By contrast, the proxy of our
model proposes an entire attack path instead of a single edge which offers a multiple-choice selection
rather than a binary decision. Proposing a path provides several practical advantages over proposing
an edge. Firstly, an edge proposal can fail to form a graph cut if the IT admin is overly conservative
and retains too many edges. This leaves the possibility of an attack even after the clean-up. In
our experiments, path-based proposals guarantee that no attack path remains, provided the proxy
algorithm has a sufficiently large budget. Secondly, by presenting a list of edges to compare, our
model encourages more deliberate choices, whereas a binary question as in LQGCT may incentivize
conservative behaviour. From a theoretical view, path-based proposals fundamentally differ and are
harder to solve than the previous edge-based model. In LQGCT, the policy tree is binary, while our
policy tree can branch into up to [ outcomes at each step, where [ is the length of the longest proposed
path. As a result, existing algorithms cannot be directly applied to our setting, requiring us to develop
an entirely new class of solutions.

Related models from other research communities. The sequential testing problem in operations
research Unliiyurt| (2004), is often described through medical testing use cases. For instance, Short
and Domagalski| (2013); [Yu et al.| (2023)) employs adaptive strategies to reduce testing costs to
diagnose diseases. Another related area is the problem of learning with attribute costs problem
in machine learning |Sun et al.| (1996)); [Kaplan et al.| (2005)); |Golovin and Krause| (2011). In this
problem, each feature incurs a cost, and the task is to construct a classification tree that minimizes
the total feature costs. Stochastic Boolean Function Evaluation (SBFE) problem |Allen et al.| (2017);
Deshpande et al.|(2014) is also closely related. An SBFE instance involves a Boolean function f with
multiple hidden binary inputs and one binary output. Each input bit can be queried at a cost, and the
objective is to find a query strategy that minimizes the expected cost to determine f’s output. While
these models are relevant, they are not designed for our graph-based problems and lack scalability for
large graphs. Consequently, similar to LQGCT, solutions for these models cannot be directly applied
to our work.

3 Algorithms

In this part, we will present our solution for the APR problem. To help with the solution formulation,
we will convert our problem into an equivalent Markov Decision Process (MDP).

3.1 Markov Decision Process formulation and preliminary

Let us define the MDP as a tuple (S, A, ®, R), where S is the set of state, A is the set of action,
D :S x Ax S [0,1] is the state transition and the reward function R : S x A — R.

State: In an APR problem, the IT admin will remove an edge from a proposed path in every
round. This process will evolve the graph into a series of temporary graphs by removing edges.
We present these temporary graphs using a temporary state variable s with |B|-dimension: s =
{(z1,22, -+ ,xp) :x; € EU{x},Vi € {1,2,--- , B}} where z; will be the edge that is removed
by the IT admin at round ¢ and x; = **’ means we have not query any path in this round. We define
the state of the original attack graph G as the root state s,., which will have the form: (x, x, -+ - *).
A state s’ evolves from a state s by removing an edge e expressed as s = s\ e. We denote S;
the set of possible states in round ¢ of the process. Hence, the state space can be represented as
S=85US USU---USpg. We also define two sets of terminal states: 1, is the terminal state
reached when the budget is exhausted without identifying a cut, and L ; is the terminal state reached
when a cut is successfully found as a result of the query sequence.

Action: Each path proposal in the APR problem is associated with an action in MDP. Let’s say we
are at state s” associated with a temporary graph G’ and A, is the action space at state s’. The action
a € Ay associates with a simple path p € Pgs. We have the following Lemma for the action space
in our problem:



Lemma 2. Given an MDP construction (S, A, ®, R) for the APR problem. We have As C A, for
every s € S where s, is the root state.

Proof. The action available at each temporary state s is the enumeration of every possible path in the
corresponding graph G. A temporary graph G’ is actually the subgraph of the root graph G (as G is
evolved from G by removing edge) which implies Por C Pg. Therefore, we have A, C Ay, Vs, s
where s € successor(s’) which imply A, C A . O

Lemma E] states that action set A4 of every state s € S is a subset of the action set A, _ of the
root state s,.. As a result, the overall action space for the APR problem can be expressed as
A= esAs = As,. Lemmais particularly useful in the design of our algorithms, as discussed
in the following sections.

Transition Probabilities: In each state, an action can lead to different outcomes, which are defined by
the transition probabilities in the MDP. In our problem, a transition probability shows the probability
of an edge being removed by the IT admin when a path is proposed. The removal probability is
defined by the Bradley-Terry preference model, as defined in Equation (I). Let’s say we have a state
s’ = s\ e where s evolved to s’ by removing edge e. The transition probability from s to s’ when
taking action a can be expressed as ®(s'|s,a) = ®(e|s,a) = Pr(e|p).

Reward: In our problem, each query will be penalized by a cost of exactly one unit of budget with
no discount factor. The reward is difference at two terminal states: when _L; is reached, meaning that
we ran-out of budget before identifying any cut, we will penalize it with a constant of o > 0;

—a, ifsely.
R(s,a) =<0, ifsely. 2)
—1, otherwise.

Realization: While "realization" is not a standard notation in MDP literature, it is commonly used in
the context of adaptive submodularity optimization |/Golovin and Krause|(2011). We introduce this
concept here as it will help us in describing the algorithms. We define a function ¢ : Ps_ +— E as
the full realization. We can view function ¢(p) as an oracle that returns the IT administrator’s edge
removal decision for a given path p. Additionally, we define the partial realization v : P;, — E
as the observations made so far at state s. Specifically, ¢s(p) returns the edge removed by the
IT administrator when p is proposed, and 1s(p) = * if p has not yet been proposed or contains
any edge have been removed by the IT admin. The domain of the partial realization is defined as
dom(yp) = {p € Ps, : ¢¥(p) # =}, representing the set of actions for which outcomes have been
observed. The range of the partial realization is defined as range(y) = {¢(p) : p € Ps,, ¥ (p) # *},
representing the edges that have been removed by IT admin. A partial realization v is consistent
with realization ¢ if they are equal everywhere in the dom(v)), denoted ¢ ~ 1. We say a partial
realization ) is a subrealization of v/’, denoted by 1) C ¢, if they are both consistent with some ¢
and dom()) C dom(v)').

3.2 Dynamic Programming Exact Algorithm (OPT)

As we establish the equivalence between the APR problem and the MDP, we also find that our
problem satisfies the “Principle of Optimality" in MDP. In our problem, given a state s and s’ = s\ e,
Ve € E; and Ej is the set of edges in the graph corresponding to state s, the optimal path query
in s is independent of previous queries and solving for the optimal strategy at s’ can be viewed as
a subproblem of s. This allows us to introduce the optimal utility function following the Bellman
equation:

Uur(s) = min{r(s,a) + Z D(els,plur(s\e)}, Vs €S 3)

€A
PEAs ecp

Based on the the optimal utility function in (3)), we can design a Bellman’s style dynamic program-
ming, called OPT. Now, let G be the graph that is associated with state s. The Dynamic Programming
follows a top-down approach. In each subproblem, we require the utility u,(s). However, as shown
in Equation (3)), obtaining the optimal utility requires invoking the action set A for every subproblem,
which in turn requires enumerating every simple path P, in G,. This approach is impractical to
run on any graph of reasonable size because the number of subproblems can grow as large as |E|Z,



and path enumeration, known to be #7P-hard, takes O(|V|¥) time complexity under a DFS-based
approach Peng et al|(2019), where k is the longest path length. However, thanks to Lemma[2] we can
run the enumeration one time only for the original problem. The action space for the subproblem is
simply A, = A, \{p:e€p,pec A, ecrange(is)},ie., we can obtain A, by removing paths
in A,, that contains edges that have been chosen to be removed by the IT admin. Since running Depth
First Search procedure to check if s, ¢ connectedness in every subproblem will take O(|E| + |V]).
The overall Exact algorithm will take us O(|V|* + (|E| + |V|) * | E|P). We will defer the detailed
pseudoscope of this algorithm to the appendix.

3.3 Adaptive Submodular Approximation Algorithms (APP)

In this section, we present an approximation algorithm, called APP, by utilizing the adaptive submod-
ularity framework |Golovin and Krause| (201 1)). The proposed algorithm provides square-logarithmic
approximation to the number of enumerations of possible simple paths in the original graph G. The
Adaptive Submodular Algorithm is proposed for the Stochastic Submodular Set Coverage (SSSC)
problem in|Golovin and Krause|(2011) which has a close connection with APR problem.

Problem 1. The SSSC problem involves a ground set of elements U = {uy,us,- - u,} and a
collection of items E = {ey, ea,- -+ , em }, where each item e is associated with a distribution over
subsets of U. When an item is selected, a set is sampled from its distribution, i.e., it will reveal
which subset of U will be covered. The objective of this problem is to find an adaptive policy  that
selects items to cover all elements in U while minimizing the expected number of items. To define
the coverage, we define a utility function f : 2F — R that quantifies the coverage achieved by the
current state. The complete coverage is represented as states with utility meeting a predefined quota

Q, ie., f(s) =Q.

We can see that our problem can be viewed as a special case of the SSSC problem. In the APR
problem, the ground set consists of all simple paths P; . In every round, when a path p is proposed,
the IT admin will choose an edge e € p to remove, every path in the set P’ = {p'|e € p/,Vp’ € Ps, }
(the set of paths containing e) will also be removed. Each path in the action space can be viewed as
an item in the SSSC problem, with each path associated with a distribution over the potential removal
of other paths. This distribution is presented as in Equation[I} The goal of APR problem is to cover
all paths in Ps_ (a cut eliminates all paths) while minimizing the number of queries. Next, we have
the following definitions.

Definition 1. (Conditional expected marginal benefit) Given a state s, an action a and a utility
function g, the expected marginal benefit of a is defined as:

Aa]s) =) {@(c]s,a)x[g(s\e) - g(s)]} )

eca

Definition 2. (Adaptive Monotonicity) A utility function g : S — R is adaptive monotone if the
benefit of selecting an action is always nonnegative. Formally, function g is adaptive monotonic if
Vs e SandVe € {e | e € a,a € Az}, we have:

g(s\e)—g(s) 20 &)

Definition 3. (Adaptive Submodular) A utility function g : S — R>¢ is adaptive submodular if the
marginal benefit of selecting an action does not increase as more actions are selected. Formally,
function g is adaptive submodular if for all temporary state s, s’ such that s C 1)y, Va € A, we
have:

Aal]s) > Ala|s) (6)

The reason for introducing these concepts is to port algorithms from the Adaptive Submodular
framework to the APR problem while ensuring the theoretical approximation bound. To do so, we
need to design a utility function g associated with the APR problem that satisfies two key conditions:
(1) adaptive monotonicity and (2) adaptive submodularity.

Utility Function: The utility function g : .S +— N is defined as:
gs)=1 U hleP) )

e€range(ys)



where the function h(e, P) = {p|e € p,Vp € P} returns the set of paths p € P that contains e. To
remind, range (1) is the set of edges that have been removed upon state s. We have the following
lemma for the utility function g:

Lemma 3. Function g is both adaptive monotonic and adaptive submodular

Proof. First, consider the function g, which counts the number of paths removed up to the current
state. Suppose we are at any state s, and path p is proposed to the IT admin, who then chooses to
remove an edge e. Removing e eliminates at least the proposed path p since e € p. This means
g(s\ e) > g(s)+ 1 and satisfying Equation (5). Therefore, g is adaptive monotone.

Moreover, since the utility function g, as defined in Eq. (7)), returns the number of paths removed by
IT admin decision from the root state. Furthermore, removing an edge e in a state s with ¥; C ¥
will result in more paths being eliminated than removing e in the successor state s’ which is formally
expressed as g(s \ e) — g(s) > g(s'\ e) — g(s’). This implies:

Aals) =) {®(c]s,a)x[g(s\e)—g(s)]}

eca

> {®(e|sa)x[g(s" \e) = g(s)]} = Ala | )

eca

The transition from line 1 to line 2 is valid because ®(e | s,a) = ®(e | ¢,a), Vs,s',a as the
transition probabilities of an action do not depend on the state, as defined in the equation (1| This
proves the adaptive submodularity of g.

Note, to ensure Theorem [6] holds, g must be both strongly adaptive monotonic and submodular.
While Definition [2]aligns with the concept of strongly adaptive monotonicity [Golovin and Krause
(2011), Definition [3]is only adaptive submodularity. A function is strongly adaptive submodular if
it is (1) adaptive submodular and (2) pointwise submodular. Although we have proven the former,
we admit the second property for g and hence g is also strongly adaptive submodular. We defer the
definition and proof of (2) to the appendix to maintain the readability of the paper.

Greedy with marginal gain strategy (Algorithm [TI): By applying a greedy strategy with our
problem-tailored utility function g, we have our Adaptive Submodular Algorithm as shown in
Algorithm|[I] In this algorithm, during each query round, we greedily propose the action a € A that
yields the highest expected marginal benefit with respect to the utility function g. Here again, due to
Lemma[2} we only need to enumerate the action space (for the G5 ) once beforehand. Note, while the
path enumeration problem is known to be #P-hard, our experiments with attack graphs demonstrate
that this enumeration can be performed within a reasonable runtime. The efficiency of this process is
largely because attack graphs typically involve only subgraphs of the larger AD structure.

Algorithm 1 Adaptive Submodular Strategy (APP)

Input: Directed graph G(V, E), source s and destination ¢
Qutput: approximate propose strategy
1: Initialise set of simple path A, of original state s,, set of proposed path A,
2: while s is not terminate state
3:  foreacha € A, \ A,
Alals) = 3. e {D(els,a)  [g(s \ €) — g(s)]}
a* = arg max, A(als)
Ar = Ar U{a*}, proposed a*, observe outcome ex
s = s\ e*, progressing to new state

A A

Once we have proven that g is both adaptive monotonic and adaptive submodular in Lemma 3] the
following theoretical approximation ratio for Algorithm [I] follows.

Theorem 4. Algorithmachieves a (In|Ps, | + 1)%-approximation for the APR problem with B =
|Ps, |



3.4 Scalable Heuristics Algorithm (DPR)

In this section, we present a scalable heuristic designed based on the exact algorithm and the
approximate algorithm as shown in Algorithm 2]

Heuristics based on Exact Algorithm (DPR) The exact dynamic programming algorithm struggles
to scale in realistic scenarios due to two main issues. First, APR problem’s MDP often has large action
space, particularly in the initial states, where the action space size corresponds to the enumeration
of simple paths in the original graph. Second, for each action, the number of child subproblems to
solve can grow up to O(|E|*). We proposed a scalable heuristic in Algorithm designed to restrict
the subproblem space in dynamic programming to a manageable size and enable efficient execution
on graphs of practical scale. We call this algorithm dynamic programming with restriction (DPR).
Function DPR(s’,r, B') in Algorithm[2|shows a modification of the Exact Dynamic Programming
algorithm with restriction. The first restriction is that instead of considering subproblems from B
steps ahead, DPR reduces the lookahead to B’ steps, where B’ < B. The second restriction is to
avoid enumerating every possible state (which can be problematic in the early stages). Instead, we
only consider a set of 7 candidate paths, implemented as the path_sampling(As , 7) function in
Algorithm 2] In general, we modify each heuristic to return the top k£ < 7 candidate paths, rather
than a single best path, based on each heuristic’s ranking criterion. For example, the approximate
heuristic ranks paths by their marginal gain according to g, then selects the top k£ among them. This
function will draw from multiple heuristic methods—such as those derived from an approximation
strategy (Algorithm I, shortest paths, approximate strategies on sets of shortest paths, or paths likely
to remove an edge in a minimum cut. As our experiments show that these approaches provide strong
performance. This modification decreases the number of subproblems to O((7)5") for each DP,
making DP more feasible in larger settings. While this adjustment may affect the optimality of the
solution (compared to the exact DP algorithm), it significantly improves the scalability. Empirically,
we will experimentally demonstrate that the DPR algorithm scales better than the exact algorithm
and outperforms the approximate algorithm on every graph.

Algorithm 2 Heuristics based on Exact Algorithm (DPR)

Input: Directed Attack Graph G(V, E), budget B, look-ahead budget B’
Output: Heuristic query strategy
1: while s is not a terminate state

2: 7= DPR(s,|A,|,B’)
3 a* =7(s)
4. Ap = A, U{a*}, proposed a*, observe outcome ex
5:  s=s)\ e, progressing to new state
6:
7: function DPR(s',r, B', 7)
8: fori e [0,B']
9: fors’ € S\AWHZ'
10: ifs’isin Ly or 1Lg4
. o o, ifs el
H ux(s'\ e) = {o, ifs' €1y
12: (s’ \e)=10
13: else
14: A = path_sampling(Ag, T)
15: a* = argmin,e 4 {>_ ¢, [P(els', a) x ux(s"\ €)]}
16: ur(s) =1+ Zeep [D(e]s’, a) *x ur(s'\ €)]
17: w(s') = p*

18: return w

4 Experiment

In this section, we present the evaluation of our algorithm on 13 synthetic graphs of different sizes
and an Active Directory (AD) attack graph from a real organization.



4.1 Experiment Set Up

In our experiment, we evaluate our algorithm using synthetic AD attack graphs generated by ADSynth
Nguyen et al|(2024)), a state-of-the-art AD graph generator. ADSynth models AD graphs based
on Microsoft’s best practices tiering model [Microsoft (2024alb), where Tier O contains the highest
privilege nodes with administrative control, Tier 1 includes high-privileged servers, and Tier 2 and
beyond contain non-administrative nodes. ADSynth simulates the AD attack graph in two steps: (1)
generating a best-practice AD infrastructure and (2) creating cross-tier edges.

If every node had a predefined tier, the defense problem would become trivial, as attack paths
could be easily identified and removed by removing all edges connecting lower-privilege nodes to
higher-privilege nodes Knudsen| (2021). Open-source tools like ImproHound Knudsen| (2021)) are
designed to automate this process. However, assigning roles to nodes is inherently challenging due to
the dynamic nature of roles, overlapping responsibilities, and exceptions such as temporary access
Knudsen and Schmitt| (2023). We called these undefined tier nodes. In our simulated attack graph, we
assume the presence of a set of nodes with undefined tier connections which create attack paths from
lower-privilege nodes to higher-privilege nodes. We assume that IT admin use our adaptive model
with the goal of removing all attack paths from the lowest tier to Tier 0. Our model treats the attack
graph as a single-source, single-target graph so we merge all Tier 0 nodes into a single supernode ¢
and all lowest-tier nodes into a single supernode s.

For our synthetic attack graphs, we labelled them from G1 to G9. In these graphs, the number of
tiers is fixed at 3, and 95% of nodes in graph have well-defined tier assignments. Additionally, we
also have 4 smaller versions of the graph denoted from GS1 to G54, used in the experiment in Table
In this small graph, defined-role ratio is about 99%. We also included one real AD graph that we
collected from an anonymous organization, we denoted this graph as ORG.

All of the experiments are carried out on a high-performance computing cluster with 1 CPU and
24GB of RAM allocated to each trial. In Tables|l|and |2} we report the average number of queries
over 16,000 trials. The budget constraint B is set at 10 for all experiments on synthetic graphs. For
the real AD graph ORG, due to computing resource limitations, we report the average number of
queries over 200 trials. Also for ORG, we reserve a higher budget of 20 and 30 queries due to the size
of this graph, denoted ORG(20) and ORG(30) respectively. For the DPR algorithm, we set 7 = 16
actions and a lookahead budget of B’ = 4 step. We reserve a higher budget of 20 and 30 queries due
to the size of this graph. For the DPR algorithm, we set 7 = 16 actions and a lookahead budget of
B’ = 4 step.

Table 1: Expected number of query under different algorithm ({ is better). Here, we only consider
graphs where OPT can run on.

GS1 GS2 GS3 GS4

OPT 2513 2592 2545 2.383
APP 2513 2592 2546 2385
OTH1 2.513 2592 2546 2.383
OTH2 2,513 2596 2.545 2.388
PPO  2.513 2.592 2546 2.383
SAC 2514 2592 2546 2384
DPR 2513 2592 2546 2.383

Table 2: Expected number of query under different algorithm ({ is better). AVG.RANK represents
the average head-to-head performance ranking of each algorithm across all evaluated graphs. #n/#e
show the number of nodes and edge in the graph. MC is the min-cut.

G1 G2 G3 G4 G5 G6 G7 G8 GY ORG(20) ORG(30) | AVG.RANK

#n/#e  1047/5078  1047/5091 1047/5116  5147/25376  5139/25153  5139/25161  10070/48161  10070/48170  10070/48192  125444/1195432 _

MC 3 3 3 3 3 4 3 3 3 8

APP 3.821 3.762 4.534 4.334 3.879 4.594 3.807 3.869 3.590 17.605 18.840 3.889
OTHI 3.816 3.755 4.409 3.885 3.880 4.593 3810 3.893 3.584 17.485 18.600 3.185
OTH2 3.813 3.756 4.437 3.904 3.883 4.592 3.799 3.871 3.570 17.535 18.535 3.333
PPO 3.816 3.755 4.425 3.905 3.876 4.587 3.797 3.876 3573 17.665 18.835 2.667
SAC 3.854 3.799 4.490 3.901 3.874 4.606 3792 3.876 3.575 18.005 18.560 2.667
DPR 3.816 3.755 4.409 3.901 3.876 4.589 3.797 3.869 3.568 17.480 18.555 1.444




4.2 Baseline Algorithms

Reinforcement Learning. This approach shares a similar concept with DPR but replaces the
use of Dynamic Programming with restricted lookahead by a model-free reinforcement learning
to learn the query strategy. We utilize two model-free reinforcement learning models: Proximal
Policy Optimization (PPO) Schulman et al.| (2017 and Soft Actor-Critic for Discrete Action (SAC)
Christodoulou| (2019). We encode the observation space as a vector of (E + 7B) binary bits. The first
E bits represent a one-hot encoding of the edges that have been removed through queries, while the
remaining 7B bits encode the taken actions. We allocated al00 GPUs for the training of RL agents.

Others Heuristics We also introduce two other heuristics called OTH1 and OTH2 which are designed
based on the approximate algorithm. For OTH1, we modify the utility function to ensure it will
propose paths with the highest likelihood of removing an edge in the minimum cut set. Formally,
it selects the path a = arg maxacp,,, :anme(c) 2ecalP(e]s, @) * [g(s \ €) — g(s)]} where mc(G”)
return the s — ¢ minimum cut of the temporary graph G’. For the OTH2, we restrict the approximate
algorithm to run on the set of shortest paths only.

4.3 Performance Interpretation

In Table [T} we report the performance of our proposed algorithm in the graph where OPT can
optimally come up with the query policy without out-of-memory error. As we mentioned, OPT is
very costly computationally, we are only able to scale it to a graph with 17 nodes, 32 edges and 16
attack paths (G54 graph). Overall, all of our heuristics (OTHs, PPO, SAC and DPR) perform very
well with the small optimality gap.

In Table 2] we present the performance of our algorithm on 13 large synthetic graphs and one
real-world AD graph (ORG) from an anonymous organization. We observed that DPR consistently
achieved the best performance. Noticeably, DPR outperformed APP in every graph. All proposed
algorithms outperformed APP. Nevertheless, APP’s performance is theoretically guaranteed which
may be useful for some worst-case scenarios. This algorithm is also useful as a path sampling scheme
for the DPR algorithm as the action space of DPR algorithm contain the approximate strategy which
somewhat helps DPR to have a guaranteed performance. While the RL algorithms (PPO and SAC)
performed well on synthetic graphs, their performance was worse on the real AD graph. We suspect
this is due to the real graph requiring a significantly larger number of queries. The RL policies are
myopic, meaning they excel in scenarios with fewer queries by prioritizing short-term gains but
struggle when a higher number of queries is needed, as they fail to account for long-term gains.

The adaptive hardening of AD security has been studied as the LQGCT problem by Guo et al. |Guo
et al.| (2024). Their model simulates IT admin’ behaviour as a binary decision-making process: at
each step, an edge is queried, and the administrator labels it as either "cut" or "retain." However, this
approach often fails when IT admins are overly conservative, retaining too many edges and leading
to unsuccessful cuts. In contrast, our model queries a path in each step, presenting a multiple-choice
decision for the IT admin to select one edge to remove. In table [3] we compare the graph-cutting
performance of the RL algorithm from LQGCT with our DPR algorithm. The results from 512 trials
demonstrate that our model achieved more successful cuts compared to Guo’s model. We observe
that a larger budget leads to a higher cutting success rate in our model, this means we can guarantee a
successful cut in every trial by allocating a sufficiently larger budget.

Table 3: The number of trials with successful cuts between RL from LQGCT model and DPR
algorithm over 512 trials. (1 is better)

LQGCT’s RL DPR
B=5 B=10 B=5 B=10
G7 128 144 278 459
G8 96 96 419 504
G9 96 96 339 487
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5 Conclusion

In this paper, we proposed a practical human-in-the-loop combinatorial problem for network security
called Adaptive Path Removal problem. This problem was motivated by the technical requirements
and limitations of current industrial models. The goal of our model is to reduce the workload for
security teams in an adaptive manner. We proposed a comprehensive set of solutions, including
an exact algorithm, an approximate algorithm, and several scalable heuristics. Among these, our
DPR heuristic, designed based on both the exact and approximate algorithms, exhibited superior
performance. Specifically, DPR demonstrated the ability to run effectively on larger-scale graphs
compared to the exact algorithm and consistently outperformed the approximate algorithm across all
tested graph scenarios. We verify the effectiveness of our algorithm on several synthetic AD graphs
and an AD attack graph collected from a real organization.
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6 Appendix

6.1 Proof of theorem 5]

Theorem 5. The APR problem is #P-hard.

Proof. The proof is based on a reduction from the (s, t)- network reliability problem Ball| (1986))
which is #P-hard.

PROBLEM: (s,t)-Network Reliability Problem

* Input: A graph G = (V, E), source node s and destination node ¢, probability p. € [0, 1]
associated with the present of each edge.

* Question: What is the probability that there is a path between two distinguished vertices s
and t

First, let Rel(G) denote the (s — t)-reliability of graph G, i.e., the probability that there exists a path
between nodes s and ¢t. We assume that each edge in G is operational (i.e., "On") with a probability
of p. = 0.5. We known that Rel(G) is #P-hard to compute. Now, we proceed with the construction
of the reduction instance. Suppose there exists a directed graph G’ = (V’, E’) and a query limit
of B. Let m = |E’| represent the number of edges in G’ and B > m. For this construction, we
define two types of edges: high-confidence edges (which are more likely to be misconfigurations)
and low-confidence edges (which are less likely to be misconfigurations). In this way, we assume that
when a path involves z high-confidence edges (z > 1), then the IT admin will never pick one of the
low-confidence edge and they will only pick one of the high-confidence edges with equal probability
(1/x). Conversely, if a path involves only low-confidence edges, the IT administrator will have to
choose one of these edges with equal probability. This essentially assumes that the confidence score
of high-confidence edge is infinitely. As defined in the APR problem, the IT administrator behaviour
is random, i.e., they choose an edge from the proposed path to remove according to the probability
distribution defined by the Equation 1

Given a APR instance graph G’, we construct the following graph G: For each edge (u, v) in G', we
introduce an auxiliary node called uv. We then add one low-confidence edge between u and uv and
one low-confidence edge between uv and v. Additionally, we introduce B parallel high-confidence
edges between uv and v. We refer to this constructed graph as G. In this graph, for the segment
u— > uv— > v, we classify the edges as follows: an edge is called an m;-type edge if it connects u
to uwv; an edge is called an n;-type if it is a low-confidence edge connecting uv to v; and an edge is
called n,-type edge if it is a high-confidence edge connecting uv to v

The core idea behind this construction is to ensure that the optimal policy avoids presenting any
path with nj,-type edges to the IT administrator. Querying path contain ny-type edges is suboptimal
because resolving any scenario will require at least B + 1.

The overall idea of the construction above is to ensure that the optimal policy avoids presenting any
high-confidence edges to the IT administrator, since query high-confidence edges will be never useful
as any situation will required to proposed at least B + 1 query to cut the graph. Therefore, the optimal
policy prioritizes querying paths that only contain m;-type and n;-type.

Now, consider a single segment © — uv — v, which involves two low-confidence edges and B
high-confidence edges, being presented to the IT administrator. Following the optimal policy, m;-type
edge and n;-edge of the segment will always be presented first. There is 50% that the IT admin will
choose an m;-type edge and a 50% chance they will choose an n;-type edge. If the IT admin selects
the m;-type edge, the segment will be successfully disconnected (i.e., u will be disconnected from
v within this segment). However, if the IT admin chooses the n;-type edge, the segment becomes
impossible to disconnect with B query. This is because once the n;-type edge is removed, all B
parallel nj-type edges must be queried to disconnect the segment (we will always hit the query limit
B).

Now, we will think about optimal query policy on G. We denote tuple Z = (G, B) as the APR problem
instance on graph G with budget of B Next, let us introduce the concept of a realization. In general
terms, a realization is a specific outcome or instance of a random variable or process—essentially, the
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actual occurrence of a particular event within a probabilistic framework. In our problem context, a
realization represents the decision made by the IT administrator when a path is proposed. We denote
realization with a function ¢ : P — E. The function v (p) acts as an oracle that returns the edge
e € p that will be removed when the path p is proposed to the IT administrator under realization 1)

Next, let ¢(Z, 7, 1)) represent the number of queries made when following the query policy 7 for the
problem instance Z under the realization ¢). We denote 17 » >4 as the set of realizations where the
query cost is at most = when applying policy 7 to instance Z. The expected number of queries across
all realizations for instance Z under policy r is denoted by E [¢(Z, 7)]. Additionally, the conditional
expected number of queries, given that the query cost is at most E [¢(Z, 7, ¥)|¥ € Y7 p>z]. We
define 7* as the optimal policy. According to the law of total expectation, the following equation
holds:

]E[ (Z,7")]
E[q(Z, 7, O)|¥ € U1z p<m] - Pr(V € Y1 v p<a) (3)
+ E [q* (Iv a‘l’)‘\ll S wI,ﬂ',b>m] . PT(\I/ S wI,ﬂ',b>w)

We observe that for realizations where the query cost is at most m (i.€. Yz 7+ b<m), we will also
successfully disconnect (s, t) in graph G, Similarly, for realizations where the query cost exceeds
m (i.e. Y1 = p>m), We fail to disconnect (s,t) in G. This is because there are only m edges of
my-type, and exceeding m queries will always deplete all of the budget (reminding that successful
disconnection of an segment requires the IT administrator to select an m;-type). Therefore, if we
define 17 » s« as the set of realizations where (s, t) remains connected after applying the optimal
query process to instance Z, and ¢z » sy as the set of realizations where (s, t) becomes disconnected,
we have Y7 p<m = VT 7+ st A YT 7+ p>m = YT 7= s4¢. This allows us to express the expected
number of queries using the following equation:

E [¢(Z, *)] =E[q(Z,7", )|V € 1 5 sest] - Pr(¥ € 1 pv sert)

+E[¢"(Z,m, U)|V € Yz rspt] - Pr(V € Y1,x,51)
=E[qZ,7* \IJ)|\IJ € Ve sest] - Pr(V € Yz pv si5t) + B Pr(V € Y1 r spt)
= E[q(Z, 7", W)W € §7.re nie] (1 — Rel(G)) + B - Rel(G)

From this equation, we observe that the optimal query strategy is independent of B (since
the second term is not controlled by the policy). Calculate the optimal query strategy is all
about minimizing the expected number of queries, conditional on G being s — ¢ disconnected
(.e.E[q(Z,7*,U)|V € 97 r+ sc»t]. When G is s — ¢ connected, then we will always hit the budget
limit. We can calculate Rel(G) by taking the difference between E [¢(Z' = (G, B + 1), 7*)] and
E[¢(Z = (G, B),7*)]. This shows that calculating the expected number of queries in the APR
problem is as difficult as the reliability problem.

©))

O

6.2 A note about Strong Adaptive Monotonicity and Strong Adaptive Submodular

To define strong adaptive submodularity, we first need the following extension of A(a | s)

Definition 4. (Conditional expected marginal benefit (extended version) Given a state s and s'
where s C g, an action a and a utility function g, the expected marginal benefit of a is defined as
Alals;s') = 3 cca{®le | 8',a) x [g(s \ €) — g(s)]}

Definition S. (Strong Adaptive Monotonicity) A utility function g : S — R>q is adaptive monotone
if the benefit of selecting an action is always nonnegative. Formally, function g is adaptive monotonic
ifforalls € Sande € {e | e € a,a € As}, we have g(s) —g(s\e) >0

Definition 6. (Strong Adaptive Submodular') A utility function g : S — Rx is adaptive submodular
if marginal benefit of selecting an action not increase as more action are selected. Formally, function

g is adaptive submodular if for all temporary state s and s' such that ¢, C ¢s and action a € A,
we have A(als;s') > A(a | §)

We also provide a the definition of pointwise submodularity as follows:
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Definition 7. (Pointwise Submodular) A utility function g : S — Rx>( A function g say to be
pointwise submodular if g is submodular in every state for any realization ). Formally, function
g is pointwise submodular if for all temporary state s and s’ such that ¢, C ¢y and for all
ee{e|e€a,ac A}, wehave g(s\ e) —g(s) > g(s'\ e) — g(s')

As our definition of adaptive monotonicity is already satisfy strong adaptive monotonicity condition
so we admit the proof.

A sufficient condition for strong adaptive submodularity is that the function g is both adaptive
submodular and pointwise submodular. The utility function g is pointwise submodular as for every
state s and s’ such that s C s’, and every action a € A, , we have g(s\ a) —g(s) > g(s'\ a) —g(s).
By definition, if a function g is both adaptive submodular and pointwise submodular, then g is strongly
adaptive submodular.

6.3 Pseudoscope for MDP-based Exact Algorithm

Algorithm 3 Dynamic Programming (OPT)

Input: Directed Attack Graph G(V, E),
Qutput: Optimal query policy 7

1: fori € [0, B]

2: forseS;

3: ifsisin T}

4: ur(s\e)=0,m(s\e)=10

5: elifsisin T

6: ur(s\e)=a,m(s\e) =10

7: else

8 =agminges {Xoc, [B(els, ) 5 ur(s\ )]}
o: ur(s) =1+ Zeep [P (e|s,a) * ur(s\ €)]
10 m(s) = p*

11: return 7

6.4 Time complexity analysis of Dynamic Programming Exact Algorithm

According to Lemma 2, we can enumerate the action space A, in advance and the action space A of
any state s can be obtained by removing any path in A, that contain edges that have been removed by
IT admin during the process. Enumerating action is equal to enumerating s —¢ path in the graph which
takes |V |* under the DFS-based approach Peng et al. (2019). The number of subproblem can grow
up to |E|Z, running Depth First Search procedure to check if s, ¢ connectedness in every subproblem

will take O(|E|+ |V]). Hence, the overall Exact algorithm will take us O(|V |* + (| E| +|V|) * | E|?).
And thank to lemma 2, we avoid the complexity O(|V|* x (|E| + |V|) * |E|B)

6.5 Time complexity analysis of DPR algorithm

The idea of DPR is to run the dynamic program with the restricted number of subproblem. Here
we restricted the number of subproblem to O(T)B/. This make the complexity of DPR become
O(VI* + (IE[ + [V]) = (1))

6.6 Vulnerability level and the number of cross-tier misconfig. in the attack graph.

Table 4: Vulnerability level and the number of cross-tier misconfig. in the attack graph.

level I level2 level 3 level4 level 5
# of misconfig. 9 27 45 98 197
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6.7 Proof of theorem 2

Theorem 6. Algorithm I achieves a (In |P;, | + 1)%-approximation for the APR problem with B =
|PST "

Proof. Applying Theorem 17 from |Golovin and Krause| (2011), the approximation ratio for the
greedy algorithm, which maximizes marginal gain, is bounded by:

o) 2
o(m) < ae(m™) (ln =+ 1) (10)
Ui
where ¢(7) is the average cost of the greedy policy which is a-approximate w.r.t items cost, ¢(7*) is
the cost of the optimal policy, () is the utility target for covering the ground set U, 7 is the threshold
parameter such that f(S) > @ — n will implies f(S) = Q.

For algorithm 1 and utility function g, we have range(g) C N which imply that 7 = 1. In the context
of the APR problem, achieving full coverage requires to disconnect every path in Ps . This condition
is satisfied when @ = | P _|. Also, a = 1 for algorithm 1. Therefore, the following approximation
ratio holds for Algorithm 1:

q(m) < q(*) (In| P, | + 1) (11)
O

6.8 Other Algorithm

6.8.1 Reinforcement Learning

In this approach, we adopt a strategy similar to the DPR algorithm by limiting the action space
to make the problem more manageable. However, instead of solving the problem optimally using
Dynamic Programming, we employ a model-free reinforcement learning approach to approximate
learn the query policy. We utilize two model-free Actor-Critic reinforcement learning models:
Proximal Policy Optimization (PPO)|Schulman et al.|(2017) and Soft Actor-Critic for Discrete Action
(SAC) [Christodoulou! (2019). These Actor-Critic methods allow us to train a reinforcement learning
agent across multiple environments simultaneously, where each environment represents a possible
realization v of the APR problem. The objective in the APR problem is to derive a policy that
minimizes the expected number of queries across all possible realizations. By interacting with several
realizations, the RL agent learns a policy that minimizes the overall reward (corresponding to the
number of queries) for these scenarios. For the implementation of RL, we encode the observation
space as a vector of (F + 7B) binary bits. The first F bits represent a one-hot encoding of the edges
that have been removed through queries, while the remaining 7B bits encode the actions that have
been taken.

6.8.2 Other Heuristic

In this section, we introduce two additional heuristics that performed surprisingly well compared to
the APP algorithm.

Minimum-cut-based heuristic (OTH1) The idea of this heuristic is to proposes paths with the
highest likelihood of removing an edge in the minimum cut set. Formally, it selects the path
P = AIEMaXae Py, :anme(@) 2ecal P (€], a) x [g(s\ ) — g(s)]} where mc(G’) return the s — ¢
minimum cut of the temporary graph G’. Suppringingly, MC is actually an approximate algorithm
with the approximation ratio of | P,| when queries have a cost (i.e., ¢ > 1). However, since our
problem assumes unit cost (i.e., ¢ = 1), this approximation bound becomes trivial, and we treat MC
as a heuristic. Despite this, the MC heuristic outperforms the APP algorithm in 9 out of 12 graphs in
our experiments, suggesting the potential for a tighter approximation bound and leave this for future
research.

Approximate Algorithm on Shortest Paths (OTH2) In this heuristic, instead of running the APP
algorithm on all simple paths, we restrict it to only the set of shortest paths. To remind, the APP
algorithm is used to find the path that yields the highest marginal gain within the given set of paths.
Surprisingly, this simple modification performs exceptionally well, outperforming the original APP
algorithm in 10 out of 12 graphs.
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Table 5: Average length of the queried path by algorithm. ({ is better)

G1 G2 G3 G4 G5 G6 G7 G8 G9 ORG(20) ORG(30)

APP 2228 2219 2524 2178 2252 2140 2.864 1.862 2.162 3.488 3.400
OTH1 2228 2218 2473 1.923 2252 2139 2864 1863 2.162 2.769 2.809
OTH2 2258 2238 2476 1894 2279 2.159 2902 1861 2.184 2.724 2.778
PPO 2259 2236 2474 1.893 2279 2158 2901 1.862 2.185 2.726 2.788
SAC 2259 2238 2477 1894 2279 2158 2907 1.861 2.186 2.728 2.783
DPR 2259 2237 2473 1894 2277 2159 2901 186 2.184 2.72 2.776

6.9 More about sampling scheme for DPR and RL algorithm

Sampling Scheme for DPR and RLs. Now we will discuss about the sampling scheme for DPR, and
both of the RL technique. In total, we have 3 sampling scheme for each algorithm. We implement
our sampling algorithm by modifying the APP, OTH1 and OTH2 algorithm to sample the action. The
idea is instead of return the top action proposed by these algorithm, we return the top-k path by run
these algorithm. The idea is to use DPR or RLs techniques to find the best action among k proposed
paths in each step. Specifically, the APPwill propose the path with the highest marginal gain with
respect to utility g, here, we use APPto return top & path with highest marginal gain. Similarly, for
OTH?2, we return top k shortest path. For OTH1, we return top % path that have the highest likelihood
of removing a edge in minimum cut. In our experiment, we fix k£ = 4 for DPR and £ = 16 for the
reinforcement learning methods. This choice is due to DPR’s limited scalability at k£ = 4, while PPO
and SAC can scale effectively to £ = 16. In the experiment, for each of algorithm, we will report the
result of the sampling scheme that yield the highest performance for each algorithm.

6.10 Data collection and preprocessing for the ORG graph

The data was collected from an anonymous organization using SharpHound |Vazarkar| (2019), which
gathers detailed information on user sessions, group memberships, ACLs (Access Control Lists), and
permissions within the AD environment. SharpHound is commonly used tool to collect domain data,
which is then imported into BloodHound for visualizing potential attack paths. The data collection
took place on Thursday, 28th October 2022, at approximately 10:00 AM during regular working
hours in the local time zone. The collected Active Directory dataset consists of 125,444 nodes and
1,195,432 edges. While we do not have specific insight into the number of tiers in this AD instance,
nor the exact rules the organization uses to define them (due to the confidentiality), we assume the AD
follows the common three-tier model. We heuristically classify nodes into three tiers: nodes flagged
as "adminaccount" (which SharpHound identifies as highly privileged groups) are categorized as Tier
0, servers and services are placed in Tier 1 (determined by their name), and all remaining nodes are
assigned to Tier 2. In this experiment, we assumed the undefined-tier ratio of 0.95. Given the shear
size of this AD graph, we increased the budget from 10 to B = 20 and B = 30 queries. Additionally,
due to runtime constraints, we were unable to include results for the DPR algorithm, as generating
queries for 16,000 episodes for this algorithm would take approximately 800 seconds per episode.

6.11 On the length of the proposed path

The length of the proposed path is an important consideration in the proposing process, as longer
paths could place additional burden on the IT administrator. Table [5|reports the expected average
lengths of the proposed paths in our experiments. The results show that the proposed paths are
relatively short, even for real AD environments (DPR average path length is only 2.776 for ORG).
This indicates that our approach does not create significant burdens for IT administrators.
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