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Abstract—Fraud detection is crucial in social service networks
to maintain user trust and improve service network security.
Existing spectral graph-based methods address this challenge by
leveraging different graph filters to capture signals with different
frequencies in service networks. However, most graph filter-based
methods struggle with deriving clean and discriminative graph
signals. On the one hand, they overlook the noise in the infor-
mation propagation process, resulting in degradation of filtering
ability. On the other hand, they fail to discriminate the frequency-
specific characteristics of graph signals, leading to distortion of
signals fusion. To address these issues, we develop a novel spectral
graph network based on information bottleneck theory (SGNN-
IB) for fraud detection in service networks. SGNN-IB splits
the original graph into homophilic and heterophilic subgraphs
to better capture the signals at different frequencies. For the
first limitation, SGNN-IB applies information bottleneck theory
to extract key characteristics of encoded representations. For
the second limitation, SGNN-IB introduces prototype learning
to implement signal fusion, preserving the frequency-specific
characteristics of signals. Extensive experiments on three real-
world datasets demonstrate that SGNN-IB outperforms state-of-
the-art fraud detection methods.

Index Terms—Fraud detection, Graph neural network, Het-
erophily

I. INTRODUCTION

The rapid growth of digital service networks has trans-
formed how services are delivered across industries, enabling
seamless interactions across platforms, from financial ser-
vices to e-commerce. However, this transformation has intro-
duced new risks, particularly from sophisticated fraud schemes
that undermine service quality, erode customer trust, and
threaten operational stability. In service-oriented industries,
where transaction networks and customer relationships form
graph-structured systems, leveraging advanced analytics to
address these risks is becoming a critical area for data-driven
decision-making [1]. This is particularly evident in financial
platforms, where transaction records structured as graphs can
reveal intricate patterns characteristic of fraudulent behavior.
Developing effective fraud detection methods is essential, not
only for enhancing system security but also for maintaining
user trust and protecting the reputation of online platforms.
As digital fraud schemes continue to grow in complexity, it is

crucial to refine and advance graph-based detection methods
to keep pace with emerging threats.

In this context, graph neural networks (GNNs) have
emerged as a transformative technology for social service
networks due to their exceptional ability to perceive interactive
information, as demonstrated in various social service scenar-
ios, such as fraud detection [2], [3]. GNNs are particularly
well-suited for identifying risky and fraudulent behaviors that
may be hidden within dense, high-dimensional interactive
information. By integrating both interaction data and user-
specific attributes, GNNs can detect suspicious activities with
high accuracy, significantly enhancing the security of digital
service platforms and establishing a more trustworthy online
environment.

However, GNN-based fraud detection faces two main chal-
lenges: (1) Data imbalance. In real-world service ecosys-
tems, fraudulent entities (such as fake accounts, malicious
transactions, or service abuse) are often a minority within
the network. The dominance of legitimate service nodes and
regular interactions makes it difficult for detection models to
capture the subtle anomalies associated with fraudulent behav-
ior. This imbalance reduces the model’s sensitivity to minority-
class samples and weakens its ability to differentiate between
normal service patterns and sophisticated fraud tactics, ulti-
mately lowering both detection accuracy and generalization
performance.

(2) Heterophily. Traditional GNNs, designed around ho-
mophily (the assumption that connected nodes exhibit similar
features and behaviors), are poorly suited for service fraud
detection. A significant limitation of these models is the over-
smoothing effect, which is especially problematic in service
networks. These models assume that interconnected nodes
in a network share similar features and behaviors, thereby
diminishing the ability to distinguish between linked entities.
Fraudsters exploit this design flaw by creating cross-service-
cluster relationships, such as generating high-frequency in-
teractions or embedding themselves within legitimate trans-
action pathways to hide their fraudulent actions. Through
these heterophilic strategies, fraudulent nodes can contaminate
their local neighborhoods, obscuring their anomalous behavior
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and evading detection by GNNs. As a result, GNNs fail to
identify the abnormal patterns, operational irregularities, and
behavioral deviations that distinguish malicious users from
legitimate participants in service networks.

To address these challenges, existing methods primarily
focus on spatial domain analysis, which includes strategies
like attention mechanisms [4], resampling techniques [5], and
auxiliary loss functions [5]. For example, attention mecha-
nisms can dynamically allocate the weights to the neighbors
and manage to boost the contributions of nodes with high
affinity; resampling techniques can adaptively determine which
neighboring nodes to retain through feedback. However, these
methods often face high computational costs and may alter the
underlying structure of the service network. Recently, spectral
domain analysis has been explored as a promising alternative
[6], [7]. By filtering high- and low-frequency signals in the
service network, spectral GNNs are better equipped to capture
the distinct characteristics of anomalies, offering improved
efficiency and accuracy over spatial approaches.

Despite these advancements, spectral GNN-based fraud
detection still have poor ability to capture clean and dis-
criminative latent representations, which can be attributed
to the following limitations: (1) Although graph filters can
capture signals in different frequency domains, these filters
still assume that information interaction between nodes in
the network is effective behavior, ignoring noise variables
introduced by malicious propagation and irrelevant behavior
patterns. (2) Prevalent solution to heterophily is leverage dif-
ferent graph filters to capture the signals in different frequency.
However, these signals from different graph filters lack the
frequency-specific semantic discrimination, which makes the
model hard to explicitly identify signals characteristics with
different frequency domain, resulting in the distortion of the
fused signals at the fusion node.

To address these issues, we propose a novel spectral graph
network based on information bottleneck theory (SGNN-
IB) for fraud detection. SGNN-IB first splits the original
graph into homophilic and heterophilic subgraphs using a
heterophily-aware classifier. It then applies multi-scale graph
filters to capture both low- and high-frequency signals from
the subgraphs and the original graph. For the first limitation,
SGNN-IB incorporates information bottleneck theory [8] to
enhance the encoding quality of graph filters with different
frequency, alleviating the noise interference in the encoded
node embeddings. For the second limitation, SGNN-IB em-
ploys prototype learning to boost the semantic discrepancy
between high- and low-frequency signals, thereby helping
model to identify diverse graph signals and fuse frequency-
specific graph signals.

In summary, our contributions are as follows:
• We present a novel SGNN-IB model to derive clean and

discriminative characteristics for fraud detection, which
employs an edge classifier to split the original graph
into homophilic and heterophilic subgraphs and then
leverages Beta wavelet graph filters to capture critical
characteristics of fraudsters.

• We introduce an IB-based loss function to decrease the
noise in different signals and utilize prototype learning to
capture the frequency-specific characteristics and improve
the signals integration.

• Extensive experiments on widely used datasets demon-
strate that our method significantly outperforms baseline
approaches. Additionally, our ablation study validates
the effectiveness of each component in the SGNN-IB
framework.

II. RELATED WORK

A. Graph-based fraud detection

Graph-based methods for fraud detection in service net-
works leverage the inherent topological structure of service
interactions to facilitate information propagation across indi-
viduals. A major challenge in fraud detection is data imbal-
ance, as fraudsters often blend in with legitimate users, making
their presence hard to detect. GNN-based fraud detection
methods typically use various strategies to mitigate the impact
of data imbalance and improve detection accuracy [9], [10].
For instance, DIG-In-GNN [11] enhances the message-passing
process with guidance information, while ASA-GNN [12]
adopts adaptive sampling strategies to filter out noisy nodes
and propagate more representative information. Although these
methods can effectively mitigate the issue of outliers in
service networks, but the sampling strategies may disrupt the
inherent structure of service interactions, leading to the loss
of important information.

Another challenge is that fraudsters often hide by frequently
interacting with benign users, leading to heterophily—where
connected nodes exhibit different patterns. To tackle this,
GraphConsis [13] employs semantic embedding, neighboring
information, and adaptive attention to mitigate the effects of
heterophily. H2-FDetector [5] adopts an opposite aggregation
mechanism to learn discriminative representations for neigh-
bors from different categories. GAGA [14] introduces a group-
based strategy to mitigate the impact of high heterophily. Al-
though these methods are effective, they suffer from significant
computational complexity.

Recent studies have used graph filters to capture both
low- and high-frequency signals. For example, AMNet [15]
employs Bernstein polynomials to extract frequency-specific
signals, and IDGL [6] applies dual-channel graph convolution
filters to propagate multi-scale frequency information. Addi-
tionally, some research addresses the “right-shift” phenomenon
caused by heterophily, using Beta wavelet transformations as
spectral filters to capture important information [7], [16].

Many filter-based methods rely on sophisticated graph filters
to update node features, achieving success in identifying fraud-
sters in service networks. These methods often use classical
graph filters, such as polynomial and wavelet transformations,
to capture both low- and high-frequency information. Given
the complexity of graph structures, some approaches apply
filters at different levels or perspectives, such as global vs.
local views, homophilic vs. heterophilic views, and relation-
based views, to enhance model representation. Despite these



advances, such methods are still limited to obtain repre-
sentative characteristics of nodes and vulnerable to noise
interference across different frequency domains.

B. Graph neural networks

GNNs are one of the most powerful deep learning methods
for analyzing topological data, which can be categorized into
spectral methods and spatial methods.

Spectral methods operate in a transductive manner, rea-
soning from observed samples instead of unknown samples.
Several spectral GNNs, such as GCN [17] and DGCF [18],
use Laplacian spectral transformations to capture topological
embeddings and propagate information through convolution
operations. Spectral methods are effective for capturing multi-
scale frequency information. For example, OptBasisGNN [19]
focuses on finding an optimal basis for spectral space, while
PolyFormer [20] introduces a self-attention mechanism to
enhance the utility of polynomial tokens. NFGNN [21] intro-
duces node-oriented spectral filtering with a generalized trans-
lated operator to improve the expression of local information.

Spatial methods focus on inference and generalization,
enabling models to learn from training data and test on unseen
datasets. Classical spatial GNNs, such as GAT [22] and Graph-
SAGE [23], use a message-passing mechanism to disseminate
information across the graph structure. Recent advancements
in spatial GNNs include Edgeless-GNN [24], an unsupervised
inductive framework for learning node representations without
edges, and TULMGAT [25], a multi-scale graph attention
network designed for trajectory-user linking problems. H-GAT
[26] is a heterogeneous graph attention network that captures
latent preferences of individuals based on interactions between
heterogeneous instances. TL-GNN [27] addresses the local
permutation invariance problem in GNNs to improve feature
extraction quality.

However, most universal GNNs exhibit limitations in ad-
dressing fraud detection tasks due to two fundamental chal-
lenges. First, the inherent class imbalance in service fraud
detection datasets significantly hinders traditional GNNs’ abil-
ity to effectively learn and represent the distinctive patterns
of fraudulent samples. Second, the presence of heterophilic
relationship patterns in service networks contradicts the fun-
damental assumption of homophily in standard GNN architec-
tures, thereby compromising their detection performance.

III. PRELIMINARIES

In this section, we provide imperative definitions and de-
tailed descriptions of the research problem.

A. Definitions

Definition 1 (Graph): Let a graph G = (V, E ,X ,A,Y)
denotes a service network. V = {v1, v2, · · · , vN} represents
node set of graph G, where N is the number of nodes. E is the
edge set of graph G and euv ∈ E denotes an edge from node
u to node v. X ∈ RN×D indicates the feature matrix of N
nodes, where D is the feature dimension. A ∈ RN×N is the
adjacency matrix of G. If euv ∈ E , auv ∈ A = 1, otherwise

auv = 0. Y ∈ RN×1 denotes the label of all nodes, where
yv ∈ Y = 0 if node v is a benign sample and yv ∈ Y = 1 if
node v is a fraudster.

Definition 2 (Multi − relationgraph): If there are
different relations between nodes in the graph, G =
(V, Er|Rr=1,X ,Ar|Rr=1,Y) can be denoted as a multi-relation
graph, where R is the number of relation categories. For
simplicity, a multi-relation graph can be identified as G =
(X ,Ar|Rr=1,Y).

B. Problem statement

Given a multi-relation graph G, the fraud detection problem
in the service networks aims to discriminate fraud service
providers and benign nodes in the graph G by exploiting a
function fθ(·) with learnable parameters θ to project vector
space of nodes into latent embedding space. The function is
trained under a supervised learning paradigm, which uses node
features X , multi-relation adjacency matrices Ar|Rr=1 and node
labels Y to optimize the function parameters θ.

IV. METHODOLOGY

In this section, we first introduce the overall SGNN-IB
framework and then elaborate on the components of SGNN-IB
and the training strategies.

A. The SGNN-IB framework

The framework of SGNN-IB is shown in Figure 1. First,
SGNN-IB employs an edge classifier to identify and extract
heterophilic subgraphs within the graph structure. Subse-
quently, SGNN-IB applies diverse graph filters to encode
the original graph and specific subgraphs. the graph signals
into high-pass, low-pass, and band-pass components, capturing
diverse frequency-specific information. To enhance frequency-
specific semantic discrimination, SGNN-IB introduces proto-
type learning to obtain the affinity of signals and performs
information fusion. To conquer noise problem, SGNN-IB
introduces an IB loss to alleviate the interference of noise
in the process of information propagation. Finally, SGNN-IB
is trained with objective function which is comprised of IB
loss, classification loss and edge loss, ensuring a balanced and
comprehensive learning process. The architecture of IB loss is
shown in Figure 2.

B. Heterophily-aware edge classifier

Traditional GNNs are established on the assumption that the
connections between nodes exhibit homophily, which means
the connected nodes belong to the same category. In other
words, traditional GNNs serve as smoothing function to the
graph signals. However, many connections show heterophily,
indicating that the connected nodes have different labels.
Simply deploying traditional GNNs may dilute the categorical
characteristics of nodes, which hinder the accurate node identi-
fication. Therefore, in order to avoid the loss of discriminative
information in graph, it is important to split homophilic and
heterophilic connections.

To perceive the heterophily in graph topology, we design a
heterophily-aware edge classifier, which aims to identify the
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Fig. 1. The framework of SGNN-IB. First, SGNN-IB leverages an edge classifier to perceive heterophilic subgraphs. Then, SGNN-IB utilizes multi-scale
graph filters to obtain the high- and low-frequency signals in the graph. Subsequently, SGNN-IB integrate the signals from different frequency based on
prototype learning. Finally, SGNN-IB is trained by the joint loss function, integrated with IB-loss.
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edge type of each edge. In the context of training data contain-
ing labeled nodes, we meticulously establish homophilic and
heterophilic edges based on the labels of source and target
nodes in the training set. The edge classifier, designed as a bi-
nary classification model, leverages the feature representations
of both the source node u and the target node v to predict the
type of edge euv . This classifier is implemented using a multi-
layer perceptron (MLP) architecture, thereby facilitating the
discrimination between different edge types within the graph.

For an edge euv with the source node u and target node v,

the computations are as follows:

hu = σ(Wh · xu + bh), (1)

hv = σ(Wh · xv + bh), (2)

ϕuv = Sigmoid(W[hu||hv||(hu − hv)]), (3)

πuv = 2 ∗ ϕuv − 1, (4)

where σ(·) is a nonlinear activation function, xu and xv are
respectively the original features of node u and v, Wh, bh

and W are learnable parameters of the feature transformation
hu and hv are respectively transformed features of node u



and v, Sigmoid(·) is Sigmoid activation function, [·||·] is
concatenation function. πuv is limited to [-1, 1] to discriminate
the heterophilic connections.

To partition the original graph into a homophilic subgraph
Gl and a heterophilic subgraph Gh, we leverage the prediction
outcomes of all edges within the graph. The homophilic
subgraph exclusively only comprises edges predicted to exhibit
homophily, whereas the heterophilic subgraph merely encom-
passes edges anticipated to display heterophily.

The precise classification of edges is of paramount impor-
tance for subsequent procedures, as it directly influences the
quality of the resultant partitioned subgraphs. To this end, we
devise an auxiliary loss function tailored for training the edge
classifier. This loss is derived from the constructed training
edge set Etr and the corresponding prediction outcomes.
The heterophily-aware edge classifier is optimized using the
training edge set Etr with the following loss function:

LH = −
∑

euv∈Etr

(yeuv
log(ϕuv)+(1−yeuv

)log(1−ϕuv), (5)

where yeuv
is the label of edge euv . If the edge exhibits

homophily, the label yeuv
is 1, otherwise the label yeuv

is
0.

C. The design of graph filter and information fusion

Upon dividing the original graph, the resultant homophilic
subgraph Ghomo manifests an enrichment of low-frequency
signals, whereas the heterophilic subgraph Gheter predom-
inantly exhibits high-frequency signals. To capture signals
within distinct frequency bands, diverse filters are applied to
these partitioned graphs. Notably, since the splitting process
yields frequency-specific signals from the original graph,
subgraphs inevitably lose the holistic structural information
contained within the original graph. To bolster the overall
semantic richness and the fidelity to original information, it
is imperative to also apply filters to the original graph.

Formally, consider the original graph G, alongside the
predicted homophilic subgraph Ghomo characterized by its
Laplacian Lhomo, and the predicted heterophilic subgraph
Gheter with Lheter. Given the model’s need to discern signals
of varying frequencies across these three graphs, a versa-
tile band-pass filter becomes indispensable. Crafting an apt
graph filter for the partitioned subgraphs presents a non-
negligible challenge, as contemporary GNNs predominantly
leverage low-pass filters [7]. Recently, research endeavors have
introduced methodologies to learn arbitrary graph filters via
polynomial approximation or Transformer architectures, ex-
emplified by PolyFormer [20] and Specformer [28]. However,
these methodologies fall short in the context of fraud detection
tasks, where the minute proportion of fraudulent nodes within
the graph exacerbates the issue of severe class imbalance.
Consequently, high-frequency signals become relatively scant,
leading the trained filter to potentially demonstrate a propen-
sity for prioritizing low-frequency signals.

Consequently, we adopt design band-pass filters based on
Beta wavelet [16] to capture distinct frequency bands. Based

on Beta distribution, Beta wavelet transformation is defined as
follows:

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ [0, 1], (6)

where Γ(·) is Gamma distribution, α and β is the parameters
of Beta distribution. Given the eigenvalues of the normalized
graph Laplacian L ∈ [0, 2], we leverage f∗(x;α, β) =
1
2f(

1
2x;α, β) to cover the whole spectral range of L.

For simplicity, we constrain the α, β ∈ N+ and only
generate a low-pass filter f∗

low(x;α, β) and a high-pass filter
f∗
high(x;β, α) to avoid computational complexity problem.

Then we apply the high f∗
homo to Lhomo to capture low-

frequency information from Ghomo. Correspondingly, we can
obtain high-frequency signals by deploying f∗

heter on the
normalized Laplacian Lheter of Gheter. The formulations can
be defined as follows:

Hlow = f∗
low(Lhomo,H) = flow(

1

2
Lhomo;α, β)H, (7)

Hhigh = f∗
high(Lheter,H) = fhigh(

1

2
Lheter;β, α)H, (8)

where H is the features matrix. Then, we integrate the obtained
signals from different frequency domains:

Ĥ = Φ(Hhigh,Hlow), (9)

where Φ(·) is adaptive frequency fusion function, which is
illustrated in Section IV-D.

We have derived representations from both homophilic and
heterophilic subgraphs utilizing low- and high-pass filters.
Nevertheless, the structural integrity of these two subgraphs
remains incomplete. To enhance the expressive power of our
model, we employ the band-pass filters on the original graph
and generate fused embeddings of band-pass filters.

Ho
i = f∗

i (Lo,H) = fi(
1

2
Lo; {α, β})H,

Ĥo = Φ(Ho
high||Ho

low), (10)

where i ∈ {high, low}, Lo is the normalized graph Laplacian
of the original graph G and Ho

i represents the transformed
features by single low- or high-pass filter.

To protect the original semantic information of node fea-
tures, the ultimate embedding of the node is constructed
by concatenating the filtered representations and the linearly
transformed residual representations from the original graph.

H̄ = σ(Wo[Ĥ
o, Ĥ]). (11)

In practical scenarios, the majority of fraud graphs encom-
pass a diverse relation. After acquiring representations for
each relation, we integrate the node representations stemming
from these various relations, thereby constructing the definitive
embedding for the nodes. For the sake of brevity, we have
omitted the explicit representation of these relations in the
aforementioned equations. The relation fusion formulation can
be defined as follows:

Hall = Wr||Rr=1H̄r, (12)



where H̄r is the ultimate filtered embedding in homogeneous
graph under relation r, R is the relation set of graph G and
Wr is the learnable weights.

D. Frequency-specific feature fusion based on prototype learn-
ing

The high-frequency and low-frequency should reflect the
behavior characteristics of nodes in different frequency domain
modes. However, due to the interactive pattern of nodes,
these signals lack discernible frequency-specific semantic in-
formation, which loses significant discrimination after feature
fusion. Therefore, we introduce an adaptive frequency fusion
function Φ(·, ·), a prototype learning mechanism, to enhance
the semantic representations in each frequency domain.

Take high-frequency features as an example. Given the
latent representations of frequency domain Hhigh, we first
calculate the prototype of high-frequency domain:

chigh = Readout(Hhigh), (13)

where Readout(·) is average readout function.
Then we can obtain the affinity score of the node features

with prototype:

shigh =
1

len(H)

len(H)∑
i=1

cos(h(i,high), chigh), (14)

where h(i,high) = H[i, :], cos(·, ·) denotes the Euclidean
distance, and len(H) denotes the sample size in H. Simi-
larly, we can obtain the affinity score slow in low-frequency
domain. A higher score indicates that the frequency-specific
characteristics are more representative.

To enhance the frequency-specific semantic discrimination,
the fused representations should approach to frequency domain
signals with high affinity. Therefore, we integrate the signals
from high-frequency and low-frequency domain based on the
affinity score:

Φ(Hhigh,Hlow) =
shigh

shigh + slow
Hhigh+

slow
shigh + slow

Hhigh.

(15)
To capture signals within distinct frequency bands, diverse
filters are applied to these partitioned graphs. Notably, since
the splitting process yields frequency-specific signals from the
original graph and there is interference in the propagation of
information in interactive behavior, subgraphs inevitably lose
the holistic structural information contained within the original
graph. To bolster the overall semantic richness and the fidelity
to original information, it is imperative to also apply filters to
the original graph.

E. IB-based representation denoising

Even though high-pass and low-pass filters encapsulate dis-
tinct semantic information within graphical representations, as
illustrated in Section I, there is interference in the propagation
of information in interactive behavior, which results in noise
problems in the propagation of information. These issues leave
the graph filtering capability constrained and hindering the

generation of sufficiently discriminative representations across
diverse frequency domains.

To this end, we introduce the IB theory to improve the
quality of latent representations against noise. According to
IB theory, the training objective is twofold: (1) to maximize
mutual information between encoded embeddings H and la-
bels Y, and (2) to minimize mutual information between the
encoded embeddings H and the node features X.

argmin
H

−I(H;Y) + µ · I(H;X), (16)

where µ is a balanced coefficient. The IB Theory can compress
the information within input data to distill and preserve the
most task-relevant knowledge, effectively reducing noise and
redundant information while extracting the most predictive and
useful features.

Based on this idea, we develop an IB-based information-
enhancing module to improve the quality of graph filters and
provide more optimization guidance for signals in different
frequencies. First, our basic objective function is consistent
with IB theory: (1) to maximize the mutual information
between the latent embeddings H and the labels Y, and
(2) to minimize the mutual information between the latent
embeddings and input features X. However, due to the lack of
prior knowledge of different frequency signals, it is impractical
to calculate the mutual information directly using ground
truth labels. To this end, we regard the latent embeddings
from the encoded original graph using different graph filter
as the labels Y and the representations encoded from the
heterophilic and homophilic using corresponding graph filters
as the latent embeddings H. Then, the IB-based loss function
can be defined as follows:

I(H;Y) = I(Hhigh;H
o
high) + I(Hlow;H

o
low), (17)

I(H;X) = I(Hhigh;H) + I(Hlow;H). (18)

The overall IB-based loss function is defined by averaging
each term of mutual information:

LIB =
1

2
× [−I(H;Y) + µ · I(H;X)]. (19)

Through the implementation of the information-enhancing
module based on IB theory, the graph filters obtain explicit
guidance to effectively counteract noise within features. This
ensures that the encoded representations not only preserve the
vital characteristics of the original features but also meticu-
lously filter out redundant and irrelevant information. Addi-
tionally, the graph filters operate across different frequency
channels, maintaining their specificity and ensuring that each
channel remains relatively independent. This approach enables
the generation of high-quality, fused features that are crucial
for the accuracy of the model.

F. Jointly training

To distinguish between fraudulent and non-fraudulent
nodes, we use the cross-entropy loss function for binary node
classification. Specifically, given a training set Vtrain, for



each node v ∈ Vtrain with its corresponding label yv , the
classification loss function can be formulated as:

LC = −
∑

v∈Vtrain

[yvlog(pv) + (1− yv)log(1− pv)], (20)

pv = softmax(hall). (21)

The joint loss function combines the loss from the node
classification, the heterophily-aware edge classifier, and the
information bottleneck (IB)-based enhancer, as follows:

L = LC + λLH + ηLIB , (22)

where λ and η are hyperparameters.
To address the class imbalance typical in fraud detection,

we apply a sampling strategy during training. This involves
selecting an equal number of benign nodes as fraudulent
nodes for calculating the node classification loss. Similarly,
to calculate edge classification loss, we ensure that an equal
number of homophilic edges are considered compared to
heterophilic edges.

V. EXPERIMENTS

A. Experimental setup

1) Datasets: We execute experiments on three public fraud
detection datasets, YelpChi [9], Amazon [5] and FDCompCN
[7]. In the YelpChi dataset, nodes represent reviews, and it in-
cludes three types of relations: 1) R-U-R represents the reviews
posted by the same user, 2) R-S-R denotes reviews related to
the same product with the same star rating, and 3) R-T-R
stands for the reviews related to the same product posted in
the same period. In the Amazon dataset, nodes represent users,
with three types of relations: 1) U-P-U denotes users reviewing
at least one same product, 2) U-S-U represents users having at
least one same star rating within a specific period, and 3) U-V-
U indicates subscribers with the top 5 percent mutual review
text similarities. In the FDCompCN dataset, nodes represent
companies, and it includes three types of relations: 1) C-I-C
represents companies that have investment relationships, 2) C-
P-C indicates companies and their disclosed customers, and 3)
C-S-C suggests companies and their disclosed suppliers. The
dataset statistics are summarized in Table I.

2) Baselines: We select ten baselines to validate the ad-
vancement of our model. We categorize the baselines into
three groups: shallow methods, GNNs, and GNNs-based fraud
detection frameworks. Among these, MLP and XGBoost are
typically shallow methods base on feature learning, which ig-
nore graph topology. GCN, GAT ,FAGCN and GPR-GNN are
GNNs-base methods. CARE-GNN, H2-FDetector, BWGNN
and SEFraud are fraud detection framework based on GNNs.

MLP is a classical neural network basic architecture.
XGBoost [29] is tree structure-based is an optimized dis-

tributed gradient enhanced machine learning algorithm aimed
at achieving high efficiency, flexibility, and portability

GCN [17] is a classical transductive graph convolution
neural network that leverages spectral transformation to extract
graph information.

GAT [22] is an inductive graph attention network that
adaptively propagates neighboring information according to
learnable weights of neighbors.

FAGCN [30] is an improved GNN that adaptively learns
low-frequency and high-frequency information in graph for
more effective node representations.

GPR-GNN [31] is a novel generalized PageRank GNN
framework and jointly optimize node embeddings and struc-
tural information extraction according to dynamic GPR
weights.

CARE-GNN [9] is a camouflage-resistant graph neural net-
work that utilizes reinforcement learning to achieve similarity-
aware neighbor selections.
H2-FDetector [5] exploits homophilic and heterophilic

connections in the graph by attention mechanism with opposite
weights.

BWGNN [16] leverages beta wavelet transformation to deal
with energy distribution shifting in anomalies.

SEFraud [3] is an interpretable fraud detection framework
that leverages learnable masks to capture expressive represen-
tations.

3) Evaluation settings: Since the fraud detection problem
exhibits data imbalance, we select four metrics to evaluate all
models. AUC is determined through the comparative ranking
of prediction probabilities across all instances, thereby miti-
gating the impact of data imbalance on the detection process.

AUC =
1

2

m−1∑
i=1

(TPRi+1 − TPR)(FPRi+1 − FPR) (23)

where TPR is the true positive rate, and FPR is the false
positive rate.

Recall evaluates the average, without weighting, of the
fractions of actual fraudsters and actual normal users that a
detector correctly identifies out of the total actual number of
fraudsters and normal users, respectively.

Recall =
TP

TP + FN
(24)

where TP and FN are true positive and false negative,
respectively.

GMean integrates the recall and accuracy metrics of a
classifier to assess the effectiveness of a classification model
when dealing with an unbalanced dataset, which is defined as
follows:

GMean =
√
TPR ∗ FPR (25)

F1-score is an evaluation metric that comprehensively con-
siders the performance of both precision and recall.

F1− score =
2× precision×Recall

precision+Recall
(26)

4) Implementation details: The experiments utilize Py-
Torch in Python 3.9.12, deploying a single NVIDIA A40 GPU,
40GB of RAM, and a 2.60GHz Xeon (R) Gold 6240 CPU.
All the baselines can be reproduced by public source codes
and Python dependencies.



TABLE I
STATISTICS OF DATASETS

Dataset Application #Node Dimension Fraud(%) Relation #Edge

YelpChi review 45954 32 14.53%
R-U-R 98630
R-T-R 1147232
R-S-R 7693958

Amazon review 11944 24 6.87%
U-P-U 351216
U-S-U 7132958
U-V-U 2073474

FDCompCN financial 5317 57 10.5%
C-I-C 5686
C-P-C 760
C-S-C 1043

TABLE II
PERFORMANCE OF THE PROPOSED SGNN-IB MODEL AND COMPARATIVE MODEL ON THREE DATASETS. ALL RESULTS ARE IN %.

Method Dataset YelpChi Amazon FDCompCN
Metric Recall F1-macro AUC GMean Recall F1-macro AUC GMean Recall F1-macro AUC GMean

Baselines

XGBoost 19.15 61.72 59.01 43.51 69.09 72.68 79.54 78.87 61.25 61.17 50.64 58.04
MLP 69.37 61.48 77.43 70.73 78.18 72.95 87.78 82.93 57.08 54.80 43.06 58.48
GCN 77.53 36.67 59.33 49.46 80.00 56.43 84.61 73.72 52.92 51.01 40.89 43.95
GAT 62.15 42.77 56.13 53.13 80.00 71.46 88.03 83.04 52.55 51.36 38.20 42.94

GPRGNN 75.16 57.34 77.12 69.84 80.09 64.15 89.08 82.32 56.40 47.52 50.31 52.09
FAGCN 70.64 61.11 77.90 70.86 81.21 69.30 90.48 84.33 57.90 48.48 51.59 49.50

CARE-GNN 72.32 60.40 77.41 70.86 75.76 70.45 86.19 81.71 57.21 43.59 49.00 50.10
H2-FDetector 84.61 70.78 88.90 81.64 82.12 71.36 89.84 84.29 55.96 48.33 47.89 49.10

BWGNN 82.56 72.32 89.72 81.92 83.94 69.43 91.91 84.67 58.01 47.91 49.79 52.33
SEFraud 78.64 72.51 86.77 82.44 88.67 71.28 91.5 85.13 57.49 50.31 50.41 53.74

Ours SGNN-IB 86.37 74.64 92.06 84.40 90.30 71.56 93.03 86.65 58.93 52.22 56.43 54.17

TABLE III
PERFORMANCE OF THE ABLATION EXPERIMENTS ON THREE DATASETS. ALL RESULTS ARE IN %.

Variants YelpChi Amazon FDCompCN
Recall F1-macro AUC GMean Recall F1-macro AUC GMean Recall F1-macro AUC GMean

SGNN-IBedge 84.32 68.28 85.62 74.36 83.21 66.34 84.51 81.51 51.21 46.32 50.11 48.29
SGNN-IBlow 85.31 67.48 85.43 76.73 82.37 64.74 85.97 76.94 52.14 45.80 49.39 48.22
SGNN-IBhigh 83.53 66.67 83.33 79.46 80.44 63.48 82.11 79.55 51.39 43.82 50.73 46.77
SGNN-IBrel 82.64 66.15 77.90 74.86 83.64 65.54 88.54 80.28 55.83 49.33 50.81 48.96
SGNN-IBIB 81.53 67.57 89.13 79.26 88.99 69.45 90.42 84.68 53.93 50.48 53.61 51.28

SGNN-IB 86.37 74.64 92.06 84.40 90.30 71.56 93.03 86.65 58.93 52.22 56.43 54.17

B. Overall performance

The experimental results of our study are summarized in
Table II. The best results are highlighted in bold, while the
second-best results are underlined.

In general, graph-based approaches outperform feature-
based shallow methods, as they are better equipped to capture
the complex relational and interactive information embedded
within the graph structure. Among the graph-based models,
GNN-based fraud detection methods outperform traditional
GNN models. This advantage stems from the ability of GNNs
to handle the data imbalance commonly seen in fraud detection
tasks, which often causes classical GNNs to suffer from
the over-smoothing problem, especially when distinguishing
fraudsters from benign users.

Looking specifically at shallow methods, we find that MLP
performs better than XGBoost. This is because MLPs can
adaptively learn and represent nonlinear relationships in the
data, which enhances their performance in fraud detection
tasks. Among GNN-based models, GPRGNN and FAGCN
demonstrate better performance compared to traditional GCN

and GAT models. GPRGNN excels by capturing both struc-
tural and feature information, using adaptive weights to filter
out noisy nodes. FAGCN, on the other hand, is particularly
effective at identifying fraud-related features by distinguishing
between high- and low-frequency information in the graph.
Within the realm of GNN-based fraud detection, several ad-
vanced models have also shown promising results. CARE-
GNN mitigates the challenge of data imbalance through sam-
pling strategies.H2-FDetector is skilled at detecting differ-
ences between homophilic and heterophilic pairs in the graph,
which helps identify fraudsters more accurately. BWGNN
addresses the issue of fraudsters’ camouflage by combining
graph filters and convolutional networks. SEFraud incorporates
a trainable masking strategy to improve the interpretability of
node features.

The proposed SGNN-IB outperforms all these baseline
models. In comparison to the best performance in baselines,
SGNN-IB shows an absolute improvement of 1.76%, 2.13%,
2.34%, and 1.96% in Recall, F1-Macro, AUC, and GMean
on the YelpChi dataset. On the Amazon dataset, SGNN-IB



achieves absolute improvements of 1.63%, 0.20%, 1.12%, and
1.52%, respectively. For the FDCompCN dataset, SGNN-IB
improves by 0.92%,1.91%, 6.02%, and 0.43% in Recall, F1-
Macro, AUC, and GMean.

The success of SGNN-IB can be attributed to several
key factors. First, SGNN-IB uses both low-pass and high-
pass filters to selectively extract relevant information from
homogeneous and heterogeneous structures, respectively. It
also employs a prototype learning method to maintain the
discriminative information of different frequency domain. In
addition, to enhance the robustness of the filtering process
against noise, SGNN-IB integrates an IB-based enhancement
module. This module guides the graph filter, enabling it to
generate high-quality, encoded features that improve fraud
detection performance.

C. Ablation experiments

To evaluate the contribution of each component in the
SGNN-IB framework, we conduct ablation studies by ex-
amining five variants: SGNN-IB without heterophily-aware
edge classifier SGNN-IBedge, SGNN-IB without low-pass
filter SGNN-IBlow, SGNN-IB without high-pass filter SGNN-
IBhigh, SGNN-IB without relation fusion SGNN-IBrel and
SGNN-IB without IB-based information enhancer SGNN-
IBIB . The results of these ablation experiments are presented
in Table III, with the best results highlighted in bold and the
second-best results underlined.

The results indicate that SGNN-IB outperforms all its
variants, demonstrating the effectiveness of each component in
the framework. Meanwhile, SGNN-IBlow performs relatively
close to SGNN-IB, while SGNN-IBhigh shows lower perfor-
mance. This suggests that high-pass signals play a particularly
important role in detecting fraudulent activities. Additionally,
the performance of SGNN-IBIB reinforces the effectiveness
of the IB-based information enhancement module, which
contributes to noise reduction and improved model robustness.

D. Sensitivity experiments

We conduct sensitivity experiments by selecting three key
model hyperparameters: µ, λ, and η. The parameter µ controls
the contribution of mutual information between the input
features and the filtered features, as well as between different
filter channels. The parameter λ controls the influence of
the heterophily-aware edge classifier, while η controls the
contribution of the information enhancement loss based on
the information bottleneck (IB) theory. The values of λ and
η range from 0.1 to 1.5, with a step size of 0.1. The range
for µ is from 0.000001 to 0.1, with an exponential step size.
The results of these sensitivity experiments for the YelpChi,
Amazon, and FDCompCN datasets are shown in Figure 3, 4,
and 5, respectively.

From the sensitivity experiments across these three datasets,
we observe that the parameters λ and µ have a significant
impact on model performance, while η plays a relatively minor
role. Specifically, Take the YelpChi dataset as an example. As
shown in Figure 3a, a small value of λ limits the effectiveness

of the edge classifier, leading to incorrect identification of
heterophilic edges. This misclassification hampers the capture
of high-frequency signals, which are crucial for identifying
fraudulent behavior, thus reducing the model’s ability to detect
fraudsters. On the other hand, increasing λ enhances the
classifier’s capacity, but its effect on performance is relatively
small beyond a certain threshold. Figures 3b and 3c further
show that η and µ mainly affect the model’s ability to filter
noise and extract key features. However, when these values
are too large, the loss function tends to converge rapidly to
negative values during training, resulting in a slight decline
in performance. In particular, for µ, which regulates the
data purification and compression between the input data
and the filtered features, smaller exponential values are more
effective. This allows SGNN-IB to focus on the most essential
components of the original features, improving its ability to
capture the key information related to fraud.

Based on these findings, we determine the optimal settings
for each dataset. For the YelpChi dataset, the best values for
λ, η, and µ are 1, 0.6, and 0.000001, respectively, as shown
in Figure 3. For the Amazon dataset, the optimal values are
1, 0.5, and 0.000001, as seen in Figure 4. Finally, for the
FDCompCN dataset, the best choices for λ, η, and µ are 1,
0.6, and 0.000001, respectively, according to Figure 5.

E. Model analysis

In this section, we discuss the selection of key compo-
nents used in our model. First, we evaluate four different
metrics—KL divergence, JS divergence, cosine similarity, and
mean square error (MSE)—to compute mutual information.
The comparative results are shown in Figure 6. According to
the results, cosine similarity performs the best among the four
metrics. Therefore, we choose cosine similarity as the metric
for calculating mutual information in Eq. 19.

Next, we examine the impact of parameters in Beta wavelet
graph filters on the performance of SGNN-IB. Specifically,
we vary the parameter α from 0 to 3 and β from 1 to 4.
The results, shown in Figure 7, reveal different trends across
datasets. For the YelpChi and Amazon datasets, performance
tends to decrease as the parameter values increase. In contrast,
for the FDCompCN dataset, performance improves as the
parameters grow larger. This difference is likely due to the
sparser structure of the FDCompCN graph. We conclude
that high-order wavelet transformations are more effective at
capturing detailed information in sparse graphs, while they
may introduce excessive noise in denser graphs.

VI. CONCLUSION

In this paper, we propose a novel spectral graph network
based on information bottleneck (SGNN-IB) for fraud detec-
tion in the service networks. SGNN-IB innovatively utilizes
an edge classifier to dissect the original service network into
heterophilic and homophilic sub-networks. It then applies
band-pass graph filters to effectively extract high- and low-
frequency service patterns from each subgraph. The framework
integrates these signals from multiple relational dimensions to
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Fig. 3. Sensitivity experimental results on YelpChi dataset: (a) Sensitivity results for parameter λ; (b) Sensitivity results for parameter η; (c) Sensitivity
results for parameter µ.
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Fig. 4. Sensitivity experimental results on the Amazon dataset: (a) Sensitivity results for parameter λ; (b) Sensitivity results for parameter η; (c) Sensitivity
results for parameter µ.
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Fig. 5. Sensitivity experimental results on FDCompCN dataset: (a) Sensitivity results for parameter λ; (b) Sensitivity results for parameter η; (c) Sensitivity
results for parameter µ.

enhance the representation of fraudulent behavior. To improve
the robustness and filtering capabilities of the spectral graph
network, we introduce an information bottleneck-based learn-
ing module. To evaluate the effectiveness and improvements
of SGNN-IB, we conduct comprehensive experiments on
three publicly available datasets. The results show that our
model outperforms existing state-of-the-art methods in terms
of detection accuracy.

Despite these promising results, the scalability of our model

remains an area for further investigation. Future research
will focus on developing more efficient and scalable methods
for large-scale fraud detection. Additionally, exploring the
potential role of multi-modal information in fraud detection
presents an exciting avenue for future work.
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[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
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