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This study investigates a duality approach to information leak detection in the generalized 
Kirchhoff-Law-Johnson-Noise secure key exchange scheme proposed by Vadai, Mingesz, and 
Gingl (VMG-KLJN). While previous work by Chamon and Kish sampled voltages at zero-current 
instances, this research explores sampling currents at zero-voltage crossings. The objective is to 
determine if this dual approach can reveal information leaks in non-equilibrium KLJN systems. 
Results indicate that the duality method successfully detects information leaks, further supporting 
the necessity of thermal equilibrium for unconditional security in KLJN systems. Our findings 
confirm that the duality method successfully detects information leaks, with results closely 
mirroring those of Chamon and Kish, showing comparable vulnerabilities in non-equilibrium 
conditions. These results further support the necessity of thermal equilibrium for unconditional 
security in the KLJN scheme. 
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1.    Introduction 

The Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange scheme is a classical 
statistical physics-based alternative to quantum key distribution (QKD) for unconditional 
security [1-64]. The KLJN protocol leverages thermal noise in resistors to establish a 
secure key between communicating parties Alice and Bob over a public channel, with 
security guaranteed by the second law of thermodynamics under thermal equilibrium 
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conditions. The core schematic of the KLJN scheme is shown in Fig. 1, where Alice and 
Bob each randomly select one of two resistors (RH or RL) to form a closed circuit, and the 
resulting noise characteristics are used to exchange a secure bit. 

 

 

Fig. 1. The core of the KLJN scheme [1-64]. Communicating parties Alice and Bob are connected via a wire. The 
wire voltage and current are denoted as Uw(t) and Iw(t), respectively. Alice and Bob have identical pairs of resistors 
RH and RL (RH > RL) that are randomly selected and connected to the wire at the beginning of the bit exchange 
period. The statistically independent thermal noise voltages UH,A(t), UL,A(t), UH,B(t), and UL,B(t) represent the noise 
voltages of the resistors RH and RL of Alice and Bob, respectively. 

 
Recent modifications to the KLJN scheme, such as the generalized Vadai-Mingesz-

Gingl (VMG-KLJN) protocol, suggested that perfect security might be achievable in non-
equilibrium conditions [1]. However, Chamon and Kish demonstrated an information leak 
in the VMG-KLJN scheme by sampling voltages at zero-current crossings, revealing 
vulnerabilities in out-of-equilibrium states [2]. Their work showed that the mean-square 
voltage at zero-current instances differs significantly between resistor configurations, 
increasing the chance of an eavesdropper (Eve) to correctly-guess the secure bit. 

This paper proposes a duality approach to Chamon and Kish’s method, focusing on 
sampling currents at zero-voltage crossings. The objective is to determine if this 
complementary technique can similarly detect information leaks in non-equilibrium KLJN 
systems, providing additional insights into the thermodynamic constraints of secure key 
exchange. By comparing the results with the voltage-sampling method, this study aims to 
reinforce the critical role of thermal equilibrium in ensuring perfect security. 

2.    Background 

The KLJN scheme operates by exploiting Johnson-Nyquist noise, where thermal 
fluctuations in resistors generate random voltage and current signals. In the original KLJN 
protocol, Alice and Bob each choose between a low (RL) or high (RH) resistor, connected 
in series across a wire channel. The choice of resistors determines the noise amplitudes of 
the channel, and the mean-square voltage is evaluated to establish the bit status. The secure 
bit situations are when Alice and Bob choose RL and RH (LH), or RH and RL (HL), 
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respectively. Under thermal equilibrium, the second law of thermodynamics ensures that 
Eve cannot distinguish between LH and HL configurations without violating physical laws. 

The VMG-KLJN scheme introduces arbitrary resistor values and non-equilibrium 
conditions, claiming to maintain unconditional security [1]. However, Chamon and Kish 
revealed that sampling voltages at zero-current crossings (Uzc2) in the VMG-KLJN scheme 
produces distinct distributions for LH and HL configurations, indicating information leak 
[2]. This vulnerability arises because non-equilibrium conditions disrupt the symmetry 
required for perfect security. The duality principle in electrical circuits suggests that 
analyzing currents at zero-voltage crossings (Izc2) could provide a complementary 
perspective. This approach leverages the reciprocal relationship between voltage and 
current in the KLJN circuit, potentially revealing similar or additional security 
vulnerabilities. 

3.    Methodology 

The methodology for the duality approach involves simulating a non-equilibrium KLJN 
system and analyzing current samples at zero-voltage crossings. The steps are as follows: 

(i) System Setup: We create in MATLAB the VMG-KLJN with the same arbitrary 
resistor values for Alice (RA) and Bob (RB), as in [2]. 

(ii) Current Sampling: We capture channel current values at instances when the channel 
voltage crosses zero (Uw(t) = 0). 

(iii) Data Processing: The sampled current values were squared and then averaged to 
compute the zero-crossing mean-square current (Izc2). The mean was calculated over 
multiple bit exchange periods to ensure statistical reliability. 

(iv) Analysis: The average Izc2 values and standard deviation were analyzed for patterns 
or differences between the LH and HL resistor configurations. 

(v) Comparison: The results were compared with Chamon and Kish’s voltage-sampling 
method [2], focusing on the magnitude and detectability of information leaks. 

4.    Results 

Figure 2 shows the histograms of the mean-square channel voltages, currents, and zero-
crossing points after 1,000 runs for the original KLJN scheme (left), the VMG-KLJN 
scheme (center), and the FCK1-VMG-KLJN scheme (right). The orange histograms 
represent the LH situation, whereas the blue histograms represent the HL situation.  



4     S.A. Flanery et al. 
 

 
 

Fig. 2. Histograms of the mean-square channel voltage UW
2, current IW

2, and zero-crossing points UW,zc
2 for (left) 

the original KLJN scheme, (center) the VMG-KLJN scheme, and (right) the FCK1-VMG-KLJN scheme, with 
the exact same parameters as Chamon and Kish [2]. The orange histograms represent the LH situation, and the 
blue histograms represent the HL situation. In the original KLJN and FCK1-VMG-KLJN schemes, UW,zc

2 has the 
same LH and HL distributions, while in the VMG-KLJN scheme, the UW,zc

2 LH and HL distributions are 
dispersed. 
 

The duality approach yielded the following findings, summarized in Tables 1 and 2: 

(i) Information Leak Detection: Sampling currents at zero-voltage crossings revealed 
a detectable information leak in the non-equilibrium VMG-KLJN system. The zero-
crossing mean-square current (Izc2) exhibited noticeable differences between LH and 
HL configurations, indicating a vulnerability to eavesdropping. 

(ii) Comparison with Voltage Sampling: The magnitude of the information leak in Izc2 
was comparable to that observed in Uzc2 by Chamon and Kish [2], as seen in Table 1. 
For example, in the VMG-KLJN scheme, the Izc2 values showed distinct distributions, 
similar to the Uzc2 results reported in [2].  
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Table 1. Results for the wire mean-square voltage UW2, 
mean-square current, IW2, average power PAB, and 
zero-crossing mean-square current IW,zc2 for the KLJN, 
three VMG-KLJN, and FCK1-VMG-KLJN schemes. 
AT PAB=0,, IW,zc2 approaches IW2. As PAB 
increases, IW,zc2 becomes LH/HL-distinguishable. 

Scheme bit RA [Ω] RB [Ω] UW
2 [V2] IW

2 [10-6 A2] PAB [10-3 W] IW,zc
2 [10-6 A2] 

KLJN 
LH 1k 10k 

0.909 0.090 0 
0.090 

HL 10k 1k 0.091 

VMG-KLJN 

LH 100 16.7k 

0.992 0.314 0.026 

0.283 

HL 16.7k 278 0.315 

LH 278 278 

0.367 4.788 0.471 

4.309 

HL 46.4k 100 4.955 

LH 100 6k 

0.966 0.074 0.156 

0.069 

HL 360k 2.2k 0.079 

FCK1-VMG-
KLJN 

LH 10k 10k 

0.502 0.005 0 

0.005 

HL 100k 1k 0.005 

 
 

(iii) Equilibrium Conditions: When the system was restored to thermal equilibrium, the 
information leak disappeared. The Izc2 distributions for LH and HL became 
indistinguishable, confirming the necessity of equilibrium for unconditional security. 

(iv) Statistical Analysis: The Izc2 values for LH and HL configurations in the VMG-KLJN 
scheme showed clear separation, with mean values differing by up to 15% in some 
cases. This separation was consistent across multiple resistor configurations teste, as 
shown in Table 2.  
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Table 2. Results form the statistical run for Eve’s 
probability p of guessing the correct bit from the duality 
of the zero-crossing attack on each scheme. The 
information leak (p-0.5) converges to zero when the 
average power PAB approaches zero. 

Scheme bit RA RB PAB [10-3 W]] p σ 

KLJN LH 1k 10k 0 0.5001 0.0090 HL 10k 1k 

VMG-KLJN 

LH 100 16.7k 
0.026 0.5872 0.0024 HL 16.7k 278 

LH 278 278 
0.471 0.7002 0.0054 

HL 46.4k 100 
LH 100 6k 

0.156 0.6276 0.0023 
HL 360k 2.2k 

FCK1-VMG-
KLJN 

LH 10k 10k 
0 0.5030 0.0092 

HL 100k 1k 

 

5.    Discussion 

The results confirm that the duality approach of sampling currents at zero-voltage crossings 
is an effective method for detecting information leak in non-equilibrium KLJN systems. 
The observed differences in Izc2 between LH and HL configurations mirror the findings of 
Chamon and Kish’s voltage-sampling method, suggesting that both approaches exploit 
similar thermodynamic asymmetries in the VMG-KLJN scheme. 

The success of the duality approach can be attributed to the reciprocal relationship 
between voltage and current in the KLJN circuit. In non-equilibrium conditions, the cross-
correlation between voltage and current deviates from the ideal random behavior expected 
under thermal equilibrium, leading to distinguishable statistical signatures. This finding 
aligns with the thermodynamic perspective outlined in [2], where deviations from 
equilibrium introduce exploitable information leaks. 

The disappearance of the information leak under equilibrium conditions underscores 
the fundamental role of the second law of thermodynamics in the KLJN scheme’s security. 
Any modification that disrupts thermal equilibrium, such as the VMG-KLJN protocol, 
risks compromising perfect security, as demonstrated by both voltage and current sampling 
methods. 

The duality approach offers practical advantages, as current measurements may be 
more feasible in certain hardware implementations of the KLJN system. Additionally, 
combining voltage and current sampling could enhance the robustness of security analysis, 
providing a dual-check mechanism for detecting vulnerabilities. 
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6.    Conclusion 

This study demonstrates that sampling currents at zero-voltage crossings is a viable and 
effective method for detecting information leaks in non-equilibrium KLJN systems. The 
results corroborate the findings of Chamon and Kish [2] and provide further evidence that 
thermal equilibrium is essential for maintaining unconditional security in KLJN key 
exchange protocols. The duality approach not only validates the thermodynamic 
constraints of the KLJN scheme but also offers a complementary tool for security analysis. 
Future work could explore real-world implementations of the duality method and 
investigate additional attack vectors to further demonstrate the robustness of KLJN-based 
cryptographic systems. 
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