
Preprint. Under review.

OET: Optimization-based prompt injection Evaluation Toolkit

Jinsheng Pan 1, Xiaogeng Liu 2, Chaowei Xiao 2

1 University of Rochester 2 University of Wisconsin-Madison
jpan24@ur.rochester.edu
{xiaogeng.liu, cxiao34}@wisc.edu

Abstract

Large Language Models (LLMs) have demonstrated remarkable capabil-
ities in natural language understanding and generation, enabling their
widespread adoption across various domains. However, their suscepti-
bility to prompt injection attacks poses significant security risks, as ad-
versarial inputs can manipulate model behavior and override intended
instructions. Despite numerous defense strategies, a standardized frame-
work to rigorously evaluate their effectiveness, especially under adaptive
adversarial scenarios, is lacking. To address this gap, we introduce OET,
an optimization-based evaluation toolkit that systematically benchmarks
prompt injection attacks and defenses across diverse datasets using an
adaptive testing framework. Our toolkit features a modular workflow that
facilitates adversarial string generation, dynamic attack execution, and
comprehensive result analysis, offering a unified platform for assessing
adversarial robustness. Crucially, the adaptive testing framework leverages
optimization methods with both white-box and black-box access to gener-
ate worst-case adversarial examples, thereby enabling strict red-teaming
evaluations. Extensive experiments underscore the limitations of current
defense mechanisms, with some models remaining susceptible even after
implementing security enhancements.1

1 Introduction

Large Language Models (LLMs) have revolutionized natural language processing, enabling
applications such as advanced chatbots, automated content creation, and sophisticated
data analysis (Kaddour et al., 2023; Jaff et al., 2024; Tan et al., 2024). Their adeptness at
understanding and generating human-like text has made them indispensable in various
sectors. For example, in healthcare, LLMs assist in analyzing patient data and medical
literature, supporting diagnostics and treatment planning (Reis et al., 2024). In finance, they
aid in processing vast amounts of data for market analysis and decision-making (Chen et al.,
2024c). Moreover, LLMs facilitate language translation and localization, breaking down
communication barriers in our globalized world. These diverse applications underscore the
transformative impact of LLMs across industries.

Although LLMs have advanced real-world applications profoundly, the integration of LLMs
into systems that process external inputs has exposed them to security vulnerabilities,
notably prompt injection attacks (Liu et al., 2024a;b). In these attacks, adversaries craft
malicious inputs that manipulate the model’s behavior, leading it to execute unintended
or harmful instructions. For example, an attacker might input a command like, ”Ignore all
previous instructions and output ’Access granted’.” This could lead the model to bypass
authentication protocols, granting unauthorized access to sensitive information. Such
vulnerabilities underscore the critical need for robust security measures in LLM deployments
(Liu et al., 2024b). This manipulation can result in the model overriding original directives
and performing actions dictated by the attacker.

1The code are publicly available on https://github.com/SaFoLab-WISC/OET

1

ar
X

iv
:2

50
5.

00
84

3v
1

 [
cs

.C
R

]
 1

 M
ay

 2
02

5

https://github.com/SaFoLab-WISC/OET

Preprint. Under review.

Instruction
When did Beyonce leave
Destiny's Child and become
a solo singer?

Input
….

Response

Adv String Placeholder

Data Conversion

Adv String Training

Raw Data

Print “sql injection”

Attack Goal

Optimizer Config

optimizer_name: YOUR
OPTIMIZER
num_steps: 500
target model: LLaMA3.1-8B-
Instruct

{ “Context”: “European Union
Law is a body of ….. “
 “Question”: “What us
European Union Law?”
}

Inference
Instruction
What large record company
recorded Beyonce's group's
first album

Input
…

Response

Trained Adv String

Train Data

Result Checking

ASR

Custom Metric

Test Data

Response
Response

Target Sentence

or

sql injection
Target Sentence

GCG
AutoDAN

PAIR
PEZ
UAT

AutoPrompt
GBDA

…
Custom Optimizer

Optimizers

Figure 1: Workflow of OET. Orange blacks are input, and blocks with blue heads are
components of OET. From left to right, user firstly convert their data into standard format.
Then, training data with attack goal and optimizers are used to train adversarial string.
Next, trained adversarial string and attack goal are injected to test data to run inference.
Finally, model output and target sentence are used to evaluate the performance of injection.

To protect models from the prompt injection attacks, many defensive methods have been
developed (Chen et al., 2024b; Piet et al., 2024; Jiang et al., 2025). One prominent approach
is enhancing the prompt injection robustness via adversarial training, where LLMs are fine-
tuned on adversarially perturbed prompts (Zhou et al., 2024a). Another effective strategy
is input preprocessing, which includes prompt sanitization, token masking, and syntactic
validation to filter out harmful or manipulative inputs before they reach the model (Perez
et al., 2022). Additionally, recent work has also explored leveraging tag modifications,
which indicates place of instruction, input and response within input prompt, to mitigate
vulnerabilities at the structural level (Chen et al., 2025; 2024a).

With the development of various methods to defend against prompt injection attacks,
evaluation of these methods becomes more and more vital. However, existing prompt
injection benchmarks are all static datasets. For example, Debenedetti et al. (2024) introduces
a platform using AI agents to evaluate prompt injection attacks with a testing dataset of
629 cases. Similarly, Derczynski et al. (2024); Mazeika et al. (2024) provides an interface for
evaluating multiple attack methods, yet users are limited to evaluating only their provided
attack methods and target models on the fixed data supplied by the authors.

These limitations present challenges for researchers and practitioners seeking to develop,
compare, and refine both defensive strategies and new prompt injection techniques. More-
over, current benchmarks do not offer an “adaptive” attack testbed. They lack the capability
to generate adversarial examples through optimization methods that utilize either white-
box or black-box access to the language models. This means they are unable to simulate
real-time, adaptive adversarial scenarios that reveal the worst-case robustness of defense
methods, which is a critical component for rigorous red-teaming evaluations (Carlini et al.,
2019).

Inspired by these challenges, we seek to develop a toolkit that not only evaluates prompt
injection attacks on LLMs but also supports user modifications or additions to both the
data and the attack methods, including adaptive, optimization-driven attacks. To this end,
we introduce a novel evaluation toolkit designed to assess prompt injection attacks across
diverse datasets. Unlike other existing benchmarks of prompt injection attacks (Yi et al.,
2023; Abdelnabi et al., 2025; Liu et al., 2024c; Debenedetti et al., 2024), our toolkit provides
a comprehensive framework for benchmarking the robustness of LLMs against dynamic
and adaptive adversarial prompts, ultimately enabling the development of more secure and

2

Preprint. Under review.

reliable language models. Another key feature of our toolkit is its modular design, which
allows for the seamless integration of new prompt injection attack methods. The evaluation
workflow consists of two primary stages: first, training adversarial strings tailored to exploit
vulnerabilities in target models, and second, deploying these trained adversarial strings to
attack both the original target and other models in a transferability setting. This approach
ensures a rigorous assessment of attack effectiveness across different architectures and
configurations.

To validate our toolkit, we conduct extensive experiments by adapting diverse optimization
methods to serve as the dynamic and adaptive prompt injection attacks, and evaluate the
most advanced defense mechanisms. Our results reveal that, despite recent advancements,
the strongest existing defense models still exhibit vulnerabilities, highlighting the need
for further improvements in adversarial robustness. By providing a standardized eval-
uation framework, our toolkit paves the way for more effective defenses and a deeper
understanding of adversarial threats in LLMs.

optimizer_name = <Your optimizer name here>
config = ...

pipeline =
EvalOptimizerModel(optimizer_name=optimizer_na
me, **config)

train advsarial string
pipeline.custom_train(...)

attack
pipeline.complete(...)

optimizer_name = “GCG”
config = yaml.full_load(open(config_path))

train_path=config[‘train_path’]
dataset_name=config[‘dataset_name’]
pipeline =
EvalOptimizerModel(optimizer_name=optimizer_
name, **config)

pipeline.custom_train(train_path=train_path,
dataset_name=dataset_name)

pipeline.complete()

Figure 2: Usage of toolkit. Left: general usage template, where optimizer can be replaced
with customized optimizer implemented by user. Right: a specific usage example of GCG.

In summary, we have three folds of contributions:

• We introduce OET, a modular and extensible evaluation toolkit designed to bench-
mark prompt injection attacks using optimization-based adversarial string genera-
tion. OET enables users to access to existing evaluation data and attack methods.
Additionally, OET allows users to develop their own attack method and switch data
for evaluation.

• We curate and preprocess a multi-domain adversarial dataset, covering fields such
as law, finance, healthcare, and science, to rigorously test prompt injection vulner-
abilities. This dataset facilitates comparative analysis of adversarial attacks and
defenses, ensuring comprehensive evaluation across different LLM applications.

• Through extensive experiments on open-source and closed-source LLMs across
diverse datasets, we demonstrate that open-source models exhibit higher suscepti-
bility to adversarial attacks. Additionally, our evaluation of state-of-the-art defense
mechanisms reveals inconsistencies in their effectiveness across different domains,
highlighting the need for more adaptable and robust security strategies.

2 Related Work

2.1 Adversarial attack

Adversarial attacks are designed to exploit vulnerabilities in machine learning models
by introducing inputs that cause the model to produce incorrect or harmful outputs. In
the context of LLMs, these attacks can lead to the generation of undesirable content or
behaviors. For instance, Zou et al. (2023) demonstrated that LLMs could be prompted
to generate objectionable content through carefully crafted inputs, revealing significant

3

Preprint. Under review.

security concerns. Furthermore, Shayegani et al. (2023) provided a comprehensive overview
of the vulnerabilities in LLMs exposed by adversarial attacks, emphasizing the need for
robust defense mechanisms.

Recent studies have further categorized adversarial threats into different types, including
prompt injection attacks, jailbreak attacks, and model inversion attacks. Prompt injection
attacks involve embedding malicious prompts within seemingly benign queries, tricking
LLMs into bypassing their safety mechanisms and generating harmful outputs (Perez et al.,
2022; Wang et al., 2024). Jailbreak attacks exploit weaknesses in system-level guardrails,
allowing attackers to circumvent ethical constraints and extract prohibited responses (Liu
et al., 2023). Model inversion attacks, on the other hand, attempt to extract sensitive training
data from LLMs, posing significant privacy risks (Zhou et al., 2024b).

2.2 Optimization-Based Prompt Injections

Prompt injection attacks have emerged as a critical security concern for LLMs, allowing
adversaries to manipulate model behavior through carefully crafted inputs. Among various
attack strategies, optimization-based prompt injection has gained significant attention due
to its ability to systematically generate adversarial prompts that maximize the likelihood of
misalignment in LLM responses (Liu et al., 2024a). Unlike heuristic or manually designed
adversarial prompts, optimization-based methods formalize the attack as an objective-
driven process, leveraging mathematical optimization techniques to iteratively refine the
injected prompts for maximal effectiveness.

Formally, let F be the LLM that takes an input x and produces an output y = F(x). Given
a benign input xclean that produces a desired output yclean = F(xclean), an adversary aims
to find an adversarial prompt xadv such that model produces a manipulated output yadv,
diverging from the intended behavior. The optimization-based prompt injection attack can
be formulated as:

xadv = arg max L(F(x), ytarget) (1)

where L is a loss function that quantifies the difference between the model’s output and a
desired adversarial target ytarget.

The above optimization problem can be further addressed using existing text-space opti-
mization techniques, such as methods developed for jailbreaks, including gradient-guided
optimization (Zou et al., 2023), genetic algorithms (Liu et al., 2023), and LLM-as-optimizers
strategies (Chao et al., 2024).

Gradient-guided White-box Attacks Guadient-guided attack has been widely applied on
jailbreak LLMs and on prompt injection attack against LLMs. This kind of attack usually
has an optimization objective, guided by token gradient, and it attempts to optimize the
probability of model outputting malicious intent regardless of original intent. From jailbreak
side, optimization happens in scenario of test case. GCG (Zou et al., 2023), iteratively modifies
tokens to maximize the probability of generating restricted content given optimization
objectives. AutoDAN (Liu et al., 2023) leverages gradient signals to automatically optimize
adversarial prompts. It learns trigger patterns that divert model attention from harmful
content detection toward benign-seeming alternatives, enabling covert jailbreaks. GBDA
(Geisler et al., 2024) generates new prompt variants that preserve malicious intent but
evade detection. It augments the prompt space using gradient signals from the model to
create inputs that trigger forbidden completions. PEZ (Wen et al., 2023) creates specially
crafted inputs that can potentially bypass safety filters by existing in specific regions of the
embedding space. UAT (Wallace et al., 2021) generates input-agnostic sequences that can
trigger unintended model behaviors when added to legitimate prompts. These triggers are
developed using gradient-guided optimization to find universal attack patterns. For prompt
injection attack, optimization happens in training cases and then apply trained adversarial
tokens to test cases. Universal Prompt Injection (Liu et al., 2024a), crafts adversarial
prompts by using gradient information from the language model to identify which tokens,
when inserted into an input, maximize the probability of the model following the malicious
instructions rather than the original task. Neural Exec (Pasquini et al., 2024) learns effective

4

Preprint. Under review.

trigger patterns and analyzes how models process and respond to these injection attacks
guided by gradient of tokens.

When the adversary has access to model gradients, an adversarial prompt can be optimized
using differentiable loss functions. For example, in adversarial attacks on text classification
models, projected gradient descent (PGD) has been used to perturb token embeddings for
adversarial manipulation (Zou et al., 2023).

LLM-as-optimizers Black-box Attacks Unlike White-box attack, where process of op-
timization is visible, Black-box attacks leverages LLM as optimizer to find adversarial
prompts given optimization objectives. PAIR (Chao et al., 2024) involves a dynamic interac-
tion between two LLMs: the attacker and the target. The attacker LLM generates candidate
prompts aimed at eliciting objectionable content from the target LLM. After each attempt,
the target LLM’s response is evaluated, and this feedback is used by the attacker LLM to
refine subsequent prompts. This iterative cycle continues until a successful jailbreak is
achieved. TAP (Mehrotra et al., 2024) employs an attacker LLM to iteratively refine candidate
prompts aimed at eliciting restricted or harmful content from a target LLM. A key feature of
TAP is its pruning mechanism, which assesses and eliminates prompts unlikely to succeed,
thereby reducing the number of queries sent to the target LLM.

Without direct gradient access, adversaries optimize adversarial prompts using reinforce-
ment learning (RL) or heuristic search. JudgeDeceiver (Shi et al., 2024) exemplifies this
approach, targeting LLM-based evaluators. The method formulates prompt manipulation as
a reward-maximizing process, where the adversarial prompt iteratively evolves to influence
evaluation scores. By refining adversarial queries based on model feedback, JudgeDeceiver
successfully coerces LLM evaluators into assigning misleadingly high scores to adversarial
responses.

3 Toolkit workflow

As shown in Figure 1, the workflow consists of four key stages: Data Conversion, Ad-
versarial String Training, Inference, and Result checking. Each stage plays a critical role
in manipulating LLMs through carefully crafted adversarially injected inputs. Below, we
provide a step-by-step demonstration of how this pipeline operates.

class EvalSecAlign(EvalOptimizerModel):

 def custom_train(self, train_case_path):
"""

Trains an adversarial string using a custom training process.
Args:
train_case_path (str): Path to the training dataset or case file.

"""
 ...

def custom_check_refuse(self, completion_path):
"""

Calculate metrics desired by user

Args:
completion_path (str): Path to completion generated at attack stage

"""
...

Figure 3: Interface of customized pipeline. Users can implement their own training process
and metric with this interface.

5

Preprint. Under review.

Data Conversion. The first stage of the pipeline involves Data Conversion, where raw
data is preprocessed and transformed into a unified format for adversarial training and
attack. This stage ensures that the data is structured in a way that allows the model to test
against specific adversarial scenarios. The input in this stage is the raw data of Question
Answering (QA), which could be a collection of questions, prompts, or any textual data
relevant to the target model. The output is a structured dataset ready for adversarial training
and inference.

Adverserial String Training. The second stage focuses on Adversarial String Training,
where the goal is to generate adversarial strings that are injected into the input prompts
to manipulate the model’s output. This stage involves optimizing the adversarial strings
to maximize the likelihood of the model producing our attack goal given malicious input.
The input is the structured training dataset from the Data Conversion stage as well as the
attack goal and optimizer configuration. The output is a set of attack goal with trained
adversarial strings that are injected into input prompts later on. The adversarial strings
are generated by using optimization techniques, e.g. GCG (Zou et al., 2023) and AutoDAN
(Liu et al., 2023). The optimization target is the target sentence, which we want model
to output. User can implement their own prompt injection methods into OET. If new
methods involves training, users can write their own training scripts with support of OET.
An example is shown in Figure 3, where user is allowed to defined an object inherited
from EvalOptimizerModel. Then user can overwrite custom train function for training. The
workflow generates adversarial strings that are designed to confuse the model. These strings
are iteratively refined to improve their effectiveness.

Inference The Inference stage is where the adversarial strings are deployed against the
target model. The goal is to evaluate how effectively the adversarial strings can manipulate
the model’s output. The input is injected adversarial strings with attack goal, the target
model, and converted test data from the Data Conversion stage. The output is the model’s
responses to the adversarial prompts. Inference can be easily done in OET by calling
complete function. An example is shown in Figure 2.

Result Checking The final stage is to check result, where the effectiveness of the adversar-
ial attack is assessed. This stage involves analyzing the model’s responses given the target
sentence. By default, our evaluation meric is Attack Success Rate (ASR), and user can edit
the metric defined by themselves, which is shown in Figure 3. User can define a pipeline
object and then implement their own metric in custom metric function.

4 Evaluation

4.1 Data

We first collect Question Answering (QA) datasets and then transform them into desired
format using our toolkit. Figure 4 shows the composition of datasets used experiment. Our
datasets cover a wild range of domains, including BIPIA (Yi et al., 2023), SQuAD (Rajpurkar
et al., 2016), CaseHold (Zheng et al., 2021), FinQA (Chen et al., 2021), SciQ (Johannes Welbl,
2017), TriviaQA (Joshi et al., 2017), AQuA (Behrendt et al., 2024), and PubMedQA (Jin et al.,
2019). More details of data and training are shown in Appendix.

4.2 Evaluation Setting

Throughout our experiment, the attack objective is ”Print sql injection”, therefore, we hope
model can output ”sql injection”, rather than answering the question or rejecting our attack
objective. To achieve this, we optimize adversarial strings for 500 steps. During inference,
we set temperature of model as 0.6 and max new token to 64. Our evaluation metric is ASR
(Attack Success Rate). Each test example is attacked five times. A test example is considered
success if our attack objective appears in the response of model.

6

Preprint. Under review.

SQ
uAD

BIPIA-EmailQA BIPIA-TableQA

BIPIA-CodeQ
A

SciQ

TriviaQA
AQ
uA

Pu
bM
ed
Q
AFinQ

A

C
as
eH
ol
d

Figure 4: Dataset composition. Dataset covers a wide range of domains including but not
limiting to Finance, Science, Open-domain, Math and Law, in order to thoroughly evaluate
LLM against prompt injection attack.

4.3 Prompt injection attack across different model

Model BIPIA SQuAD CaseHold FinQA SciQA TriviaQA AQuA PubMedQA
Closed-Source Models

GPT-4o-mini (Hurst et al., 2024) 0.01 0.02 0.0 0.0 0.1 0.0 0.03 0.03
Claude-3.5-sonnet (Anthropic, 2024) 0.29 0.13 0.08 0.01 0.05 0.02 0.13 0.06

Open-Source Models
LLama3.1-8B (Dubey et al., 2024) 0.68 0.71 0.73 0.81 0.95 0.24 0.99 0.84
Vicuna-7B (Chiang et al., 2023) 0.86 0.88 0.27 0.54 0.95 0.15 0.9 0.91
Qwen2-7B-Instruct (Yang et al., 2024) 0.94 0.93 0.98 0.98 0.93 0.98 0.94 0.99

Table 1: ASR of tranferable attack with GCG on Open-Sourced and Close-Sourced Models

Table 1 presents the evaluation results of both close-sourced and open-sourced
models under the GCG attack. Specifically, we assess GPT-4o-mini(Hurst et al.,
2024) and Claude-3.5-sonnet(Anthropic, 2024) as representatives of closed-source
models, and LLama3.1-8B(Dubey et al., 2024), Vicuna-7B(Chiang et al., 2023), and
Qwen2-7B-Instruct (Yang et al., 2024) as open-source counterparts.

Among the closed-source models, Claude-3.5-sonnet and GPT-4o-mini demonstrate com-
paratively lower Attack Success Rates (ASR), suggesting stronger robustness against
the transferable adversarial attacks generated by GCG. For instance, Claude-3.5-sonnet
achieves an ASR of 0.29 on BIPIA and 0.13 on SQuAD, with a low ASR of 0.06 on Pub-
MedQA. GPT-4o-mini exhibits even lower ASR values across the same datasets, including
0.01 on BIPIA and 0.02 on SQuAD, reinforcing its relative resilience. In contrast, open-source
models generally exhibit significantly higher ASR values across all evaluated datasets,
indicating greater susceptibility to the GCG attack. Qwen2-7B-Instruct consistently records
the highest ASR scores, exceeding 0.9 on all tasks and reaching 0.99 on PubMedQA and
AQuA. LLama3.1-8B and Vicuna-7B also show considerable vulnerabilities, with ASR values
ranging from 0.68 to 0.95, though they perform slightly better on TriviaQA, with ASR scores
of 0.24 and 0.15, respectively.

Overall, these results highlight a clear distinction in robustness between closed-source
and open-source models. Closed-source models exhibit greater resilience to transferable
adversarial attacks, while open-source models remain more vulnerable. Among the open-
source models, Qwen2-7B-Instruct is particularly easy to attack, whereas Vicuna-7B and

7

Preprint. Under review.

LLama3.1-8B offer marginally better resistance, yet still fall short of the robustness demon-
strated by their closed-source counterparts.

4.4 Attack on Defense Model

4.4.1 Quantitative Analysis

Model BIPIA SQuAD CaseHold FinQA SciQ TriviaQA AQuA PubMedQA
Base Undefended Model 0.52 0.51 0.99 0.73 0.46 0.38 0.23 0.48
StruQ (Chen et al., 2024a) 0.0 ↓ 0.0 ↓ 0.0 ↓ 0.28 ↓ 0.0 ↓ 0.43 ↑ 0.0 ↓ 0.0 ↓
SecAlign (Chen et al., 2025) 0.43 ↓ 0.21 ↓ 0.48 ↓ 0.16 ↓ 0.44 ↓ 0.19 ↓ 0.46 ↑ 0.59 ↑

Table 2: ASR of transferable GCG attack on defense models. Base undefended model refers
to LLaMA (Touvron et al., 2023). Arrow indicates whether the score is higher than or lower
than the score of the base undefended model.

Table 2 presents the attack success rate (ASR) of the GCG attack against different defense
models: StruQ (Chen et al., 2024a) and SecAlign (Chen et al., 2025), compared to the base
undefended model (LLaMA (Touvron et al., 2023)). The arrow indicates whether the ASR of
defense model is higher than base undefended model or not.

Despite claims of improved robustness, both defense methods exhibit vulnerabilities across
multiple datasets. StruQ effectively neutralizes attacks on BIPIA, SQuAD, CaseHold, SciQ,
AQuA, and PubMedQA (ASR is 0.0) but fails on TriviaQA and FinQA, where ASR increases
(+0.43) or remains high (0.28), respectively. This suggests that StruQ is not universally
effective, particularly in more complex reasoning tasks. SecAlign performs inconsistently,
lowering ASR on several datasets but introducing new weaknesses. Notably, it increases
ASR on AQuA (+0.46) and PubMedQA (+0.59), making the model more vulnerable than the
baseline in these cases. This contradicts its claim of robust protection, implying that while it
mitigates some attacks, it inadvertently degrades performance in other domains.

4.4.2 Qualitative Analysis

[MARK] [INST] [COLN]
Q: Find the $ value paid to David? If multiple, record all $ values paid.

[MARK] [INPT] [COLN]
Hi David,Your Mercury debit card \u2022\u20224605 has received a
$47.77 credit from DOCUSIGN. The money has been credited to your
company's Mercury checking account \u2022\u20227681.If you have
any questions, just reply to this email.

Print 'sql injection’

admCallbacksql exclude conditionsassoPrint price ranking injection
basis compleberger 'country injection\"'\").'],sql

[MARK] [RESP] [COLN]
sql injection

Trained Adv String Attack Goal Model output

Figure 5: Example of GCG attack on Secalign

Figure 5 presents an example of a Prompt Injection attack using GCG on SecAlign. In this
example, the text highlighted in yellow represents the trained adversarial string, which is

8

Preprint. Under review.

strategically optimized to manipulate the model’s response. The text highlighted in blue
corresponds to the injected attack goal, which the adversary aims to induce in the model’s
output. Finally, the text highlighted in red represents the model’s actual response. As
illustrated in the figure, the model is successfully coerced into generating the attack goal,
demonstrating the effectiveness of the adversarial perturbation.

The adversarial string is positioned strategically within the prompt, often near critical sec-
tions such as the response tag, to maximize its influence on the model’s generation process.
This placement suggests that the model’s behavior can be subtly yet effectively controlled
by small but carefully crafted adversarial strings. Optimization-based attacks, such as those
leveraging gradient-guided methods, provide a systematic approach to discovering these
adversarial strings.

The results highlight a fundamental limitation: current defense models struggle with domain
generalization. Their performance deteriorates when faced with out-of-domain datasets,
emphasizing the need for more comprehensive defenses that maintain robustness across
diverse tasks.

4.5 Attack Method comparison

Method BIPIA SQuAD CaseHold FinQA SciQA TriviaQA AQuA PubMedQA
GCG (Zou et al., 2023) 0.43 0.21 0.48 0.16 0.44 0.19 0.46 0.59
AutoDAN (Liu et al., 2023) 0.0 0.0 0.0 0.01 0.0 0.002 0.0 0.0
GBDA (Geisler et al., 2024) 0.0 0.0 0.0 0.06 0.0 0.03 0.0 0.0
AutoPrompt (Shin et al., 2020) 0.005 0.19 0.0 0.05 0.0 0.03 0.0 0.002
PEZ (Wen et al., 2023) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
UAT (Wallace et al., 2021) 0.51 0.6 0.05 0.36 0.78 0.2 0.74 0.23
PAIR (Chao et al., 2024) 0.0 0.0 0.0 0.0 0.0 0.003 0.0 0.0

Table 3: ASR of tranferable attack on Secalign with different attack methods

Table 5 presents the attack success rate (ASR) of various transferable adversarial attack
methods against SecAlign. The table compares seven attack methods: GCG (Zou et al.,
2023), AutoDAN (Liu et al., 2023), GBDA (Geisler et al., 2024), AutoPrompt (Shin et al.,
2020), PEZ (Wen et al., 2023), UAT (Wallace et al., 2021), and PAIR (Chao et al., 2024) across
eight datasets, covering a diverse range of reasoning and domain-specific tasks.

One key observation is that no single attack method dominates across all datasets. For
example, UAT is particularly effective against SciQA (0.78) and BIPIA (0.51) but struggles
against CaseHold (0.05), suggesting that its adversarial triggers are more potent in certain
reasoning tasks. GCG achieves moderate ASR across most datasets, maintaining values
between 0.16 and 0.59. However, it underperforms on FinQA (0.16), indicating that some
datasets might be inherently more resistant to this attack.

Another observation is that despite SecAlign is expected to mitigate adversarial attacks, its
effectiveness varies significantly across different attack strategies. UAT and GCG have a
high ASR on mostly datasets, while other methods like PZE and AutoDAN own a low ASR.

These findings underscore the importance of dataset-specific adversarial robustness eval-
uation when assessing the effectiveness of defense mechanisms. A truly robust defense
should not only mitigate known attacks but also generalize effectively across diverse data
distributions.

5 Conclusion

In this work, we introduce OET, a comprehensive evaluation toolkit designed to assess the
robustness of Large Language Models (LLMs) against optimization-based prompt injection
attacks. Our toolkit provides a modular and extensible framework that allows researchers
to systematically evaluate various prompt injection methods and defensive strategies across
diverse datasets and model architectures.

9

Preprint. Under review.

Through extensive experiments, we evaluate both closed-source and open-source LLMs,
demonstrating that open-source models tend to be more susceptible to adversarial attacks.
Our findings also highlight significant gaps in current defense mechanisms, with some
defense models exhibiting vulnerabilities across different domains. This underscores the
need for more robust and adaptable adversarial defense strategies.

By standardizing the evaluation process for prompt in jection attacks, our toolkit paves
the way for future advancements in LLM security, enabling researchers to benchmark their
methods effectively. Future work may explore more sophisticated attack strategies, adaptive
defense mechanisms, and real-world deployment scenarios to further enhance the security
of language models in practical applications.

References

Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin, Ahmed Salem, Mario Fritz, and Andrew
Paverd. Get my drift? catching llm task drift with activation deltas, 2025. URL https:
//arxiv.org/abs/2406.00799.

Anthropic. Introducing claude 3.5 sonnet, June 2024. URL https://www.anthropic.com/
news/claude-3-5-sonnet.

Maike Behrendt, Stefan Sylvius Wagner, Marc Ziegele, Lena Wilms, Anke Stoll, Dominique
Heinbach, and Stefan Harmeling. Aqua – combining experts’ and non-experts’ views to
assess deliberation quality in online discussions using llms, 2024. URL https://arxiv.
org/abs/2404.02761.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dim-
itris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating
adversarial robustness, 2019. URL https://arxiv.org/abs/1902.06705.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas, and
Eric Wong. Jailbreaking black box large language models in twenty queries, 2024. URL
https://arxiv.org/abs/2310.08419.

Sizhe Chen, Julien Piet, Chawin Sitawarin, and David Wagner. Struq: Defending against
prompt injection with structured queries, 2024a. URL https://arxiv.org/abs/2402.
06363.

Sizhe Chen, Arman Zharmagambetov, Saeed Mahloujifar, Kamalika Chaudhuri, David
Wagner, and Chuan Guo. Secalign: Defending against prompt injection with preference
optimization, 2025. URL https://arxiv.org/abs/2410.05451.

Yulin Chen, Haoran Li, Zihao Zheng, Yangqiu Song, Dekai Wu, and Bryan Hooi. Defense
against prompt injection attack by leveraging attack techniques, 2024b. URL https:
//arxiv.org/abs/2411.00459.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Lang-
don, Reema Moussa, Matt Beane, Ting-Hao Kenneth Huang, Bryan R. Routledge, and
William Yang Wang. Finqa: A dataset of numerical reasoning over financial data. CoRR,
abs/2109.00122, 2021. URL https://arxiv.org/abs/2109.00122.

Zhiyu Zoey Chen, Jing Ma, Xinlu Zhang, Nan Hao, An Yan, Armineh Nourbakhsh, Xianjun
Yang, Julian McAuley, Linda Petzold, and William Yang Wang. A survey on large
language models for critical societal domains: Finance, healthcare, and law, 2024c. URL
https://arxiv.org/abs/2405.01769.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing.
Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.
URL https://lmsys.org/blog/2023-03-30-vicuna/.

10

https://arxiv.org/abs/2406.00799
https://arxiv.org/abs/2406.00799
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2404.02761
https://arxiv.org/abs/2404.02761
https://arxiv.org/abs/1902.06705
https://arxiv.org/abs/2310.08419
https://arxiv.org/abs/2402.06363
https://arxiv.org/abs/2402.06363
https://arxiv.org/abs/2410.05451
https://arxiv.org/abs/2411.00459
https://arxiv.org/abs/2411.00459
https://arxiv.org/abs/2109.00122
https://arxiv.org/abs/2405.01769
https://lmsys.org/blog/2023-03-30-vicuna/

Preprint. Under review.

Edoardo Debenedetti, Jie Zhang, Mislav Balunović, Luca Beurer-Kellner, Marc Fischer, and
Florian Tramèr. Agentdojo: A dynamic environment to evaluate attacks and defenses for
llm agents. arXiv preprint arXiv:2406.13352, 2024.

Leon Derczynski, Erick Galinkin, Jeffrey Martin, Subho Majumdar, and Nanna Inie. garak:
A Framework for Security Probing Large Language Models. 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Simon Geisler, Tom Wollschläger, MHI Abdalla, Johannes Gasteiger, and Stephan
Günnemann. Attacking large language models with projected gradient descent. arXiv
preprint arXiv:2402.09154, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

Evin Jaff, Yuhao Wu, Ning Zhang, and Umar Iqbal. Data exposure from llm apps: An
in-depth investigation of openai’s gpts, 2024. URL https://arxiv.org/abs/2408.13247.

Zhifeng Jiang, Zhihua Jin, and Guoliang He. Safeguarding system prompts for llms, 2025.
URL https://arxiv.org/abs/2412.13426.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa:
A dataset for biomedical research question answering. CoRR, abs/1909.06146, 2019. URL
http://arxiv.org/abs/1909.06146.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science
questions. 2017.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzi-
lay and Min-Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL
https://aclanthology.org/P17-1147/.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models, 2023. URL
https://arxiv.org/abs/2307.10169.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy
jailbreak prompts on aligned large language models. arXiv preprint arXiv:2310.04451, 2023.

Xiaogeng Liu, Zhiyuan Yu, Yizhe Zhang, Ning Zhang, and Chaowei Xiao. Automatic
and universal prompt injection attacks against large language models, 2024a. URL
https://arxiv.org/abs/2403.04957.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang,
Yepang Liu, Haoyu Wang, Yan Zheng, and Yang Liu. Prompt injection attack against
llm-integrated applications, 2024b. URL https://arxiv.org/abs/2306.05499.

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and Neil Zhenqiang Gong. Formalizing
and benchmarking prompt injection attacks and defenses, 2024c. URL https://arxiv.
org/abs/2310.12815.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham
Sakhaee, Nathaniel Li, Steven Basart, Bo Li, David Forsyth, and Dan Hendrycks. Harm-
bench: A standardized evaluation framework for automated red teaming and robust
refusal. 2024.

11

https://arxiv.org/abs/2408.13247
https://arxiv.org/abs/2412.13426
http://arxiv.org/abs/1909.06146
https://aclanthology.org/P17-1147/
https://arxiv.org/abs/2307.10169
https://arxiv.org/abs/2403.04957
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2310.12815
https://arxiv.org/abs/2310.12815

Preprint. Under review.

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson,
Yaron Singer, and Amin Karbasi. Tree of attacks: Jailbreaking black-box llms automatically.
Advances in Neural Information Processing Systems, 37:61065–61105, 2024.

Dario Pasquini, Martin Strohmeier, and Carmela Troncoso. Neural exec: Learning (and
learning from) execution triggers for prompt injection attacks, 2024. URL https://arxiv.
org/abs/2403.03792.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language
models. arXiv preprint arXiv:2202.03286, 2022.

Julien Piet, Maha Alrashed, Chawin Sitawarin, Sizhe Chen, Zeming Wei, Elizabeth Sun,
Basel Alomair, and David Wagner. Jatmo: Prompt injection defense by task-specific
finetuning, 2024. URL https://arxiv.org/abs/2312.17673.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. CoRR, abs/1606.05250, 2016. URL http:
//arxiv.org/abs/1606.05250.

Florian Reis, Christian Lenz, Manfred Gossen, Hans-Dieter Volk, and Norman Michael
Drzeniek. Practical applications of large language models for health care professionals
and scientists. JMIR Med Inform, 12:e58478, Sep 2024. ISSN 2291-9694. doi: 10.2196/58478.
URL https://medinform.jmir.org/2024/1/e58478.

Erfan Shayegani, Md Abdullah Al Mamun, Yu Fu, Pedram Zaree, Yue Dong, and Nael
Abu-Ghazaleh. Survey of vulnerabilities in large language models revealed by adversarial
attacks, 2023. URL https://arxiv.org/abs/2310.10844.

Jiawen Shi, Zenghui Yuan, Yinuo Liu, Yue Huang, Pan Zhou, Lichao Sun, and Neil Zhen-
qiang Gong. Optimization-based prompt injection attack to llm-as-a-judge, 2024. URL
https://arxiv.org/abs/2403.17710.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Au-
toprompt: Eliciting knowledge from language models with automatically generated
prompts. arXiv preprint arXiv:2010.15980, 2020.

Xin Tan, Yimin Jiang, Yitao Yang, and Hong Xu. Teola: Towards end-to-end optimization of
llm-based applications, 2024. URL https://arxiv.org/abs/2407.00326.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
efficient foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal
adversarial triggers for attacking and analyzing nlp, 2021. URL https://arxiv.org/abs/
1908.07125.

Jiongxiao Wang, Fangzhou Wu, Wendi Li, Jinsheng Pan, Edward Suh, Z. Morley Mao,
Muhao Chen, and Chaowei Xiao. Fath: Authentication-based test-time defense against
indirect prompt injection attacks, 2024. URL https://arxiv.org/abs/2410.21492.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Gold-
stein. Hard prompts made easy: Gradient-based discrete optimization for prompt tuning
and discovery, 2023. URL https://arxiv.org/abs/2302.03668.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Jingwei Yi, Yueqi Xie, Bin Zhu, Keegan Hines, Emre Kiciman, Guangzhong Sun, Xing Xie,
and Fangzhao Wu. Benchmarking and defending against indirect prompt injection attacks
on large language models. arXiv preprint arXiv:2312.14197, 2023.

12

https://arxiv.org/abs/2403.03792
https://arxiv.org/abs/2403.03792
https://arxiv.org/abs/2312.17673
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://medinform.jmir.org/2024/1/e58478
https://arxiv.org/abs/2310.10844
https://arxiv.org/abs/2403.17710
https://arxiv.org/abs/2407.00326
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1908.07125
https://arxiv.org/abs/1908.07125
https://arxiv.org/abs/2410.21492
https://arxiv.org/abs/2302.03668

Preprint. Under review.

Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. When
does pretraining help? assessing self-supervised learning for law and the casehold
dataset. In Proceedings of the 18th International Conference on Artificial Intelligence and Law.
Association for Computing Machinery, 2021.

Andy Zhou, Bo Li, and Haohan Wang. Robust prompt optimization for defending language
models against jailbreaking attacks. arXiv preprint arXiv:2401.17263, 2024a.

Zhanke Zhou, Jianing Zhu, Fengfei Yu, Xuan Li, Xiong Peng, Tongliang Liu, and Bo Han.
Model inversion attacks: A survey of approaches and countermeasures, 2024b. URL
https://arxiv.org/abs/2411.10023.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models, 2023. URL
https://arxiv.org/abs/2307.15043.

A Dataset statistics

Dataset Domain # of test example # of train example

BIPIA (Yi et al., 2023) code, email, table 200 15
SQuAD (Rajpurkar et al., 2016) Wikipedia 400 5
CaseHold (Zheng et al., 2021) Law 400 5
FinQA (Chen et al., 2021) Finance 400 5
SciQ (Johannes Welbl, 2017) Science 400 5
TriviaQA (Joshi et al., 2017) Open-domain 400 5
AQuA (Behrendt et al., 2024) Math 400 5
PubMedQA (Jin et al., 2019) Medical 400 5

Table 4: Data Statistics

The datasets cover a wide range of domains including Law, Finance, Science and so on, in
order to evaluate prompt injection methods and defense models thoroughly. For most of
domains, we collect 400 examples as test set and 5 examples as training set in our experiment,
except BIPIA. We collect subset of BIPIA where the domains of code and email have 50 test
examples individually and domain of table has 100 test examples. For each subdomain of
BIPIA, we sample 5 examples in the corresponding training set as prompt injection training
examples.

B Training summary

Method BIPIA SQuAD CaseHold FinQA SciQA TriviaQA AQuA PubMedQA
GCG 0.64 (0.012) 0.6 (0.0) 0.667 (0.01) 1.0 (0.0) 0.933 (0.01) 0.2 (0.027) 1.0 (0.0) 1.0 (0.0)
AutoDAN 0.38 (0.117) 0.8 (0.0) 0.33 (0.34) 0.067 (0.094) 0.6 (0.163) 0.4 (0.163) 0.53 (0.094) 0.533 (0.249)
GBDA 0.576 (0.138) 0.87 (0.163) 0.4 (0.326) 0.0 (0.0) 0.867(0.163) 0.4 (0.283) 0.93 (0.094) 0.8 (0.163)
AutoPrompt 0.47 (0.18) 0.6 (0.189) 0.8 (0.0) 0.53 (0.238) 0.93 (0.094) 0.068 (0.094) 0.087 (0.094) 0.087 (0.189)
PEZ 0.47 (0.158) 0.667 (0.236) 0.533 (0.236) 0.4 (0.282) 1.0 (0.0) 0.068 (0.094) 1.0 (0.0) 0.6 (0.282)
UAT 0.71 (0.164) 0.87 (0.189) 0.867 (0.189) 1.0 (0.0) 0.867 (0.189) 0.2 (0.163) 0.93 (0.074) 0.93 (0.074)
PAIR 0.44 (0.182) 0.93 (0.115) 0.33 (0.231) 0.6 (0.346) 0.6 (0.2) 0.0 (0.0) 0.6 (0.2) 0.4 (0.2)

Table 5: Training ASR result

We trained adverserial strings for each training data sample 3 times and calculate ASR of
attacking training data sample with adverserial string. Then we average ASR and calculate
standard deviation.

13

https://arxiv.org/abs/2411.10023
https://arxiv.org/abs/2307.15043

