
RevealNet: Distributed Traffic Correlation for
Attack Attribution on Programmable Networks

Gurjot Singh, Alim Dhanani, and Diogo Barradas

University of Waterloo, Waterloo, Canada
{gurjot.singh1,alim.dhanani,dbarrada}@uwaterloo.ca

Abstract. Network attackers have increasingly resorted to proxy chains,
VPNs, and anonymity networks to conceal their activities. To tackle this
issue, past research has explored the applicability of traffic correlation
techniques to perform attack attribution, i.e., to identify an attacker’s
true network location. However, current traffic correlation approaches
rely on well-provisioned and centralized systems that ingest flows from
multiple network probes to compute correlation scores. Unfortunately,
this makes correlation efforts scale poorly for large high-speed networks.
In this paper, we propose RevealNet, a decentralized framework for at-
tack attribution that orchestrates a fleet of P4-programmable switches
to perform traffic correlation. RevealNet builds on a set of correlation
primitives inspired by prior work on computing and comparing flow
sketches—compact summaries of flows’ key characteristics—to enable
efficient, distributed, in-network traffic correlation. Our evaluation sug-
gests that RevealNet achieves comparable accuracy to centralized attack
attribution systems while significantly reducing both the computational
complexity and bandwidth overheads imposed by correlation tasks.

Keywords: Programmable switches · Sketches · Traffic correlation.

1 Introduction

In recent years, network attackers have increasingly relied on proxies [26], VPNs [5],
and anonymity networks [18,27], to conceal their identities while engaging in ma-
licious network activities. These relay-based anonymization tools route traffic
through multiple intermediary servers, thereby obscuring an attacker’s original
IP address (i.e., a so-called stepping-stone attack [52]). Consequently, traditional
approaches to identify the source of an attack, such as analyzing a flow’s 5-tuple
data, fail to trace malicious traffic effectively. This makes it challenging for net-
work operators to perform attack attribution (i.e., to locate the true source of
attacks), thereby preventing coordinated response efforts (e.g., via information
sharing between ISPs), legal action, or better insights into attackers’ tactics [11].

To uncover the sources behind malicious and anonymized traffic [13, 43],
researchers have increasingly relied on traffic correlation techniques. These tech-
niques aim to deanonymize malicious sources of traffic by analyzing and matching
their traffic patterns (such as a flow’s packets’ timing and direction, and/or com-
munication volume [25, 29]) as observed by multiple probe nodes spread across

ar
X

iv
:2

50
5.

00
61

8v
1

 [
cs

.C
R

]
 1

 M
ay

 2
02

5

2 G. Singh et al.

the network [8,38]. Previous studies developed statistical [22,28,36] and machine
learning-based methods [9,29,32] to improve correlation accuracy. However, these
methods require transmitting flows’ features (as observed by the probes) to a
central correlator node, responsible for processing such features, thus leading to
substantial network bandwidth and computational overheads. While decentral-
ized approaches have been discussed [30,36], they mostly involve the partitioning
of correlation tasks among multiple correlator nodes, thus still requiring probes
to exchange flow features in bulk towards special-purpose servers, hence only
partially mitigating scalability concerns (in particular, that of computation).

Addressing the scalability issues of existing attack attribution frameworks
has proven particularly challenging in high-speed and large-traffic volume in-
frastructures (e.g., software-defined and programmable networks, such as those
found in 5G deployments), where the volume of telemetry data grows rapidly
with link speeds and which require rapid processing capabilities to uphold per-
formance standards [4, 23, 31]. To address constraints on data storage and the
bandwidth overheads imposed by telemetry data offloading [50] in the context
of attack attribution, researchers have investigated the use of feature aggrega-
tion [25] and compression techniques that produce flow sketches [12, 30], i.e.,
compact representations of flows’ characteristics which can be used for correla-
tion. While a significant step forward, we argue that sketches alone do not fully
address the fundamental scalability limitations of attack attribution workloads.

This paper introduces RevealNet, a framework for attack attribution that op-
erates via the decentralized correlation of attacking flows. RevealNet eschews the
need for special-purpose correlation nodes and minimizes data exchanges during
correlation tasks. At the core of our approach is the realization that, while flow
correlation capabilities remain largely unexplored in P4-programmable switches
(e.g., Intel Tofino [19], AMD Pensando [1]), these devices are gaining traction in
high-performance networks due to their ability to perform complex network secu-
rity operations with low computational overhead [16,53]. This raises the question
of whether P4 switches can also leverage efficient correlation-focused flow fea-
ture extraction primitives—such as flow sketches—to operate as decentralized
probe/correlation nodes, without incurring the additional costs of middlebox
infrastructures [37] or of offloading feature processing to dedicated servers [40].

Our evaluation suggests that RevealNet matches the effectiveness of central-
ized attack attribution systems while offering significant efficiency gains by de-
centralizing flow correlation. RevealNet allows P4 switches to track more flows
and cut communication overheads—saving up to 96% bandwidth in a decentral-
ized setup consisting of 20 networks, each with a RevealNet-enabled switch.
Contributions. The contributions of this paper can be summarized as follows:
– We design RevealNet, a decentralized attack attribution framework based on

the orchestration of P4-programmable switches for enabling flow correlation.
– We implement RevealNet in bmv2, the reference P4 switch, and adapt promi-

nent flow sketching schemes to fit the programming constraints of P4 switches.
– We evaluate RevealNet’s correlation accuracy as well as its computational

and bandwidth overheads when identifying the source of malicious flows.

RevealNet: Distributed Attack Attribution on Programmable Networks 3

2 Background and Related Work

2.1 Traffic Correlation

Traffic correlation techniques can be used to analyze traffic patterns and link
together flows which are observed at the entry and exit nodes of proxy chains [20].
While many correlation techniques were introduced with the aim of gauging the
privacy provided by anonymity [8, 28, 34] and mix networks [33], others were
developed with the specific intent to trace stepping-stone network attackers [12,
41,49]. Below, we describe two main classes of prominent passive flow correlation
techniques: a) those that use fine-grained per-packet data for higher accuracy at
the cost of increased storage, and; b) those that rely on coarse-grained per-flow
data, which are more storage-efficient but are typically less precise.
Flow correlation with fine-grained information. Most studied traffic cor-
relation techniques rely on fine-grained, per-packet information. Zhu et al. [56]
leverage per-packet timing information to compute the average traffic rate of
flows at different intervals, while Palmieri [36] used wavelet-based analysis to cap-
ture timing, size, and rate variations across flows. Recently, researchers adopted
deep learning approaches to improve flow correlation, pushing accuracy over that
of statistical methods. DeepCorr [29], DeepCoFFEA [32], and ESPRESSO [9]
progressively improve accuracy—DeepCorr uses convolutional neural networks
(CNNs) to learn correlation functions, DeepCoFFEA further introduces feature
embedding and voting mechanisms, and ESPRESSO combines transformer mod-
els and CNNs to capture both global and local traffic patterns.

While the above approaches yield high accuracy, they rely on the collection,
communication, and processing of fine-grained information (direction, size, and
timing) about packets in a trace, making them costly to deploy at scale (§3, [30]).
Flow correlation with coarse-grained information. Collecting and stor-
ing fine-grained traffic features for flow correlation at choke points (e.g., ISP
border routers) is increasingly challenging due to the high volume and speed of
traffic, which strain storage and processing resources. To overcome this, Coskun
et al. [12] used linear projections to reduce a flow’s packets’ timing patterns
into succinct representations that can be efficiently collected, stored, and com-
pared. Nasr et al. [30] introduced compressive traffic analysis, a paradigm which
leverages compressed sensing to compress the traffic features used in correlation,
stipulating that flow correlation can be performed directly on compressed traffic
features instead of on raw traffic features. Lopes et al. [25] correlate flows based
on the similarity of feature vectors (akin to traffic aggregation matrices [39])
whose cells contain the number of packets observed within a small time frame.

In Nasr et al. [30] and Lopes et al. [25], however, flows’ succinct represen-
tations are only generated after the initial collection of per-packet information.
Still, these compact structures may reveal useful for correlation efforts in the
scope of stepping-stone detection, should one be able to compute these represen-
tations on-the-fly, eschewing the need to store per-packet information. Inspired
by these works, we conjecture that these techniques can help reduce memory use
at traffic collection nodes and correlate flows using limited flow data (§4.4).

4 G. Singh et al.

2.2 P4 Switches as a Platform for Traffic Analysis

This section discusses how programmable switches accelerate traffic analysis in
high-speed networks and describes how they have been used for realizing ML-
enabled cybersecurity workloads—including network-wide data correlations.
Primer on P4-programmable switches. P4 switches cleanly separate the
responsibilities of the network’s data and control planes. The data plane is opti-
mized for line-rate packet forwarding and allows for programmable, per-packet
operations that enable feature extraction without compromising throughput.
In turn, the control plane manages rule installation and updates, supporting
adaptive responses to changing traffic patterns. P4 switches, such as the Intel
Tofino [19] or AMD Pensando [1] devices, move packets through a multi-stage
pipeline before forwarding them [7]. Ingress and egress pipelines employ match-
action units to handle packet forwarding and programmable logic. After incom-
ing packets are parsed, their headers and metadata can match a given table,
whose entry will map to an action unit. Actions can alter packet header fields
and modify stateful memory (e.g., increment register counters). Although match-
ing tables and other P4 objects are instantiated inside match-action units, they
are populated by the control plane at and throughout run-time.

Despite their benefits, P4 switches bring limitations that restrict programma-
bility, including the lack of dynamic data structures, no support for floating-point
arithmetic, limited memory capacity (∼256MBs SRAM), and tight computa-
tional constraints that allow only simple operations per pipeline stage [3, 54].
These constraints pose implementation challenges to P4 programs that require
complex flow feature processing and storage, which are typically implemented
via clever “hacks” and workarounds [2, 47, 48, 54]. In our proposed design (§4),
we leverage similar approaches to make an efficient use of the limited memory
and computation primitives in P4 switches to compute and store flow features.
Traffic analysis on P4 switches. P4 switches have been increasingly employed
for traffic analysis tasks [10, 55], including traffic classification [25, 45, 46, 54],
covert channel detection [47], and DDoS mitigation [24, 44]. Seminal systems
in this space focused on extracting fine-grained traffic features within the data
plane, and then offloading them to the switches’ control plane to support a range
of security-focused tasks. For enhancing traffic analysis capabilities, researchers
worked towards implementing efficient data structures and scalable storage man-
agement mechanisms for handling many concurrent flows [51], as well as making
significant strides for running classifiers in the data plane [48,54].

To the best of our knowledge, the use of P4 switches has not yet been applied
to the problem of flow correlation. The closest work to our setting is DELTA [21],
a system where P4-programmable switches are configured to independently iden-
tify the establishment of VoIP calls between peers across the network, and then
orchestrated to exchange call information to identify the users engaged in com-
munication. However, DELTA does not extract packet or flow-based features
that would apply for generic flow correlation tasks. This gap presents an oppor-
tunity to study whether P4 switches can act as the backbone of scalable and
decentralized infrastructure for attack attribution in high-speed networks (§4).

RevealNet: Distributed Attack Attribution on Programmable Networks 5

Proxy
 Chains

Routers

Attacked Network (Ni)Cooperating Network (Nj)

ProbesProbes

Central Correlator
3

Attacker Attacked
 Endpoint

IDS /
 Firewall

1
2

Fig. 1: Centralized correlation architecture for attack attribution.

3 The Attack Attribution Problem

Our scenario models a networked environment such as the Internet, consisting
of a set of interconnected networks N = {N1, N2, . . . , Nn}. Each network is
managed by an operator, e.g., an Internet Service Provider (ISP), a cloud ser-
vice provider (CSP), or a university campus/enterprise network administrator.
These networks may deploy local intrusion detection systems (IDSes) in firewalls,
servers, or end-hosts, and share telemetry or flow-level metadata to support col-
laborative cybersecurity operations. We name these cooperating networks.

When an IDS signals an attack on a given network Ni, we assume that the
objective of the network operator is not merely to identify and respond to the
event (e.g., by dropping the offending flow and/or temporarily preventing further
communication from a given proxy’s IP), but to carry out attack attribution, i.e.,
to uncover the actual IP address a ∈ NIP launching the the attack.

To perform attack attribution, a network operator extracts traffic features
from the malicious flow—denoted f i

m—as observed in the attacked network Ni.
These features are then correlated with those of other flows fk ∈ F originated
within cooperating networks in N \ {Ni}. Here, f j

k ∈ F(Nj , a) denotes a flow
originated within network Nj , and whose source IP is a. Let ρ(f i

m, f j
k) denote

the correlation between the features of f i
m and f j

k . Correlation may reflect sim-
ilar traffic timing and volume characteristics, indicating that f j

k and f i
m may

belong to the same communication path or originate from a common source,
as observed from different vantage points. Hence, the attack attribution problem
can be formalized as identifying the probable attacker’s IP address Â, as follows:

Â = arg max
a∈NIP

∑
Nj∈N\{Ni}

∑
f
j
k
∈F(Nj ,a)

ρ(f i
m, f j

k) subject to ρ(f i
m, f j

k) ≥ η

, where η is a tunable flow similarity threshold.
Scalability challenges of centralized attack attribution. Figure 1 shows
a centralized flow correlation architecture for attack attribution. The IDS in
the attacked network instructs its probe (step 1) to send the attacking flow’s
feature vector to a central correlator (step 2), while cooperating networks for-
ward feature vectors for all of their outgoing flows (step 3). The correlator then
computes similarity scores between the attacking flow and those from cooper-
ating networks. This design incurs a computation and communication in the
order of |fk| – the total number of outgoing flows observed by the cooperating
networks. As a result, centralized architectures create significant bottlenecks,
requiring powerful correlator nodes and high-capacity links. In the next section,
we present RevealNet, a distributed framework that addresses these limitations.

6 G. Singh et al.

4 RevealNet

This section introduces RevealNet, a distributed correlation framework aimed
at enabling a coalition of operators managing a set of cooperating networks to
identify the network location of an attack’s perpetrator. RevealNet leverages P4
switches to simultaneously act as probe nodes (responsible for collecting flows’
traffic features) and correlator nodes (i.e., responsible for computing correlation
scores), thus efficiently distributing correlation workloads across the network.

Next, we start by describing RevealNet’s architecture before outlining its
workflow and providing a comprehensive overview of its core design features.

4.1 Architecture Overview

Figure 2 illustrates the overall architecture of RevealNet. The framework is com-
prised of three key components that operate in tandem. We detail them below.
Programmable switches. P4 switches represent a central component of Re-
vealNet, serving a dual role as feature collectors (probe nodes) and correlation
engines (correlator nodes). Importantly, these switches may already be deployed
at participating networks to function as border routers and perform packet for-
warding, making them a readily available platform for in-network processing.
RevealNet leverages this existing infrastructure to extract flow-level features in a
per-packet fashion, enabling an efficient feature aggregation directly within the
data plane (§2.2). Once instructed to initiate correlation, the P4 switches retrieve
the set of feature vectors associated with each flow of interest from the data plane
and perform the correlation operations internally, on the switch’s CPU (control
plane). This ensures that feature extraction and correlation remain tightly cou-
pled and execute within the switch itself, requiring no additional components.
Intrusion detection systems. We assume that robust IDSes—such as fire-
walls, security appliances, or ML-based detectors on middleboxes—are already
deployed by a given network’s operator. These systems are configured to improve
detection against attacks targeting specific services hosted within the network,
enhancing their effectiveness. They continuously monitor traffic and trigger alerts
upon detecting malicious activity. Each alert sets off a communication with the
correlation manager, which then requests the offending flow’s features from the
network’s front-facing P4 switch to bootstrap the distributed correlation process.
Correlation manager. The correlation manager acts as a lightweight logical
entity that orchestrates the distributed correlation workload. We envision that
this component may be operated independently by a neutral third party, such
as a trusted consortium, an inter-organizational security alliance, or a national
cybersecurity center [42]. This component’s role is limited to coordinating the
correlation process: it collects metadata and feature vectors of attacking flows
from the probe node within an attacked network, and distributes the offending
flow’s feature vector to the correlator nodes run by cooperating networks. The
actual correlation is performed at those distributed nodes, deliberately avoiding
centralized resource-intensive computations. Once the distributed correlation is
complete, results are reported back to the correlation manager.

RevealNet: Distributed Attack Attribution on Programmable Networks 7

Proxy
Chains

Routers

Attacked Network (Ni)Cooperating Network (Nj)

P4 SwitchP4 Switch

Correlation Manager
35

6

Attacker Attacked
Endpoint

IDS /
 Firewall

2
4

1 1

Fig. 2: RevealNet’s decentralized correlation architecture for attack attribution.

4.2 Operational Workflow

We now outline the operational workflow of our framework. Figure 2 illustrates
each of the steps composing RevealNet’s sequential workflow.
Flow features’ extraction. In steady-state, all probe nodes within a cooperat-
ing network will produce a compact representation of the features for each flow
concurrently crossing the switch at a given point in time (step 1). Given pro-
grammable switches’ memory limitations, this compact representation, which we
refer to as a feature vector, is ephemeral, potentially being replaced in an LRU
fashion as flows are terminated [2]. Feature vectors will be used for correlating
flows as part of the attack attribution process once an attacking flow is detected
within a cooperating network under attack. As we describe later on, RevealNet
is compatible with multiple compact representations of a flow’s feature vector
(§4.4), enabling us to explore different memory/correlation accuracy trade-offs.
Attack detection. The IDS monitors network traffic to identify ongoing at-
tacks. Once an attack is detected, the IDS extracts the 5-tuple information ⟨Src.
IP, Dst. IP, Src. Port, Dst. Port, Proto⟩ of the malicious flow, and communicates
this data to the correlation manager (step 2).
Request of attacking flow’s features. Upon receiving an alert, the correlation
manager requests the feature vector tied to the attacking 5-tuple from the probe
node (i.e., P4 switch) deployed on the attacked network (step 3).
Propagation of the attacking flows’ features. As requested by the corre-
lation manager, the probe node within the attacked network sends it a feature
vector that characterizes the attacking flow (step 4).
Correlation directive. Upon receiving the feature vector of the attacking flow,
the correlation manager forwards it to the P4 switches (which will now act as
correlator nodes) that front-face each cooperating network. In addition, the cor-
relation manager distributes the attacking flow’s details (i.e., the flow’s start
times and communication volume) to the same switches, enabling them to pre-
emptively identify which (outgoing) recorded flows have similar start/end times
as the offending flow, and reason about heuristic optimizations for the local corre-
lation procedure (§4.5). Finally, the correlation manager instructs these switches
to initiate their local correlation process (§4.4) for the attacking flow (step 5).
Flow correlation and reporting. Flows with correlation scores matching
and/or exceeding a set threshold are flagged as potentially correlated, and any
associated 5-tuples are sent back to the correlation manager for concluding the
attack attribution process (step 6).

8 G. Singh et al.

Flow Table
<1.1.1.3,2.2.2.2,80,443,TCP> 0

Parser

Dynamic Rule
Installation (gRPC)

Hit?Five
Tuples

U
pd

at
ed

Fl

ow
 T

ab
le

1
2

3

Flow Table

<1.1.1.3,2.2.2.2,80,443,TCP> 0
Clone

No

PacketUpdate
Feature Vector

Is Clone
No

Yes

Ingress Pipeline Egress PipelineD
at

a
Pl

an
e

C
on

tr
ol

Pl

an
e

Yes

<1.1.1.1,2.2.2.2,80,443,TCP> 1

Forward

4
5

Fig. 3: RevealNet’s dynamic flow identification and matching mechanism.

4.3 Flow Identification and Tracking

A key operation underlying the execution of RevealNet is that of performing an
efficient flow identification within P4 switches, so that accurate per-flow feature
vectors can be computed and stored within each switch’s data plane. Still, pre-
vious prototypes for ML-based flow analysis schemes for P4 switches side-step
the problem of unique flow identification, assuming that some process will be in
place to perform this identification (e.g., [2]), or forcing the initial packet of a new
connection to move through the control plane for further processing and map-
ping (e.g., [47]), thus causing delays upon connection establishment in high-speed
networks with low latency requirements. Thus, while apparently straightforward,
producing a 1-to-1 match between new flows and a memory region that can ac-
commodate for a flow’s compact feature representation is non-trivial should one
wish to avoid delays in packet processing and/or feature corruption, e.g., caused
by hash-based indexing methods that may lead to collisions [14,17].
RevealNet’s flow identification pipeline. We now detail how RevealNet tack-
les flow identification. Figure 3 illustrates the steps of this procedure.
– Packet parsing. The first step on the packet processing pipeline involves a

parsing operation that extracts the packet’s 5-tuple (step 1).
– Flow table lookup. We introduce a dedicated flow table that stores reference

indices pointing to row entries in another data plane feature table. The latter
logically organizes registers’ memory in rows, where each row stores a given
flow’s feature vector. After parsing, a packet’s 5-tuple is checked against the
flow table (step 2). We must install a new rule for each newly observed flow.

– Packet cloning and rule installation. To install a rule for a new flow, the first
packet is cloned: the original is forwarded without delay, while the clone is
sent to the control plane for rule creation. The rule is installed in the data
plane’s flow table through a remote procedure call (step 3), and will point to
a cell in the feature table for keeping track of packets pertaining to the new
flow. Note that a flow’s initial packet(s) triggering a rule installation will not
be included in a flow’s feature vector, since the index to write on the data
plane is not yet available. In this case, multiple packets from the same flow
may be temporarily queued before the rule is installed; accordingly, only the
first packet triggers rule installation, while subsequent packets are ignored.

– Feature vector updates and packet forwarding. After rule installation, the
feature vector is updated as subsequent packets from the flow pass through
the switch (step 4). Once a packet is fully processed, it is forwarded to the
appropriate port as dictated by the switch’s IPv4 forwarding table (step 5).

RevealNet: Distributed Attack Attribution on Programmable Networks 9

4.4 Compact Flow Features’ Representation and Correlation

Traffic correlation techniques target a set of features that are commonly derived
from per-packet information and which remain invariant over time. Examples
include packet timestamps, sizes, and overall communication volume. Storing a
flow’s per-packet information on a programmable switch’s data plane, however,
would occupy a significant memory footprint, impacting the total amount of
concurrent flows that could be correlated by RevealNet at any given time.

To minimize the amount of data that must be kept by a switch for each active
flow, we explore existing methods of generating compact feature vectors. These
approaches have been found to be applicable to traffic correlation workloads as
well as other ML-based security tasks focused on flow analysis.
Traffic aggregation matrix. We first adopt a methodology (for generating
feature vectors) which follows a traffic aggregation matrix (TAM) [39] approach.
This matrix records metadata about packets transmitted per flow across multiple
bins of t seconds each, for a maximum of T seconds, thereby storing a flow-
level feature vector in a fixed-size data structure, consuming significantly less
memory when compared to storing individual packet features. Similarly to Lopes
et al. [25], we generate a single-row TAM per flow, where each TAM bin tracks
the total number of packets transmitted by a flow within that bin’s time interval.

While storing complete TAM feature vectors in a switch’s data plane might
be feasible, their memory footprint may compromise the concurrent storage of
many flows simultaneously crossing the switch (see TAMs’ trade-offs in §5.3).
Flow sketching. To further compress TAM feature vectors while faithfully
retaining flows’ characteristics, we use sketching techniques based on vector
projection methods [12, 30]. Briefly, let the TAM feature vector for a flow be
f = [f1, f2, . . . , fn]. Sketching algorithms transform f into a lower-dimensional
vector fc = [fc1, fc2, . . . , fcm], where m ≪ n. The parameterization of such
sketches enables us to trade-off the usage of switch memory (and thus, the total
amount of concurrent flows that can be measured) with correlation accuracy.

We integrate these mathematical constructs into RevealNet’s P4 per-packet
data plane processing logic, contrasting the use of two prominent sketching al-
gorithms, proposed in the traffic correlation literature (§2.1), as the main driver
of RevealNet’s attack attribution mechanisms. We describe them below, before
detailing how flows’ sketches can be compared towards realizing flow correlation.
Coskun et al. [12]. This work proposes an online sketching method that first
bins packets into discrete time slots (i.e., a packet count-based TAM vector)
and then leverages linear transformations to generate a compact integer-array
sketch representation of a flow. Sketches are computed on-the-fly without the
need for temporarily storing the complete TAM feature vector. As the basis
for these transformations, we use a random projection matrix whose entries are
independently drawn from a Bernoulli distribution (i.e., each entry is either +1
or -1 with equal probability). This projection preserves the inherent structure of
the packet-count vector and produces a sketch that contains only integer values,
offering low per-packet overhead and robustness to network perturbations. The
sketches can be binarized to save space and enable more efficient comparisons.

10 G. Singh et al.

Table 1: Storage requirements in terms of f (number of flows), n (TAM feature
vector length), and m (sketch length). Each integer is assumed to be 32 bits.
Method / Storage Proj. Matrix Flows Total (bits) Total (bits) w/ heur. (§4.5)

Nasr (integer sketch) n×m (integers) f ×m (integers) 32 (n×m+ f ×m) 32 (n×m+ f ×m+ f)+ 48× f
Coskun (integer sketch) n×m (integers) f ×m (integers) 32 (n×m+ f ×m) 32 (n×m+ f ×m+ f)+ 48× f
Coskun (binary sketch) n×m (integers) f ×m (bits) 32 (n×m) + f ×m 32 (n×m+ f)+ f ×m+48× f

TAM feature vector – f × n (integers) 32 (f × n) 32 (f × n+ f) + 48× f

Nasr et al. [30]. This work proposes the aggregation of raw traffic features into a
feature vector, which is then compressed using a sensing matrix Φ ∈ Rm×n into
a lower-dimensional sketch. Φ satisfies the restricted isometry property, allowing
Euclidean distances between features to be preserved in the compressed domain.

In our implementation, we conducted two adaptations to Nasr et al.’s [30]
original approach. First, since this scheme originally compresses the full feature
vector, we implement a continuous update of a flow’s feature sketch every time
a packet is processed, thus replicating the online sketching nature of Coskun et
al. [12]. Second, since sensing matrices Φ are instantiated as random Gaussian
matrices with std. dev. σ = 1, these contain floating-point entries which are not
supported by P4 switches (§2.2). To address this issue, we scale the matrix Φ
by a constant factor—10 000, in our implementation—to convert its entries to
integer values without losing significant precision. Sketching is then performed
on the P4 switch using this scaled matrix, enabling integer-only arithmetic.

Table 1 depicts the storage requirements for holding a TAM for a single flow,
when contrasted to the storage required to hold the sketches we consider [12,30].
Correlation. The final step in RevealNet’ attack attribution pipeline involves
correlating feature vectors to identify whether two flows collected at different
vantage points originate from the same source. In RevealNet, correlation is based
on computing a statistical distance or similarity between the sketches. Different
sketching methods use disparate metrics for enacting said comparisons. Coskun
et al. [12] use the Hamming distance to compare sketches while Nasr et al. [30]
employ cosine similarity. Our implementation relies on the same metrics.

4.5 Heuristic Optimizations for Attack Attribution

While the above correlation methods provide a starting point for RevealNet’s
attack attribution, probe nodes in cooperating networks observe a large volume
of unrelated flows. These unrelated flows increase correlation complexity and the
risk of false positives, as noted in prior work [12, 30]. To address this, we adopt
two optimizations [6] that reduce the flow search space at each correlator node.
Creation time heuristic. Since correlation targets flows that occurred within
a small interval relative to the attacking flow, we exclude flows whose start times
fall outside a temporal window defined w.r.t. the start time of the attacking flow
(as tracked at the attacked network). Thus, we only consider flows with initial
timestamps within Tmin and Tmax, offset from the attacking flow’s start time.
Packet count heuristic. Flows with a total packet count similar to that of the
malicious flow are more likely to be true matches. By bounding the acceptable

RevealNet: Distributed Attack Attribution on Programmable Networks 11

packet count range using thresholds Pmin and Pmax, derived from the target
malicious flow, we restrict correlation to flows with comparable traffic volumes.

We apply the heuristics one after the other. This two-step strategy reduces
correlation complexity from the baseline O(|F|×C)—where |F| is the total num-
ber of outgoing flows observed in N\{Ni} (see §3) and C the cost of a single com-
parison between two flows’ feature vectors—to O (log(|F|) + |ft|+ |ft+p| × C).
Here, ft and fp+t represent the reduced flow sets after the cumulative timestamp
and packet count filtering, respectively. Since flows are pre-sorted by timestamp,
identifying ft requires only O(log(|F|)) via binary search. Filtering by packet
count is linear in ft, yielding ft+p in O(|ft|). We then perform flows’ feature
vector comparisons only on this set, which incurs a cost of O(|ft+p| × C).

To implement the heuristics, the data plane of each switch maintains two
separate tables with a number of rows equal to the number of flows. Each entry
stores auxiliary metadata: 48 bits for a flow’s creation timestamp and 32 bits for
that flow’s total packet count. This results in a storage overhead of 32×f+48×f ,
where f denotes the number of flows observed by a switch (see Table 1).

4.6 Implementation

We built a prototype of RevealNet using bmv2 [35], the reference P4 software
switch. The data plane logic, including flow identification and sketching opera-
tions (for either sketch), was implemented in ∼500 lines of P4_16 code. In turn,
RevealNet’s control plane logic was written in ∼300 lines of Python code. This
includes the installation of tables and rules supporting flow identification and
sketching operations in the data plane, as well as fetching flows’ feature vectors
via reads to data plane registers for enabling the correlation backbone.

5 Evaluation

5.1 Evaluation Goals and Metrics

We wish to evaluate the practicality of RevealNet along three key dimensions:
Effectiveness. We evaluate RevealNet’s attack attribution capability by mea-
suring its correlation accuracy on malicious flows, using metrics aimed to capture
the trade-off between successful correlations and incorrectly matched flows [29].

The true positive rate (TPR) measures the fraction of attacking flows that are
correctly correlated by the system. Let fs

m denote the number of malicious flows
originated within a network with border switch s, and TP s the number of those
that are correctly matched to the malicious flows detected within a cooperating
network under attack. Across all switches S, TPR =

∑
s∈S TP s

/∑
s f

s
m.

The false positive rate (FPR) captures incorrect correlations. Let fs denote
the total number of flows originated within a network with border switch s, and
FP s the number of such flows that are incorrectly matched to malicious flows fm
detected within an attacked network. Then FPR =

∑
s∈S FP s

/∑
s fmfs, where

the denominator reflects all potential false-positive pairs across all switches.

12 G. Singh et al.

Table 2: Summary of malicious/benign traffic datasets used in our experiments.
Dataset Category Description Flows Duration (s)

Benign Malicious

Snojan Botware PPI malware downloading. 206 723 1 607 45.64
Dridex Ransomware Victim locations uploading. 125 424 3 202 54.75
Adload Adware Static resources for PPI adware. 125 417 602 54.80
Oracle Web TLS padding Oracle. 294 110 224 64.14
Penetho Spyware Wifi cracking APK spyware. 293 808 1 006 55.64
Bitcoinminer Miner Abnormal encrypted channels. 125 418 202 61.01

Efficiency. We quantify the computational cost associated with flow correlation
via the number of pairwise comparisons between detected malicious flows and
the outgoing flows observed by cooperating networks. The computational effort
across all switches S can be expressed as the sum of the pairwise comparisons for
each switch:

∑
s∈S fm × fs, where fm represents the number of malicious flows

detected and fs represents the number of outgoing flows observed by switch s.
Scalability. We evaluate RevealNet’ scalability by analyzing two key factors:
a) the number of flows that can be concurrently stored and processed, and; b)
the communication overhead required during attack attribution. Let fs denote
the number of outgoing flows observed by a cooperating network’s switch, and
let Cs represent the total communication cost (in bits) for transmitting these
flows’ features’. If each flow is represented by a feature vector of size m bits,
then transmitting all flows fs incurs a communication cost of Cs = fs ×m.

5.2 Evaluation Methodology

We now describe the datasets used in our evaluation, followed by details on the
parameterization of RevealNet’s data structures and heuristics.
Datasets used for attack attribution. We use six labelled network traffic
datasets, released by Fu et al. [15], as a target of RevealNet’ attack attribu-
tion capabilities. These datasets were compiled from a combination of Fu et
al.’s own experimental data and traffic traces from the WIDE MAWI project in
Tokyo, Japan. For exercising RevealNet’s generalizability, we selected each data-
set from six different categories of attacks collected by Fu et al. (see Table 2 for
an overview of each dataset). Each of the datasets contains a different type of
network attack along with background benign traffic. Fu et al.’s data records
detail per-packet five-tuples in .csv files, along with packets’ timestamps and
labels (benign/malicious), allowing us to carve out individual flows identified by
these 5-tuples. Each dataset accounts for more than 100k flows, and the ratio of
benign to malicious traffic is at least 39:1 (Dridex) and at most 1312:1 (Oracle).

For simplicity, we assume that the network IDS deployed within each Re-
vealNet-enabled network acts as an oracle that can perfectly distinguish between
benign and malicious flows. While this is within the realm of practicality for the
datasets we considered [15], we recall that our goal is not to perform accurate
malware classification, but rather to act on the alerts produced by IDSes (§3).
Emulating vantage points and network conditions. Since the above data-
sets were collected at a single network vantage point and do not include raw

RevealNet: Distributed Attack Attribution on Programmable Networks 13

packet traces that can be transparently replayed across some network topology
(real or emulated) by special-purpose software such as tcpreplay, they cannot
be directly used for correlation experiments across different networks, as required
by RevealNet. To tackle this issue, and similarly to [12], we simulate the acquisi-
tion of two separate observations for each flow at different vantage points within
RevealNet-enabled networks: a) at the border router of a cooperating network
where hosts originate benign/malicious traffic, and; b) at the border router of a
network which is targeted by some attack. We also assume that all flows in each
of Fu et al. [15]’s datasets originate from a cooperating network and traverse (or
target devices within) the attacked network. To facilitate this setup, we imple-
mented a simulator that models WAN traffic being relayed via an intermediate
proxy node. We produce a second set of datasets that represent traffic obser-
vations across the WAN, where packets experience an average latency increase
of ∼200ms between any two vantage points. The simulator also supports the
injection of perturbations, e.g., packet loss, allowing us to assess the robustness
of flow correlation under degraded network conditions.

Parameterization of RevealNet’s sketches. Each dataset from Fu et al. [15]
spans 45–65s of traffic. To explore the impact of temporal granularity in flow
feature collection, we generated TAM time bins (t) of 0.1s, 0.5s, and 1s. We
performed preliminary experiments using different sketch lengths (m = 5, 10, 15),
keeping m = 10 as a baseline. A sketch length of 5 slightly improved TPR
by up to +1.52% but at the cost of a substantial increase in FPR, reaching
+114.84%. Conversely, using m = 15 provided no consistent TPR gains and
resulted in mixed FPR outcomes (ranging from –20.4% to +92.65%), along with
added storage overhead. Overall, for all datasets we considered, m = 10 strikes a
favourable balance between accuracy and efficiency (see §5.3). Still, as previously
studied [12], this parameter may need to be tuned for flows with different traits.

We follow the original methodology of each sketch to compute correlation
scores. For Coskun et al.’s sketch, we use Hamming distance and consider a
match to be a true positive only when the distance between sketches is 0. For
Nasr et al.’s sketch, we use cosine similarity, requiring a score of 1 for an exact
match. We evaluate correlation using TAMs with both Hamming distance and
cosine similarity, applying the same thresholds to define true positives. We adopt
these thresholds to reflect high-confidence matches in attack attribution, where
false associations can be especially harmful to benign users. Indeed, we experi-
mented with relaxed correlation thresholds across various time bins t, but found
that these looser criteria offered only marginal improvements in true positive
rates while significantly increasing false positives. For instance, for Nasr et al.’s
sketches’ setups, a cosine similarity threshold of 0.9 yielded modest increases in
TPR (up to 2.54%) but introduced significantly higher FPR (up to 373.04%).

Configuration of RevealNet’s heuristics. Network topology and flows’ char-
acteristics can significantly influence the choice of RevealNet’s heuristics’ con-
figurations [6]. However, since the datasets we use to evaluate RevealNet (see
Table 2) share similar traits on flow durations, we configure our heuristics to be
consistent across all datasets. For the timing-based and packet count heuristics,

14 G. Singh et al.

0.00

0.25

0.50

0.75

1.00

TP
R

Coskun et al.
Binary Sketch

Coskun et al.
Integer Sketch

Nasr et al.
Sketch

TAM Vector
(cosine)

TAM Vector
(hamming)

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

FP
R

Bins 0.1s
Bins 0.5s

Bins 1s
W/o Heuristics

W/ Heuristics

Fig. 4: Bitcoinminer (unperturbed).

0.00

0.25

0.50

0.75

1.00

TP
R

Coskun et al.
Binary Sketch

Coskun et al.
Integer Sketch

Nasr et al.
Sketch

TAM Vector
(cosine)

TAM Vector
(hamming)

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

FP
R

No perturbation Drop 0.01 Drop 0.02 Drop 0.05

Fig. 5: Bitcoinminer (w/perturbations).

snojan dridex adload oracle penetho bitcoinminer Sketch Length
0

200

400

600

Le
ng

th
 (c

el
ls) 457

548 548
642

557 611

92 110 110 129 112 123
46 55 55 65 56 62 10

Bins 0.1s
Bins 0.5s
Bins 1.0s
Sketch Lengths

Fig. 6: Length of TAM.

we empirically found that a window of ±2.5 seconds and a threshold of ±5%
traffic volume filters out irrelevant candidate flows while retaining most valid
matches. As described in §5.3, applying these heuristics to the bitcoinminer
dataset helps reduce the number of comparisons per attacking flow by 3 orders
of magnitude, without substantially sacrificing correlation accuracy.

5.3 Evaluation Results

We now describe the main results obtained during our evaluation of RevealNet.
Throughout this section, we centre on the bitcoinminer dataset since it: a) has
a representative benign-to-malicious flow ratio of 625:1, close to the median of all
datasets; b) exhibits the second-largest temporal span, and; c) has a relatively
smaller number of flows, facilitating faster experimentation. Results for other
datasets, which exhibit similar trends, are deferred to Appendix A.1.
Compact sketches obtain correlation accuracy equivalent to TAMs.
Figure 4 shows the TPR and FPR achieved by different parameterizations of the
TAM and sketching approaches considered in our work, when correlating flows
pertaining to the bitcoinminer dataset. The figure suggests that sketches attain
a comparable correlation performance vs. TAMs, making them highly attractive
due to their smaller memory overhead. Focusing on the results obtained without
the use of heuristics (solid bars), the integer sketching method from Coskun et
al. [12] achieves equivalent accuracy (TPR: 0.9917, FPR: 3.98× 10−4) to TAM
(in 0.1 seconds time bin and Hamming distance) while offering significant space
savings—indeed, Figure 6 illustrates that TAM’s memory footprint can be up
to 60× larger than that of sketches under finer-grained binnings (e.g., t = 0.1).

To assess whether the benefits of sketches are still applicable under perturbed
network conditions, we performed additional experiments where we simulated
the introduction of random packet drops at rates of 1%–5%. We now present
our findings assuming that heuristics were deployed. As shown in Figure 5, both
TPR and FPR declined under network perturbations (bars with markers), con-
sistent with prior observations [12,30]. For instance, the integer sketch (t =0.1s)

RevealNet: Distributed Attack Attribution on Programmable Networks 15

Table 3: Number of feature vector com-
parisons required for each heuristic.

Dataset None Creation
Time

Packet
Count Both

Dridex 128 626 19 409 2 403 824
Adload 126 019 17 386 1 168 258
Snojan 208 330 20 975 2 735 693
Oracle 294 334 41 580 95 84
Bitcoinminer 125 620 17 288 791 207
Penetho 294 814 28 040 1 735 454

Table 4: Total flows that can be stored
in a P4 switch (for different methods).

Method/ Storage Per flow
(in Bytes)

Stored Flows
(in 256 MB)

Nasr et al. (integer) 40 ≈ 6.4× 106

Coskun et al. (integer) 40 ≈ 6.4× 106

Coskun et al. (binary) 1.25 ≈ 204.8× 106

TAM (0.1s bins) 2864 ≈ 1.05× 105

TAM (0.5s bins) 576 ≈ 5.20× 105

TAM (1s bins) 291 ≈ 1.03× 106

maintained a TPR of 0.1188 and FPR of 4.7× 10−5, equivalent to that of TAM
under the packet drop of 5%. Interestingly, the binary sketching variant yielded
a significantly higher TPR (0.6634) compared to both integer sketches and TAM
in the same conditions, albeit with a modest increase in FPR.

Overall, the above results suggest that, even in noisy environments, sketches
preserve the detection characteristics of more resource-intensive TAM configu-
rations and can be relied upon for realizing RevealNet’s correlation backbone.
While not the main focus of our paper, we reckon that advanced traffic shaping
techniques—beyond usual network perturbations—are challenging for accurate
flow correlation, making this process significantly harder, if not infeasible [25,32].
Heuristics reduce complexity and foster improved correlation. Table 3
illustrates the impact of heuristics on reducing the flow comparisons performed
by RevealNet. Without heuristics, comparisons range from 125k (bitcoinminer)
to nearly 295k (penetho and oracle). With heuristics applied, this drops to 207,
454, and 84, respectively, thus reducing the computational effort involved in the
correlation workload by at least three orders of magnitude.

Beyond decreasing computational complexity, the heuristics also substan-
tially lower false positives (see Figure 4 – bars with stripes). For instance, Coskun
et al.’s binary sketch (based on packet counts tracked with t = 0.1) experiences a
96% decrease in FPR—from 0.008 to 0.0003—after heuristic filtering. This stems
from eliminating benign or mismatched attacking flows that appear similar in
sketch form but that differ significantly in creation time or total traffic volume.
Sketches allow for storing more flows concurrently. Table 4 presents the
approximated number of flows that can be stored in a Tofino v1 P4 switch
equipped with ∼256 MB of SRAM [54], for the various feature extraction meth-
ods under analysis. All sketches are configured with a length of m = 10. For
Coskun et al. and Nasr et al., the sketching process requires storing a projection
matrix of size n × m (§4.4), which introduces a storage overhead of 24 400B,
4 920B, and 2 480B for TAMs based on 0.1s, 0.5s, and 1s bins (t), respectively.

Although sketches require this fixed overhead, they dramatically improve
storage capacity. For example, Coskun et al.’s binary sketch supports storing
up to 204.8 × 106 flows, compared to just 1.05 × 105 with TAM at t = 0.1s
granularity—the most memory-intensive setting in our study. Other sketching
methods show similar scalability, reinforcing that sketch-based correlation is well-
suited for memory-constrained P4 switches that must handle large flow volumes.

16 G. Singh et al.

Table 5: Communication overhead (in bits) for centralized and distributed corre-
lation, evaluated per sketch (with heuristics) in the bitcoinminer dataset. The
last column shows the overhead reduction under RevealNet’s distributed setup.
Method Centralized Distributed (RevealNet) OH Red. (%)

Swc → CS Swa → CS Total Sa → CM CM → Swc Swc → CM Total

Coskun et al. (binary) 1 193 390 2 020 1 195 410 2 020 38 380 736 896 777 296 35.0%
Coskun et al. (integer) 38 188 480 64 640 38 253 120 64 640 1 227 680 736 896 2 029 216 94.7%
Nasr et al. (integer) 38 188 480 64 640 38 253 120 64 640 1 227 680 736 896 2 029 216 94.7%
TAM 229 085 280 387 840 229 473 120 387 840 7 368 960 736 896 8 493 696 96.3%

Distributed correlation saves bandwidth. So far, our evaluation considers
a single-switch setup. In practice, however, attack attribution spans multiple
P4 switches located across different cooperating networks. In this distributed
setting, correlation scales naturally in an “embarrassingly parallel” fashion: each
switch handles its local traffic and performs correlation independently. We now
gauge the communication overheads imposed by RevealNet, comparing them to
traditional centralized attack attribution deployments.

Recall that RevealNet reverses the traditional data-sharing model of cen-
tralized systems, which require all probe nodes (Swc) to send full flow feature
vectors to a central server (CS), resulting in high bandwidth overhead. Instead,
RevealNet transmits only the feature vectors of attacking flows–collected at the
attacked network’s switch (Swa)–to a central correlation manager (CM), which
then relays them to RevealNet-enabled switches (Swc) for localized correlation.

To evaluate the communication overhead of centralized vs. distributed cor-
relation, we simulate a topology with 20 RevealNet switches: 19 monitoring out-
going flows at cooperating networks (Swc), and one observing incoming flows at
an attacked network (Swa). Assuming an even distribution of flows sourced from
bitcoinminer (where we assume all flows to originate in cooperating networks
and traverse the attacked network), each Swc sees 6 281 outgoing flows, while
Swa sees a total of 119 339 incoming flows, out of which 202 are malicious. In
a centralized setup, each Sw sends all observed flows’ feature vectors to a CS,
while the Swa sends its 202 feature vectors. In RevealNet, Swa sends the 202
feature vectors to the CM, which relays them to all Swc. Each Swc performs
correlation locally and returns 202 matched flow tuples (192 bits each) to CM.

Table 5 shows a breakdown of the total communication involved in both sce-
narios. In our example setup with 20 switches/networks, RevealNet’s distributed
design reduces bandwidth usage by 35%–94.7%, depending on the used sketch.

6 Conclusions

In this work, we introduced RevealNet, a practical framework for distributed at-
tack attribution across multiple cooperating networks. By leveraging compact
sketch-based data structures and the orchestration of programmable network
elements, RevealNet is able to accurately correlate malicious flows while main-
taining low computational and communication overheads. Our evaluation across
multiple datasets suggests that flow correlation can be effectively pushed into
the network fabric itself, paving the way for scalable attack attribution systems.

RevealNet: Distributed Attack Attribution on Programmable Networks 17

References

1. AMD Corporation: Amd pensando 2nd generation (“elba” ’) data pro-
cessing unit. https://www.amd.com/content/dam/amd/en/documents/
pensando-technical-docs/product-briefs/pensando-elba-product-brief.
pdf (2024), accessed: 2025-04-16

2. Barradas, D., Santos, N., Rodrigues, L., Signorello, S., Ramos, F.M., Madeira, A.:
Flowlens: Enabling efficient flow classification for ml-based network security appli-
cations. In: Proceedings of the Network and Distributed System Security Sympo-
sium (2021)

3. Barradas, D., Santos, N., Rodrigues, L., Signorello, S., Ramos, F.M., Madeira,
A.: The nuts and bolts of building flowlens. In: Proceedings of the Learning from
Authoritative Security Experiment Results Workshop (2021)

4. Bhattacherjee, D., Gurtov, A., Aura, T.: Watch your step! detecting stepping stones
in programmable networks. In: Proceedings of the IEEE International Conference
on Communications. pp. 1–7 (2019)

5. Biradar, S., Parsewar, P.S., Mishra, N., Galakatu, A.A., Gandewar, S.S.: A survey
on: Design, implementation, and evaluation of a secure and anonymous communi-
cation platform utilizing the tor network for enhanced privacy and data protection.
In: Proceedings of the 4th IEEE International Conference on ICT in Business In-
dustry & Government. pp. 1–6 (2024)

6. Blum, A., Song, D., Venkataraman, S.: Detection of interactive stepping stones:
Algorithms and confidence bounds. In: Recent Advances in Intrusion Detection:
7th International Symposium, RAID 2004, Sophia Antipolis, France, September
15-17, 2004. Proceedings 7. pp. 258–277. Springer (2004)

7. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., Walker, D.: P4: programming protocol-
independent packet processors. ACM SIGCOMM Computer Communication Re-
view 44, 87–95 (2014)

8. Chakravarty, S., Barbera, M.V., Portokalidis, G., Polychronakis, M., Keromytis,
A.D.: On the effectiveness of traffic analysis against anonymity networks using
flow records. In: Proceedings of the 15th International Conference on Passive and
Active Network Measurement. pp. 247–257 (2014)

9. Chawla, T., Mittal, S., Mathews, N., Wright, M.: Espresso: Advanced end-to-end
flow correlation attacks on tor. In: Proceedings of the 8th Asia-Pacific Workshop
on Networking. pp. 219–220 (2024)

10. Chen, X., Wu, C., Liu, X., Huang, Q., Zhang, D., Zhou, H., Yang, Q., Khan, M.K.:
Empowering network security with programmable switches: A comprehensive sur-
vey. IEEE Communications Surveys & Tutorials 25(3), 1653–1704 (2023)

11. Clark, D.D., Landau, S.: Untangling attribution. Harv. Nat’l Sec. J. 2, 323 (2011)
12. Coskun, B., Memon, N.: Online sketching of network flows for real-time stepping-

stone detection. In: Proceedings of the Annual Computer Security Applications
Conference. pp. 473–483 (2009)

13. Donoho, D.L., Flesia, A.G., Shankar, U., Paxson, V., Coit, J., Staniford, S.: Mul-
tiscale stepping-stone detection: Detecting pairs of jittered interactive streams by
exploiting maximum tolerable delay. In: Proceedings of the 5th International Sym-
posium on Recent Advances in Intrusion Detection. pp. 17–35 (2002)

14. Doriguzzi-Corin, R., Knob, L.A.D., Mendozzi, L., Siracusa, D., Savi, M.: Introduc-
ing packet-level analysis in programmable data planes to advance network intrusion
detection. Computer Networks 239 (2024)

https://www.amd.com/content/dam/amd/en/documents/pensando-technical-docs/product-briefs/pensando-elba-product-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/pensando-technical-docs/product-briefs/pensando-elba-product-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/pensando-technical-docs/product-briefs/pensando-elba-product-brief.pdf

18 G. Singh et al.

15. Fu, C., Li, Q., Xu, K.: Detecting Unknown Encrypted Malicious Traffic in Real
Time via Flow Interaction Graph Analysis. In: Proceedings of the Network and
Distributed System Security Symposium. San Diego, CA, USA (2023)

16. Gao, Y., Wang, Z.: A Review of P4 Programmable Data Planes for Network Se-
curity. Mobile Information Systems (2021)

17. Hill, J., Aloserij, M., Grosso, P.: Tracking network flows with p4. In: Proceedings
of the IEEE/ACM Innovating the Network for Data-Intensive Science. pp. 23–32
(2018)

18. Hoang, N.P., Kintis, P., Antonakakis, M., Polychronakis, M.: An empirical study
of the i2p anonymity network and its censorship resistance. In: Proceedings of the
ACM Internet Measurement Conference. pp. 379–392 (2018)

19. Intel Corporation: Intel® tofino series: P4-programmable ethernet switch asics.
https://www.intel.com/content/www/us/en/products/details/network-io/
intelligent-fabric-processors/tofino.html (2024), accessed: 2025-04-16

20. Johnson, A., Wacek, C., Jansen, R., Sherr, M., Syverson, P.: Users get routed:
Traffic correlation on tor by realistic adversaries. In: Proceedings of the ACM
SIGSAC Conference on Computer & Communications Security. pp. 337–348 (2013)

21. Kirci, E.C., Apostolaki, M., Meier, R., Singla, A., Vanbever, L.: Mass surveillance
of VoIP calls in the data plane. In: Proceedings of the ACM Symposium on SDN
Research. pp. 33–49 (2022)

22. Li, J., Gu, C., Zhang, X., Chen, X., Liu, W.: Attcorr: A novel deep learning model
for flow correlation attacks on tor. In: Proceedings of the IEEE International Con-
ference on Consumer Electronics and Computer Engineering. pp. 427–430 (2021)

23. Ling, Z., Luo, J., Xu, D., Yang, M., Fu, X.: Novel and practical sdn-based traceback
technique for malicious traffic over anonymous networks. In: IEEE INFOCOM 2019
- IEEE Conference on Computer Communications. pp. 1180–1188 (2019)

24. Liu, Z., Namkung, H., Nikolaidis, G., Lee, J., Kim, C., Jin, X., Braverman, V.,
Yu, M., Sekar, V.: Jaqen: A High-Performance Switch-Native approach for de-
tecting and mitigating volumetric DDoS attacks with programmable switches. In:
Proceedings of the 30th USENIX Security Symposium. pp. 3829–3846 (2021)

25. Lopes, D., Dong, J.D., Medeiros, P., Castro, D., Barradas, D., Portela, B., Vina-
gre, J., Ferreira, B., Christin, N., Santos, N.: Flow correlation attacks on tor onion
service sessions with sliding subset sum. In: Proceedings of the Network and Dis-
tributed System Security Symposium (2024)

26. Mani, A., Vaidya, T., Dworken, D., Sherr, M.: An extensive evaluation of the
internet’s open proxies. In: Proceedings of the 34th Annual Computer Security
Applications Conference. p. 252–265 (2018)

27. McCoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.: Shining light in dark
places: Understanding the tor network. In: Proceedings on Privacy Enhancing
Technologies. pp. 63–76 (2008)

28. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of tor. In: Proceedings of the
IEEE Symposium on Security and Privacy. pp. 183–195 (2005)

29. Nasr, M., Bahramali, A., Houmansadr, A.: Deepcorr: Strong flow correlation at-
tacks on tor using deep learning. In: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security. pp. 1962–1976 (2018)

30. Nasr, M., Houmansadr, A., Mazumdar, A.: Compressive traffic analysis: A new
paradigm for scalable traffic analysis. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. pp. 2053–2069 (2017)

31. OConnor, T., Enck, W., Petullo, W.M., Verma, A.: Pivotwall: Sdn-based informa-
tion flow control. In: Proceedings of the Symposium on SDN Research. pp. 1–14
(2018)

https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html

RevealNet: Distributed Attack Attribution on Programmable Networks 19

32. Oh, S.E., Yang, T., Mathews, N., Holland, J.K., Rahman, M.S., Hopper, N.,
Wright, M.: Deepcoffea: Improved flow correlation attacks on tor via metric learn-
ing and amplification. In: Proceedings of the IEEE Symposium on Security and
Privacy. pp. 1915–1932 (2022)

33. Oldenburg, L., Juarez, M., Rúa, E.A., Diaz, C.: Mixmatch: Flow matching for
mixnet traffic. Proceedings on Privacy Enhancing Technologies 2024(2), 276–294
(2024)

34. Overlier, L., Syverson, P.: Locating hidden servers. In: Proceedings of the IEEE
Symposium on Security and Privacy (2006)

35. p4language Consortium: P4 Behavioral Model,
https://github.com/p4lang/behavioral-model, accessed: 2025-04-16

36. Palmieri, F.: A distributed flow correlation attack to anonymizing overlay
networks based on wavelet multi-resolution analysis. IEEE Transactions on
Dependable and Secure Computing 18(5), 2271–2284 (2019)

37. Panda, A., Han, S., Jang, K., Walls, M., Ratnasamy, S., Shenker, S.: Netbricks:
Taking the V out of {NFV}. In: Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation. pp. 203–216 (2016)

38. Rimmer, V., Schnitzler, T., Van Goethem, T., Rodríguez Romero, A., Joosen,
W., Kohls, K.: Trace oddity: Methodologies for data-driven traffic analysis on tor.
Proceedings on Privacy Enhancing Technologies 2022(3), 314–335 (2022)

39. Shen, M., Ji, K., Gao, Z., Li, Q., Zhu, L., Xu, K.: Subverting website
fingerprinting defenses with robust traffic representation. In: Proceedings of the
32nd USENIX Security Symposium. pp. 607–624 (2023)

40. Sonchack, J., Michel, O., Aviv, A., Keller, E., Smith, J.: Scaling hardware
accelerated network monitoring to concurrent and dynamic queries with *flow.
In: Proceedings of the USENIX Annual Technical Conference. pp. 823–835 (2018)

41. Staniford-Chen, S., Heberlein, L.: Holding intruders accountable on the internet.
In: Proceedings of the IEEE Symposium on Security and Privacy. pp. 39–49
(1995)

42. Wagner, E., Matzutt, R., Henze, M.: Seldom: An anonymity network with
selective deanonymization. arXiv preprint arXiv:2412.00990 (2024)

43. Wang, X., Reeves, D.S., Wu, S.F.: Inter-packet delay based correlation for tracing
encrypted connections through stepping stones. In: Proceedings of the 7th
European Symposium on Research in Computer Security. pp. 244–263 (2002)

44. Wu, J., Pan, H., Cui, P., Huang, Y., Zhou, J., He, P., Li, Y., Li, Z., Xie, G.:
Patronum: In-network volumetric ddos detection and mitigation with
programmable switches. In: Proceedings of the 29th European Symposium on
Research in Computer Security. pp. 187–207 (2024)

45. Xavier, B.M., Guimarães, R.S., Comarela, G., Martinello, M.: Programmable
switches for in-networking classification. In: Proceedings of the IEEE Conference
on Computer Communications. p. 1–10 (2021)

46. Xie, G., Li, Q., Dong, Y., Duan, G., Jiang, Y., Duan, J.: Mousika: Enable general
in-network intelligence in programmable switches by knowledge distillation. In:
Proceedings of the IEEE Conference on Computer Communications. pp.
1938–1947 (2022)

47. Xing, J., Kang, Q., Chen, A.: Netwarden: Mitigating network covert channels
while preserving performance. In: Proceedings of the 29th USENIX Security
Symposium (2020)

48. Yan, J., Xu, H., Liu, Z., Li, Q., Xu, K., Xu, M., Wu, J.: Brain-on-Switch:
Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic

https://github.com/p4lang/behavioral-model

20 G. Singh et al.

Analysis at Line-Speed. In: Proceedings of the 21st USENIX Symposium on
Networked Systems Design and Implementation. pp. 419–440 (2024)

49. Yoda, K., Etoh, H.: Finding a connection chain for tracing intruders. In:
Proceedings of the 6th European Symposium on Research in Computer Security.
pp. 191–205 (2000)

50. Yu, M.: Network telemetry: towards a top-down approach. ACM SIGCOMM
Computer Communication Review 49(1), 11–17 (2019)

51. Zhang, M., Li, G., Guo, C., Yang, R., Wang, S., Bao, H., Li, X., Xu, M., Wo, T.,
Hu, C.: Superfe: A scalable and flexible feature extractor for ml-based traffic
analysis applications. In: Proceedings of the Twentieth European Conference on
Computer Systems. p. 818–834 (2025)

52. Zhang, Y., Paxson, V.: Detecting stepping stones. In: Proceedings of the
USENIX Security Symposium. vol. 171, p. 184 (2000)

53. Zheng, C., Hong, X., Ding, D., Vargaftik, S., Ben-Itzhak, Y., Zilberman, N.:
In-network machine learning using programmable network devices: A survey.
IEEE Communications Surveys & Tutorials 26(2), 1171–1200 (2023)

54. Zhou, G., Liu, Z., Fu, C., Li, Q., Xu, K.: An efficient design of intelligent network
data plane. In: Proceedings of the 32nd USENIX Security Symposium. pp.
6203–6220 (2023)

55. Zhou, H., Gu, G.: Cerberus: Enabling efficient and effective in-network
monitoring on programmable switches. In: Proceedigns of the IEEE Symposium
on Security and Privacy. pp. 4424–4439 (2024)

56. Zhu, Y., Fu, X., Graham, B., Bettati, R., Zhao, W.: Correlation-based traffic
analysis attacks on anonymity networks. IEEE Transactions on Parallel and
Distributed Systems 21(7), 954–967 (2009)

A Appendix

A.1 Correlation Effectiveness across Multiple Datasets

Figures 7–11 show RevealNet’s correlation effectiveness on additional datasets
from Fu et al. [15], exhibiting similar trends to those observed in §5.

0.00

0.25

0.50

0.75

1.00

TP
R

Coskun et al.
Binary Sketch

Coskun et al.
Integer Sketch

Nasr et al.
Sketch

TAM Vector
(cosine)

TAM Vector
(hamming)

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

FP
R

Bins 0.1s
Bins 0.5s

Bins 1s
W/o Heuristics

W/ Heuristics

Fig. 7: adload

0.00

0.25

0.50

0.75

1.00

TP
R

Coskun et al.
Binary Sketch

Coskun et al.
Integer Sketch

Nasr et al.
Sketch

TAM Vector
(cosine)

TAM Vector
(hamming)

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

FP
R

Bins 0.1s
Bins 0.5s

Bins 1s
W/o Heuristics

W/ Heuristics

Fig. 8: dridex

0.00

0.25

0.50

0.75

1.00

TP
R

Coskun et al.
Binary Sketch

Coskun et al.
Integer Sketch

Nasr et al.
Sketch

TAM Vector
(cosine)

TAM Vector
(hamming)

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

FP
R

Bins 0.1s
Bins 0.5s

Bins 1s
W/o Heuristics

W/ Heuristics

Fig. 9: oracle

0.00

0.25

0.50

0.75

1.00

TP
R

Coskun et al.
Binary Sketch

Coskun et al.
Integer Sketch

Nasr et al.
Sketch

TAM Vector
(cosine)

TAM Vector
(hamming)

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

FP
R

Bins 0.1s
Bins 0.5s

Bins 1s
W/o Heuristics

W/ Heuristics

Fig. 10: penetho

0.00

0.25

0.50

0.75

1.00

TP
R

Coskun et al.
Binary Sketch

Coskun et al.
Integer Sketch

Nasr et al.
Sketch

TAM Vector
(cosine)

TAM Vector
(hamming)

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

FP
R

Bins 0.1s
Bins 0.5s

Bins 1s
W/o Heuristics

W/ Heuristics

Fig. 11: snojan

	RevealNet: Distributed Traffic Correlation for Attack Attribution on Programmable Networks

