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Abstract

These notes describe an adaptation of the multivariate sumcheck protocol to

univariate polynomials interpolated over roots of unity.
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1 Introduction

Modern proof systems like SNARKs first encode the to-be-proven computations using

polynomials over finite fields and then use algebraic techniques to prove statements

about such polynomials. In this context, these notes present information-theoretic in-

teractive reduction protocols from generalized univariate dot products
∑

i g( f1(i), . . . ,
fq(i)) to univariate evaluations f1(r), . . . , fq(r). For the most part, we recover results

from Gemini [3] which contains a 2-phase protocol for the same task. Like Gemini’s

first phase, our first protocol reduces univariate claims to multilinear evaluations. How-

ever, we use the Lagrange basis throughout and avoid monomial-to-Lagrange basis

conversions. Similarly to Gemini’s second phase, our second protocol reduces multi-

linear evaluation to univariate evaluation. Interestingly, our second protocol only takes
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a single round of interaction. Further, both protocols follow from the same generic tem-

plate which uses an adaptation of the multivariate sumcheck protocol that “directly”

applies to univariates.

It is intended for this article’s full version to describe further implications and ex-

tensions of our approach.

2 Preliminaries

2.1 Notations

[a] denotes the set of intergers {1, . . . ,a}. [a,b] denotes the set of integers {a, . . . ,b}. F

denotes a finite field. H =
{

wi | i ∈ [0,2m − 1]
}

denotes the multiplicative subgroup of

2mth roots of unity in F, with w being the primitive element.

If p is a univariate polynomial in x, then deg(p) denotes the degree of p and p[i]
denotes the coefficient before xi. If p is a multivariate polynomial in x1, . . . ,xm, then

deg j(p) denotes the degree of p in x j and p[i] denotes the coefficient before x
i1
1 . . .xim

m .

Here, i is the unique integer with (mixed-radix) digit representation (i1, . . . , im) for

radices deg1(p)+1, . . . ,degm(p)+1—the least significant digit being i1. mlin denotes

the (inverse) Kronecker substitution that re-interprets f ∈ F[x] of degree at most 2m −
1 as the multilinear polynomial with the same coefficient vector, that is, mlin( f ) =
∑

i1,...,im∈{0,1} f [i]xi1
1 · · ·xim

m . f %p denotes the remainder of f modulo p.

2.2 Polynomial Interactive Oracle Proofs and Reductions

In brief, polynomial interactive oracle proofs (PIOPs) are two-party protocols between

a prover and a verifier which are defined for a given NP relation and a mathematical

field with a polynomial ring. The prover’s input is an instance-witness pair of the NP

relation, while the verifier starts only with the instance and must output a bit. We think

of the prover as making the claim that there exists a valid witness for the given in-

stance. The messages sent between prover and verifier are field elements or so-called

polynomial oracles, idealized objects which provide black-box query access to poly-

nomial functions. The core proerties of a PIOP are completeness and soundness. By

completeness, a prover with a valid instance-witness pair in its input causes the verifier

to output 1. By soundness, no algorithm without a valid instance-witness pair in its

input is able to play the prover’s role in the protocol and cause the verifier to output 1

except with negligible probability.

Related to the notion of a PIOP is that of a reduction, by which we mean a protocol

where the verifier outputs an instance of another NP relation and the prover outputs an

instance-witness pair. Here, completeness means that a valid first instance-witness pair

leads to a valid second instance-witness pair, while soundness means that if the first

instance has no valid witness, neither will the second. Further background and formal

definitions related to PIOPs and reductions may be found in [7].

The multivariate sumcheck protocol. We describe this article’s main PIOP of con-

cern, the multivariate sumcheck protocol. While its history dates back to [9], our fram-
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ing as a (reduction-based) PIOP is influenced by recent works like [4, 7]. The protocol

uses the following reduction, where P is an m-variate polynomial (for which the verifier

already has an oracle), s is a field element and H1, . . . ,Hm are sets:

Claim:
∑

i1∈H1,...,im∈Hm
P(i1, . . . , im) = s.

• The prover sends p1(y) =
∑

i2∈H2,...,im∈Hm
P(y, i2, . . . , im), either explic-

itly or as an oracle.

• The verifier checks that
∑

i1∈H1
p1(i1) = s.

• The verifier sends r1, chosen at random.

• Both prover and verifier set s′ = p1(r1).

New claim:
∑

i2∈H2,...,im∈Hm
P(r1, i2, . . . , im) = s′.

The idea of the sumcheck protocol is to handle the new claim with a recursive

invocation of the reduction. After m rounds, the claim will have been reduced to P(r1,
. . . ,rm) = s′. This claim is then checked with a single query to the P oracle. In such

a recursive execution, we will denote the verifier’s randomness from the jth recursive

call as r j and we write the round polynomial as p j. In full, this means

p j(y) =
∑

i j+1∈H j+1,...,im∈Hm

P(r1, . . . ,r j−1,y, i j+1, . . . , im).

3 Univariate Sumcheck Protocols

This section first describes an inefficient generic univariate sumcheck reduction, fol-

lowed by efficient specialized variants. One variant avoids intermediary oracles, how-

ever, turning the outcome of the reduction into a multilinear evaluation claim. Another

variant restricts the protocol to multilinear evaluations and uses intermediary oracles.

3.1 Inefficient Generic Protocol

The starting idea for the new univariate protocol is to use the multivariate sumcheck

protocol on suitably defined multivariate polynomials such that (1) the sum of the mul-

tivariates’ values is the same as the univariates’ and (2) the multivariates can be evalu-

ated via the given univariate oracles. There is a straightforward way to guarantee these

properties. We start with a polynomial function ϕ from F
m to F such that the restric-

tion of ϕ to some domain H ′ is a bijective map to H. Any such ϕ naturally induces

a ring homomorphism Φ between the quotient ring F[x]/I(H) and the quotient ring

F[x1, . . . ,xm]/I(H ′) where I(H) and I(H ′) denote the ideals of H and H ′. Specifically,

Φ : F[x]→ F[x1, . . . ,xm], f 7→ Φ( f ) = f (ϕ(x1, . . . ,xm))
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where, firstly, Φ( f ) is a polynomial in F[x1, . . . ,xm] because ϕ is a polynomial

function. Secondly, due to ϕ being a bijection between H and H ′, the evaluations

of any product polynomial Φ( f )Φ(g) on H ′ are the same as the evaluations of f g

on H. This is how Φ is a ring homomorphism between the quotient rings. As far

as we can tell, the simplest ϕ and H ′ that fit this description are the product map

ϕ : (x1, . . . ,xm) 7→
∏

j∈[m] x j and the domain H ′ = {1,w}×
{

1,w2
}

×·· ·×
{

1,w2m−1
}

.

Clearly, ϕ is a polynomial, which also means that evaluating Φ( f ) is easy given oracle

access to f . Clearly, ϕ is bijective since every wi ∈ H can be uniquely mapped to a bit

string (i1, . . . , im), the bit decomposition of i, and every such bit string can be mapped to

a unique element of H ′. The resulting univariate sumcheck protocol is certainly sound

(by construction as a special case of the multivariate sumcheck protocol) and the final

claim can certainly be answered by queries to univariate oracles.

Still, the actual usefulness of ϕ and H ′ for constructing an efficient univariate sum-

check protocol is not obvious. To see the potential issues, let us define the univariate

polynomial under the sum as P(x) = g( f1(x), . . . , fq(x)) where each fi has degree at

most 2m − 1 and g is a polynomial function with total degree at most d. Consider the

round polynomials p1, . . . , pm in an execution of the multivariate sumcheck protocol on

Φ(P) over the domain H ′. Clearly, Φ(P) having high degree in every variable means

that every round polynomial will have high degree, too. But this, in turn, means that

trying to send the round polynomials explicitly would blow up the protocol’s com-

munication complexity. Even when trying to send the round polynomials as oracles,

the prover must still at least internally compute an explicit description of them. But be-

cause their degree is high, this inherently appears to require at least deg j(P) = d ·2m−d

operations in every round j—impossible for an efficient (linear-time) prover.

To build an intuition for the possibilities opened up by Φ and H ′, let us first rewrite

the round polynomials p j, for j ∈ [m], as

p j(y) =
∑

i j+1∈{1,w2 j
},...,im∈{1,w2m−1

}

Φ(P)(r1, . . . ,r j−1,y, i j+1, . . . , im)

=
∑

i j+1∈{1,w2 j
},...,im∈{1,w2m−1

}

P(ϕ(r1, . . . ,r j−1,y, i j+1, . . . , im))

=
∑

i j+1∈{1,w2 j
},...,im∈{1,w2m−1

}

P(r1 · · ·r j−1yi j+1 · · · im).

Using the bit-wise association of elements of H ′ to elements of H, we may further

rewrite p j as

p j(y) =
∑

i j+1∈{0,1},...,im∈{0,1}

P
(

r1 · · ·r j−1yw2 j(i j+1+···+2m− j−1im)
)

=
∑

i∈[0,2m− j−1]

P
(

r1 · · ·r j−1yw2 j i
)

.

We next observe that one of the round polynomials can be efficiently represented.
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Proposition 1. The first round polynomial can be represented as

p1(y) = p′1

(

y2m−1
)

where p′1 has degree at most 2d− 1.

Proof. We start by making a general statement about sums of polynomials over arbi-

trary cosets. A special case of the following fact has previously already appeared as an

important lemma in [2, 8]. For any a ∈ F, p ∈ F[x],

∑

i∈[0,2m−1]

p(awi) =
∑

i∈[0,2m−1]

∑

k∈[0,deg(p)]

p[k]akwik

=
∑

k∈[0,deg(p)]

p[k]ak
∑

i∈[0,2m−1]

wik

=
∑

k∈[0,deg(p)] :k=0 (mod 2m)

p[k]ak ·2m

where the last equality used that, generally,
∑

i wib is zero except if wib = 1 for all i in

which case the sum is the size of the domain. Now consider replacing w with w2 and m

with m−1, which is valid because w2 generates the subgroup of 2m−1th roots of unity.

Then additionally substituting p = P and replacing the fixed value a with a new formal

indeterminate y yields the statement that the expression

∑

i∈[0,2m−1−1]

P
(

yw2i
)

(which is the expression for p1(y) derived in the main text above) is, in fact, a sparse

polynomial in y with non-zero coefficients only at the 2m−1th powers of y. Since P has

degree at most d · (2m − 1)< 2d · 2m−1, this is equivalent to what we needed to show.

This completes the proof of Proposition 1.

It can also be seen from the proof of Proposition 1 that further round polynomials,

unlike p1 cannot be efficiently represented in the same way. They consist of denser

and denser subsets of P’s coefficients, scaled by the randomizers r1, . . . ,rm, to the point

where

• pm−1 contains all even coefficients of P, scaled by powers of r1 · · · rm−2, and

• pm(y) is the same as P(r1 · · ·rm−1y).

It is known that the even part of P can be evaluated with just two queries to f1, . . . , fq—

and pm can clearly be evaluated with just a single query to f1, . . . , fq. However, there

does not seem to be an easy way to evaluate the round polynomials in the middle

rounds.
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3.2 Univariate Sumcheck to Multilinear Evaluation

This section presents a straightforward modification of the previous section’s approach

that allows for efficient explicit representations of all round polynomials. The modifi-

cation comes from observing that the only reason why Proposition 1 does not apply to

every p j is the ratio of P’s degree to the jth summation domain. That is, the summation

domains become smaller in each round while P’s degree remains the same. But con-

sider simply replacing the sum over P with a sum over a lower-degree polynomial that

agrees with P on that domain. Clearly, the sums will be equal. Agreement over a cer-

tain domain can be expressed as taking a polynomial’s remainder modulo the domain’s

vanishing polynomial. Specifically,

∑

i∈[0,2m−1]

P
(

r1w2i
)

=
∑

i∈[0,2m−1]

(

P%
(

x2m−1
− r2m−1

1

))

(

r1w2i
)

.

More generally, any polynomial with the same remainder may safely be substituted for

P. This is helpful when, like usual, P is given as P = g( f1, . . . , fq) because each fi

may be reduced individually. We immediately obtain the following protocol in which

remainders are taken after each round in order to rewrite the reduced claim.

Claim:
∑

i∈[0,2m−1] (g( f1, . . . , fq))
(

wi
)

= s.

• The prover sends p1(y) =
∑

i∈[0,2m−1] (g( f1, . . . , fq))
(

yw2i
)

explicitly

(Proposition 1).

• The verifier checks that p1(1)+ p1(w) = s.

• The verifier sends r1, chosen at random.

• Both prover and verifier set s′ = p1(r1).

New claim:

∑

i∈[0,2m−1−1]

(

g

(

f1%
(

x2m−1

− r2m−1

1

)

, . . . , fq%
(

x2m−1

− r2m−1

1

)))

(

r1w2i
)

= s′.

The above protocol is an exact analogue of the multivariate sumcheck protocol

in the sense that the multivariate protocol’s core step of replacing P(x1, . . . ,xm) with

P(r1,x2, . . . ,xm) can also be seen as passing to the equivalence class modulo x1 − r1.

Under the appropriate Kronecker substitution, this would indeed be the same as taking

remainders modulo x2m−1
− r2m−1

1 .

Next, note that in the subsequent recursive round, after the verifier sends random-

ness, say r2, we arrive at a sum over the set of all r1r2w4i. This means that repeating

the modulo reduction approach leads to a claim about remainder polynomials

(

fi%
(

x2m−1

− r2m−1

1

))

%
(

x2m−2

− (r1r2)
2m−2

)

.
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Continuing this way, the final claim eventually contains

(

· · · fi%
(

x2m−1

− r2m−1

1

)

· · ·
)

%(x− r1 · · · rm) .

But taking m such remainders of a polynomial of degree 2m − 1 is, in fact, a kind of

multilinear evaluation. Namely, when denoting as mlin( fi) the multilinear polynomial

with the same coefficient vector as fi, the final claim is exactly

g
(

mlin( f1)
(

r1 · · · rm, . . . ,r
2m−1

1

)

, . . . ,mlin( fq)
(

r1 · · · rm, . . . ,r
2m−1

1

))

= s′.

This completes the description of our reduction from univariate sumcheck to mul-

tilinear evaluation.

Remark (Prover algorithm). It is intended for later versions of this article to describe

in detail a linear-time prover algorithm that computes explicit representations of the

round polynomials p j, or rather of the low-degree polynomials p′j. We sketch the main

idea. The prover would represent each p′j by its evaluations on a fixed set of points

a2m− j

1 , . . . ,a2m− j

2d . The values on these points could, by Proposition 1, be computed as

sums over the ak-cosets of the 2m− jth roots of unity w2 j i. It is not hard to see that such

sums over the ak-cosets would be the same as sums over the roots of unity themselves,

that is, over the 1-coset, for the polynomials fi%
(

x2m− j
− a2m− j

k

)

. This fact, and the

need to anyway obtain the values of remainders modulo x2m− j−1
−(r1 · · · r j+1)

2m− j−1
be-

fore starting the next round, means the prover algorithm really only requires a method

to compute values of remainders. But here, we could re-use the linear-time multivariate

sumcheck prover algorithm almost as-is. As hinted at above, when viewed under an

appropriate Kronecker substitution, that algorithm already does nothing but compute

values of remainders.

3.3 Multilinear Evaluation to Univariate Evaluation

This section shows that, when applying the generic protocol from Section 3.1 to mul-

tilinear evaluation claims, a variant of Proposition 1 allows for efficiently computable

oracle representations of all round polynomials. First, let us write the multilinear eval-

uation statement of concern, say, mlin( f )(z1, . . . ,zm) = s, as a univariate sumcheck.

This is possible because there exists a polynomial kernel function K(x,x1, . . . ,xm) of

degree 2m − 1 in x and degree 1 in x1, . . . ,xm such that

mlin( f )(z1, . . . ,zm) =
∑

i∈[0,2m−1]

f
(

wi
)

K
(

wi,z1, . . . ,zm

)

. (1)

To derive an expression for K, recall that mlin( f ) has the same monomial coefficients

as f . This implies that mlin( f ) takes the value f
(

w j
)

at
(

w j,w2 j , . . . ,w2m−1 j
)

. But

this, in turn, means that K must be such that, for all i, j ∈ [0,2m −1], K
(

wi,x1, . . . ,xm

)

is multilinear in (x1, . . . ,xm) and that K
(

wi,w j , . . . ,w2m−1 j
)

is 1 if i = j and 0 if i 6= j.
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These properties are uniquely met by

K
(

wi,x1, . . . ,xm

)

= 2−m
∏

ℓ∈[m]

(

w−2ℓ−1ixℓ+ 1
)

= 2−m
∑

ℓ1,...,ℓm∈{0,1}

(

w−ix1

)ℓ1 · · ·
(

w−2m−1ixm

)ℓm

= 2−m
∑

ℓ∈[0,2m−1]

w−iℓx
ℓ1
1 · · ·xℓm

m

where, in each term of the last sum, ℓ1, . . . , ℓm are the bits of ℓ, ℓ1 being the least sig-

nificant bit. The just derived coefficient representation of K
(

wi, · · ·
)

makes it possible

to write down the general formula:

K(x,x1, . . . ,xm) = 2−m



1+
∑

ℓ∈[2m−1]

x2m−ℓx
ℓ1
1 · · ·xℓm

m





= 2−m



1− x2m

+
∑

ℓ∈[0,2m−1]

x2m−ℓx
ℓ1
1 · · ·xℓm

m





= 2−m



1− x2m

+ x2m ∑

ℓ∈[0,2m−1]

(

x−1x1

)ℓ1 · · ·
(

x−2m−1

xm

)ℓm





= 2−m



1− x2m

+ x2m ∏

ℓ∈[m]

(

x−2ℓ−1

xℓ+ 1
)



 .

Here, we have already rewritten K in a convenient product form. This product structure

is precisely what the univariate sumcheck protocol can take advantage of as per the

following proposition.

Proposition 2. When applying the generic univariate sumcheck protocol from Sec-

tion 3.1 to the right-hand side of Equation (1), each round polynomial can be repre-

sented as

p j(y) = 2−m





(

1− (r1 · · · r j−1y)2m
)

p′j

(

(r1 · · ·r j−1y)2m− j
)

+(r1 · · · r j−1y)2m





∏

ℓ∈[m− j+1,m]

(

(r1 · · · r j−1y)−2ℓ−1
zℓ+ 1

)



 p′′j

(

(r1 · · · r j−1)y
2m− j

)





where deg(p′j),deg(p′′j )≤ 2 j − 1.

Proof. We start by substituting the product form of K in the expression for the round
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polynomials and rearranging:

p j(y) =
∑

i∈[0,2m− j−1]

f
(

r1 · · ·r j−1yw2 j i
)

K
(

r1 · · ·r j−1yw2 j i,z1, . . . ,zm

)

= 2−m





(

1− (r1 · · · r j−1y)2m
)

∑

i∈[0,2m− j−1]

f
(

r1 · · ·r j−1yw2 j i
)

+(r1 · · · r j−1y)2m ∑

i∈[0,2m− j−1]

f
(

r1 · · · r j−1yw2 j i
)

∏

ℓ∈[m]

(

(

r1 · · · r j−1yw2 j i
)−2ℓ−1

zℓ+ 1

)



 .

Note how the last terms in the product over ℓ are independent of i as
(

w2 j i
)−2ℓ−1

is 1

for ℓ≥ m− j+ 1. If we define

q′j(y) =
∑

i∈[0,2m− j−1]

f
(

r1 · · · r j−1yw2 j i
)

q′′j (y) =
∑

i∈[0,2m− j−1]

f
(

r1 · · · r j−1yw2 j i
)

∏

ℓ∈[m− j]

(

(

r1 · · ·r j−1yw2 j i
)−2ℓ−1

zℓ+ 1

)

,

this already means that

p j(y) = 2−m





(

1− (r1 · · · r j−1y)2m
)

q′j(y)

+(r1 · · · r j−1y)2m





∏

ℓ∈[m− j+1,m]

(

(

r1 · · · r j−1y
)−2ℓ−1

zℓ+ 1
)



q′′j (y)



 .

So, it remains to show that

q′j(y) = p′j

(

(r1 · · · r j−1y)2m− j
)

q′′j (y) = p′′j

(

(r1 · · · r j−1y)2m− j
)

for polynomials p′j and p′′j with the degrees stated in the proposition. Here, we may

follow similar steps as for Proposition 1. In particular, we have

q′j(y) =
∑

k∈[0,2m−1]

f [k](r1 · · ·r j−1y)k
∑

i∈[0,2m− j−1]

w2 j ik

=
∑

k∈[0,2m−1] : k=0 (mod 2m− j)

f [k](r1 · · ·r j−1y)k ·2m− j
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which is a linear combination of at most 2 j powers of (r1 · · · r j−y)2m− j
as desired. For

q′′j , on the other hand, we have

q′′j (y) =
∑

i∈[0,2m− j−1]

f

(

r1 · · · r j−1yw2 j i
)

∑

ℓ∈[0,2m− j−1]

(

r1 · · · r j−1yw2 j i
)−ℓ

z
ℓ1
1 · · · z

ℓm− j

m− j

=
∑

k∈[0,2m−1],ℓ∈[0,2m− j−1]

f [k](r1 · · · r j−1y)k−ℓz
ℓ1
1 · · · z

ℓm− j

m− j

∑

i∈[0,2m− j−1]

w2 j i(k−ℓ)

=
∑

k∈[0,2m−1],ℓ∈[0,2m− j−1] : k−ℓ=0 (mod 2m− j)

f [k](r1 · · · r j−1y)k−ℓz
ℓ1
1 · · ·z

ℓm− j

m− j ·2
m− j.

Again, we have at most 2 j terms in (r1 · · · r j−1y)2m− j
as desired. This completes the

proof of Proposition 2.

Proposition 2 suggests a protocol where the prover does not send oracles to the

round polynomials p j directly but instead sends oracles to p′j and p′′j . The verifier is

clearly able to evaluate p j at any point r by querying p′j and p′′j at (r1 · · · r j−1r)2m− j
and

then performing O(m) operations to assemble the result. In other words, the protocol

works with virtual oracles to the round polynomials.

Prover algorithm. Let us now assume that instantiating oracles requires the prover to

internally compute explicit representations of p′j and p′′j in the form of 2 j evaluations.

We proceed to describe a linear-time algorithm to compute the evaluations at all points

w2m− jk for k ∈ [0,2 j−1]. Interestingly, the algorithm will be entirely independent of the

verifier’s randomness. This means the prover can pre-compute all protocol messages

before any verifier interaction, resulting in a single-round protocol. The idea of the

linear-time algorithm is to perform the computations for the last round j = m first and

for the first round j = 1 last. It will be ensured that the work that was already performed

for round j+ 1 can be re-used for round j and only half of the amount of work needs

to be performed in addition.

We start by writing out the following two expressions for p′j and p′′j that both come

from the proof of Proposition 2:

p′j

(

x2m− j
)

=
∑

i∈[0,2m−1] : i=0 (mod 2m− j)

2m− j f [i]xi

p′′j

(

x2m− j
)

=
∑

i∈[0,2m− j−1]

f
(

xw2 j i
)

∏

ℓ∈[m− j]

(

(

xw2 j i
)−2ℓ−1

zℓ+ 1

)

.

Notice that p′j is, in fact, the (m− j)-fold even part of f . That is, p′m has exactly

the values of f , pm−1 has the values of the even part of f and so on. But it is well-

known that the values of any polynomial’s even part can be computed from values of

the polynomial itself. Thus, explicit representations of all p′j are obtainable in linear

10



time via repeated application of the formula

p′j

(

w2m− jk
)

= 2−1
(

p′j+1

(

w2m− j−1k
)

+ p′j+1

(

−w2m− j−1k
))

.

It remains to discuss p′′j . In round j = m, it is clear that p′′m also has the same values

as f on all wk,k ∈ [0,2m −1]. For j = m−1, . . . ,1, the goal is to compute the values of

p′′j based on p′′j+1. We rearrange as follows:

p′′j

(

w2m− jk
)

=
∑

i∈[0,2m− j−1]

f
(

wk+2 j i
)

∏

ℓ∈[m− j]

(

(

wk+2 j i
)−2ℓ−1

zℓ+ 1

)

=
∑

i∈[0,2m− j−1]

f

(

wk+2 j i
)





∏

ℓ∈[m− j−1]

(

(

wk+2 j i
)−2ℓ−1

zℓ+ 1

)





(

(

wk+2 j i
)−2m− j−1

zm− j + 1

)

=
∑

i∈[0,2m− j−1]

f

(

wk+2 j i
)





∏

ℓ∈[m− j−1]

(

(

wk+2 j i
)−2ℓ−1

zℓ+ 1

)





(

(−1)iw−2m− j−1kzm− j + 1
)

where the second equation separated out the last term of the product over ℓ and the

last equation used that w−2m−1
=−1. We continue by separating the even terms of the

sum, where i has the form 2i′, and the odd terms, where i has the form 2i′ + 1. This

way, (−1)i can be replaced by ±1 in the above expression, which quickly leads to the

desired recursive formula:

p′′j

(

w2m− jk
)

=
∑

i∈[0,2m− j−1−1]

f
(

wk+2 j+1i
)





∏

ℓ∈[m− j−1]

(

(

wk+2 j+1i
)−2ℓ−1

zℓ+ 1

)





(

w−2m− j−1kzm− j + 1
)

+
∑

i∈[0,2m− j−1−1]

f
(

wk+2 j+1i+2 j
)





∏

ℓ∈[m− j−1]

(

(

wk+2 j+1i+2 j
)−2ℓ−1

zℓ+ 1

)





(

−w−2m− j−1kzm− j + 1
)

= p′′j+1

(

(

wk
)2m− j−1

)(

(

wk
)−2m− j−1

zm− j + 1

)

+ p′′j+1

(

(

wk+2 j
)2m− j−1

)(

(

wk+2 j
)−2m− j−1

zm− j + 1

)

= p′′j+1

(

w2m− j−1k
)(

w−2m− j−1kzm− j + 1
)

+ p′′j+1

(

−w2m− j−1k
)(

−w−2m− j−1kzm− j + 1
)

.
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Overall, the prover is able to compute and send (virtual) oracles for all round poly-

nomials with only O(2m) effort. With the prover’s computations being independent

of any verifier interaction, we furthermore have a single-round protocol. That is, the

prover starts by using the linear-time algorithm described above and directly sends or-

acles to all p′j and p′′j . Only then does the verifier choose random points r1, . . . ,rm and

query the oracles at the required points to verify the sumcheck protocol transcript.

4 Variations and Extensions

It is intended for this article’s full version to include further variants of the generic and

specialized protocols. For example, we would like to discuss alternative choices of

H ′ or ϕ (which might allow for reduced communication complexity etc.). As another

example, we also plan to describe a tweak to the multilinear evaluation protocol that

would apply to multilinear extensions (by replacing the function K with another).

5 Related Work

It is intended for this article’s full version to compare the protocols presented here with

the explicit or implicit PIOPs from works like [1, 3, 8, 5, 11] (for sumcheck) and [3, 6,

10, 12] (for multilinear evaluation).
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