
ar
X

iv
:2

50
5.

00
46

5v
1 

 [
cs

.C
R

] 
 1

 M
ay

 2
02

5

HoneyWin: High-Interaction Windows Honeypot in Enterprise
Environment

Yan Lin Aung
∗

y.aung@derby.ac.uk

University of Derby

Derby, United Kingdom

Yee Loon Khoo

Davis Yang Zheng
†

Bryan Swee Duo
†

Singapore Institute of Technology

Singapore

Sudipta Chattopadhyay

Jianying Zhou

Singapore University of Technology and Design

Singapore

Liming Lu

Weihan Goh

Singapore Institute of Technology

Singapore

ABSTRACT
Windows operating systems (OS) are ubiquitous in enterprise Infor-

mation Technology (IT) and operational technology (OT) environ-

ments. Due to their widespread adoption and known vulnerabilities,

they are often the primary targets of malware and ransomware

attacks. With 93% of the ransomware targetingWindows-based sys-

tems, there is an urgent need for advanced defensive mechanisms

to detect, analyze, and mitigate threats effectively. In this paper, we

propose HoneyWin a high-interaction Windows honeypot that

mimics an enterprise IT environment. The HoneyWin consists of

three Windows 11 endpoints and an enterprise-grade gateway pro-

visioned with comprehensive network traffic capturing, host-based

logging, deceptive tokens, endpoint security and real-time alerts

capabilities. TheHoneyWin has been deployed live in the wild for

34 days and receives more than 5.79 million unsolicited connections,

1.24 million login attempts, 5 and 354 successful logins via remote

desktop protocol (RDP) and secure shell (SSH) respectively. The

adversary interacted with the deceptive token in one of the RDP

sessions and exploited the public-facing endpoint to initiate the

Simple Mail Transfer Protocol (SMTP) brute-force bot attack via

SSH sessions. The adversary successfully harvested 1,250 SMTP

credentials after attempting 151,179 credentials during the attack.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems;Mal-
ware and its mitigation.

KEYWORDS
High-Interaction Windows Honeypot, Deception, Network Traffic

Analysis, Host Log Analysis, Attack Attribution

1 INTRODUCTION
Windows operating systems (OS) are extensively utilized in en-

terprise Information Technology (IT) and operational technology

(OT) environments, while their prevalence and roles differ across

these domains. In 2025, Windows OS maintains a dominant posi-

tion holding more than 70% of the global desktop OS market share,

∗
This work was done while the author was at iTrust, Singapore University of Technol-

ogy and Design.

†
Both authors contributed equally.

underscoring its widespread adoption in the enterprise IT environ-

ment [22]. Similarly, Windows Server OS takes up a substantial

market share of approximately 65% in 2022 [18]. On the other hand,

the use of Windows OS in OT environments, which encompass

industrial control systems (ICS) and critical infrastructure, is also

significant. Many OT systems, such as Supervisory Control and

Data Acquisition (SCADA) and Human-Machine Interface (HMI)

applications, run on Windows-based platforms. The reference ar-

chitecture developed by ATT&CK sets out Windows-based systems

that are used as application server, engineering workstation, tran-

sient cyber asset (TCA), safety engineering workstation, etc. in OT

environments [9]. Due to compatibility requirements with existing

industrial hardware and software, several OT environments con-

tinue to operate on legacy Windows systems, such as Windows XP

and Windows 7.

A recent incident with the CrowdStrike software update high-

lights a critical dependency on Windows-based systems. 8.5 million

devices are affected, causing widespread disruptions in multiple

industries worldwide [24]. Due to their widespread use and known

vulnerabilities, Windows systems are often the primary targets of

malware and ransomware attacks. In addition, Windows systems

in OT environments may not always be configured with stringent

security measures, potentially leading to unauthorized access and

system compromises [15]. Reliance on legacy Windows systems

in OT settings poses significant security challenges and requires

proactive measures to mitigate associated risks.

The rise in ransomware attacks over the past few years further

underscores the urgent need for advanced defensive mechanisms.

With 93% of the ransomware targets Windows-based systems, en-

terprises require robust countermeasures to detect, analyze, and

mitigate threats effectively [21]. Typically, honeypot systems are

deployed by enterprise security teams, IT departments, government

agencies, threat intelligence companies, cloud service providers,

security researchers, and academics as an effective cyber security

strategy for this purpose. They provide valuable threat intelligence,

improve defensive capabilities, and serve as an early warning sys-

tem against cyber threats. A variety of honeypot systems have

been proposed and developed. Notable implementations include

Cowrie [3], Glutton [4], OpenCanary [7], Conpot [2], T-Pot [10],

AIDE [5], ICSNet [19], SIPHON [12] etc. However, despite previous

work such as [16, 23], there has been very little state-of-the-art

https://arxiv.org/abs/2505.00465v1


research, HopLab in [20] for instance, on Windows-based honeypot

systems, which has created a significant research gap. On the other

hand, conventional security solutions focus primarily on detection

and response. However, a proactive approach involving deception

could significantly enhance an organization’s security posture [8].

The need for additional security layers that do not depend solely on

conventional endpoint protection solutions has never been more

apparent [13].

To address these concerns, this paper introduces HoneyWin a

high-interaction Windows honeypot that mimics an enterprise IT

environment. TheHoneyWin incorporates Windows 11 endpoints

and an enterprise-grade firewall provisioning with network traffic

capture, host-based event logging, deceptive tokens, endpoint se-

curity (EDR) and real-time intrusion detection alerts capabilities.

Based on our review of existing state-of-the-art works,HoneyWin
is a first-of-its-kind high-interaction Windows honeypot that has

been designed, implemented, validated and deployed live in the

wild.

HoneyWin offers the following contributions:

• A scalable high-interaction Windows honeypot de-
sign. The proposed HoneyWin system consists of three

Windows 11 endpoints and an enterprise-grade firewall.

However, HoneyWin was designed for scalability in the

first place to allow us to conveniently expand it in the fu-

ture. In particular, HoneyWin incorporates a lightweight

container-based approach to establish public-facing honey-

pot devices. Both incoming and outgoing network traffic

is captured separately with dedicated systems, not within

the honeypot devices. Host event logs are not stored within

the honeypot devices; instead, they are shipped directly to

avoid detection and tamper proofing.

• Holistic detection capability. The HoneyWin captures

both network traffic and host event logs. The honeypot

devices are equipped with a commercial state-of-the-art

endpoint security solution. By this means, HoneyWin ac-

commodates the correlation between network traffic and

host event logs and facilitates a holistic detection capability.

• Deceptive tokens implementation and deployment.
To mislead and deceive adversaries who gain access to the

honeypot devices, the HoneyWin implementation incor-

porates two types of deceptive tokens: (1) Spoofed Win-

dows commands – commonly used Windows discovery

commands that have been reconfigured to deceive attack-

ers into the realm of navigating a legitimate enterprise

network environment and (2) realistic bait files to further

enhance the deception.

Organization: The remainder of this paper is organized as follows.

Section 2 introduces HoneyWin beginning with a threat model

and various design considerations, followed by the implementation

of HoneyWin in an enterprise environment. Section 3 discusses

penetration testing and malware detection testing to validate the

implementation of HoneyWin. We provide experimental results

from live deployment of the HoneyWin system in the wild for

34 days, including an in-depth analysis on the attacks received.

Section 5 discusses the insights from the design and implementation

of the HoneyWin system and the experimental results. Finally,

we provide related work in Section 6 and conclude the paper in

Section 7.

2 HONEYWIN: HIGH INTERACTION
WINDOWS HONEYPOT IN AN ENTERPRISE
ENVIRONMENT

This section describes the proposedHoneyWin system. Firstly, we

present the threat model and considerations that have been taken

into account when designing the HoneyWin. Subsequently, we
provide details of the implementation of HoneyWin.

2.1 Threat Model
We assume that the attacker has access to the honeypot by scanning

the Internet or using a search engine such as Shodan
1
. Once the

honeypot is selected as the target, the attacker initiates a reconnais-

sance using port scan tools such as nmap2 and identifies the exposed
services (e.g., RDP port 3389). The attacker then probes each service

to obtain more information and attempts to authenticate with a

username and password. In this case, the attacker may brute-force

or use other possible means to have the correct credentials. Upon

gaining access, the attacker advances with the next phase of the

cyber kill chain. The honeypot is designed to log the attacker’s

interactions via network traffic and host event logs. In addition, the

honeypot is implemented with a real-time alerting mechanism to

report critical events, such as successful logins.

2.2 Design
This section discusses various considerations taken into account

when designing a Windows-based honeypot in an enterprise envi-

ronment.

High-Interaction Honeypot with Real Systems:We antici-

pate that the proposed honeypot setup includes real systems instead

of low-interaction implementation that emulated certain services

(e.g., Cowrie SSH/Telnet honeypot [3]). Having real systems as high-

interaction honeypots maximizes the attack surface and allows full

access to the underlying system. The setup features Windows 11

endpoints that are accessible directly on the Internet. Moreover,

the setup incorporates an enterprise-grade gateway/firewall with

Windows endpoints connected on the local area network (LAN),

while the wide area network (WAN) side of the gateway is exposed

on the Internet mimicking a typical enterprise environment.

Exposing Honeypots on the Internet: It is imperative that

Windows endpoints and the enterprise gateway require public

IP addresses to make them accessible on the Internet. Windows

endpoints and the gateway could be hosted with Infrastructure as a

Service (IaaS) or Virtual Private Server (VPS) which belong to cloud

service providers (e.g. AmazonWeb Services). Using Virtual Private

Network (VPN) service provides public IP addresses from servers

located in more diverse geolocations while the devices could remain

within the perimeter of our setup.

Network Traffic Collection and Host-based Event Logging:
To detect and analyze intrusions and threats received by devices in

our honeypot, it is essential to capture all incoming network traffic.

In addition, we must capture the outgoing network traffic initiated

1
https://www.shodan.io/

2
https://nmap.org/

2

https://www.shodan.io/
https://nmap.org/


from the devices, as these may be attempts by malicious actors to

establish network connections to command & control (C2) servers,

scanning and targeting other vulnerable devices elsewhere. Modern

operating systems (e.g., Windows, Linux) and security appliances

(e.g., Cisco, Fortinet) feature logging of events related to the system,

security, and applications. Host logs provide fine-grained visibility

into the activities that occur in each device, allowing better detec-

tion, investigation, and response that complements network traffic

analysis.

Incorporation of Deceptive Tokens: Deceptive tokens are

crucial to making the honeypot a realistic high-interaction envi-

ronment providing a high level of interactivity with the system

while preventing attackers from actually affecting the system and

network. The deceptive tokens in the form of windows built-in ex-

ecutables, would provide benefits such as being easily configurable,

consistent, and scalable across multiple honeypot deployments. The

spoofed windows commands reading from a common configura-

tion file that is easily replicable allow for quick deployment across

multiple honeypot devices. In addition, a modular design approach

allows partial modifications without affecting the entire configura-

tion and making updates seamless. To deceive the attackers, these

commands would be reconfigured so that they deceive the attackers

into believing that they are navigating a real corporate network

environment. In the event that an attacker gains access via remote

means, deceptive tokens ensure that the system presents mislead-

ing but realistic network and system information. By designing the

tokens in the form of built-in system commands, these modified ex-

ecutables generate and return false, yet plausible system responses,

reinforcing the illusion of a convincing corporate network. This ap-

proach enhances adversary engagement while allowing defenders

to gather valuable intelligence on the behavior of the attacker.

Real-time Intrusion Detection and Alerts: Having Windows

endpoints and the gateway accessible from anywhere implies a rich

attack surface. Moreover, there is a significant security risk once the

attacker compromises and takes control of the systems. To mitigate

such risk and take appropriate actions, the setup should implement

real-time intrusion detection (e.g., successful logins) and alerting

mechanism.

Network Traffic and Log Backup: Through the reconnais-

sance, the attacker gains access to the Windows endpoints and

gateway. Therefore, network traffic collection shall not take place

within the systems in the first place. Similarly, the host logs shall

not be kept within the systems; instead, they should be forwarded

and stored in a security-hardened system. Even in such a scenario,

it is still possible that either the collected network traffic or host

logs are compromised. To minimize the risk of losing such invalu-

able data, the set-up shall incorporate a backup system to store the

replica of captured data and logs. The backup system shall not have

an Internet connection and has access to the systems storing the

data and logs but not the other way around.

Cloning and Restoring Windows Systems: It is necessary to

save the system image before they are deployed live on the Internet

since it is likely that the systems get compromised over time and

may become out of control. Once sufficient data are captured to

attribute the attack tactics, techniques and procedures (TTPs), the

systems could be restored into their pre-deployment state. Depend-

ing on the attack vectors, certain adjustments to the system image

may be necessary before redeploying live on the Internet.

Log Management and Analysis Platform: To efficiently man-

age and analyze large volumes of log data, it is essential to incor-

porate a log management and analysis platform such as ELK
3
or

Splunk
4
into our setup. These platforms are capable of collecting,

parsing and storing large amounts of data, as well as searching,

filtering, analyzing, and visualizing the collected data.

Automation and Orchestration: It is expected that the hon-

eypot is deployed live around the clock. Hence, various design

considerations discussed above such as setting up of VPN connec-

tions, network traffic and host logs collection, intrusion detection

and alerts, etc. shall be automated. In addition, monitoring of the

status of the entire setup and orchestration of various components

independently are required.

2.3 Implementation
Taking into account the design considerations discussed in Sec-

tion 2.2, we envision and propose high-interaction Windows hon-

eypot system in an enterprise environment, namely HoneyWin.
Figure 1 shows the proposed implementation of HoneyWin. The
setup consists of three Windows 11 endpoints (E1, E2 and E3) and
an enterprise gateway (G1) as honeypots. The endpoint E3 and

the gateway G1 are directly accessible on the Internet, while the

endpoints E1 and E2 reside within the private network (i.e., the

‘Enterprise Network’ (EPN) in Figure 1). They are connected to the

gateway and have Internet connection via Network Address Trans-

lation (NAT) scheme. The incoming connection therefore must

bypass the gateway to access the E1 and E2 endpoints.

VPN Forwarding with Docker Container: To expose devices

on the Internet, we adopted a lightweight approach to establish

secure tunnels to VPN servers and acquire public IP addresses. In

particular, a customized docker container has been developed with

the functionalities to establish VPN tunnels to servers in specified

geolocations, set up port forwarding to the devices on the ‘Hon-

eypot Network’ and automatically capture the incoming network

traffic received on exposed public IP addresses. Typically, each de-

vice (i.e., E3 and G1) has a dedicated docker container. However,

it should be noted that our implementation allows multiple con-

tainers to forward the network traffic to the same device, thereby

increasing the geographic presence given a limited number of real

systems in case. The containers run inside the Workstation (U0).
To automate the number of containers and their names, public IP

addresses, open ports, and forwarding IP addresses to the devices

on the ‘Honeypot Network’ (HPN), a set of shell scripts and a CSV

file are used. To expose a specific device on the Internet, the user

first connects the device to the HPN, then updates the CSV file

with the necessary information, and uses the script to establish

end-to-end connectivity between the VPN server and the device.

With the aid of a shell script and also thanks to a docker container,

we could bring all containers or individual ones online or offline

3
https://www.elastic.co/elastic-stack

4
https://www.splunk.com/

3

https://www.elastic.co/elastic-stack
https://www.splunk.com/


SPAN Port

Enterprise Network 
(EPN)

Honeypot Network 
(HPN)

Enterprise Gateway 
(G1)

Switch (S1)

Switch (S2)
Workstation (U2)

Workstation (U0)

Workstation (U1)

E3

E2

E1
Sysmon

Sysmon

SysmonInternet

Elastic Defend Winlogbeat Fleet Elastic Agent Deceptive Tokens

Backup Network
(BKN)

Firewall & Router

Webhook

Figure 1: Windows-based Honeypots in Enterprise Environment

within seconds. In addition, the IP addresses of the exposed de-

vices are mapped to a registered domain to mimic an enterprise

environment.

Incoming and Outgoing Network Traffic Collection: As de-
scribed in the previous section, incoming network traffic to public-

facing devices is captured in each docker container. Once the at-

tacker is within the HPN or the EPN, outbound connections may

be initiated to contact C2 servers, scan and target other vulnera-

ble devices elsewhere since all devices on both networks have the

Internet connection. We use the SPAN port of the switch (S1) to
capture the outgoing network traffic and store the PCAPs in the

Workstation (U1).
Host Log Collection and Monitoring with ELK Stack:We

also collect host logs from the honeypot devices. For all Windows

endpoints, the SystemMonitor (Sysmon) is installed to monitor and

log system activity to the Windows event log. Sysmon
5
provides

detailed information on process creations, network connections,

and changes to file creation time. Sysmon runs as a protected pro-

cess and does not allow for a wide range of user-mode interactions.

However, Sysmon does not provide analysis of the events and does

not attempt to hide itself from attackers. As such, we rename the

Sysmon executable and the driver to hide it and add complexity to

adversaries attempting to identify security tools in use as a first line

of defense. For the enterprise gateway, we enable Syslog logging

via the administrator dashboard.

Instead of storing the host logs within the honeypot devices, we

have setup an ELK stack in Workstation (U1) for log management

and analysis. In this case, an Elastic Agent (EA) is installed in each

Windows-based system. For the gateway (G1), an intermediate sys-

tem is setup and the Elastic Agent is installed to collect and ship

5
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon

the Syslog to U1. The Elastic Agent6 provides a unified way to add

monitoring for logs, metrics, and other types of data to a host device.

To prevent the EA from being uninstalled without authorization,

agent tamper protection is also enabled in the EA policy. We have

also set up Fleet
7
in the ELK stack and installed the Fleet Server in

U1 to manage EAs and their policies. Elastic provides integrations,

which are prepackaged assets allowing users to collect, store, and

visualize data from various sources with ELK. Elastic Defend
8
is one

of the available integrations in ELK to detect, prevent, and respond

to cyber threats. We have installed Elastic Defend, Prebuilt Security

Detection Rules, Windows, and enterprise gateway logs integra-

tions with our setup. Prebuilt Security Detection Rules integration

stores the security rules to detect malware in the endpoints and

generate alerts. Windows integration is to receive the Sysmon logs

forwarded by the endpoint EA whereas enterprise gateway logs

integration is to receive the Syslog from the intermediate system

of the gateway, respectively.

Successful Login Alerts: Based on our threat model in Sec-

tion 2.1, the attacker attempts to log in to our honeypot devices

through the exposed services. In our setup, we have opened RDP (i.e.

Port 3389) and SSH (i.e. Port 22) for Windows endpoints, whereas

HTTPS (i.e. Port 443) is open for access to the administrator dash-

board of the enterprise gateway. The attacker who is able to success-

fully log in with correct credentials signifies a breach to our devices.

Hence, it is critical to provide real-time notifications of successful

login to any of our devices. To realize this capability, we have in-

stalled Winlogbeat in our Windows endpoints and configured it

to capture successful RDP and SSH login events, and forward the

6
https://www.elastic.co/elastic-agent

7
https://www.elastic.co/guide/en/fleet/current/fleet-overview.html

8
https://www.elastic.co/guide/en/integrations/current/endpoint.html

4

https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
https://www.elastic.co/elastic-agent
https://www.elastic.co/guide/en/fleet/current/fleet-overview.html
https://www.elastic.co/guide/en/integrations/current/endpoint.html


Table 1: Deceptive Tokens, Installation Paths and Hostnames

Deceptive Token Path Hostname

wmiutils.mof

C:\Windows\System32\wbem E1, E2, E3

ipconfig.exe
net.exe
netstat.exe
arp.exe
systeminfo.exe
Current-5G-Network-Infrastructure-PPP-in-
H2020_Final_November_2023.pdf

C:\Users\<E3>\Desktop
E3

5G_vendor_technology_list.xlsx
TDoc_List_meeting_SA#91-e.xlsx
Security-in-5G.pdf
db_info.conf

C:\Users\<E3>\Documents
iam_access.conf
aws_creds-list_14082024.xlsx

C:\Users\<E2>\Documents

E2
intelsat-mobile-live-5G-infra.pdf
ESEC Structure.png

C:\Users\<E2>\Desktophuawei-5g-cpe-pro-custom.pdf
IC-Project-Team-Meeting-Minutes-11856.xlsx

event logs to the Logstash component installed in U1. We then use

a webhook integration to send out emails to notify the successful

login events.

In addition, we have also configured the Winlogbeat to capture

failed logins, which indicate brute-force attempts. The events are

forwarded and stored in U1. For the case of enterprise gateway, we
have created an automation with ‘Admin login successful’ event as

a trigger. Upon activation, the webhook sends an email alert.

User Accounts and Login Credentials: For each Windows

endpoint, we have one user account with administrative privileges

and one or more standard users. The password for the administra-

tive user is a randomly generated one with 16 characters consisting

of uppercase, lowercase, digits, and brackets. This has been the

design decision to prevent the adversary from taking complete con-

trol of the endpoint. However, the passwords for standard users are

weak passwords with just eight characters consisting of uppercase,

lowercase, and digits. For the gateway (G1), there is only one ad-

ministrative user and the password is set as a random generated

one with 16 characters consisting of uppercase, lowercase, digits,

and brackets.

Firewall and Enterprise Gateway: In Figure 1, we have set up

a ‘Firewall & Router’ to manage VLAN trunks, DHCP reservations,

DNS settings, firewall rules, etc. For example, the outgoing connec-

tions from the HPN are blocked by default. Selected devices are

given Internet access through firewall rules. Similarly, the enter-

prise gateway/firewall (G1) is also configured to have fine-grained

control and access management of devices in the EPN.

Backup Server and Clonezilla: We have setup Workstation

(U2) as a backup server to store the incoming network traffic cap-

tured in U0, the outgoing network traffic captured via the SPAN

port with U1, successful logins and failed login attempts, and Elas-

ticsearch indices of Sysmon events. The U2 connects to U0 and U1
on the ‘Backup Network’ (BKN) and does not have the Internet

connection. Also, only U2 has access to U0 and U1 but not vice versa.
We use Clonezilla to keep the system image of Windows endpoints

so as to restore into the pre-deployment state if the system gets

compromised and becomes out-of-control. In addition, we save the

configurations of ‘Firewall & Router’ and enterprise gateway (G1).
Scalable Design: While the current HoneyWin setup consists

of a limited number of honeypot devices: an enterprise gateway and

three Windows endpoints, we have designed it for scalability which

enables us to expand it conveniently in the future. Having a light-

weight container-based approach to establish secure VPN tunnels,

we could extend the setup with additional public-facing endpoints.

Moreover, we could place and interchange the honeypot devices

at different geolocations during specific time periods. Capturing

of incoming and outgoing network traffic inside each container

and U1 respectively, real-time alerting of successful logins to the

honeypot devices, backing up of PCAPs and Elasticsearch indices

are fully automated. The state-of-the-art ELK stack with Elastic

Defend, Prebuilt Security Detection Rules, Windows and Firewall

Logs integrations, as well as Fleet and Elastic Agent allows us to

secure the endpoints from tampering, detect, and analyze TTPs.

Deceptive Tokens:We have also incorporated deceptive tokens

into the Windows endpoints. Table 1 shows the deceptive tokens

allocation and installation in three Windows endpoints. The ob-

jective is to mislead adversaries who gain access to the system by

manipulating the output of commonly used Windows discovery

commands, such as systeminfo, ipconfig, netstat, net.
‘systeminfo’ is commonly used for host enumeration by at-

tackers as it provides detailed system information, useful for at-

tackers to plan their next course of action, as key details include

windows version, build number and installed patches along with

domain membership and hostname as well as other useful data.

‘ipconfig’ is used for network reconnaissance as it provides criti-

cal networking information that could be used for lateral movement.

5



It could also be used to list Domain Name System (DNS) and Dy-

namic Host Configuration Protocol (DHCP) servers that could be

further leveraged by attackers to perform other network based

attacks such as DNS poisoning. ‘netstat’ is used for network

reconnaissance as it lists active remote connections in the host

system and provides a list of connected hosts that could be pivoted

to by the attacker. ‘net’ allows adversaries to list user accounts on
the local system as well as domain users and their group members,

giving crucial data for privilege escalation on systems or allowing

attackers to install a backdoor by using the binary to add or remove

users from the system. Additionally, it allows the enumeration of

network shares for data exfiltration or lateral movement, making

the executable highly valued for living off the land movement. The

deceptive tokens listed in Table 1 were specifically selected and

created to replace built-in windows executables that have been

identified to be key binaries exploited by adversaries/nation state

actors during their operations where part of their unique trade craft

involved.

After the design and creation of the deceptive tokens, imple-

mentation in the HoneyWinsystem requires careful execution to

prevent attackers from detecting legitimate binaries. The deceptive

tokens and bait are distributed in various locations on the different

HoneyWin systems, as provided in Table 1. ‘ipconfig’, ‘net’,
‘netstat’, ‘arp’ and ‘systeminfo’were placed on all three hosts
on ‘C:\Windows\System32\wbem’ together with ‘wmiutil.mof’
which contains the configuration data used by the different binaries.

The ‘wmiutils.mof’ file is placed in the Web-Based Enterprise

Management folder to hide among other Managed Object Format

files that are used by the Windows Management Instrumentation

executable. The altered binaries were placed there to enhance the

legitimacy of existing within the ‘System32’ folder and are added

to the user path from there to take precedence over the original

binaries, which are left in their original locations for future use.

To further enhance the deception, the team has deployed realistic

bait files along with these deceptive executables. These files include

configuration files, project meeting minutes, network infrastructure

reports, and AWS Identity and Access Management (IAM) creden-

tials that appear to provide access to cloud services. By planting

such high-value artifacts, the system attracts attackers to interact

with the deceptive environment, thereby increasing the likelihood

of engagement and intelligence collection. It should be noted in

Table 1 that <E2> and <E3> are placeholders and represent standard
users for the endpoints. As mentioned earlier, each endpoint may

have more than one standard user.

3 VALIDATION OF HONEYWIN
The primary objective of evaluating the HoneyWin implementa-

tion is to confirm its effectiveness in mimicking a realistic enterprise

environment and capturing real-world attack behaviors. In partic-

ular, the validation process has been designed to measure how

effectively the honeypot detects and responds to network recon-

naissance, unauthorized access attempts, and privilege escalation,

while also determining its overall detection visibility, response time,

and ability to capture all intended data.

By simulating common adversarial tactics, ranging from port

scans and lateral movements to sophisticated privilege escalation

methods, the validation effort provided detailed insight into moni-

toring granularity, generating alerts, and the ability to withstand

more advanced attack strategies targeting HoneyWin. This rigor-
ous testing not only validates the design assumptions of Honey-
Win but also highlights areas for further refinement, ensuring that

it provides high fidelity in both deception and detection capabilities.

3.1 Penetration Testing
Penetration testing formed the cornerstone of the validation pro-

cess for HoneyWin, ensuring that its network monitoring and

logging systems are functional and collect the desired data. Before

incorporating the deceptive tokens, the environment is rigorously

tested to confirm proper implementation.

Network Reconnaissance: A series of ‘nmap’ scans are sim-

ulated adversarial port-scanning behavior. These scans revealed

limited exposure and strong initial defenses:

• Top 1000 and all available ports: Port 514 was consis-
tently displayed as filtered, demonstrating restrictive poli-

cies typical of secure environments.

• Targeted scans on ports 22 (SSH) and 3389 (RDP): Both
returned “host down” statuses, underscoring effective block-

ing of unnecessary exposure.

Host-Level Testing: Tools and commands such as ‘netstat’,
‘ipconfig’, ‘route print’, and ‘arp’were executed to evaluate
network configurations and logging capabilities of HoneyWin.
The results demonstrated that logging configurations effectively

track host-specific actions.

Windows Privilege Escalation Awesome Scripts (WinPEAS)
9
is

a post-exploitation tool developed to help security professionals,

penetration testers and ethical hackers identify opportunities for

escalation of privileges in Windows systems. Our test results show

that the default Windows Defender in Windows 11 Professional is

able to thwart WinPEAS. Similarly, commands seeking to access

sensitive directories and files, such as the Security Accounts Man-

ager (SAM) file and tasklist, were blocked, proving that endpoint
defenses provided robust real-time security.

Privilege Escalation Attempts: Mimikatz 10
, a powerful post-

exploitation tool that allows users to view and save authentication

credentials such as Kerberos tickets, is used in privilege escalation

tests for credential dumping. These attempts are effectively miti-

gated by Microsoft Credential Guard, which prevented access to

critical credential storage. The usage also ensures that there is visi-

bility of host-based actions and executables allowing us to monitor

even down to what dynamic link libraries (DLLs) are called.

Access to ELK Stack: During the testing process, we identified

misconfigurations during the scans where the ELK stack opens

ephemeral ports and allows unrestricted access. An initial access to

a workstation in the EPN led to the discovery of unintended access

to an internally hosted ELK stack in U1, which is caused by the use of
an earlier ELK version (e.g. Elasticsearch 7.17) for which security is

not enabled automatically during the installation. In particular, the

ELK stack does not require authentication, allowing unrestricted

access to the Elasticsearch database and the Kibana dashboard. The

access effectively provides insight into the defensive monitoring

9
https://github.com/peass-ng/PEASS-ng/tree/master/winPEAS

10
https://github.com/ParrotSec/mimikatz

6

https://github.com/peass-ng/PEASS-ng/tree/master/winPEAS
https://github.com/ParrotSec/mimikatz


capabilities. The ELK stack is reinstalled fully with security features

and confirms that access required authentication.

3.2 Testing Detection and Alerts with C2
Malware

As part of the validation process, we have also tested the Hon-
eyWin with 2 sets of malware on the ELK stack with the Elastic

Defend setup. One malware is a custom designed malware that

provides a reverse shell via the ‘netcat’ connection. The malware

provides a reverse shell connection, which allows an adversary to

remotely control the endpoint through the command line interface

(CLI). We created this malware as a custom shellcode which con-

nects to the adversary IP address and port while providing a CLI to

interact with the endpoint upon execution.

Another malware was a modified Havoc malware. Havoc
11

is a

post-exploitation and C2 framework designed for red-teaming and

adversary simulation. We created a Havoc agent with customized

settings for stealth and evasive properties. In this case, the agent

runs on the endpoint and establishes a connection to the adversary’s

Havoc listener, enabling the adversary to remotely control the

endpoint by sending commands. Both malware were designed to

be able to bypass Windows Defender, but intended to be detected

by Elastic Defend. Elastic Defend is able to detect both malware

through their prebuilt Malware Detection Alerts rules.

4 EXPERIMENTAL RESULTS
We have deployed the HoneyWin system live in the wild for 34

days from 22 August 2024 to 25 September 2024. This section pro-

vides our analysis on incoming and outgoing network traffic, failed

login attempts, successful breaches via the exposed services, and

the attacks initiated by the adversaries.

4.1 Network Traffic Analysis
During this operating period, HoneyWin received ∼5.79 million

unsolicited connections, of which the gateway received 2.22 million

connections and the Windows endpoint (E3) received 3.57 million

connections. In general, the Windows endpoint (E3) received 60%

more connections than the gateway (G1). Figure 2 shows the dis-
tribution of the connections received by G1 and E3 over a 12-hour

interval for 34 days. G1 received more connections than E3 for 8

intervals only.

Figures 2b and 2c show geolocations based on IP address lookup

of incoming connections received by G1 and E3, respectively. For
the gateway (G1), 38% and 13% of the connections are initiated from

IP addresses belonging to United States and Philippines. For the

Windows endpoint (E3), 43% and 19% of the connections are from

IP addresses belonging to Russia and the United States. It should be

noted that the identification of geolocations from IP address lookup

is only indicative since the attackers may have spoofed their true

IP addresses.

Figures 3a and 3b show connections to open port of the gateway

(G1) and Windows engpoint (E3) over 12-hour intervals for 34 days.
The vertical axis in both figures shows the number of sessions

in logarithmic scale. The gateway (G1) receives more than 2,123

11
https://github.com/HavocFramework/Havoc

HTTPS sessions per 12 hours on average. On the other hand, the

Windows endpoint (E3) receives more than 31,972 RDP and SSH

sessions combined every 12 hours on average. This indicates that the

Windows endpoint (E3) is more than 15 times active compared to

the gateway (G1). Furthermore, theWindows endpoint (E3) receives
59,591 RDP and 4,263 SSH sessions per 12 hours on average. The

attacker actively exploits RDP nearly 14 times more than SSH.

4.2 Failed Login Attempts
As described in Section 2.3,HoneyWinis capable of capturing failed
login attempts for the Windows endpoint (E3). Figure 4 shows a
boxplot of failed login attempts for E3. The vertical axis shows

the number of failed login attempts per hour for each day on the

horizontal axis. The data range varies over the HoneyWin oper-

ating period. We observe significant outliers in certain days (e.g.,

Sep 01, 02 and 05). Also, significantly higher first-quartile (Q1) and

median (Q2) values (e.g., Sep 10 and 11). This strongly indicates

active brute-forcing attempts by the attackers during certain hours

of the day or throughout certain days.

4.3 Successful Logins
During the operating period, the HoneyWin detected 5 successful

logins via RDP and 354 successful logins via SSH. We have analyzed

all successful log-ins and developed an attack attribution method

which correlates the incoming network traffic, host logs, and outgo-

ing traffic holistically. For 4 out of 5 successful logins via RDP, we

find that these logins are short-lived and do not see any activities

performed by the attackers after the successful logins. Section 4.4

provides our analysis on the remaining successful login session

during which the attacker interacted with our deceptive tokens.

As described in Section 4.1, although the attacker actively exploits

RDP nearly 14 times more than SSH, our analysis shows that a

stealthy attack was launched through successful SSH logins. We

provide detailed analysis of this attack in Section 4.5.

However, no successful login alerts are generated for the gateway

(G1) and two Windows endpoints (E1 and E2). We conjecture that

strong password setting of the gateway (G1) prevented the breach,

although there are sustained brute-force attempts. For the case of

E1 and E2, the endpoints are on the EPN with NAT connections to

the G1. This imposes an additional layer of difficulty that requires

one to bypass the gateway G1 to reach both endpoints.

4.4 Analysis on Deceptive Token Interaction
Analysis of system logs and network traffic reveals that a successful

RDP sessionwas established using one of the standard user accounts

of E3. Correlating process creation logs with network traffic, we

are able to trace the attacker’s activities and interactions with our

deceptive tokens.

Based on the timestamp of the successful RDP login alert no-

tification, we identify the RDP login event and correlate it with

the process creation timestamps. Typically, when a user logs in

via RDP, the system spawns key processes such as ‘smss.exe’,
‘winlogon.exe’, and ‘userinit.exe’. The sequential execution
of these processes confirmed a successful login as illustrated in

Figure 5.

7

https://github.com/HavocFramework/Havoc


(a) Incoming Connections Received by G1 and E3

United States

38%

Others

27%United Kingdom

6%

The Netherlands 7%

Singapore

9%

Philippines

13%

(b) Geolocations of Incoming Connections Received by G1

Russia

43%

Others

12%

Singapore

5%

China

7%

Turkey

14%

United States

19%

(c) Geolocations of Incoming Connections Received by E3

Figure 2: Analysis of Incoming Connections Received by G1 and E3

(a) HTTPS Sessions of Enterprise Gateway (G1) (b) RDP & SSH Sessions of Windows 11 (E3)

Figure 3: Connections to Open Ports of G1 and E3

Further analysis of the process creation sequence reveals that

‘powershell.exe’ was launched by ‘explorer.exe’, indicating
post-login activity. Notably, there is a two-minute interval between

the login and the execution of powershell.exe. This suggests that
the reconnaissance is performed manually by a user rather than

through an automated script, reinforcing the likelihood of an active

attacker on the keyboard.

A key observation is that ‘powershell.exe’ subsequently exe-

cuted our deceptive token, ‘systeminfo.exe’. This confirms that

8



Figure 4: Boxplot of Failed Login Attempts

smss.exe
(PID: 6900)

winlogon.exe
(PID: 3172)

userinit.exe
(PID: 1976)

explorer.exe
(PID: 8328)

powershell.exe
(PID: 2268)

systeminfo.exe
(PID: 9408)

systeminfo.exe
(PID: 2980)

nltest.exe
(PID: 3520)

control.exe
(PID: 9784)

logoff.exe
(PID: 13672)

powershell.exe
(PID: 1232)

Figure 5: Analysis of a Successful RDP Login & Deceptive
Token Interaction by the Adversary

the attacker has been engaging with the deceptive environment,

believing it to be a legitimate endpoint.

4.5 Stealthy SMTP Brute-Force Bot Attack via
Successful SSH Logins

We received a successful SSH login alert at 08:40 PM on 18 Sep-

tember 2024 (GMT), followed by two hourly successful logins until

04:50 PM, 23 September 2024. Our initial analysis on these success-

ful logins does find any sign of attack. Subsequently, the successful

logins become every two minutes. Although we did not find sig-

nificant host activities up to this time, the SPAN port is capturing

100 MB of network traffic every 7 minutes. Further investigation

shows reverse SSH tunneling after the initial successful SSH login

Valid Credentials? Record Failed 
Login

Establish Reverse 
SSH Tunnel via 

‘sshd.exe’

Brute-Force
Internet-Facing 
SMTP Domains

Valid Credentials? End

No

Yes

No

Yes

Alice

Login Attempts via 
SSH

Send Email to 
Recipient List

Figure 6: Analysis of Successful SSH Logins & SMTP Brute-
Force Bot Attack

spawning child SSH processes. In this case, SMTP outgoing traffic

could be observed from child SSH processes. However, the ELK is

not able to log the SMTP payload due to reverse SSH tunneling

crippling host-based detection and insights. Since all outgoing traf-

fic originating from the HoneyWin is captured via the SPAN port,

we are able identify the SMTP payloads from the network traffic.

The adversary was performing an attack on global SMTP domains

via successful SSH logins recruiting the endpoint (E3) into a botnet.

Figure 6 shows our analysis of successful SSH Logins followed by

SMTP brute- force bot attack.

It is evident that host-based logging alone does not suffice and

shed light on the advantage of HoneyWin as it captures incoming

network traffic, host logs and outgoing network traffic, all together

thereby facilitating a holistic detection capability. We have devel-

oped an attack attribution algorithm to establish an end-to-end

correlation of host logs and network traffic (see Algorithm 1).

We are able to trace the attacker’s activities and determine that

SMTP brute force bot attacks have been carried out on Internet-

facing SMTP servers. Figure 7a shows the geolocations of 354 suc-

cessful SSH logins based on IP address lookup of incoming network

9



Germany

40%

Others

5%

Canada

3%

China

4%

The Netherlands

7%
Bulgaria

15%

France

26%

(a) Geolocations of IncomingConnections for Successful SSH Logins

Others

43%

The Netherlands

4%

Japan

6%

Poland

8%
Germany

10%

France

10%

United States

19%

(b) Geolocations of Outgoing Connections for Successful SSH Logins

Figure 7: Analysis of Incoming and Outgoing Connections for Successful SSH Logins

Table 2: Top 15 SMTP Usernames

Username # Occurrence

info 2529
contact 562
no-replay 483
admin 465
office 458
inf 389
marketing 326
mail 324
support 315
webmaster 314
hello 248
noreply 246
root 223
test 215
postmaster 214

Table 3: Top 15 SMTP Passwords

Password # Occurrence

co23 587
in23 398
ma23 380
123456 241
q1w2e3r4 194
ne23 184
123654 180
test123 177
11223344 175
P@ssw0rd 175
1234 174
Abcd1234 172
1q2w3e4r 170
11111111 166
sa23 164

Table 4: Top 15 Username & Password Pairs

Username Password # Occurrence

info in23 128
info inf23 39
marketing marketing@1 31
hello Hello@15 28
no-replay noreplay@1 27
test test@1 27
webmaster Webmaster@15 26
contact Contact@1 25
contact Contact@15 24
root Root@1 24
contact contact@15 24
contact Contact2021 23
office office@1 23
root root@1 22
root root@15 22

traffic connections, noting that attackers could have spoofed their

true IP addresses. Similarly, Figure 7b shows geolocations of outgo-

ing network traffic initiated by the attacker. In this case, geoloca-

tions may not have spoofed since these are the attacker’s targets.

In fact, the outgoing traffic indicates geolocations of 180 countries

while the United States taking up 19% followed by France and Ger-

many with 10% each, Poland (8%), Japan (6%) and The Netherlands

(4) where the remaining 43% belongs to 174 countries. In terms of

outgoing port distribution, port 25 (Standard) takes up 74%, 587

(Default) and 465 (TLS) are 22% and 4% respectively.

Our analysis shows that the attacker used 151,179 credentials.

Table 2 provides the top 15 SMTP usernames, while Table 3 and

4 list the top 15 passwords and username-password pairs used by

the attacker. The brute-force attempts harvested 1250 successful

SMTP credentials. The attacker uses the email addresses in Table 5

to record the successful credentials upon acceptance by the SMTP

server. The successful SMTP credentials do not appear to be ran-

domly generated, rather they are specific to certain users. These

credentials likely originated from a data breach, and we choose not

to reveal them in this work.

5 DISCUSSION
This section discusses our insights from the design and implementa-

tion of theHoneyWin system and the experimental results. Firstly,

three endpoints (i.e., E1, E2 and E3) deployed with the HoneyWin
system are not virtual machines. They are rather real devices (e.g.,

Mini PC) running a fresh out-of-the-box (OOB) Windows 11 Pro-

fessional with latest updates and automatic updates enabled. The

deceptive tokens and bait files are installed on top of the OOB. As

provided in Table 1, the deceptive tokens are installed system-wide

for all users. However, bait files are placed for certain standard user

accounts only recalling that <E2> and <E3> are placeholders for

standard users. There are no bait files for the standard user account

10



Algorithm 1 Attack-Attribution-SSH

Input: Successful SSH login alerts A, Incoming traffic PCAPs N,
SPAN port PCAPs S, Elasticsearch database E

Output: Incoming IPs I, Outgoing IPs & Ports O, Payload: P
1: Get timestamps T from alerts A
2: Construct ElasticSearch query Q for T
3: Construct TShark query F for T
4: 𝐼 = getIncomingAttackerIp(N, F)
5: 𝑂 = getOutgoingDataFromElastic(E, Q)
6: Construct TShark query G to extract SMTP payload from O
7: 𝑃 = getOutgoingSmtpPayload(S, G)
8: return I, O and P

9: procedure getIncomingAttackerIp(N, F)
10: Get incoming attacker IPs I from PCAP N with query F
11: return I
12: end procedure

13: procedure getOutgoingDataFromElastic(E, Q)
14: Initialize Elasticsearch connection

15: Get outgoing IPs & ports O from Elasticsearch E with Q
16: return O
17: end procedure

18: procedure getOutgoingSmtpPayload(S, G)
19: Get outgoing SMTP data (username, password, mail to,

mail from, etc) P from S with query G
20: return P
21: end procedure

Table 5: Attacker Email Addresses

Email Address # Occurrence

toron@imobust.com 172
no-reply-1@mx-test-serv.org 155
no-reply10@mx-test-serv.org 147
c2@mail-master.org 136
bt@mail-master.org 126
c4@mail-master.org 101
c3@mail-master.org 98
c1@mail-master.org 86
check@bewareofdogs.xyz 85
no-reply-2@mx-test-serv.org 80
mail2@glob22glo1.su 41
no-reply12@mx-test-serv.org 26

breached for the E3 endpoint during the successful RDP session

where the adversary interacted with the deceptive token. This ex-

plains the fact that the adversary is not able to interact with the bait

files in this case and highlights the need for a scheme to distribute

the bait files and the deceptive tokens automatically across all the

endpoints.

Successful SSH log-ins for the SMTP brute-force bot attack oc-

curred every two hours initially, indicating that it was likely a

scripted attack. The use of reverse SSH tunnels reveals the adver-

sary’s intention to avoid host-based detection and maintain stealth

as long as possible. Successful SSH logins may have been classified

as false positives, and the attack could have been missed in the

absence of outgoing network traffic capture.

While this work focuses on the HoneyWin deployment in an

enterprise environment, we could extend HoneyWin to an OT

environment with HMI and SCADA endpoints, potentially making

it more enticing for the adversary.

6 RELATEDWORK
Honeypots are security resources whose value lies in their ability

to be probed, attacked and compromised. In general, there are

two types of honeypots: first, low-interaction honeypots, which

present simulated or emulated services/environments to attackers,

and second, high-interaction honeypots, which show real systems

to attackers. The characteristics of honeypots are that they are

deceptive, discoverable, interactive, and monitored.

Several prior efforts have leveraged honeypot systems as a proac-

tive mechanism for network defense, recognizing their potential to

gather in-depth threat intelligence and lure attackers away from

real assets. In [14], the authors highlighted the value of honeypots

to test adversaries’ behaviors in controlled yet realistic environ-

ments, while other works have focused on enhancing honeypot

scalability and adaptability in complex networks. As Grimes de-

scribed, every corporate entity should be running honeypots if they

are interested in the earliest warning possible of a successful hack

or malware infiltration [11].

Various honeypot systems such as honeypots for database sys-

tems, web applications, services, ICS/SCADA, etc., have been pro-

posed and developed by industry and academia [1]. Notable im-

plementations include Cowrie [3], Glutton [4], OpenCanary [7],

Conpot [2], T-Pot [10], AIDE [5], ICSNet [19], SIPHON [12] etc.

As mentioned, Windows OS are ubiquitous in enterprise IT and

(OT environments. Since attacks targeting Windows-based sys-

tems have been on the rise in recent years, we provide our review

with a focus on related state-of-the-art Windows-based honeypot

implementations.

KFSensor, launched in 2003, is one of the first Windows-based

honeypot intrusion detection systems to attract and detect hack-

ers and worms by simulating vulnerable system services and tro-

jans [16]. It is available in Professional, Enterprise, and Educational

editions. KFSensor could be configured using scenarios, for example,

to listen on all TCP and UDP ports, to simulate a MySQL database

server or an IIS Web server. Since it simulates vulnerable services,

it is likely that attackers will detect that they are interacting with a

honeypot rather than a real system. Moreover, KFSensor is a pro-

prietary software that cannot be modified to tailor specific research

purposes.

Wang et al. proposed the Strider HoneyMonkey Exploit Detec-

tion System, which uses a network of monkey programs running

on virtual machines with different patch levels to hunt for websites

that exploit browser vulnerabilities [23]. The authors identified 752

unique URLs operated by 287 websites that can successfully exploit

unpatched Windows XP machines.

11



Microsoft has been developing a honeypot sensor network since

2018 [6]. The honeypot framework, written in C#, allows security

researchers to quickly deploy various types of exploit handlers, from

simple HTTP handlers to complex protocols such as SSH and VNC.

In 2021, a dangling subdomain, code.microsoft.com, was used
temporarily to host a malware C2 service. Instead of removing the

subdomain, Microsoft redirected it to the honeypot sensor network

till 26 April 2024. The data and findings have been published in [17]

and are crucial for understanding the 0day and nDay
12

ecosystem.

The framework itself is proprietary, and Microsoft have put in

substantial engineering effort into this. Attackers can communicate

with over 30 different protocols/services.

HopLab [20], proposed by the Laboratoire de Haute Sécurité

(LHS) in Rennes, deploys high-interaction honeypot systems to

attract and analyze malicious activities. HopLab is designed for

rapid and flexible deployment of honeypots to respond to emerging

vulnerabilities such as the Log4j. It can swiftly set up honeypots

that emulate these specific weaknesses across various environ-

ments, including both Windows and Linux OS enabling timely

analysis of new threats as they arise. Although direct compari-

son with existing state-of-the-are works has been very limiting,

HoneyWincomplements and contributes to ongoing research on

high-interaction Windows honeypots, offering an additional layer

of monitoring, while also illuminating best practices for honeypot

configuration and risk mitigation.

In addition, recent studies further highlight honeytoken deploy-

ment and deceptive services as means of detecting novel or stealthy

attacks. Han et al. [14] present a comprehensive examination of

deception techniques within computer security, classifying solu-

tions such as honeypots, honeytokens and obfuscation according to

various layers (network, system, application, and data) and core ob-

jectives (prevention, detection or mitigation of attacks). The survey

emphasizes the challenges of generating realistic decoys, optimally

placing them, and continuously updating deception elements to

avoid attacker evasion. Although the findings show that deception

can effectively complement traditional defenses, such as intrusion

detection systems, critical gaps remain, including the need for repro-

ducible experiments, robust evaluation methodologies, and reliable

ways to seamlessly integrate deception into broader security strate-

gies. HoneyWin aims to resolve this issue with a configurable

standardized set of deceptive tokens to ensure reproducible results.

7 CONCLUSIONS
We have designed and implemented a high-interaction Windows

honeypot system that mimics an enterprise IT environment, namely,

HoneyWin in this paper. By deploying theHoneyWin with three

Windows endpoints and an enterprise grade gateway, live in the

wild for 34 days it receives more than 5.79 million unsolicited con-

nections, 1.24 million login attempts, 5 and 354 successful logins

via RDP and SSH sessions respectively. In addition, the adversary

interacted with the deceptive token in one of the RDP sessions

and exploited the public-facing Windows endpoint to initiate the

SMTP brute-force bot attack. The adversary successfully harvested

12
nDay vulnerability is a security flaw that has been disclosed and has an official patch available.

However, organizations may still be unpatched and vulnerable.

1,250 SMTP credentials after attempting 151,179 credentials dur-

ing the attack. The results indicate that the HoneyWin system is

enticing for adversaries to probe, compromise, and launch attacks.

Moreover, theHoneyWin enables us to receive real-time intrusion

alerts and attribute attacks via the comprehensive network traffic

capturing and host logging capabilities. While we focus theHoney-
Win deployment in an enterprise environment, we plan to extend

this to an OT environment as part of our future work. Ultimately,

HoneyWin could be scaled and harness the recent development in

artificial intelligence technology to realize a robust security posture

that detects, analyzes, and mitigates threats effectively.

ACKNOWLEDGEMENTS
This research is supported by the National Research Foundation,

Singapore, under its National Satellite of Excellence Programme

“Design Science and Technology for Secure Critical Infrastructure:

Phase II” (Award No: NRF-NCR25-NSOE05-0001). Any opinions,

findings and conclusions or recommendations expressed in this

material are those of the author(s) and do not reflect the views of

National Research Foundation, Singapore.

REFERENCES
[1] [n. d.]. Awesome Honeypots. https://github.com/paralax/awesome-honeypots.

[2] [n. d.]. Conpot - An ICS honeypot. https://github.com/mushorg/glutton.

[3] [n. d.]. Cowrie - An SSH and Telnet Honeypot. https://github.com/cowrie/cowrie.

[4] [n. d.]. Glutton - Generic Low Interaction Honeypot. https://github.com/

mushorg/glutton.

[5] Global Cyber Alliance. [n. d.]. AIDE - Automated IoT Defence Ecosystem. https:

//globalcyberalliance.org/aide/.

[6] Ross Bevington. 2024. Examining the Deception infrastructure in place

behind code.microsoft.com. https://techcommunity.microsoft.com/blog/

microsoftsentinelblog/examining-the-deception-infrastructure-in-place-

behind-code-microsoft-com/4124464.

[7] Thinkst Canary. [n. d.]. OpenCanary - A Multi-protocol Network Honeypot.

https://github.com/thinkst/opencanary.

[8] Kyle Dickinson. 2020. Implementer’s Guide to Deception Technologies. Technical
Report. https://www.sans.org/media/analyst-program/implementers-guide-

deception-technologies-39390.pdf

[9] MITRE Engenuity Center for Threat-Informed Defense. [n. d.]. Defending OT

with ATT&CK Reference Architecture. https://center-for-threat-informed-

defense.github.io/defending-ot-with-attack/architecture/.

[10] Deutsche Telekom Security GmbH. [n. d.]. T-Pot - The All In OneMulti Honeypot

Platform. https://github.com/telekom-security/tpotce.

[11] Roger A. Grimes. 2017. Honeypots. John Wiley & Sons, Ltd, Chapter 19, 107–110.

https://doi.org/10.1002/9781119396260.ch19

[12] Juan David Guarnizo, Amit Tambe, Suman Sankar Bhunia, Martin Ochoa, Nils Ole

Tippenhauer, Asaf Shabtai, and Yuval Elovici. 2017. SIPHON: Towards Scalable

High-Interaction Physical Honeypots (CPSS ’17). Association for Computing

Machinery, New York, NY, USA, 57–68. https://doi.org/10.1145/3055186.3055192

[13] Fortra Digital Gurdian. 2015. What is the Biggest Misconcep-

tion Companies Have About Endpoint Security & Protection Tools?

https://www.digitalguardian.com/blog/data-security-experts-answer-what-

biggest-misconception-companies-have-about-endpoint-security.

[14] Xiao Han, Nizar Kheir, and Davide Balzarotti. 2018. Deception Techniques in

Computer Security: A Research Perspective. ACM Comput. Surv. 51, 4, Article 80
(July 2018), 36 pages. https://doi.org/10.1145/3214305

[15] Eric Heindl. 2024. The Hidden Dangers of Windows in OT Net-

works. https://www.omicroncybersecurity.com/en/resources/the-hidden-

dangers-of-windows-in-ot-networks.

[16] KeyFocus. [n. d.]. KFSensor: Advanced Windows Honeypot System. https:

//www.kfsensor.net/kfsensor/.

[17] Francesco Sanna Passino, Anastasia Mantziou, Daniyar Ghani, Philip Thiede,

Ross Bevington, and Nicholas A. Heard. 2024. Nested Dirichlet Models for Unsu-

pervised Attack Pattern Detection in Honeypot Data. arXiv:2301.02505 [cs.CR]

https://arxiv.org/abs/2301.02505

[18] Fairfield Market Research. 2024. Server Operating System Market. https://www.

fairfieldmarketresearch.com/report/server-operating-system-market.

[19] Luis Salazar, Efrén López-Morales, Juan Lozano, Carlos Rubio-Medrano, and

Álvaro A. Cárdenas. 2024. ICSNet: A Hybrid-Interaction Honeynet for Industrial

12

https://github.com/paralax/awesome-honeypots
https://github.com/mushorg/glutton
https://github.com/cowrie/cowrie
https://github.com/mushorg/glutton
https://github.com/mushorg/glutton
https://globalcyberalliance.org/aide/
https://globalcyberalliance.org/aide/
https://techcommunity.microsoft.com/blog/microsoftsentinelblog/examining-the-deception-infrastructure-in-place-behind-code-microsoft-com/4124464
https://techcommunity.microsoft.com/blog/microsoftsentinelblog/examining-the-deception-infrastructure-in-place-behind-code-microsoft-com/4124464
https://techcommunity.microsoft.com/blog/microsoftsentinelblog/examining-the-deception-infrastructure-in-place-behind-code-microsoft-com/4124464
https://github.com/thinkst/opencanary
https://www.sans.org/media/analyst-program/implementers-guide-deception-technologies-39390.pdf
https://www.sans.org/media/analyst-program/implementers-guide-deception-technologies-39390.pdf
https://center-for-threat-informed-defense.github.io/defending-ot-with-attack/architecture/
https://center-for-threat-informed-defense.github.io/defending-ot-with-attack/architecture/
https://github.com/telekom-security/tpotce
https://doi.org/10.1002/9781119396260.ch19
https://doi.org/10.1145/3055186.3055192
https://www.digitalguardian.com/blog/data-security-experts-answer-what-biggest-misconception-companies-have-about-endpoint-security
https://www.digitalguardian.com/blog/data-security-experts-answer-what-biggest-misconception-companies-have-about-endpoint-security
https://doi.org/10.1145/3214305
https://www.omicroncybersecurity.com/en/resources/the-hidden-dangers-of-windows-in-ot-networks
https://www.omicroncybersecurity.com/en/resources/the-hidden-dangers-of-windows-in-ot-networks
https://www.kfsensor.net/kfsensor/
https://www.kfsensor.net/kfsensor/
https://arxiv.org/abs/2301.02505
https://arxiv.org/abs/2301.02505
https://www.fairfieldmarketresearch.com/report/server-operating-system-market
https://www.fairfieldmarketresearch.com/report/server-operating-system-market


Control Systems. In Proceedings of the Sixth Workshop on CPS&IoT Security and
Privacy (Salt Lake City, UT, USA) (CPSIoTSec’24). Association for Computing

Machinery, New York, NY, USA, 68–79. https://doi.org/10.1145/3690134.3694813

[20] Alexandre Sanchez. 2024. HopLab: Creating Highly Interactive Honeypots.

https://www.inria.fr/en/hoplab-cybersecurity.

[21] SentinelOne. 2024. 7 Types of Ransomware Attacks in 2025. https://www.

sentinelone.com/cybersecurity-101/cybersecurity/types-of-ransomware/.

[22] StatCounter. [n. d.]. Desktop Operating System Market Share Worldwide. https:

//gs.statcounter.com/os-market-share/desktop/worldwide.

[23] Yi-Min Wang. 2005. Strider HoneyMonkeys: Active Client-Side Honeypots for

Finding Web Sites That Exploit Browser Vulnerabilities. USENIX Association,

Baltimore, MD.

[24] David Weston. 2024. Helping Our Customers through the CrowdStrike

Outage. https://blogs.microsoft.com/blog/2024/07/20/helping-our-customers-

through-the-crowdstrike-outage/.

13

https://doi.org/10.1145/3690134.3694813
https://www.inria.fr/en/hoplab-cybersecurity
https://www.sentinelone.com/cybersecurity-101/cybersecurity/types-of-ransomware/
https://www.sentinelone.com/cybersecurity-101/cybersecurity/types-of-ransomware/
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://blogs.microsoft.com/blog/2024/07/20/helping-our-customers-through-the-crowdstrike-outage/
https://blogs.microsoft.com/blog/2024/07/20/helping-our-customers-through-the-crowdstrike-outage/

	Abstract
	1 Introduction
	2 HoneyWin: High Interaction Windows Honeypot in an Enterprise Environment
	2.1 Threat Model
	2.2 Design
	2.3 Implementation

	3 Validation of HoneyWin
	3.1 Penetration Testing
	3.2 Testing Detection and Alerts with C2 Malware

	4 Experimental Results
	4.1 Network Traffic Analysis
	4.2 Failed Login Attempts
	4.3 Successful Logins
	4.4 Analysis on Deceptive Token Interaction
	4.5 Stealthy SMTP Brute-Force Bot Attack via Successful SSH Logins

	5 Discussion
	6 Related Work
	7 Conclusions
	References

