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Abstract—The increasing complexity and scale of the Internet
of Things (IoT) have made security a critical concern. This
paper presents a novel Large Language Model (LLM)-based
framework for comprehensive threat detection and prevention
in IoT environments. The system integrates lightweight LLMs
fine-tuned on IoT-specific datasets (IoT-23, TON_IoT) for real-
time anomaly detection and automated, context-aware mitigation
strategies optimized for resource-constrained devices. A modular
Docker-based deployment enables scalable and reproducible eval-
uation across diverse network conditions. Experimental results in
simulated IoT environments demonstrate significant improvements
in detection accuracy, response latency, and resource efficiency
over traditional security methods. The proposed framework high-
lights the potential of LLM-driven, autonomous security solutions
for future IoT ecosystems.

Index Terms—Artificial Intelligence of Things (AloT), Large
Learning Models (LLMs), Internet of Things (IoT), Intrusion
Detection, Intrusion Prevention

I. INTRODUCTION

HE rapid growth of Internet of Things (IoT) ecosystems

has introduced complex challenges in managing and op-
timizing system performance. IoT environments generate vast
amounts of data, requiring efficient real-time processing and ad-
vanced operations such as resource allocation, predictive main-
tenance, and energy management. The diverse and dynamic
nature of IoT devices further complicates these challenges,
as devices often operate under heterogeneous conditions with
varying computational and network capabilities [1]. The rapid
expansion of IoT ecosystems introduces growing complexities
in securing large-scale networks [2]. Traditional IoT security
techniques often struggle to detect evolving and sophisticated
threats. Recent advances in Large Learning Models (LLMs)
have shown promise in improving security systems, offer-
ing adaptability to evolving threats, scalability across diverse
IoT environments, and effectiveness in managing complex
datasets. Recent studies demonstrate the growing potential of
LLMs in cybersecurity applications. For example, the authors
of [3] explored using domain-specific fine-tuning in LLMs
for detecting zero-day vulnerabilities. Similarly, the authors
of [4] proposed a hybrid approach combining LLMs with
graph-based anomaly detection to secure IoT networks against
emerging threats. The integration of LLMs with federated
learning frameworks has also been successful in enhancing data
privacy while maintaining robust security in distributed IoT

environments as shown by the work [5]. Moreover, the authors
in [6] highlighted the effectiveness of context-aware LLMs in
identifying complex attack patterns specific to IoT ecosystems.
The work [7] underlined the importance of adaptive learning
techniques for LLMs to ensure continuous improvement in
threat detection and prevention. Our model presents an LLM-
based security system tailored to IoT environments, focusing on
a two-component approach for threat detection and prevention.
The proposed system integrates the strengths of LLMs, utilizing
prompt engineering, fine-tuning, and domain-specific training
to identify and respond to security breaches in real-time. By
leveraging IoT-specific datasets such as IoT-23 and TON_IoT,
the system continuously adapts to new threats, ensuring it
remains effective in dynamic environments. This framework
represents a significant step toward overcoming the limitations
of traditional solutions while addressing the unique challenges
of integrating advanced AI models into IoT ecosystems. The
main contributions of this work are the following:

o This work presents a novel LLM-based IoT security
framework capable of real-time detection of sophisticated
cyber threats and automated mitigation without human
intervention.

o The proposed system fine-tunes LLMs using IoT-specific
datasets, such as I0T-23 and TON IoT, to significantly
improve detection accuracy and maintain adaptability to
evolving attack patterns.

e A scalable and reproducible deployment model is de-
veloped using Docker-based virtualization. This model
enables flexible testing across various edge and cloud
environments while supporting future integration with
federated learning for privacy-preserving continuous im-
provement.

Unlike existing approaches focusing solely on detection,

our framework uniquely combines lightweight LLM-based
anomaly detection with real-time, rule-based prevention opti-
mized for resource-constrained IoT environments. A modular
Docker deployment for scalable and reproducible evaluation
across diverse network conditions supports it. The balance
of this paper is structured as follows: Section II reviews
related work, highlighting existing approaches to IoT security
and the application of LLMs in cybersecurity. Section III
details the proposed LLM-based threat detection and preven-
tion framework, including the system architecture, detection,
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and response mechanisms. Section IV presents the evaluation
results, comparing the proposed method against traditional IoT
security approaches. Finally, Section V concludes the paper by
summarizing the findings and outlining directions for future
research.

II. RELATED WORKS
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Fig. 1: Model Architecture Overview

In recent years, IoT security has been an active research
area, with numerous studies exploring Machine Learning (ML)
techniques for anomaly detection and intrusion prevention.
Several works have demonstrated the potential of ML algo-
rithms to identify unusual patterns in IoT network traffic and
provide adequate responses to emerging threats. For instance,
the work [8] presented a comprehensive study on the use
of ML for anomaly detection in IoT systems, emphasizing
the ability to detect unauthorized access and other security
breaches accurately. The authors of [9] expanded upon this
by proposing a multi-layered machine learning approach for
intrusion detection that significantly outperformed traditional
rule-based systems, showing superior results in identifying
complex attack patterns and reducing false positives. Beyond
conventional ML techniques, deep learning models such as
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have been extensively utilized for intrusion
detection in IoT networks. For example, the authors of [10]
proposed an autoencoder-based deep learning model that ef-
fectively identifies zero-day attacks while maintaining a low
false-positive rate. Another significant work [11] integrated
reinforcement learning with anomaly detection, allowing IoT
security systems to adapt dynamically to new attack patterns
without extensive retraining. In parallel, applying LLMs to
cybersecurity has garnered increasing interest due to their abil-
ity to handle complex, unstructured data. The authors of [12]
introduced an LLM-based approach to network traffic analysis,

utilizing prompt engineering to improve the model’s ability to
identify malicious activities in IoT networks. Their findings
suggested that LLMs could achieve results comparable to deep
learning models, but with reduced computational overhead and
improved resource efficiency. Another critical advancement in
IoT security is the adoption of Federated Learning (FL) for
distributed threat detection. Since IoT devices generate vast
amounts of decentralized data, transmitting all traffic logs to a
centralized server introduces privacy risks and scalability chal-
lenges. Federated learning addresses this by enabling devices
to collaboratively train models without sharing raw data [13].

III. PROPOSED FRAMEWORK
A. Architecture Overview

As shown in Figure 1, the proposed architecture integrates
an attack detection and prevention system within an edge-
cloud framework to enhance IoT security. The Detection Com-
ponent leverages a Fine-Tuned Large Language Model (FT-
LLM) trained on I0T23 and ToN_IoT datasets to identify
cyber threats, supported by a Prompt Module Management
(PMM) system. At the same time, the Prevention Component
applies a Decision Tree-based System to enforce real-time
countermeasures such as blocking IPs, rate limiting, monitor-
ing, isolation, and CAPTCHA verification. An essential part of
this architecture is the Cloud Server, which centralizes system
operations and collects and analyzes data from connected edge
devices.

1) Detection Component: The Detection Component uses
LLMs to detect anomalies within IoT network traffic. By
analyzing traffic data from IoT-specific datasets, e.g., IoT-
23, TON_IoT, the LLM identifies potential threats or security
breaches based on deviations from normal network behaviour.

2) Prevention Component: While traditional IoT intrusion
detection systems often require manual post-analysis or cloud-
centered interventions, our proposed prevention system dynam-
ically triggers context-aware countermeasures at the network
edge based on live LLM detection outputs, ensuring immediate
and autonomous threat response even in decentralized envi-
ronments. The Prevention Component employs a decision tree
model to trigger automated security actions. Upon detecting
a threat, the system generates preventive measures such as
isolating compromised devices, blocking malicious traffic, or
alerting administrators.

Algorithm 1 mitigates Distributed Denial-of-Service (DDoS)
attacks in real-time at the network edge. It processes incoming
network data and classifies potential attacks using a decision
tree model. Appropriate countermeasures are applied based
on the attack’s intensity, source IP distribution, system load,
and duration, including rate limiting, IP blocking, CAPTCHA
deployment, and traffic redirection. Due to the page limitation,
we focus solely on presenting the DDoS mitigation algorithm.

3) Cloud Component: One of the main parts of this compo-
nent is performance monitoring, which tracks key metrics such
as detection accuracy, response latency, and system throughput.
The cloud infrastructure processes and visualizes this data



Algorithm 1 DDoS Prevention at the Edge

I: Input: D = {d1,da, ..
at time .

2: Output: Prevention actions A applied to the network.

3: for each d; € D do

4: attack_type; + LLM (d;)

5 if attack_type; = DDoS then

6: I; + intensity(d;)

7.

8

.,dn}, where d; is captured network data

S < source_IPs(d;)
: L; «+ system_load(d;)
9: T; < attack_duration(d;)

10: A+ 0

11: if I; = moderate then

12: A; «+ A; U {rate_limiting}

13: else if I; = extreme then

14: A; + A; U {block_IPs, redirect_traffic}
15: end if

16: if |S;| is small then

17: A; + A; U {IP_filtering}

18: else if |.S;| is large then

19: A; + A; U{CAPTCHA_deployment}
20: end if

21: if L; exceeds threshold L.,q, then

22: A; + A; U {aggressive_blocking}

23: end if

24: if T; exceeds duration threshold 77,4, then
25: A; < A; U {honeypot_redirection}

26: end if

27: Apply A;

28: end if

29: end for

through a performance monitoring dashboard, providing in-
sights into the effectiveness of the security mechanisms and
facilitating timely adjustments. Furthermore, a communica-
tion module facilitates data flow across the system, ensuring
seamless interaction between edge devices and cloud-based
components.

B. Implementation Details

The LLM is fine-tuned using loT-specific datasets to optimize
its detection and response capabilities.

1) Datasets: To ensure robust performance and adaptabil-
ity of the detection and prevention components, the system
leverages comprehensive, IoT-specific datasets for fine-tuning.
Two key datasets employed in this architecture are IoT-23 and
TON_IoT, which provide diverse and real-world data to opti-
mize detection accuracy and support dynamic threat response
capabilities. The [0oT-23 dataset [14] is a benchmark dataset
designed specifically for network-based intrusion detection in
IoT environments. It contains extensive packet capture (PCAP)
files representing normal and malicious IoT network traffic.
IoT-23 captures various attacks, such as Distributed Denial
of Service (DDoS) and port scanning. These scenarios make
the dataset highly relevant for detecting anomalies and threat
patterns within IoT networks. The IoT-23 dataset, available on
Hugging Face, is a structured version of the original dataset.
It contains around 6 million rows of data, each representing
network flows or connection records with detailed features,

such as IP addresses, ports, protocols, and labelled activity
types, including both normal and malicious behaviours. This
structured format ensures efficient processing and seamless in-
tegration into machine learning pipelines for anomaly detection
and threat analysis. The dataset’s diversity in traffic sources
ensures that the detection component of the system is adaptable
to multiple device types. Its inclusion in the fine-tuning pro-
cess allows the Detection Component to effectively recognize
subtle deviations in network behaviour, improving its ability to
identify and isolate compromised devices early. Moreover, [oT-
23’s coverage of botnet and DDoS attack variants enhances the
architecture’s ability to respond rapidly to evolving, large-scale
threats. The table provides an overview of the labels, descrip-
tions, and proportions of traffic types and cyberattack categories
in the Ton_IoT dataset. The dataset includes Normal traffic
and various attack types, with network scanning (31.963%)
and DDoS attacks (27.597%) being the most prevalent threats.
Other notable attack types include Denial-of-Service (DoS)
attacks, Cross-Site Scripting (XSS) attacks, and password-
based attack attempts. Less frequent but significant threats
include backdoor-based malicious activity, code injection, and
ransomware attacks. The rarest category in the dataset is Man-
in-the-Middle (MITM) attacks, highlighting their relatively low
occurrence compared to other cyber threats. Each attack type
is assigned a numerical label used in classification. Table II
presents the labels, descriptions, and proportions of different
network traffic types in the 10oT-23 dataset, which is used for
intrusion detection in IoT environments. The dataset includes
both Normal traffic and various attack types. The most prevalent
malicious activity is horizontal port scanning, followed by
Okiru botnet activity and DDoS attacks, indicating that these
attack types dominate IoT security threats. The dataset also
contains various command and control (C&C) activities, such
as C&C communication, heartbeat signals, and file downloads
from C&C servers, which are essential for detecting botnet
activities. Other rare but notable attack types include Torii
botnet communication, Mirai botnet C&C communication, and
Okiru botnet attacks. The other dataset used includes the
TON_IoT dataset [15] with around 22.3 million rows of data,
which comprises a collection of heterogeneous data sources
designed to evaluate the performance of cybersecurity appli-
cations, particularly those leveraging Al and ML techniques.
Developed by the University of New South Wales (UNSW)
Canberra Cyber at the Australian Defence Force Academy
(ADFA), these datasets simulate realistic and large-scale IoT
and Industrial IoT (IIoT) environments. The TON_IoT dataset
expands the scope of security monitoring by incorporating
telemetry data from various IoT devices, industrial sensors, and
operating system logs. It is specifically curated for research on
cyberattacks in IoT and Industrial IoT (IloT) systems. Unlike
I0T-23, which focuses primarily on network activity, TON_IoT
includes multi-source data from operating systems, network
telemetry, and physical devices, providing a holistic view of
potential anomalies.



TABLE I: Labels, Descriptions, and Proportions in the Ton_IoT Dataset

Type Description Proportion (%) Label
Scanning Network scanning activity. 31.963 20
DDoS Distributed Denial-of-Service attack. 27.597 10
DoS Denial-of-Service attack. 15.110 11
XSS Cross-site scripting attack. 9.441 21
Password Password-based attack attempts. 7.692 18
Normal Normal traffic. 3.565 3
Backdoor Backdoor-based malicious activity. 2.275 2
Injection Code injection attack. 2.026 13
Ransomware Ransomware attack. 0.326 19
MITM Man-in-the-middle attack. 0.005 14

TABLE II: Labels, Descriptions, and Proportions in the IoT-23 Dataset

Type Description Proportion (%) Label
PartOf AHorizontalPortScan Horizontal port scanning activity. 56.048 17
Okiru Okiru botnet activity. 21.715 15
Benign Normal traffic. 11.392 3
DDoS Distributed Denial-of-Service attack. 10.560 10
C&C Command and control communication. 0.253 4
C&C-HeartBeat Periodic heartbeat signal to C&C. 0.022 5
Attack General attack activity. 0.009 1
C&C-FileDownload File download from C&C server. 0.001 5
C&C-Torii Torii botnet C&C communication. 0.0005 9
FileDownload File download activity. 0.0002 12
C&C-HeartBeat-FileDownload Combination of heartbeat and file download. 0.0001 7
Okiru-Attack Okiru botnet attack. 0.00005 16
C&C-Mirai Mirai botnet C&C communication. 0.00002 8

2) Experimental Setup: To evaluate the effectiveness of the
proposed IoT Threat Detection and Prevention system, we
designed a comprehensive experimental framework leveraging
Docker containers, which provide lightweight, isolated environ-
ments for running applications. Docker enables the simulation
of scalable and realistic deployments of IoT edge and cloud
devices by packaging applications with their dependencies,
ensuring consistency, portability, and resource efficiency across
different computing environments. The framework integrates
detection and prevention components in real-time environ-
ments, providing the model’s adaptability and robustness across
diverse IoT networks. The experimental setup was designed
to replicate real-world IoT ecosystems with various device-
specific configurations and workloads. Docker was chosen for
its lightweight, flexible containerization capabilities, enabling
efficient simulation of both edge and cloud layers: Edge Layer:
Docker containers were deployed on local machines to simulate
IoT devices, such as smart cameras, industrial sensors, and
smart meters, each configured to generate network traffic logs.
Local LLMs were embedded in edge containers, performing
real-time anomaly detection and triggering preventive actions
autonomously. Cloud layer: A separate set of Docker contain-
ers was dedicated to cloud servers. The cloud environment also
included the Performance Monitoring Dashboard for tracking
key performance metrics such as detection accuracy, response
latency, and system throughput. Prompt: The effectiveness of
the proposed Detection Component relies on carefully designed

prompts that provide comprehensive contextual information
about network traffic and device behaviour. The prompt struc-
ture is tailored to help the Local LLM effectively detect anoma-
lies and potential threats within the IoT ecosystem. Below,
we detail the prompt’s construction and role in identifying
abnormal behaviours. The prompt provides a descriptive, struc-
tured summary of each network connection, embedding key
traffic and session details critical for detecting anomalies. The
structure of the prompt is as follows:

Traffic from Port 49864 to Port 80 over TCP Protocol.
Duration: 0.049751s, Service: http, Bytes Sent: 243, Bytes
Received: 3440, Missed Bytes: 0, Total IP Bytes Sent: 511,
Total IP Bytes Received: 3760, Packets Sent: 5, Packets
Received: 6, Connection State: SF

I'V. RESULTS AND EVALUATION

Figure 2 presents training and validation loss curves for dif-
ferent LLMs over four epochs. The models include TinyBERT,
BERT-Small, and BERT-Mini, with their respective training
losses represented by solid lines and validation losses by dashed
lines. The loss decreases progressively across epochs, demon-
strating convergence, with BERT-Small (red line) exhibiting
the lowest loss, followed by TinyBERT (blue line) and BERT-
Mini (green line). As shown in Table III, all three BERT-based
variants exhibit strong performance across accuracy metrics,



TABLE III: Performance Metrics and Resource Usage for the LLMs
Model Train Validation Test Test Test Test Energy Consumption Inference
Loss Loss Accuracy F1-Score Precision Recall (J/Req) (Req/Sec)
BERT Small 0.0089 0.0086 99.75% 99.75% 99.75% 99.75% 0.1434 287.82
BERT Mini 0.0104 0.0097 99.72% 99.72% 99.72% 99.72% 0.1175 293.56
TinyBERT [16] 0.0098 0.0096 99.73% 99.73% 99.73% 99.73% 0.1522 232.35
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Fig. 3: Confusion Matrix of Tiny BERT

with BERT Small slightly edging out the others at 99.75% for
test accuracy, Fl-score, precision, and recall. Notably, BERT
Small also shows the lowest training and validation losses
(0.0089 and 0.0086, respectively), suggesting more effective
optimization. Although BERT Mini achieves a marginally
faster inference rate (293.56 req/sec vs. 287.82 req/sec for
BERT Small), its slightly higher losses (0.0104 train, 0.0097
validation) and marginally lower accuracy metrics (99.72%)
make BERT Small the most balanced choice in terms of both
learning efficiency and predictive performance. Meanwhile,
TinyBERT demonstrates near-equivalent accuracy (99.73%) but
has a lower inference rate of 232.35 reg/sec, reinforcing BERT
Small’s overall advantage. The proposed system’s performance
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was evaluated in a simulated IoT network environment built
using Docker, utilizing a combination of the I0T23 and To_IoT
datasets. The dataset was split into 60% training, 20% val-
idation, and 20% testing to ensure a balanced evaluation of
the model’s generalization capabilities. The experiments were
conducted using an L4 GPU with 24GB of memory, ensuring
efficient execution of the LLM. The BERT Small language
model was employed for the detection phase, benefiting from
its lightweight architecture, which is well-suited for resource-
constrained IoT environments. For the prevention phase, a
Decision Tree-based approach was used to mitigate detected



threats, providing a computationally efficient and interpretable
method for real-time response. For a model outputting logits
21, %2,...,%221 for 21 classes, the softmax function converts
these logits into probabilities as follows:
e*i
gi:T’ fori:172,...,21.
Z j=1 €%
Here, y; represents the predicted probability for class .
The cross-entropy loss is defined as:

21
ﬁ(ya y) = - Z Ye log(gp)
c=1

where . is the true label indicator (1 if the class is the correct
class, O otherwise).

Micro F1 score aggregates the contributions of all classes by
summing up the individual true positives, false positives, and
false negatives:

2.7 TP
2- Zfil TP; + Zfil FP; + Zzzil FN%’.

Where TP; (true positives) are the correctly predicted in-
stances of class 7, FP; (false positives) are the instances
incorrectly predicted as class ¢, and FN; (false negatives) are the
instances of class ¢ that were not correctly predicted. Figures 3,
4, and 5 present the confusion matrix for the evaluation of our
LLMs on the test set, providing a detailed visualization of clas-
sification performance across 21 distinct classes. BERT Small
generally achieves the strongest performance, evidenced by its
consistently darker diagonal and fewer off-diagonal confusions
across most labels, compared to BERT Mini and Tiny BERT.
BERT Mini delivers moderate accuracy, with a slightly lighter
diagonal and some notable misclassifications for particular
classes. Despite differences in accuracy, all three models show
greater success on high-frequency classes (reflected by darker
blocks along the diagonal) and struggle more with less frequent
classes, suggesting that both model size and label frequency
influence classification outcomes.

Micro-F1 =

V. CONCLUSION

This paper presents an innovative LLM-based framework for
IoT threat detection and prevention, addressing the increasing
security challenges in interconnected IoT environments. The
proposed system leverages the adaptability and contextual un-
derstanding of LLMs to enhance anomaly detection and auto-
mated response mechanisms. Through fine-tuning IoT-specific
datasets, including IoT-23 and TON_IoT, the system achieves
superior detection accuracy and robustness against evolving
cyber threats. The experimental evaluation, conducted within
a Docker-based simulation environment, demonstrates the sys-
tem’s effectiveness in detecting sophisticated attacks while
maintaining computational efficiency. The results highlight the
advantages of LLM-driven security solutions over traditional
machine learning and rule-based intrusion detection systems,
particularly in their ability to generalize across diverse IoT

scenarios. Despite the promising outcomes, challenges remain
in optimizing model deployment for real-time applications,
ensuring computational efficiency on resource-constrained IoT
devices, and improving adversarial robustness. The modular and
lightweight nature of the proposed framework positions it for
practical deployment in real-world IoT infrastructures, where
resource constraints and rapid threat adaptation are critical.
This work lays a foundation for scalable and autonomous IoT
security solutions powered by advanced AI models. Future
work will focus on expanding the framework to support real-
time federated learning for decentralized IoT security, enhanc-
ing interpretability through XAI techniques, and integrating
the system into operational IoT environments for large-scale
validation.
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